JPH10123194A - Detecting method for defect of insulated wire - Google Patents

Detecting method for defect of insulated wire

Info

Publication number
JPH10123194A
JPH10123194A JP8274922A JP27492296A JPH10123194A JP H10123194 A JPH10123194 A JP H10123194A JP 8274922 A JP8274922 A JP 8274922A JP 27492296 A JP27492296 A JP 27492296A JP H10123194 A JPH10123194 A JP H10123194A
Authority
JP
Japan
Prior art keywords
magnetic field
insulated wire
conductor
field sensors
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8274922A
Other languages
Japanese (ja)
Other versions
JP3681483B2 (en
Inventor
Hiroyuki Tada
博幸 多田
Kiyoshi Takatsuka
潔 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP27492296A priority Critical patent/JP3681483B2/en
Publication of JPH10123194A publication Critical patent/JPH10123194A/en
Application granted granted Critical
Publication of JP3681483B2 publication Critical patent/JP3681483B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a detecting method in which the abnormality of a conductor part can be detected by a method wherein outputs of one pair of conductor electric-field sensors which are installed in symmetric position in the circumferential direction of an insulated wire are corrected by outputs of one pair of external magnetic-field sensors which are installed on their symmetric line and the outputs are compared with each other. SOLUTION: Two conductor magnetic field sensors 11 of an identical type are installed in separated symmetric positions in the circunferential direction of an insulated wire 1, and a magnetic field ϕa which is generated at a time when an alternating current is made to flow to the insulated wire 1 is detected. In addition, two external magnetic-field sensors 12 of an identical type are installed on the symmetric line C of the conductor magnetic-field sensors 11 in such a way that a detecting axial line is matched with the symmetric line C, and an external magnetic field ϕb is detected. Detection values of the conductor magnetic- field sensors 11 are corrected by detection values of the external magnetic-field sensors 12, and the existence of an abnormality such as a strand disconnection or the like in a conductor part 2 is discriminated on the basis of whether a difference is generated between the detection values of the two conductor magnetic-field sensors or not. By this method, it is possible to obtain a detecting method whose detecting range is expanded and whose detecting efficiency can be enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、絶縁電線の欠陥検
出方法に係り、特に、架空配電線等の絶縁電線における
導体の素線切れ等の欠陥部を、外部磁界の影響を低減し
た状態で検出する技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a defect in an insulated wire, and more particularly to a method for detecting a defect in an insulated wire such as an overhead distribution wire such as a broken wire of a conductor while reducing the influence of an external magnetic field. The present invention relates to a detection technique.

【0002】[0002]

【従来の技術】架空配電線等の絶縁電線の導体部分に素
線切れ等の欠陥部が生じているか否かを検出する技術と
して、以下の(1)(2)の方法が知られている。 (1)導体部分に交流磁界を交差させ、素線切れ等の欠
陥発生箇所で渦電流損失が変動する現象を、検出コイル
のインピーダンスの変化として検出する方法(渦流探傷
法)。 (2)絶縁電線の回りに磁界センサを配して、絶縁電線
に交番電流を流した際に発生する磁界について、絶縁電
線の円周方向の位置による変動があるか否かを検出する
方法。
2. Description of the Related Art The following methods (1) and (2) are known as techniques for detecting whether or not a defective portion such as a broken wire has occurred in a conductor portion of an insulated wire such as an overhead distribution wire. . (1) A method in which an AC magnetic field intersects a conductor portion and a phenomenon in which eddy current loss fluctuates at a defect occurrence location such as a broken wire is detected as a change in impedance of a detection coil (eddy current flaw detection method). (2) A method of arranging a magnetic field sensor around an insulated wire and detecting whether or not a magnetic field generated when an alternating current flows through the insulated wire varies depending on the circumferential position of the insulated wire.

【0003】[0003]

【発明が解決しようとする課題】しかし、(1)の方法
においては、 検出範囲が局部的な小さなものとなり易い。 コイルと導体部分との距離の影響を受けるため、絶縁
被覆の厚さにより感度が低下し易い。 撚線導体の撚り目による誤差を拾い易い。 等の課題が残されている。また、(2)の方法において
は、 磁界センサが絶縁電線の周囲の外部磁界を検出してし
まうことにより、検出精度が低下し易い。 特に、図4に示すように、三相交流等の負荷電流が流
れているような状況下で、T相の絶縁電線aに磁界セン
サbを配置して磁界φtを検出する場合には、R相及び
S相の負荷電流に基づく磁界φr,φsを検出してしま
うため誤差が大きくなる。等の課題が残されている。
However, in the method (1), the detection range tends to be locally small. Since sensitivity is affected by the distance between the coil and the conductor, the sensitivity is likely to be reduced due to the thickness of the insulating coating. It is easy to pick up errors due to the twist of the stranded conductor. And other issues remain. In the method (2), the magnetic field sensor detects an external magnetic field around the insulated wire, so that the detection accuracy tends to be reduced. In particular, as shown in FIG. 4, when a magnetic field sensor b is arranged on a T-phase insulated wire a and a magnetic field φt is detected under a situation where a load current such as a three-phase alternating current flows, R Since the magnetic fields φr and φs based on the phase and S-phase load currents are detected, errors increase. And other issues remain.

【0004】本発明は、上述の事情に鑑みてなされたも
ので、以下の目的を達成するものである。 1)検出範囲の拡大を可能にすること。 2)絶縁被覆の厚さや撚線導体の撚り目等による誤差の
発生を低減すること。 3)外部磁界の影響による検出精度の低下を防止するこ
と。 4)活線状態で導体の欠陥部の検出を可能にすること。 5)三相交流等の負荷電流の影響を低減すること。
[0004] The present invention has been made in view of the above circumstances, and achieves the following objects. 1) To enable the detection range to be expanded. 2) To reduce the occurrence of errors due to the thickness of the insulating coating and the twist of the stranded conductor. 3) To prevent a decrease in detection accuracy due to the influence of an external magnetic field. 4) To enable detection of a defective portion of a conductor in a live state. 5) To reduce the influence of load current such as three-phase alternating current.

【0005】[0005]

【課題を解決するための手段】同型の二つの導体磁界セ
ンサを絶縁電線の円周方向に離れた対称位置に配置し、
絶縁電線に交番電流を流した際に発生する磁界を検出す
るとともに、二つの導体磁界センサの対称線上に、同型
の二つの外部磁界センサを対称線に対して検出軸線を合
わせた状態に配置して外部磁界を検出し、導体磁界セン
サによる検出値を外部磁界センサによる検出値で補正
し、二つの導体磁界センサによる検出値に差が生じてい
るか否かにより、導体部分の異常の有無を判別すること
により絶縁電線の欠陥検出が行なわれる。二つの外部磁
界センサは、対称線上に、重ね合わせた状態に配置して
検出値を比較するか、絶縁電線の両側に離した状態に配
置して検出値を比較するかの選択がなされる。二つの外
部磁界センサは、二つの導体磁界センサの対称線に、検
出軸線を合わせて配して外部磁界を検出することが望ま
しく、二つの導体磁界センサは、絶縁電線における円周
方向の180度離れた位置に配置し、絶縁電線に交番電
流を流した際に発生する磁界を検出する技術が採用され
る。二つの導体磁界センサを180度離れた位置に配置
する場合には、二つの外部磁界センサを90度位置に配
する技術が採用される。導体磁界センサ及び外部磁界セ
ンサによる検出磁界は、電気信号に変換した状態で比較
される。絶縁電線に流れる負荷電流は、磁界を発生させ
るための交番電流として使用される。一列に配置した3
本以上の絶縁電線により三相交流を通電している場合に
おいては、同型の二つの導体磁界センサを、絶縁電線に
おける円周方向の180度離れた位置に対称状態に、か
つ絶縁電線の配列方向に対して検出軸線を平行状態に配
置し、交番電流を流した際に発生する磁界を二つの導体
磁界センサにより検出し、検出値に差が生じているか否
かにより、導体部分の異常の有無を判別する技術が採用
される。
Means for Solving the Problems Two conductor magnetic field sensors of the same type are arranged at symmetrical positions spaced apart in the circumferential direction of an insulated wire,
Detects the magnetic field generated when an alternating current flows through the insulated wire, and arranges two external magnetic field sensors of the same type on the symmetry line of the two conductor magnetic field sensors with the detection axes aligned with the symmetry line. To detect the external magnetic field, correct the value detected by the conductor magnetic field sensor with the value detected by the external magnetic field sensor, and determine whether there is an abnormality in the conductor part based on whether there is a difference between the values detected by the two conductor magnetic field sensors. By doing so, the defect detection of the insulated wire is performed. The two external magnetic field sensors are arranged to be superimposed on the symmetry line and compared with each other in detection value, or arranged separately on both sides of the insulated wire to compare the detection values. It is desirable that the two external magnetic field sensors detect the external magnetic field by aligning the detection axis with the symmetry line of the two conductive magnetic field sensors. A technology of detecting a magnetic field generated when an alternating current is applied to an insulated wire, which is arranged at a remote position, is adopted. When two conductor magnetic field sensors are arranged at a position 180 degrees apart, a technique of arranging two external magnetic field sensors at a position of 90 degrees is adopted. Magnetic fields detected by the conductor magnetic field sensor and the external magnetic field sensor are compared in a state converted into an electric signal. The load current flowing through the insulated wire is used as an alternating current for generating a magnetic field. 3 arranged in a line
When a three-phase alternating current is supplied by more than one insulated wire, two conductor magnetic field sensors of the same type are symmetrically positioned at 180 degrees apart in the circumferential direction on the insulated wire, and The magnetic field generated when an alternating current flows is detected by the two conductor magnetic field sensors, and the presence or absence of abnormality in the conductor part is determined by whether or not the detected value has a difference. Is employed.

【0006】[0006]

【発明の実施の形態】以下、本発明に係る絶縁電線の欠
陥検出方法の第1実施形態について、図1を参照して説
明する。図1において、符号1は架空配電線等の絶縁電
線、2はその導体部分、3はその絶縁被覆部分、11は
導体磁界センサ、12は外部磁界センサ、13は接続
線、14は引出線、15は接続端子、Cは対称線、φa
は導体磁界、φbは外部磁界を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of a method for detecting a defect of an insulated wire according to the present invention will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes an insulated wire such as an overhead distribution wire, 2 denotes a conductor portion, 3 denotes an insulating coating portion, 11 denotes a conductor magnetic field sensor, 12 denotes an external magnetic field sensor, 13 denotes a connection line, 14 denotes a lead wire, 15 is a connection terminal, C is a symmetric line, φa
Indicates a conductor magnetic field, and φb indicates an external magnetic field.

【0007】第1実施形態においては、絶縁電線1にお
ける円周方向の離れた位置に、同型の二つの導体磁界セ
ンサ11を対称状態に配置し、絶縁電線1に交番電流を
流した際に発生する磁界(導体磁界)φaを検出すると
ともに、二つの導体磁界センサ11の対称線C上に、同
型の二つの外部磁界センサ12を対称線Cに対して検出
軸線を合わせた状態に配置して外部磁界φbを検出し、
導体磁界センサ11による検出値を外部磁界センサ12
による検出値で補正し、二つの導体磁界センサ11によ
る検出値に差が生じているか否かにより、導体部分2の
素線切れ等の異常の有無を判別するものである。
In the first embodiment, two conductor magnetic field sensors 11 of the same type are arranged symmetrically at circumferentially separated positions on the insulated wire 1 and are generated when an alternating current flows through the insulated wire 1. A magnetic field (conductor magnetic field) φa to be detected is detected, and two external magnetic field sensors 12 of the same type are arranged on the symmetry line C of the two conductor magnetic field sensors 11 with the detection axes aligned with the symmetry line C. Detecting the external magnetic field φb,
The value detected by the conductor magnetic field sensor 11 is applied to the external magnetic field sensor 12.
In this case, the presence or absence of an abnormality such as a broken wire of the conductor portion 2 is determined based on whether or not there is a difference between the detection values of the two conductor magnetic field sensors 11.

【0008】前記導体磁界センサ11は、例えばボビン
に細線を密巻きしたものであり、巻き数,巻き径,寸法
等が同一特性であるもの(同型のもの)が2個組み合わ
せて用いられる。かつ、導体磁界センサ11は、導体部
分2に交番電流を流した際に発生する磁束及びその変動
を電圧に変換して検出するものであり、同型の二つを、
例えば絶縁電線1における円周方向の180度離れた位
置に、検出軸線が円周の接線方向と平行となる向きに配
置する。
The conductor magnetic field sensor 11 is, for example, a bobbin in which a fine wire is densely wound, and two sensors (of the same type) having the same characteristics such as the number of turns, the winding diameter, and the size are used in combination. The conductor magnetic field sensor 11 detects a magnetic flux generated when an alternating current flows through the conductor portion 2 and its fluctuation by converting the magnetic flux into a voltage, and detects two types of the same type.
For example, the detection axis is arranged at a position 180 degrees apart in the circumferential direction of the insulated wire 1 so that the detection axis is parallel to the tangential direction of the circumference.

【0009】前記外部磁界センサ12は、導体磁界セン
サ11と同様の構造及び同一仕様を有するものが2個組
み合わせて用いられ、対称線C上に、二つを重ね合わせ
た状態に、かつ検出軸線が対称線Cと一致する向きに配
置される。
The external magnetic field sensor 12 has the same structure and the same specifications as the conductor magnetic field sensor 11, and is used in combination of two. The two are superimposed on the symmetry line C, and the detection axis is Are arranged in a direction coinciding with the symmetry line C.

【0010】これら二つの導体磁界センサ11及び外部
磁界センサ12は、図1に示すように、接続線13によ
り直列接続されるとともに、引出線14により引き出さ
れる。なお、図1に示すように、外部磁界φbが存在す
る状況下では、導体磁界センサ11及び外部磁界センサ
12に、外部磁界φbの磁束に基づく誘起電圧がそれぞ
れ発生するため、導体磁界センサ11及び外部磁界セン
サ12の間で、外部磁界φbによる誘起電圧を相殺する
ように接続する。
As shown in FIG. 1, the two conductor magnetic field sensors 11 and the external magnetic field sensor 12 are connected in series by a connection line 13 and are drawn out by a lead line 14. Note that, as shown in FIG. 1, when an external magnetic field φb exists, an induced voltage based on the magnetic flux of the external magnetic field φb is generated in the conductive magnetic field sensor 11 and the external magnetic field sensor 12, respectively. The external magnetic field sensors 12 are connected so as to cancel the induced voltage due to the external magnetic field φb.

【0011】そして、図1に示すように、導体磁界セン
サ11の検出軸線が、対称線Cに対して平行状態に設定
されている場合には、導体磁界センサ11及び外部磁界
センサ12を同型のものに設定することにより、両磁界
センサ11,12の誘導電圧を等しくして相殺性を高め
ることができる。
As shown in FIG. 1, when the detection axis of the conductor magnetic field sensor 11 is set parallel to the symmetry line C, the conductor magnetic field sensor 11 and the external magnetic field sensor 12 are connected to the same type. By setting such a value, the induced voltages of the two magnetic field sensors 11 and 12 can be made equal to enhance the canceling performance.

【0012】また、導体磁界センサ11の検出軸線を、
対称線Cに対して傾斜させる場合には、その角度の正弦
値分だけ外部磁界センサ12の誘起電圧を低減させるよ
うに、外部磁界センサ12を小さくするか、あるいは誘
起電圧を分圧するかの設定がなされる。
The detection axis of the conductor magnetic field sensor 11 is
In the case where the external magnetic field sensor 12 is inclined with respect to the symmetry line C, the setting is made so that the external magnetic field sensor 12 is reduced or the induced voltage is divided so that the induced voltage of the external magnetic field sensor 12 is reduced by the sine value of the angle. Is made.

【0013】絶縁電線1に負荷電流が流れている場合に
は、この負荷電流が交番電流として利用される。負荷電
流に基づいて発生する導体磁界φaは、外部磁界センサ
12により電圧に変換されて、接続端子15より電圧V
1 ,V2 として取り出されて、電圧V1 ,V2 の比較及
び差が検出される。したがって、電圧V1 ,V2 は、外
部磁界φbによる誘起電圧を除去した状態で比較され
る。導体部分2に交番電流を流した場合に発生する導体
磁界φaは、電流分布の中心が導体部分2の中心と一致
している場合に均一に分布するが、電流分布の中心が導
体部分2の中心とずれている場合に不均一になって、絶
縁電線1の外周位置により磁束密度の差が生じるため、
有意義な差が生じているか否かにより、導体部分2にお
ける素線切れ等の欠陥部の有無が判別される。
When a load current flows through the insulated wire 1, this load current is used as an alternating current. The conductor magnetic field φa generated based on the load current is converted into a voltage by the external magnetic field sensor 12 and the voltage V
1, is taken as V 2, the comparison and the difference between the voltages V 1, V 2 are detected. Therefore, the voltages V 1 and V 2 are compared in a state where the induced voltage due to the external magnetic field φb is removed. The conductor magnetic field φa generated when an alternating current flows through the conductor portion 2 is uniformly distributed when the center of the current distribution coincides with the center of the conductor portion 2. When it is off center, it becomes non-uniform and a difference in magnetic flux density occurs depending on the outer peripheral position of the insulated wire 1.
The presence or absence of a defective portion such as a broken wire in the conductor portion 2 is determined based on whether a significant difference has occurred.

【0014】なお、導体部分2が単線である場合には、
絶縁電線1または各磁界センサ11,12を回転させて
周方向の位置を変えて欠陥部の有無を検出することが有
効であるが、導体部分2が撚り線である場合には、素線
が繰り返し螺旋状に同位置に出現するため、絶縁電線1
の長手方向に沿って各磁界センサ11,12の位置をず
らしながら、欠陥部の有無を検出することができる。
When the conductor portion 2 is a single wire,
It is effective to detect the presence or absence of a defect by rotating the insulated wire 1 or each of the magnetic field sensors 11 and 12 to change the position in the circumferential direction, but when the conductor portion 2 is a stranded wire, the strand is Because it appears repeatedly at the same position in a spiral, the insulated wire 1
The presence or absence of a defective portion can be detected while shifting the position of each of the magnetic field sensors 11 and 12 along the longitudinal direction.

【0015】図2は、本発明に係る絶縁電線の欠陥検出
方法の第2実施形態を示すもので、二つの同型の外部磁
界センサ12が、対称線C上に、絶縁電線1の両側を挟
むように離した状態に配置されており、この場合におい
ても、外部磁界φbによる誘起電圧を相殺させて誤差の
発生を軽減することができる。
FIG. 2 shows a second embodiment of the method for detecting a defect of an insulated wire according to the present invention, in which two external magnetic field sensors 12 of the same type sandwich both sides of the insulated wire 1 on a symmetry line C. In this case as well, it is possible to offset the induced voltage due to the external magnetic field φb to reduce the occurrence of errors.

【0016】図3は、本発明に係る絶縁電線の欠陥検出
方法の第3実施形態を示すもので、3本またはその倍数
の絶縁電線1を一列に配置して三相交流を通電している
場合のように、外部磁界φbの方向が予め設定されてい
る(所定方向である)と、同型の二つの導体磁界センサ
11を、絶縁電線1における円周方向の180度離れた
位置に対称配置するとともに、その対称線C及び検出軸
線を複数の絶縁電線1の配列方向及び磁界発生源の方向
に対して平行に設定して、絶縁電線1に交番電流を流し
た際に発生する導体磁界φaを検出することにより、外
部磁界φbの影響を受けることなく、かつ外部磁界セン
サ12の設置を省略して、導体部分2の素線切れ等の異
常の有無を判別することができる。
FIG. 3 shows a third embodiment of the insulated wire defect detecting method according to the present invention, in which three or multiple insulated wires 1 are arranged in a line and a three-phase alternating current is applied. As in the case, when the direction of the external magnetic field φb is preset (predetermined direction), the two conductor magnetic field sensors 11 of the same type are symmetrically arranged on the insulated wire 1 at positions 180 degrees apart in the circumferential direction. In addition, the symmetric line C and the detection axis are set in parallel with the arrangement direction of the plurality of insulated wires 1 and the direction of the magnetic field generation source, and the conductor magnetic field φa generated when an alternating current flows through the insulated wires 1 Is detected, the presence or absence of an abnormality such as a broken wire of the conductor portion 2 can be determined without being affected by the external magnetic field φb and omitting the installation of the external magnetic field sensor 12.

【0017】[0017]

【発明の効果】本発明に係る絶縁電線の欠陥検出方法に
よれば、二つの導体磁界センサを絶縁電線の円周方向に
離れた対称位置に配置し、絶縁電線に交番電流を流した
際に発生する磁界の変動を検出するとともに、外部磁界
による影響を相殺した状態で導体部分の素線切れ等の異
常の有無を判別するものであるから、以下のような効果
を奏する。 (1) 絶縁電線に交番電流を流した際の発生磁界に基
づいて欠陥検出を行なうことにより、検出範囲を拡大し
て検出効率を向上させることができる。 (2) 導体の電流分布の中心のずれに基づく磁束の差
を検出することにより、絶縁被覆の厚さや撚線導体の撚
り目等の影響を軽減し、誤差の発生を低減することがで
きる。 (3) 外部磁界を検出してその検出値を補正すること
により、外部磁界が介在する環境における欠陥部の検出
精度の低下を抑制することができる。 (4) 絶縁電線の負荷電流により生じた磁界を利用す
ることにより、絶縁電線が活線状態であっても、導体に
欠陥部があるか否かを検出することができる。 (5) 三相交流を通電している絶縁電線において、他
相の負荷電流の影響を低減して欠陥検出精度を高めるこ
とができる。 (6) 一列に配置した絶縁電線により三相交流を通電
している場合において、導体磁界センサの配列を単純化
し、検出作業性を向上させることができる。
According to the method for detecting a defect of an insulated wire according to the present invention, two conductor magnetic field sensors are arranged at symmetrical positions spaced apart in the circumferential direction of the insulated wire, and when an alternating current flows through the insulated wire. In addition to detecting fluctuations in the generated magnetic field and determining whether there is an abnormality such as a broken wire in the conductor portion while canceling out the influence of the external magnetic field, the following effects are obtained. (1) By performing defect detection based on a magnetic field generated when an alternating current is applied to an insulated wire, the detection range can be expanded and the detection efficiency can be improved. (2) By detecting the difference in magnetic flux based on the deviation of the center of the current distribution of the conductor, the influence of the thickness of the insulating coating and the twist of the stranded conductor can be reduced, and the occurrence of errors can be reduced. (3) By detecting the external magnetic field and correcting the detection value, it is possible to suppress a decrease in the accuracy of detecting a defective portion in an environment where the external magnetic field is present. (4) By using the magnetic field generated by the load current of the insulated wire, even if the insulated wire is in a live state, it is possible to detect whether or not the conductor has a defect. (5) In an insulated wire energized with three-phase alternating current, the influence of the load current of another phase can be reduced and the defect detection accuracy can be improved. (6) When three-phase alternating current is supplied by insulated wires arranged in a line, the arrangement of the conductor magnetic field sensors can be simplified, and the detection workability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る絶縁電線の欠陥検出方法の第1
実施形態を示す結線図である。
FIG. 1 shows a first method of detecting a defect of an insulated wire according to the present invention.
It is a connection diagram showing an embodiment.

【図2】 本発明に係る絶縁電線の欠陥検出方法の第2
実施形態を示す結線図である。
FIG. 2 shows a second method of detecting a defect of an insulated wire according to the present invention.
It is a connection diagram showing an embodiment.

【図3】 本発明に係る絶縁電線の欠陥検出方法の第3
実施形態を示す磁界検出状況の模式図である。
FIG. 3 shows a third method of detecting a defect of an insulated wire according to the present invention.
It is a mimetic diagram of a magnetic field detection situation showing an embodiment.

【図4】 三相交流の絶縁電線に電流が流れる場合の磁
界検出状況を示す正面図である。
FIG. 4 is a front view showing a magnetic field detection state when a current flows through a three-phase AC insulated wire.

【符号の説明】[Explanation of symbols]

1 絶縁電線 2 導体部分 3 絶縁被覆部分 11 導体磁界センサ 12 外部磁界センサ 13 接続線 14 引出線 15 接続端子 C 対称線 φa 導体磁界(磁界) φb 外部磁界(磁界) DESCRIPTION OF SYMBOLS 1 Insulated wire 2 Conductor part 3 Insulation coating part 11 Conductive magnetic field sensor 12 External magnetic field sensor 13 Connection line 14 Lead wire 15 Connection terminal C Symmetry line φa Conductive magnetic field (magnetic field) φb External magnetic field (magnetic field)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 同型の二つの導体磁界センサ(11)を
絶縁電線(1)の円周方向に離れた対称位置に配置し、
絶縁電線に交番電流を流した際に発生する磁界(φa)
を検出するとともに、二つの導体磁界センサの対称線
(C)上に、同型の二つの外部磁界センサ(12)を対
称線に対して検出軸線を合わせた状態に配置して外部磁
界(φb)を検出し、導体磁界センサによる検出値を外
部磁界センサによる検出値で補正し、二つの導体磁界セ
ンサによる検出値に差が生じているか否かにより、導体
部分(2)の異常の有無を判別することを特徴とする絶
縁電線の欠陥検出方法。
1. An insulated wire (1) having two conductor magnetic field sensors (11) of the same type arranged at symmetrical positions spaced apart in the circumferential direction.
Magnetic field (φa) generated when alternating current is passed through insulated wires
And the two external magnetic field sensors (12) of the same type are arranged on the symmetry line (C) of the two conductor magnetic field sensors with the detection axis aligned with the symmetry line, and the external magnetic field (φb) is detected. Is detected, the value detected by the conductor magnetic field sensor is corrected by the value detected by the external magnetic field sensor, and the presence or absence of an abnormality in the conductor portion (2) is determined based on whether or not there is a difference between the values detected by the two conductor magnetic field sensors. A method for detecting defects in an insulated wire.
【請求項2】 対称線(C)上に、二つの外部磁界セン
サ(12)を重ね合わせた状態に配置して検出値を比較
することを特徴とする請求項1記載の絶縁電線の欠陥検
出方法。
2. The defect detection of an insulated wire according to claim 1, wherein two external magnetic field sensors (12) are arranged on the symmetry line (C) in a superimposed state and the detected values are compared. Method.
【請求項3】 対称線(C)上に、二つの外部磁界セン
サ(12)を絶縁電線(1)の両側に離した状態に配置
して検出値を比較することを特徴とする請求項1記載の
絶縁電線の欠陥検出方法。
3. The detection values are compared by arranging two external magnetic field sensors (12) on both sides of the insulated wire (1) on the symmetry line (C). The method for detecting a defect of an insulated wire as described above.
【請求項4】 二つの導体磁界センサ(11)を、絶縁
電線(1)における円周方向の180度離れた位置に配
置し、絶縁電線(1)に交番電流を流した際に発生する
磁界(φa)を検出することを特徴とする請求項1、2
または3記載の絶縁電線の欠陥検出方法。
4. A magnetic field generated when an alternating current flows through an insulated wire (1) by disposing two conductor magnetic field sensors (11) at positions 180 degrees apart in a circumferential direction on the insulated wire (1). (Φa) is detected.
Or the method of detecting a defect of an insulated wire according to 3.
【請求項5】 絶縁電線(1)に流れる負荷電流を交番
電流として使用することを特徴とする請求項1、2、3
または4記載の絶縁電線の欠陥検出方法。
5. The method according to claim 1, wherein a load current flowing through the insulated wire is used as an alternating current.
Or the method for detecting a defect of an insulated wire according to 4.
【請求項6】 一列に配置した3本以上の絶縁電線
(1)により三相交流を通電している場合において、同
型の二つの導体磁界センサ(11)を絶縁電線における
円周方向の180度離れた位置に対称状態にかつ絶縁電
線の配列方向に対して検出軸線を平行状態に配置し、絶
縁電線に交番電流を流した際に発生する磁界(φa)を
二つの導体磁界センサ(12)により検出し、検出値に
差が生じているか否かにより、導体部分(2)の異常の
有無を判別することを特徴とする絶縁電線の欠陥検出方
法。
6. When three or more insulated wires (1) arranged in a row are energized with three-phase alternating current, two conductor magnetic field sensors (11) of the same type are connected to each other by 180 degrees in the circumferential direction of the insulated wires. A magnetic field (φa) generated when an alternating current is applied to the insulated wire by symmetrically arranging the detection axes in a symmetrical state at a distance from the arrangement direction of the insulated wires, and using two conductor magnetic field sensors (12) A method for detecting a defect in an insulated wire, comprising: determining whether there is an abnormality in the conductor portion (2) based on whether there is a difference between the detected values.
JP27492296A 1996-10-17 1996-10-17 Insulated wire defect detection method Expired - Fee Related JP3681483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27492296A JP3681483B2 (en) 1996-10-17 1996-10-17 Insulated wire defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27492296A JP3681483B2 (en) 1996-10-17 1996-10-17 Insulated wire defect detection method

Publications (2)

Publication Number Publication Date
JPH10123194A true JPH10123194A (en) 1998-05-15
JP3681483B2 JP3681483B2 (en) 2005-08-10

Family

ID=17548419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27492296A Expired - Fee Related JP3681483B2 (en) 1996-10-17 1996-10-17 Insulated wire defect detection method

Country Status (1)

Country Link
JP (1) JP3681483B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101914A (en) * 2006-10-17 2008-05-01 Fuji Electric Systems Co Ltd Current sensor and electronic watthour meter
CN102841232A (en) * 2011-05-09 2012-12-26 阿尔卑斯绿色器件株式会社 Current sensor for electric wire
JP2016121922A (en) * 2014-12-24 2016-07-07 川崎重工業株式会社 Shield deterioration inspection system and method of shield cable

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10788517B2 (en) * 2017-11-14 2020-09-29 Analog Devices Global Unlimited Company Current measuring apparatus and methods
US10712369B2 (en) 2018-03-23 2020-07-14 Analog Devices Global Unlimted Company Current measurement using magnetic sensors and contour intervals
US10955493B2 (en) 2018-05-02 2021-03-23 Analog Devices Global Unlimited Company Magnetic sensor systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008101914A (en) * 2006-10-17 2008-05-01 Fuji Electric Systems Co Ltd Current sensor and electronic watthour meter
CN102841232A (en) * 2011-05-09 2012-12-26 阿尔卑斯绿色器件株式会社 Current sensor for electric wire
JP2016121922A (en) * 2014-12-24 2016-07-07 川崎重工業株式会社 Shield deterioration inspection system and method of shield cable

Also Published As

Publication number Publication date
JP3681483B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
US7358721B2 (en) Eddy current flaw detection sensor and method
US11573256B2 (en) Method and circuit for detecting an arc fault
CN111771250B (en) Current transformer
US9983075B2 (en) Magnetostrictive torque sensor that prevents torque measurement error due to offset voltage
JP3681483B2 (en) Insulated wire defect detection method
CN103575802A (en) Broadband eddy current probe
RU2396661C1 (en) Measuring device of differential current protection of buses
CN111103450B (en) Coil wire, current sensor component, and current sensor
US10324140B2 (en) Zero sequence sensing apparatus and method
JPH1073631A (en) Method and apparatus for detecting defect of insulated wire
US8076944B2 (en) Systems and methods for detecting electrical line faults
JP2010223906A (en) Method and device for detecting abnormality of shielding member
JP3270105B2 (en) Stator core abnormality detector
JPH06273470A (en) Accident section plotting device of overhead transmission line
JP2000028669A (en) Method and device for detecting flaws in metal twisted wire
EP3557242B1 (en) Eddy current flaw detecting probe
JPH02287168A (en) Locating method for faulty point of underground line
JP3717200B2 (en) Leakage transformer ground fault detector
JPH10123195A (en) Method and device for detecting defect of insulation electric wire
JPH04242014A (en) Cable with accidental current detecting wire
JPH0296663A (en) Clamp-type ammeter
JPS5835468A (en) Split-type transformer
JP2005158810A (en) Zero-phase current transformer
JPH07108058B2 (en) Transmission line fault section detection method
JPH03170881A (en) Locating method for accident point of underground line

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees