JPH03170881A - Locating method for accident point of underground line - Google Patents

Locating method for accident point of underground line

Info

Publication number
JPH03170881A
JPH03170881A JP31164089A JP31164089A JPH03170881A JP H03170881 A JPH03170881 A JP H03170881A JP 31164089 A JP31164089 A JP 31164089A JP 31164089 A JP31164089 A JP 31164089A JP H03170881 A JPH03170881 A JP H03170881A
Authority
JP
Japan
Prior art keywords
coil
cable
cables
current
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31164089A
Other languages
Japanese (ja)
Other versions
JP2638231B2 (en
Inventor
Tadayoshi Ikeda
池田 忠禧
Yasuo Sekii
関井 康雄
Yukio Iida
飯田 幸男
Shigehiro Toyoda
豊田 重裕
Hideo Sato
英男 佐藤
Keiichi Ouchi
啓一 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP31164089A priority Critical patent/JP2638231B2/en
Publication of JPH03170881A publication Critical patent/JPH03170881A/en
Application granted granted Critical
Publication of JP2638231B2 publication Critical patent/JP2638231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To locate the accident point of a cable by detecting the direction and magnitude of a fault current on the basis of the zero phase current picked up by the sensor coil wound around the iron core arranged to the center of cables assembled in the shape of a pyramid-like stack of three cores in cross section. CONSTITUTION:Cables 10a - 10c having cable conductors are stacked and a sensor wherein a coil 7a is wound around an iron core 8 is arranged to the center of the cables assembled in the shape of pyramid-like stack of three cores in cross section. Since the coil 7a is positioned at an equal distance from the respective cable conductors, the components in the axis direction of the magnetic fields generated by the cables 10a - 10c interlinks the coil 7a in the same ratio as the coil 7a and, therefore, the output proportional to a zero phase component is obtained in the coil 7a. The density of magnetic flux interlinking the coil 7a becomes high by providing the iron core 8a and the sensitivity of the coil 7a is enhanced. By this method, since a current can be directly detected by a pickup coil, this method is extremely effective in the detection of an accident point.

Description

【発明の詳細な説明】 この発明は、地中送電線の事故点標定方法に関する。[Detailed description of the invention] The present invention relates to a fault point locating method for underground power transmission lines.

[従来の技術] 地中線路を構成するケーブルでは,ケーブルコア上にア
ルミシース等の金属シースまたはワイヤシールドを有し
、ケーブルコアの導体に流れる電流、つまりシース電流
とを分離して測定する技術は、特に地絡事故時の地絡電
流分布から地絡事故区間の標定を行う手法において重要
となる。
[Prior art] Cables that make up underground lines have a metal sheath such as an aluminum sheath or a wire shield over the cable core, and this technology separates and measures the current flowing through the conductor of the cable core, that is, the sheath current. This is especially important in the method of locating the ground fault section from the ground fault current distribution during a ground fault fault.

即ち、地絡事故は、ケーブルコアの導体まは金属シース
を流れる零相電流の分布から推定が可能であるが、現実
には、導体に流れる地絡電流はその大部分が金属シース
を帰銘として流れるため、ケーブル外周から変流器(C
T)や磁界センサー等で測定してち、導体電流とシース
電流とが合成され、相殺された電流成分を検出すること
ととなって、有効な測定が不可能であると考えられてい
た. そのため、一般には、金属シースがケーブルの長さ方向
で遮断される絶縁接続部(I J)において、シース回
路の撚架のために接続されたクロスボンド線に流れる電
流を変流器(CT)等で測定することにより、シース回
路の零相電流を求め、事故区間の判定を行う手法が取り
入れられていた。
In other words, ground faults can be estimated from the distribution of zero-sequence current flowing through the cable core conductor or metal sheath, but in reality, most of the ground fault current flowing through the conductor is attributed to the metal sheath. current transformer (C) from the outer circumference of the cable.
It was thought that effective measurement was impossible because the conductor current and sheath current were combined and the canceled current components were detected after measurements were taken using T) or magnetic field sensors. Therefore, in general, at the insulated joint (IJ) where the metal sheath is interrupted in the length direction of the cable, the current flowing through the cross bond wires connected for twisting the sheath circuit is transferred to a current transformer (CT). A method was adopted in which the zero-sequence current of the sheath circuit was determined by measuring the zero-sequence current of the sheath circuit, and the fault section was determined.

しかし、かかる方法においては、測定点が絶縁接続部に
限定されてしまい、事故点の標定は絶縁接続部一絶縁接
続部の区間に限られていた.換言すれば、絶縁接続部に
おいてのみ導体電流とシース電流の分離が可能となるこ
とから、地絡事故区間の標定は、絶縁接続部と絶縁接続
部のスパンに限定され、普通接続部(NJ)を含む区間
では、接地された普通接続部を境としてどちらか側のス
パンで事故が起きているのかを判別するのが困難であっ
た. このため、上記の手法では、普通接続部を含む線路にお
いて事故区間を標定じたい場合には、普通接続部を絶縁
接続部に置き換えることが必要となり、広汎に利用でき
るものとは言い難かった.最近、この方法に代り、普通
接続部を含む線路において、普通接続部前後の事故点の
標定を可能にする新しい方法も提案されている。即ち、
地中線路を構成するケーブルのセグメント導体のセグメ
ント撚りまたはワイヤシールドの撚りによって生じる導
体軸方向の磁界を、ケーブル上に巻回されたセンサーコ
イルにビックアップさせ、それにより導体に流れる事故
電流の向きと大きさを検出して、ケーブルの事故点を標
定する方法である。
However, in this method, the measurement points are limited to the insulated connections, and the location of the fault point is limited to the area between the insulated connections. In other words, since the conductor current and sheath current can be separated only at the insulated connection, the location of the ground fault area is limited to the insulated connection and the span of the insulated connection, and the normal connection (NJ) It was difficult to determine whether the accident occurred on either side of the span, with the grounded normal connection as the boundary. Therefore, with the above method, if you want to locate a fault section on a track that includes normal connections, it is necessary to replace the normal connection with an insulated connection, and it is difficult to say that it can be used widely. Recently, as an alternative to this method, a new method has been proposed that makes it possible to locate fault points before and after a normal connection on a track that includes a normal connection. That is,
The magnetic field in the direction of the conductor axis generated by the segment twisting of the segment conductors or the twisting of the wire shield of the cable that makes up the underground line is caused to surprise the sensor coil wound on the cable, thereby controlling the direction of the fault current flowing in the conductor. This is a method of locating the point of cable failure by detecting the size of the cable.

以下、この方法を図面を参照して説明する。This method will be explained below with reference to the drawings.

第2図は、この地中線路の事故点標定方法を説明するた
めに、センサーコイル取り付け部分のみを示す上半部を
断面で示した側面図である。即ち、ケーブルlは、導体
2,絶縁体3を主要素とするケーブルコア4上の上に、
アルミシース等の金属シース5が施され、その上にプラ
スチック防食層6を形成して構成されており、このプラ
スチック防食層6の表面にセンサーコイル7が直接的に
巻回して配置される。
FIG. 2 is a cross-sectional side view of the upper half showing only the sensor coil mounting portion, in order to explain the fault point locating method for this underground railway. That is, the cable l is placed on a cable core 4 whose main elements are a conductor 2 and an insulator 3.
A metal sheath 5 such as an aluminum sheath is provided, and a plastic anti-corrosion layer 6 is formed on the metal sheath 5, and a sensor coil 7 is directly wound and disposed on the surface of the plastic anti-corrosion layer 6.

ケーブルコア1の導体2では、セグメント2a,2aを
複数撚り合せて構成されているのが通常であり、このセ
グメント撚りによって導体2に流れる電流に基づいて、
導体と直交する面の磁界だけではなく、導体2の軸方向
の磁界が発生する.この軸方向成分の磁界を防食層6の
表面に巻付けたセンサーコイル7と鎖交させるものであ
る. センサーコイル7は、かかる導体軸方向成分の磁界と鎖
交させるため、導体軸方向とは直角に交差する状態でブ
ラスック防食層6上に巻回するものとし、また、導体軸
方向成分の磁界は金属シース5において相当分打ち消さ
れ、プラスチック防食層6の表面では微弱なものとなる
ので、この微弱な磁界をビックアップできるだけのター
ン数で数多く巻回配置する必要がある。
The conductor 2 of the cable core 1 is usually constructed by twisting a plurality of segments 2a, 2a, and based on the current flowing through the conductor 2 due to the segment twisting,
Not only a magnetic field in the plane perpendicular to the conductor, but also a magnetic field in the axial direction of the conductor 2 is generated. This axial component magnetic field is interlinked with the sensor coil 7 wound around the surface of the anti-corrosion layer 6. In order to interlink with the magnetic field of the axial component of the conductor, the sensor coil 7 is wound on the brassic anti-corrosion layer 6 so as to cross the conductor axial direction at right angles, and the magnetic field of the axial component of the conductor is Since a considerable amount of the magnetic field is canceled out by the metal sheath 5 and becomes weak on the surface of the plastic anticorrosion layer 6, it is necessary to arrange a large number of turns with a number of turns sufficient to boost this weak magnetic field.

[発明が解決しようとする課題] ところで、上記の方法は優れた方法であるが、俵積ケー
ブルやトリップレックスケーブルのように他相が近接し
ている場合には、他相の磁束がビックアップコイルに鎖
交するため、誤差が大きくなるという問題点がある. この発明は、このような点に鑑みてなされたもので、普
通接続部を含む線路において、普通接続部前後の事故点
の標定を容易にする地中線路の事故点標定方法を提供す
ることを目的とする.[課題を解決するための手段] この発明では、地中線路を構成するケーブルのセグメン
ト導体のセグメント撚り、またはワイヤシールドのワイ
ヤ撚りによって生じる導体軸方向の磁界を、3芯俵積み
されたケーブルまたはトリプレックスケーブルの中心に
配置された鉄心に巻回されたセンサーコイルにビックア
ップされる零相電流により、事故電流の向きと大きさを
検出して、ケーブルの事故点を標定するようにしたこと
を特徴とする地中線路の事故点標定方法である。
[Problem to be solved by the invention] By the way, the above method is an excellent method, but when the other phases are close to each other, such as in a stacked cable or a Triplex cable, the magnetic flux of the other phases increases. There is a problem that the error becomes large because it is linked to the coil. The present invention has been made in view of the above points, and an object of the present invention is to provide a fault point locating method for underground railway lines that facilitates locating fault points before and after the normal connection in a line including the normal connection. Purpose. [Means for Solving the Problem] In the present invention, the magnetic field in the axial direction of the conductor generated by the segment twisting of the segment conductors of the cable constituting the underground line or the wire twisting of the wire shield is applied to a three-core cable stacked in bales or The direction and magnitude of the fault current can be detected by the zero-sequence current that is surprised by the sensor coil wound around the iron core located at the center of the triplex cable, and the fault point on the cable can be located. This is a method for locating accident points on underground railway lines.

[実 施 例コ 以下,図面に基づいてこの発明の実施例を説明する.第
1図は、ケーブル導体11a,llb,11cを有する
ケーブル10a,10b,10cを俵積して、この3芯
俵積ケーブルの中心面に第2図に示すように鉄心8にコ
イル7aを巻回したセンサーを配置する。したがって、
コイル7aは各ケーブル導体11a,llb,llcと
等距離に位置するため、各ケーブル10a,10b,1
0cによって生じた磁界の軸方向成分は、コイル7と同
一比率で鎖交することになるので、コイル7には零相成
分に比例した出力が得られることになる.そして、鉄心
8を設けることにより、コイル7aと鎖交する磁束密度
が高くなり、コイル7の感度は向上する. [発明の効果] 地絡点の検知は、ケーブルの導体電流またはシース電流
の分布から行うのが通常であるが、この発明ではビック
アップコイルで電流を直接検知できるようになるので,
事故点検知に極めて有効な手段となる.
[Embodiments] Hereinafter, embodiments of this invention will be explained based on the drawings. FIG. 1 shows cables 10a, 10b, and 10c having cable conductors 11a, llb, and 11c stacked in a stack, and a coil 7a wound around an iron core 8 on the center plane of the three-core stacked cable as shown in FIG. Place the rotated sensor. therefore,
Since the coil 7a is located equidistant from each cable conductor 11a, llb, llc, each cable 10a, 10b, 1
Since the axial component of the magnetic field generated by 0c will interlink with the coil 7 at the same ratio, the coil 7 will have an output proportional to the zero-phase component. By providing the iron core 8, the density of magnetic flux interlinking with the coil 7a is increased, and the sensitivity of the coil 7 is improved. [Effects of the invention] Normally, ground faults are detected from the distribution of the conductor current or sheath current of the cable, but with this invention, the current can be directly detected using the big-up coil.
This is an extremely effective means of detecting accident points.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の地中線路の事故点標点方法を説明す
るための横断面図、 第2図は、ビックアップコイルの斜視図、第3図は、先
行技術を説明するための一部分を欠截して示した側面図
である。 1,10a,10b,10c−ケーブル2,1 1a,
1 lb,1 1c=ケーブル導体3・・・絶縁体 4・・・ケーブルコア 5・・・金属シース 6・・・プラスチック防食層 7.12・・・センサーコイル
FIG. 1 is a cross-sectional view for explaining the accident point marking method for underground railway lines of the present invention, FIG. 2 is a perspective view of a big-up coil, and FIG. 3 is a cross-sectional view for explaining the prior art. FIG. 2 is a partially cutaway side view. 1, 10a, 10b, 10c-cable 2, 1 1a,
1 lb, 1 1c = Cable conductor 3...Insulator 4...Cable core 5...Metal sheath 6...Plastic anti-corrosion layer 7.12...Sensor coil

Claims (1)

【特許請求の範囲】[Claims] 地中線路を構成するケーブルのセグメント導体のセグメ
ント撚り、またはワイヤシールドのワイヤ撚りによって
生じる導体軸方向の磁界を、3芯俵積みされたケーブル
またはトリプレックスケーブルの中心に配置された鉄心
に巻回されたセンサーコイルにビックアップされる零相
電流により事故電流の向きと大きさを検出して、ケーブ
ルの事故点を標定するようにしたことを特徴とする地中
線路の事故点標定方法。
The magnetic field in the conductor axis direction, generated by the segment twisting of the segment conductors of the cables that make up the underground line or the wire twisting of the wire shield, is wound around the iron core placed at the center of the three-core cable stacked in bales or the triplex cable. A method for locating a fault point on an underground line, characterized in that the fault point on a cable is located by detecting the direction and magnitude of a fault current using a zero-sequence current that is surprised up in a sensor coil.
JP31164089A 1989-11-30 1989-11-30 Underground track accident point location method Expired - Lifetime JP2638231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31164089A JP2638231B2 (en) 1989-11-30 1989-11-30 Underground track accident point location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31164089A JP2638231B2 (en) 1989-11-30 1989-11-30 Underground track accident point location method

Publications (2)

Publication Number Publication Date
JPH03170881A true JPH03170881A (en) 1991-07-24
JP2638231B2 JP2638231B2 (en) 1997-08-06

Family

ID=18019704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31164089A Expired - Lifetime JP2638231B2 (en) 1989-11-30 1989-11-30 Underground track accident point location method

Country Status (1)

Country Link
JP (1) JP2638231B2 (en)

Also Published As

Publication number Publication date
JP2638231B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
CA1197296A (en) Telecommunications cable splice closures
CN100580459C (en) Current measurement apparatus
JPH03170881A (en) Locating method for accident point of underground line
JP3681483B2 (en) Insulated wire defect detection method
JPH02287168A (en) Locating method for faulty point of underground line
JPH03170880A (en) Locating method for accident point of underground line
JPH03175375A (en) Detection of cable current
JPS62261078A (en) Detection of fault point for cable
JPH0778516B2 (en) Ground fault fault location method for wire shielded power cables
CN213275740U (en) Flexible current sensor with multiple characteristic quantity measurement
JP2684925B2 (en) A method for obtaining voltage phase information of power cable lines
JPH06273470A (en) Accident section plotting device of overhead transmission line
JPH03170882A (en) Method for separating and measuring cable conductor current and shield current from outer periphery of cable
JPH06235748A (en) Fault locator for power cable
JPS58106473A (en) Finding method for breaking of copper tape of cable
JPS59188327A (en) Zero phase current detecting method
JP3528544B2 (en) Method of locating insulation breakdown of power cable line
JPH0424455Y2 (en)
JPS6385376A (en) Sensor for detecting accident section of transmission line
JP2568346Y2 (en) Cable loss tangent measurement device
JPS5835468A (en) Split-type transformer
JPH01299477A (en) Method for determining failed section of underground transmission line
JPS60207218A (en) Composite cable
JPH08146074A (en) Detection of power cable trouble section
JPH0797125B2 (en) Positioning method of fault location coil in underground power transmission line