JP2010223906A - Method and device for detecting abnormality of shielding member - Google Patents

Method and device for detecting abnormality of shielding member Download PDF

Info

Publication number
JP2010223906A
JP2010223906A JP2009074367A JP2009074367A JP2010223906A JP 2010223906 A JP2010223906 A JP 2010223906A JP 2009074367 A JP2009074367 A JP 2009074367A JP 2009074367 A JP2009074367 A JP 2009074367A JP 2010223906 A JP2010223906 A JP 2010223906A
Authority
JP
Japan
Prior art keywords
shield member
current
abnormality
alternating current
copper tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009074367A
Other languages
Japanese (ja)
Inventor
Koji Takahashi
公嗣 高橋
Masahiro Hotta
昌弘 堀田
Kazutoshi Tazawa
和俊 田澤
Hirotaka Mamiya
啓貴 間宮
Takao Kumazawa
孝夫 熊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Yazaki Corp
Original Assignee
Chubu Electric Power Co Inc
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Yazaki Corp filed Critical Chubu Electric Power Co Inc
Priority to JP2009074367A priority Critical patent/JP2010223906A/en
Publication of JP2010223906A publication Critical patent/JP2010223906A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost device for detecting abnormality of a shield member aimed at improvement in the detection accuracy. <P>SOLUTION: Both ends of copper tape 13 of a plurality of CV cables 101-103 are connected to each other. By changing a selector switch SW, a current transformer CT1 is connected to an alternating-current power supply 31, to make alternating current flow through the copper tape 13, and current transformers CT2 and CT3 are connected to an FFT waveform analyzer 22. Thus, the FFT waveform analyzer 22 extracts the frequency component of the alternating-current power supply 31 from electromotive force from the current transformers CT2 and CT3, according to the current flowing through the copper tape 13 of the CV cables 102 and 103 and displays it. Next, by changing the selector switch SW, the current transformer CT2 is connected to the alternating-current power supply 31, and the current transformers CT1 and CT3 are connected to the FFT waveform analyzer 22. Then, by changing the selector switch SW, the current transformer CT3 is connected to the alternating-current power supply 31, and the current transformers CT1 and CT2 are connected to the FFT waveform analyzer 22. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、シールド部材の異常検出方法及びシールド部材の異常検出装置に関するものである。   The present invention relates to a shield member abnormality detection method and a shield member abnormality detection device.

上述したシールド部材を有する電線として、例えば、図2に示すような、高圧電力を供給するためのCVケーブル101が知られている。同図に示すように、CVケーブル101は、芯線11と、内部絶縁体としての絶縁体12と、シールド部材としての銅テープ13と、外部絶縁体としてのシース14と、を備えている。   As an electric wire having the shield member described above, for example, a CV cable 101 for supplying high-voltage power as shown in FIG. 2 is known. As shown in the figure, the CV cable 101 includes a core wire 11, an insulator 12 as an internal insulator, a copper tape 13 as a shield member, and a sheath 14 as an external insulator.

芯線11は、導電性を有する導体から成る。絶縁体12は、架橋ポリエチレンなどから成り、芯線11を被覆する。銅テープ13は、外部へのノイズの進入を防止するために設けられている。銅テープ13は、テープ状に設けられており、絶縁体12の外周に巻き付けられる。シース14は、ポリエチレンなどから成り、銅テープ13を被覆する。   The core wire 11 is made of a conductive conductor. The insulator 12 is made of crosslinked polyethylene or the like and covers the core wire 11. The copper tape 13 is provided to prevent noise from entering the outside. The copper tape 13 is provided in a tape shape and is wound around the outer periphery of the insulator 12. The sheath 14 is made of polyethylene or the like and covers the copper tape 13.

上述したCVケーブル101の水トリーなどの活線劣化診断は、直流漏れ電流測定から交流重畳劣化診断測定に移行しつつある。このため、端末処理の必要な直流漏れ電流測定を行わないことから、CVケーブル10端末部分の銅テープ13の劣化状況を直接確認することができず、外側からの目視点検のみが行われている状況である。   The above-mentioned hot wire deterioration diagnosis of the water tree of the CV cable 101 is shifting from the DC leakage current measurement to the AC superimposition deterioration diagnosis measurement. For this reason, since the direct current leakage current measurement which needs a terminal process is not performed, the deterioration condition of the copper tape 13 of the terminal part of CV cable 10 cannot be confirmed directly, but only the visual inspection from the outside is performed. Is the situation.

しかしながら、CVケーブル101では経年変化によるシュリンクバック現象により銅テープ13のずれや腐食破断といった異常が起こりうることがある。これにより、CVケーブル10の性能品質が劣化するという問題があった。   However, in the CV cable 101, abnormalities such as displacement of the copper tape 13 and corrosion breakage may occur due to shrinkage due to aging. Thereby, there existed a problem that the performance quality of the CV cable 10 deteriorated.

そこで、例えば銅テープ13に直流電圧を供給して、銅テープ13の抵抗値を測定して、測定した銅テープ13の抵抗値に基づいて銅テープ13の破断を検出する破断検査回路が提案されている(特許文献1)。また、銅テープ13の測定端に検出抵抗を介して直流電圧を印加し、直流電圧を基準値から所定値まで段階的に上昇若しくは下降させたときに検出抵抗に流れる電流と、検出抵抗の両端に生じる電圧との関係から銅テープ13の劣化状況を判別する劣化検出方法が提案されている(特許文献2)。   Therefore, for example, a rupture inspection circuit for supplying a DC voltage to the copper tape 13 and measuring the resistance value of the copper tape 13 and detecting the rupture of the copper tape 13 based on the measured resistance value of the copper tape 13 has been proposed. (Patent Document 1). Further, when a DC voltage is applied to the measurement end of the copper tape 13 via the detection resistor, and the DC voltage is stepped up or down from the reference value to a predetermined value, the current flowing through the detection resistor and both ends of the detection resistor There has been proposed a deterioration detection method for discriminating the deterioration state of the copper tape 13 from the relationship with the voltage generated in the above (Patent Document 2).

しかしながら、測定現場には直流迷走電流などのノイズが数多く存在する場合がある。上述した従来の破断検査回路や劣化検出方法では銅テープ13に直流電源を供給している。このため、直流迷走電流の影響を受けて正確に抵抗値を測定することができない。また、検出抵抗に流れる電流及び検出抵抗の両端に生じる電圧が直流迷走電流の影響を受けて変動してしまうため、正確に銅テープ13の異常を検出することができない、という問題があった。   However, there may be many noises such as DC stray current at the measurement site. In the conventional break inspection circuit and deterioration detection method described above, a DC power source is supplied to the copper tape 13. For this reason, the resistance value cannot be accurately measured under the influence of the DC stray current. In addition, since the current flowing through the detection resistor and the voltage generated at both ends of the detection resistor fluctuate under the influence of the DC stray current, there is a problem that the abnormality of the copper tape 13 cannot be detected accurately.

特開2002−214273号公報JP 2002-214273 A 特開2003−240816号公報JP 2003-240816 A

そこで、本発明は、検出精度向上を図ったシールド部材の異常検出方法及び異常検出装置を安価に提供することを課題とする。   Therefore, an object of the present invention is to provide a shield member abnormality detection method and an abnormality detection device that improve detection accuracy at a low cost.

上記課題を解決するためになされた請求項1記載の発明は、導電性を有する芯線、前記芯線を被覆する内部絶縁体、前記内部絶縁体の外周に巻き付けられたシールド部材、及び、前記シールド部材を被覆する外部絶縁体、を有する複数の電線であって、前記シールド部材の両端が互いに接続された複数の電線における前記シールド部材の異常を検出するシールド部材の異常検出方法において、前記電線のシールド部材に交流電流を流す第1工程と、前記各電線のシールド部材に流れる電流をそれぞれ検出する第2工程と、前記検出された電流のうち前記第1工程で前記シールド部材に流した交流電流の周波数成分を抽出する第3工程と、前記抽出された前記交流電流の周波数成分の大きさに基づいて前記シールド部材の異常を検出する第4工程と、を順次行うことを特徴とするシールド部材の異常検出方法に存する。   The invention according to claim 1, which has been made to solve the above-mentioned problems, includes a conductive core wire, an internal insulator covering the core wire, a shield member wound around an outer periphery of the internal insulator, and the shield member A shield member abnormality detecting method for detecting an abnormality of the shield member in a plurality of wires in which both ends of the shield member are connected to each other. A first step of flowing an alternating current through the member, a second step of detecting a current flowing through the shield member of each of the wires, and an alternating current of the detected current flowing through the shield member in the first step. A third step of extracting a frequency component, and a fourth step of detecting an abnormality of the shield member based on the magnitude of the extracted frequency component of the alternating current If, it consists in the abnormality detecting method of the shield member, characterized in that sequentially performed.

請求項2記載の発明は、前記第1工程において、前記電線のシールド部材毎に設けられた複数のコイルの1つに交流電源からの交流電流を供給して当該コイルに磁界を発生させてその磁界により前記シールド部材に交流電流を流し、前記第2工程において、前記複数のコイルのうち前記交流電流が供給されていない残りのコイルに発生する起電力を前記電線のシールド部材に流れる電流として検出することを特徴とする請求項1に記載のシールド部材の異常検出方法に存する。   According to a second aspect of the present invention, in the first step, an alternating current from an alternating current power source is supplied to one of a plurality of coils provided for each shield member of the electric wire to generate a magnetic field in the coil. An alternating current is passed through the shield member by a magnetic field, and in the second step, an electromotive force generated in the remaining coils to which the alternating current is not supplied among the plurality of coils is detected as a current flowing through the shield member of the wire. The present invention resides in the abnormality detection method for a shield member according to claim 1.

請求項3記載の発明は、導電性を有する芯線、前記芯線を被覆する内部絶縁体、前記内部絶縁体の外周に巻き付けられたシールド部材、及び、前記シールド部材を被覆する外部絶縁体、を有する複数の電線であって、前記シールド部材の両端が互いに接続された複数の電線における前記シールド部材の異常を検出するシールド部材の異常検出装置において、前記電線のシールド部材に交流電流を流すための交流電源と、前記各電線のシールド部材に流れる電流をそれぞれ検出する複数の電流検出手段と、前記電流検出手段により検出された電流のうち前記交流電源の周波数成分を抽出する周波数抽出手段と、を備えたことを特徴とするシールド部材の異常検出装置に存する。   The invention according to claim 3 has a conductive core wire, an internal insulator covering the core wire, a shield member wound around the outer periphery of the internal insulator, and an external insulator covering the shield member. In the abnormality detection device for a shield member that detects a failure of the shield member in a plurality of electric wires that are connected to each other at both ends of the shield member, an alternating current for causing an alternating current to flow through the shield member of the wire A power supply, a plurality of current detection means for detecting current flowing in the shield member of each electric wire, and a frequency extraction means for extracting a frequency component of the AC power supply from the current detected by the current detection means. It exists in the abnormality detection apparatus of the shield member characterized by the above-mentioned.

請求項4記載の発明は、前記周波数抽出手段により抽出された前記交流電源の周波数成分の大きさに基づいて前記シールド部材の異常を検出する異常検出手段をさらに備えたことを特徴とする請求項3記載のシールド部材の異常検出装置に存する。   The invention according to claim 4 further comprises an abnormality detection means for detecting an abnormality of the shield member based on the magnitude of the frequency component of the AC power source extracted by the frequency extraction means. 3. The abnormality detection device for a shield member according to 3.

請求項5記載の発明は、前記複数の電流検出手段がそれぞれ、前記各電線のシールド部材に電流が流れると当該電流値に応じた起電力が発生するコイルから構成され、前記交流電源が、前記複数の電流検出手段のうち1つを構成するコイルに交流電流を供給して当該コイルに磁界を発生させてその磁界により前記銅テープに交流電流を流すように設けられることを特徴とする請求項3又は4に記載のシールド部材の異常検出装置に存する。   The invention according to claim 5 is configured such that each of the plurality of current detection means is a coil that generates an electromotive force according to the current value when a current flows through the shield member of each electric wire, An AC current is supplied to a coil constituting one of a plurality of current detection means, a magnetic field is generated in the coil, and an AC current is supplied to the copper tape by the magnetic field. It exists in the abnormality detection apparatus of the shield member of 3 or 4.

以上説明したように請求項1及び3記載の発明によれば、交流電流をシールド部材に供給し、シールド部材に流れる電流のうち交流電源の周波数成分を抽出しているため、迷走電流と分離することができ検出精度向上を図ることができる。また、シールド部材に交流電流を供給しているため、交流電流としては低圧のものでよく安全に異常を検出できる。   As described above, according to the first and third aspects of the invention, the alternating current is supplied to the shield member, and the frequency component of the alternating current power source is extracted from the current flowing through the shield member, so that it is separated from the stray current. The detection accuracy can be improved. In addition, since an alternating current is supplied to the shield member, the alternating current may be a low pressure and an abnormality can be detected safely.

請求項2及び4記載の発明によれば、シールド部材に交流電流を流す機能と、シールド部材に流れる電流の検出する機能とを、1つのコイルで兼用させることができるため、電流検出手段と交流電源とを別々にシールド部材に取り付ける必要がなくなり、装置が容易となり、コストダウンを図ることができる。   According to the second and fourth aspects of the present invention, the function of flowing an alternating current through the shield member and the function of detecting the current flowing through the shield member can be shared by a single coil. There is no need to separately attach the power source to the shield member, the apparatus becomes easy, and the cost can be reduced.

請求項5記載の発明によれば、異常検出手段によってシールド部材の異常を検出することができる。   According to invention of Claim 5, abnormality of a shield member can be detected by the abnormality detection means.

本発明のシールド部材の異常検出装置の一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment of the abnormality detection apparatus of the shield member of this invention. 図1に示すCVケーブルの断面図である。It is sectional drawing of the CV cable shown in FIG. 図1に示す変流器の詳細を示す斜視図である。It is a perspective view which shows the detail of the current transformer shown in FIG. 図1に示す変流器の他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of the current transformer shown in FIG.

以下、本発明の銅テープ13(シールド部材)の異常検出装置について図面に基づいて説明する。上記異常検出装置20は、R、S、T相からなる複数のCVケーブル101〜103の異常を検出する装置である。上記CVケーブル101は、背景技術で説明したように、図2に示すように、芯線11と、内部絶縁体としての絶縁体12と、シールド部材としての銅テープ13と、外部絶縁体としてのシース14と、を備えている。   Hereinafter, the abnormality detection apparatus for the copper tape 13 (shield member) of the present invention will be described with reference to the drawings. The abnormality detection device 20 is a device that detects an abnormality in a plurality of CV cables 101 to 103 composed of R, S, and T phases. As described in the background art, the CV cable 101 includes a core wire 11, an insulator 12 as an internal insulator, a copper tape 13 as a shield member, and a sheath as an external insulator, as shown in FIG. 14.

芯線11は、導電性を有する導体から成る。絶縁体12は、架橋ポリエチレンなどから成り、芯線11を被覆する。銅テープ13は、テープ状に設けられており、絶縁体12の外周に巻き付けられる。シース14は、ポリエチレンなどから成り、銅テープ13を被覆する。ここで、銅テープ13の異常とは、銅テープ13がズレたり腐食破断したりして銅テープ13が切れている部分が生じることをいう。上記CVケーブル102及び103は、CVケーブル101と同様の構成であるためここでは詳細な説明は省略する。   The core wire 11 is made of a conductive conductor. The insulator 12 is made of crosslinked polyethylene or the like and covers the core wire 11. The copper tape 13 is provided in a tape shape and is wound around the outer periphery of the insulator 12. The sheath 14 is made of polyethylene or the like and covers the copper tape 13. Here, the abnormality of the copper tape 13 means that the copper tape 13 is displaced or corroded to cause a portion where the copper tape 13 is cut. Since the CV cables 102 and 103 have the same configuration as the CV cable 101, detailed description thereof is omitted here.

上記複数のCVケーブル101〜103を構成する銅テープ13の一端は、互いに接続されて接地されている。また、上記複数のCVケーブル101〜103を構成する銅テープ13の他端は、互いに接続されている。即ち、各銅テープ13は、3つのループができるように接続されている。   One ends of the copper tapes 13 constituting the plurality of CV cables 101 to 103 are connected to each other and grounded. Further, the other ends of the copper tapes 13 constituting the plurality of CV cables 101 to 103 are connected to each other. That is, each copper tape 13 is connected so as to form three loops.

次に、上記異常検出装置20の構成について説明する。図1に示すように、異常検出装置20は、電流検出手段としての変流器CT1〜CT3と、切替スイッチSWと、交流電源31と、周波数抽出手段としてのFFT波形解析装置22と、を備えている。上記変流器CT1〜CT3は、CVケーブル101〜103毎に一つずつ設けられている。上記変流器CT1は、図3に示すように、一対のコイル211と、ボビン212と、コア213と、から構成されている。上記一対のコイル211は、CVケーブル101の銅テープ13近傍に配置されている。このため、銅テープ13に交流電流が流れると、銅テープ13回りに交流磁界が発生する。この交流磁界が一対のコイル211内を通ることにより、一対のコイル211の両端には起電力が発生する。この起電力が、銅テープ13に流れる交流電流に応じた値となる。また、上記一対のコイル211に交流電流を供給するとコイル211内を通る交流磁界が発生する。そして、この交流磁界により電磁誘導されて銅テープ13に交流電流が流れる。   Next, the configuration of the abnormality detection device 20 will be described. As shown in FIG. 1, the abnormality detection device 20 includes current transformers CT1 to CT3 as current detection means, a changeover switch SW, an AC power supply 31, and an FFT waveform analysis device 22 as frequency extraction means. ing. The current transformers CT1 to CT3 are provided one for each of the CV cables 101 to 103. As shown in FIG. 3, the current transformer CT <b> 1 includes a pair of coils 211, a bobbin 212, and a core 213. The pair of coils 211 is disposed in the vicinity of the copper tape 13 of the CV cable 101. For this reason, when an alternating current flows through the copper tape 13, an alternating magnetic field is generated around the copper tape 13. When the AC magnetic field passes through the pair of coils 211, an electromotive force is generated at both ends of the pair of coils 211. This electromotive force has a value corresponding to the alternating current flowing through the copper tape 13. When an alternating current is supplied to the pair of coils 211, an alternating magnetic field passing through the coil 211 is generated. The alternating current flows through the copper tape 13 due to electromagnetic induction by the alternating magnetic field.

上記一対のボビン212は、筒状に設けられていて、その外周面にコイル211が巻回されている。上記コア213は、磁性体から構成されていて、四角環状に設けられている。この四角環状のコア213の互いに対向する一対の辺にそれぞれ、一対のボビン212が挿入されている。そして、四角環状のコア213の中心には、CVケーブル101の銅テープ13が貫通している。このコア213により銅テープ13に交流電流が流れたときに発生する磁界を集めて、コイル211による電流検出精度を高めることができる。また、このコア213によりコイル211に交流電流を流したときに発生する磁界を集めて、より大きな交流電流を銅テープ13に流すことができる。上記変流器CT2及びCT3は、変流器CT1と同様の構成であるためここでは詳細な説明を省略する。   The pair of bobbins 212 are provided in a cylindrical shape, and a coil 211 is wound around the outer peripheral surface thereof. The core 213 is made of a magnetic material and is provided in a quadrangular ring shape. A pair of bobbins 212 are inserted into a pair of opposite sides of the quadrangular annular core 213, respectively. The copper tape 13 of the CV cable 101 passes through the center of the quadrangular annular core 213. The core 213 can collect magnetic fields generated when an alternating current flows through the copper tape 13, thereby improving the current detection accuracy of the coil 211. Further, a magnetic field generated when an alternating current is passed through the coil 211 by the core 213 can be collected and a larger alternating current can be passed through the copper tape 13. Since the current transformers CT2 and CT3 have the same configuration as the current transformer CT1, a detailed description thereof is omitted here.

上記切替スイッチSWは、コイル211の両端の接続を後述する交流電源31と、FFT波形解析装置22と、の間で切り換えるためのスイッチである。上記交流電源31は、切替スイッチSWによってコイル211の両端が接続されたときに、その接続されたコイル211に対して交流電流を供給する。コイル211に交流電源31からの交流電流が供給されると、上述したように銅テープ13に交流電流が流れる。銅テープ13に交流電流が流れると、銅テープ13に形成された上述した3つのループにそれぞれ重畳電流I1〜I3が流れる。   The changeover switch SW is a switch for switching the connection between both ends of the coil 211 between an AC power supply 31 described later and the FFT waveform analysis device 22. The AC power supply 31 supplies an AC current to the connected coil 211 when both ends of the coil 211 are connected by the changeover switch SW. When the alternating current from the alternating current power supply 31 is supplied to the coil 211, the alternating current flows through the copper tape 13 as described above. When an alternating current flows through the copper tape 13, superimposed currents I <b> 1 to I <b> 3 flow through the three loops formed on the copper tape 13, respectively.

上記FFT波形解析装置22は、切替スイッチSWよってコイル211の両端が接続され、コイル211の両端に発生する銅テープ13に流れる交流電流に応じた起電力が供給される。上記FFT波形解析装置22は、上記起電力を順次高速フーリエ変換(FFT)して、起電力のうち交流電源31の周波数成分をそれぞれ抽出して、表示する。   The FFT waveform analyzer 22 is connected to both ends of the coil 211 by the changeover switch SW, and is supplied with an electromotive force according to the alternating current flowing through the copper tape 13 generated at both ends of the coil 211. The FFT waveform analysis device 22 sequentially performs fast Fourier transform (FFT) on the electromotive force, extracts the frequency components of the AC power supply 31 from the electromotive force, and displays them.

次に、上述した構成の異常検出装置20の検出原理について説明する。銅テープ13が正常である時は、上述したように銅テープ13に3つのループが形成される。このため、例えば交流電源31からの交流電流を変流器CT1のコイル211に流すと、銅テープ13には交流電源31の周波数成分を持つ重畳電流I1〜I3が流れる。今、例えば、図1中の×で示すように、図中一番下のCVケーブル103の銅テープ13が切れていると、銅テープ13の切れが発生しているCVケーブル10の銅テープ13に電流が流れなくなる。このため、銅テープ13の切れが発生しているCVケーブル103の銅テープ13に設けられた変流器CT3のコイル211に起電力が発生しなくなる。   Next, the detection principle of the abnormality detection device 20 configured as described above will be described. When the copper tape 13 is normal, three loops are formed in the copper tape 13 as described above. For this reason, for example, when an alternating current from the alternating current power supply 31 is passed through the coil 211 of the current transformer CT1, superimposed currents I1 to I3 having a frequency component of the alternating current power supply 31 flow through the copper tape 13. Now, for example, as shown by x in FIG. 1, when the copper tape 13 of the CV cable 103 at the bottom of the drawing is cut, the copper tape 13 of the CV cable 10 in which the copper tape 13 is cut is generated. No current flows in the. Therefore, no electromotive force is generated in the coil 211 of the current transformer CT3 provided on the copper tape 13 of the CV cable 103 in which the copper tape 13 is broken.

そこで、FFT波形解析装置22により表示された交流電源31の周波数成分がほぼ0であれば、検査員は銅テープ13の異常が生じていると判断することができる。一方、FFT波形解析装置22により表示された交流電源31の周波数成分の大きさが閾値以上あれば、検査員は銅テープ13が正常であると判断することができる。   Therefore, if the frequency component of the AC power supply 31 displayed by the FFT waveform analysis device 22 is approximately 0, the inspector can determine that the copper tape 13 is abnormal. On the other hand, if the magnitude of the frequency component of the AC power supply 31 displayed by the FFT waveform analyzer 22 is equal to or greater than the threshold value, the inspector can determine that the copper tape 13 is normal.

次に、上述した異常検出装置20を用いた異常検出方法の手順について説明する。まず、検査員は、切替スイッチSWを操作して、変流器CT1のコイル211の両端を交流電源31に接続すると共に変流器CT2及びCT3のコイル211の両端をFFT波形解析装置22に接続する。これにより、変流器CT1のコイル211に発生する磁界により、銅テープ13に交流電流が流れ、銅テープ13に形成された上述した3つのループにそれぞれ重畳電流I1〜I3が流れる。次に、変流器CT2が、CVケーブル102の銅テープ13に流れる電流に応じた起電力を発生して、その起電力をFFT波形解析装置22に対して出力する。また、変流器CT3が、CVケーブル103の銅テープ13に流れる電流に応じた起電力を発生して、その起電力をFFT波形解析装置22に対して出力する。FFT波形解析装置22は、変流器CT2及びCT3から供給される起電力を順次高速フーリエ変換して、交流電源31の周波数成分の大きさを表示する。検査員は、FFT波形解析装置22に表示された交流電源31の周波数成分を見て、CVケーブル102及び103の銅テープ13に異常が生じているか否かを判断する。   Next, the procedure of the abnormality detection method using the above-described abnormality detection device 20 will be described. First, the inspector operates the changeover switch SW to connect both ends of the coil 211 of the current transformer CT1 to the AC power supply 31 and to connect both ends of the coils 211 of the current transformers CT2 and CT3 to the FFT waveform analyzer 22. To do. Thereby, an alternating current flows through the copper tape 13 due to the magnetic field generated in the coil 211 of the current transformer CT1, and superimposed currents I1 through I3 flow through the three loops formed in the copper tape 13, respectively. Next, the current transformer CT <b> 2 generates an electromotive force corresponding to the current flowing through the copper tape 13 of the CV cable 102, and outputs the electromotive force to the FFT waveform analyzer 22. The current transformer CT3 generates an electromotive force corresponding to the current flowing through the copper tape 13 of the CV cable 103, and outputs the electromotive force to the FFT waveform analysis device 22. The FFT waveform analyzer 22 displays the magnitude of the frequency component of the AC power supply 31 by sequentially performing fast Fourier transform on the electromotive force supplied from the current transformers CT2 and CT3. The inspector looks at the frequency component of the AC power supply 31 displayed on the FFT waveform analyzer 22 and determines whether or not an abnormality has occurred in the copper tape 13 of the CV cables 102 and 103.

次に、検査員は、切替スイッチSWを操作して、変流器CT2のコイル211の両端を交流電源31に接続すると共に変流器CT1及びCT3のコイル211の両端をFFT波形解析装置22に接続して、同様にFFT波形解析装置22に表示された交流電源31の周波数成分を見て、CVケーブル101及び103の銅テープ13に異常が生じているか否かを判断する。その後、検査員は、切替スイッチSWを操作して変流器CT3のコイル211の両端を交流電源31に接続すると共に変流器CT1及びCT2のコイル211の両端をFFT波形形成装置22に接続して、同様にFFT波形解析装置22に表示された交流電源31の周波数成分を見て、CVケーブル101及び102の銅テープ13に異常が生じているか否かを判断する。   Next, the inspector operates the changeover switch SW to connect both ends of the coil 211 of the current transformer CT2 to the AC power supply 31 and to connect the both ends of the coils 211 of the current transformers CT1 and CT3 to the FFT waveform analyzer 22. Similarly, the frequency component of the AC power supply 31 displayed on the FFT waveform analyzer 22 is similarly viewed, and it is determined whether or not an abnormality has occurred in the copper tape 13 of the CV cables 101 and 103. Thereafter, the inspector operates the changeover switch SW to connect both ends of the coil 211 of the current transformer CT3 to the AC power supply 31 and to connect both ends of the coils 211 of the current transformers CT1 and CT2 to the FFT waveform forming device 22. Similarly, by looking at the frequency component of the AC power supply 31 displayed on the FFT waveform analyzer 22, it is determined whether or not an abnormality has occurred in the copper tape 13 of the CV cables 101 and 102.

上述した異常検出装置20によれば、交流電流を銅テープ13に供給し、銅テープ13に流れる電流のうち交流電源31の周波数成分を抽出しているため、迷走電流と分離することができ検出精度向上を図ることができる。   According to the abnormality detection device 20 described above, an alternating current is supplied to the copper tape 13 and the frequency component of the alternating current power supply 31 is extracted from the current flowing through the copper tape 13, so that it can be separated from the stray current. The accuracy can be improved.

また、上述した異常検出装置20によれば、電流検出手段が、各CVケーブル101〜013の銅テープ13に電流が流れると当該電流値に応じた起電力が発生するコイル211から構成され、交流電源31が、各CVケーブル101〜103の銅テープ13毎に設けられたコイル211のうち1つに交流電流を供給してそのコイル211に磁界を発生させてその磁界により交流電流を流すように設けている。このため、銅テープ13に交流電流を流す機能と、銅テープ13に流れる電流の検出する機能と、を1つのコイル211で兼用させることができるため、装置が容易となり、コストダウンを図ることができる。   In addition, according to the abnormality detection device 20 described above, the current detection unit is configured by the coil 211 that generates an electromotive force according to the current value when a current flows through the copper tape 13 of each of the CV cables 101 to 013. The power supply 31 supplies an alternating current to one of the coils 211 provided for each of the copper tapes 13 of the CV cables 101 to 103 to generate a magnetic field in the coil 211 and cause the alternating current to flow by the magnetic field. Provided. For this reason, since the function of flowing an alternating current through the copper tape 13 and the function of detecting the current flowing through the copper tape 13 can be combined with one coil 211, the apparatus becomes easy and the cost can be reduced. it can.

また、上述した異常検出装置20によれば、変流器CT1〜CT3の全部を順次、交流電源31に接続している。そして、接続する毎に交流電源31に接続されていない残りの変流器CT1〜CT3に発生する起電力をFFT波形解析装置22に供給してCVケーブル101〜103の銅テープ13の異常を検出している。これにより、変流器CT1〜CT3に発生する起電力をそれぞれ2回ずつFFT波形解析装置22に供給している。即ち、CVケーブル101〜103についてそれぞれ2回ずつの銅テープ13の異常を検出することができ、確実に銅テープ13の異常を検出することができる。   Further, according to the abnormality detection device 20 described above, all of the current transformers CT <b> 1 to CT <b> 3 are sequentially connected to the AC power supply 31. And every time it connects, the electromotive force which generate | occur | produces in remaining current transformer CT1-CT3 which is not connected to AC power supply 31 is supplied to the FFT waveform analysis apparatus 22, and the abnormality of the copper tape 13 of the CV cables 101-103 is detected is doing. Thereby, the electromotive force generated in each of the current transformers CT1 to CT3 is supplied to the FFT waveform analyzer 22 twice. That is, the abnormality of the copper tape 13 can be detected twice for each of the CV cables 101 to 103, and the abnormality of the copper tape 13 can be reliably detected.

なお、上述した実施形態では、変流器CT1〜CT3にコア213を設けていたが、本発明はこれに限ったものではない。例えば、図4に示すように、コア213を設けずに、変流器CT1〜CT3をコイル211と、ボビン212と、から構成して、コイル211内に銅テープ13を貫通させる構成も考えられる。   In addition, in embodiment mentioned above, although core 213 was provided in current transformer CT1-CT3, this invention is not limited to this. For example, as illustrated in FIG. 4, a configuration in which the current transformers CT <b> 1 to CT <b> 3 are configured by the coil 211 and the bobbin 212 without providing the core 213 and the copper tape 13 is passed through the coil 211 is also conceivable. .

また、上述した実施形態では、変流器CT1〜CT3を順次、交流電源31に接続して、変流器CT1〜CT3に発生する起電力をそれぞれ2回ずつFFT波形解析装置22に供給してが、本発明はこれに限ったものではない。例えば、変流器CT1〜CT3のうち2つを順次、交流電源31に接続して、変流器CT1〜CT3に発生する起電力をそれぞれ1回ずつFFT波形解析装置22に供給して銅テープ13の異常を検出してもよい。   In the above-described embodiment, the current transformers CT1 to CT3 are sequentially connected to the AC power supply 31, and the electromotive force generated in the current transformers CT1 to CT3 is supplied to the FFT waveform analyzer 22 twice each. However, the present invention is not limited to this. For example, two of the current transformers CT1 to CT3 are sequentially connected to the AC power supply 31, and the electromotive force generated in the current transformers CT1 to CT3 is supplied to the FFT waveform analysis device 22 once each to the copper tape. You may detect 13 abnormalities.

また、上述した実施形態では、FFT波形解析装置22により交流電源31の周波数成分を表示するだけであったが、本発明はこれに限ったものではない。例えば、FFT波形解析装置22が抽出した交流電源31の周波数成分をマイクロコンピュータなどから構成された異常検出手段としての異常検出装置に供給して、異常検出装置がFFT波形解析装置22から供給された交流電源31の周波数成分の大きさに基づいて銅テープ13に異常が生じているか否かを判定するようにしてもよい。一例としては、例えば異常検出装置がFFT波形解析装置22から供給された交流電源31の周波数成分の大きさが閾値以下であれば銅テープ13に異常が生じていると判定するようにしてもよい。   In the above-described embodiment, only the frequency component of the AC power supply 31 is displayed by the FFT waveform analysis device 22, but the present invention is not limited to this. For example, the frequency component of the AC power supply 31 extracted by the FFT waveform analysis device 22 is supplied to an abnormality detection device as an abnormality detection means configured by a microcomputer or the like, and the abnormality detection device is supplied from the FFT waveform analysis device 22. You may make it determine whether abnormality has arisen in the copper tape 13 based on the magnitude | size of the frequency component of the alternating current power supply 31. FIG. As an example, for example, the abnormality detection device may determine that an abnormality has occurred in the copper tape 13 if the magnitude of the frequency component of the AC power supply 31 supplied from the FFT waveform analysis device 22 is equal to or less than a threshold value. .

また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   Further, the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.

10 CVケーブル(電線)
11 芯線
12 絶縁体(内部絶縁体)
13 銅テープ(シールド部材)
14 シース(外部絶縁体)
22 FFT波形解析装置(周波数抽出手段)
31 交流電源
211 コイル
CT1〜CT3 変流器(電流検出手段)
10 CV cable (electric wire)
11 Core wire 12 Insulator (Internal insulator)
13 Copper tape (shield member)
14 Sheath (external insulator)
22 FFT waveform analyzer (frequency extraction means)
31 AC power supply 211 Coil CT1 to CT3 Current transformer (current detection means)

Claims (5)

導電性を有する芯線、前記芯線を被覆する内部絶縁体、前記内部絶縁体の外周に巻き付けられたシールド部材、及び、前記シールド部材を被覆する外部絶縁体、を有する複数の電線であって、前記シールド部材の両端が互いに接続された複数の電線における前記シールド部材の異常を検出するシールド部材の異常検出方法において、
前記電線のシールド部材に交流電流を流す第1工程と、
前記各電線のシールド部材に流れる電流をそれぞれ検出する第2工程と、
前記検出された電流のうち前記第1工程で前記シールド部材に流した交流電流の周波数成分を抽出する第3工程と、
前記抽出された前記交流電流の周波数成分の大きさに基づいて前記シールド部材の異常を検出する第4工程と、
を順次行うことを特徴とするシールド部材の異常検出方法。
A plurality of electric wires having a conductive core wire, an internal insulator covering the core wire, a shield member wound around an outer periphery of the internal insulator, and an external insulator covering the shield member, In the shielding member abnormality detection method for detecting abnormality of the shielding member in a plurality of electric wires in which both ends of the shielding member are connected to each other,
A first step of passing an alternating current through the shield member of the wire;
A second step of detecting a current flowing through the shield member of each electric wire,
A third step of extracting the frequency component of the alternating current flowing through the shield member in the first step from the detected current;
A fourth step of detecting an abnormality of the shield member based on the magnitude of the extracted frequency component of the alternating current;
A method for detecting an abnormality of a shield member, characterized in that the steps are sequentially performed.
前記第1工程において、前記電線のシールド部材毎に設けられた複数のコイルの1つに交流電源からの交流電流を供給して当該コイルに磁界を発生させてその磁界により前記シールド部材に交流電流を流し、
前記第2工程において、前記複数のコイルのうち前記交流電流が供給されていない残りのコイルに発生する起電力を前記電線のシールド部材に流れる電流として検出する
ことを特徴とする請求項1に記載のシールド部材の異常検出方法。
In the first step, an alternating current from an alternating current power source is supplied to one of a plurality of coils provided for each shield member of the electric wire to generate a magnetic field in the coil, and the alternating current is applied to the shield member by the magnetic field. Shed
The electromotive force which generate | occur | produces in the remaining coil to which the said alternating current is not supplied among these coils in the said 2nd process is detected as an electric current which flows into the shield member of the said electric wire. Shield member abnormality detection method.
導電性を有する芯線、前記芯線を被覆する内部絶縁体、前記内部絶縁体の外周に巻き付けられたシールド部材、及び、前記シールド部材を被覆する外部絶縁体、を有する複数の電線であって、前記シールド部材の両端が互いに接続された複数の電線における前記シールド部材の異常を検出するシールド部材の異常検出装置において、
前記電線のシールド部材に交流電流を流すための交流電源と、
前記各電線のシールド部材に流れる電流をそれぞれ検出する複数の電流検出手段と、
前記電流検出手段により検出された電流のうち前記交流電源の周波数成分を抽出する周波数抽出手段と、
を備えたことを特徴とするシールド部材の異常検出装置。
A plurality of electric wires having a conductive core wire, an internal insulator covering the core wire, a shield member wound around an outer periphery of the internal insulator, and an external insulator covering the shield member, In the abnormality detection device for a shield member that detects abnormality of the shield member in a plurality of electric wires in which both ends of the shield member are connected to each other,
An alternating current power source for passing an alternating current through the shield member of the wire;
A plurality of current detection means for detecting currents flowing in the shield members of the electric wires;
A frequency extracting means for extracting a frequency component of the AC power source from the current detected by the current detecting means;
An apparatus for detecting an abnormality of a shield member, comprising:
前記周波数抽出手段により抽出された前記交流電源の周波数成分の大きさに基づいて前記シールド部材の異常を検出する異常検出手段を
さらに備えたことを特徴とする請求項3記載のシールド部材の異常検出装置。
The abnormality detection of the shield member according to claim 3, further comprising an abnormality detection means for detecting an abnormality of the shield member based on the magnitude of the frequency component of the AC power source extracted by the frequency extraction means. apparatus.
前記複数の電流検出手段がそれぞれ、前記各電線のシールド部材に電流が流れると当該電流値に応じた起電力が発生するコイルから構成され、
前記交流電源が、前記複数の電流検出手段のうち1つを構成するコイルに交流電流を供給して当該コイルに磁界を発生させてその磁界により前記銅テープに交流電流を流すように設けられる
ことを特徴とする請求項3又は4に記載のシールド部材の異常検出装置。
Each of the plurality of current detection means is composed of a coil that generates an electromotive force according to the current value when a current flows through the shield member of each electric wire,
The AC power supply is provided so as to supply an AC current to a coil constituting one of the plurality of current detection means, generate a magnetic field in the coil, and cause the AC current to flow through the copper tape by the magnetic field. The abnormality detection device for a shield member according to claim 3 or 4,
JP2009074367A 2009-03-25 2009-03-25 Method and device for detecting abnormality of shielding member Pending JP2010223906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009074367A JP2010223906A (en) 2009-03-25 2009-03-25 Method and device for detecting abnormality of shielding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009074367A JP2010223906A (en) 2009-03-25 2009-03-25 Method and device for detecting abnormality of shielding member

Publications (1)

Publication Number Publication Date
JP2010223906A true JP2010223906A (en) 2010-10-07

Family

ID=43041234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009074367A Pending JP2010223906A (en) 2009-03-25 2009-03-25 Method and device for detecting abnormality of shielding member

Country Status (1)

Country Link
JP (1) JP2010223906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120651A (en) * 2018-01-10 2019-07-22 一般財団法人電力中央研究所 Shield-layer-deterioration determination method and shield-layer-deterioration determination system
CN110164633A (en) * 2019-06-27 2019-08-23 金莱尔机电设备有限公司 A kind of high speed copper strip shielding winding machine for cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10319077A (en) * 1997-05-19 1998-12-04 Matsushita Electric Ind Co Ltd Insulation monitoring device
JP2001141770A (en) * 1999-11-12 2001-05-25 Asahi Eng Co Ltd Detecting method of shield tape disconnection of high- tension cable, detector for shield tape disconnection, and judgment device for shield tape disconnection
JP2001268736A (en) * 2000-03-16 2001-09-28 Fujikura Ltd Method and apparatus for detecting disconnected shield conductor of power cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10319077A (en) * 1997-05-19 1998-12-04 Matsushita Electric Ind Co Ltd Insulation monitoring device
JP2001141770A (en) * 1999-11-12 2001-05-25 Asahi Eng Co Ltd Detecting method of shield tape disconnection of high- tension cable, detector for shield tape disconnection, and judgment device for shield tape disconnection
JP2001268736A (en) * 2000-03-16 2001-09-28 Fujikura Ltd Method and apparatus for detecting disconnected shield conductor of power cable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120651A (en) * 2018-01-10 2019-07-22 一般財団法人電力中央研究所 Shield-layer-deterioration determination method and shield-layer-deterioration determination system
CN110164633A (en) * 2019-06-27 2019-08-23 金莱尔机电设备有限公司 A kind of high speed copper strip shielding winding machine for cable

Similar Documents

Publication Publication Date Title
CN100526888C (en) Differential current measuring apparatus, tripping device and switchgear
EP3709320B1 (en) Current transformer
JP6573571B2 (en) Electric leakage relay, electric leakage breaker and control method thereof
JP6265836B2 (en) Current sensor inspection system, current sensor inspection method
JP2010223906A (en) Method and device for detecting abnormality of shielding member
KR20140038261A (en) Apparatus for diagnosing a transformer and method for the same
JP6461698B2 (en) Electric leakage detection device and electric leakage detection method
WO2018034260A1 (en) Open phase detecting system, open phase detecting device and open phase detecting method
JP5286127B2 (en) Shield member abnormality detection method and shield member abnormality detection device
CN113567807A (en) Method for detecting current abnormity of power cable metal sheath layer
EP2875365A1 (en) Method and apparatus of locating current sensors
CN207396650U (en) The D.C. magnetic biasing detection device that alternating current magnetic field can be overcome to disturb
EP2924447A1 (en) Combined current sensor
JP2017204973A (en) Phase interruption detection system, phase interruption detection apparatus and phase interruption detection method
US8659441B2 (en) Method and apparatus of sensing and indicating an open current transformer secondary
JP2577825B2 (en) Non-power failure insulation diagnostic device
JP2993819B2 (en) Power cable insulation diagnostic monitoring device
JP6534372B2 (en) Failure detection method for grounded instrument transformer
EP2875364B1 (en) Method and apparatus of identifying or locating current sensors
JP2019002812A (en) Insulation resistance measurement system, distribution board, insulation resistance measurement method and program
KR101165992B1 (en) Point detecting type power measuring device
JP2007057471A (en) Method and device for monitoring insulation
JP2006349589A (en) Method for detecting phase of distribution line
KR101507455B1 (en) Line Filter With Current Sensor
GB2157005A (en) Detecting rotor winding faults

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120926

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521