JPS59188327A - Zero phase current detecting method - Google Patents

Zero phase current detecting method

Info

Publication number
JPS59188327A
JPS59188327A JP58060307A JP6030783A JPS59188327A JP S59188327 A JPS59188327 A JP S59188327A JP 58060307 A JP58060307 A JP 58060307A JP 6030783 A JP6030783 A JP 6030783A JP S59188327 A JPS59188327 A JP S59188327A
Authority
JP
Japan
Prior art keywords
line
zero
coil
phase
overhead ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58060307A
Other languages
Japanese (ja)
Other versions
JPH028530B2 (en
Inventor
中溝 剛次
近藤 巳四人
花山 敬一
落合 毅
▲つる▼山 尚
勉 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimu Electronics Industries Co Inc
Original Assignee
Nishimu Electronics Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimu Electronics Industries Co Inc filed Critical Nishimu Electronics Industries Co Inc
Priority to JP58060307A priority Critical patent/JPS59188327A/en
Publication of JPS59188327A publication Critical patent/JPS59188327A/en
Publication of JPH028530B2 publication Critical patent/JPH028530B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、電力系統、特に送電線の零相電流検出方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting zero-sequence current in a power system, particularly in a power transmission line.

従来、電力系統に事故が発生した場合、それを検出する
ための方法として一般に変流器や零相変流器を用いて零
相電流を検出していたが、これらの機器は電圧が高圧に
なればなるほど絶縁耐圧が高くなり、また電流容量が大
きくなるにつれ型が大きくなって、計器用や保護継電器
用として必要最小限の個所にしか設けられていない。
Conventionally, when a fault occurs in a power system, the method of detecting it is generally to use a current transformer or zero-sequence current transformer to detect the zero-sequence current, but these devices cannot handle high voltages. The higher the dielectric strength becomes, and the larger the current capacity, the larger the size, so that they are installed only in the minimum number of places necessary for measuring instruments and protective relays.

ところが、送電線路の途中でも容易に零相電流を検出す
ることができると、送電線に事故が発生した場合、事故
区間を判定するのに役立ち、送電線事故の復旧に極めて
有効となる。
However, if zero-sequence current can be easily detected even in the middle of a power transmission line, if a fault occurs on a power transmission line, it will be useful in determining the fault section, and it will be extremely effective in recovering from a power transmission line fault.

本発明者は、以上の必要性に応じるため、送電線の途中
で簡単に零相電流を検出することを目的として、先に零
相電流検出方法の発明について出願した(特願昭55−
173689号、昭和55年12月8日出H)。その要
旨は、[磁路を形成するための細長い形状の鉄心を、3
相交流の送電線の電力線に直角に、且つ各電力線との間
隔を電力線の加圧電圧に充分耐える間隔で配設し、当該
鉄心に各相毎のコイルを設け、電力線からの電磁誘導に
よりコイルに発生した起電力の合成が、電力線各相の電
流が等しい場合に零又は最小になるように鉄心の長さ、
断面積、位置、コイルの巻数等の磁気的定数を設定し、
送電線に零相電流が発生した場合にこれに比例して誘起
されるコイルの合成起電力により零相電流を検出する零
相電流検出方法」である。しかし、この方法は3相交流
の送電線の各相毎、即ち3個のコイルを設けることとし
ているため、各磁気的定数、殊に位置に関するパラメー
タの決定が容易でなく、1つのコイルを動かすと他の2
つのコイルの位置も各々動かさなければならず、調整作
業に手間と熟練が必要であるという問題があった。
In order to meet the above-mentioned needs, the present inventor previously filed an application for the invention of a zero-sequence current detection method with the aim of easily detecting zero-sequence current in the middle of a power transmission line (Japanese Patent Application No.
No. 173689, published December 8, 1980 H). The gist is that [a long and thin iron core for forming a magnetic path is
The core is installed perpendicular to the power line of the phase alternating current power line and at intervals sufficient to withstand the voltage applied to the power line. The length of the iron core is set so that the sum of the electromotive force generated in
Set magnetic constants such as cross-sectional area, position, and number of coil turns,
A zero-sequence current detection method that detects a zero-sequence current by the composite electromotive force of a coil that is induced in proportion to the zero-sequence current generated in a power transmission line. However, since this method requires three coils to be provided for each phase of a three-phase AC power transmission line, it is difficult to determine each magnetic constant, especially the position-related parameters, and it is difficult to move one coil. and the other 2
There was a problem in that the positions of the two coils had to be moved individually, and adjustment work required time and skill.

本発明は、このような先の発明に対する改善を施して、
2個のコイルにより同等の零相電流の検出を可能とし、
その調整作業を著しく容易にしたものである。
The present invention provides improvements over the previous invention,
Enables equivalent zero-sequence current detection with two coils,
This greatly facilitates the adjustment work.

以下、本発明について説明する。The present invention will be explained below.

第1−1図、第1−2図及び第1−3図は本発明の原理
を示す説明図であり、いずれも2回線の標準的な送電線
鉄塔の例で、説明の都合上、1回線装柱の場合を示す。
Figures 1-1, 1-2, and 1-3 are explanatory diagrams showing the principle of the present invention, and each is an example of a standard transmission line tower with two circuits. The case of a line installation pole is shown.

図中A、B、Cは3相交流のA相、B相、C相の電線、
Gは架空地線であり、第1−1図は送電線路の長さの方
向に見た正面図、第1−2図は横から見た側面図である
。Dl、’D2はコイルm、nをそれぞれ巻いた細長い
鉄心で、電線A、B、Cより充分安全な絶縁間隔を保ち
、且つコイルmの高さが人相に近く、次いでB相に近く
、C相からは最も遠くなるような位置に、またコイルn
の高さがC相に近く、次いでB相Gこ近く、人相からは
最も遠くなるような位置にそれぞれ配置し、且つ電線A
、B、C並びに架空地線Gと直角になるように、且つそ
の方向は架空地線の方向に向けて取り付ける。コイルm
、nは第1−3図に示すように、各コイルに発生した起
電力亡m、亡nの合成値亡m十亡nが得られるように接
続する。(なお、亡はベクトル量であり、スカラー量E
と区別するためにド・ノドを上に付した。以下同じ。) いま、電線A、B、Cに3相交流電流が流れると、電流
により各電線を中心とした磁力線a、b。
In the diagram, A, B, and C are three-phase alternating current A-phase, B-phase, and C-phase electric wires,
G is an overhead ground wire, FIG. 1-1 is a front view seen in the length direction of the power transmission line, and FIG. 1-2 is a side view seen from the side. Dl and 'D2 are elongated iron cores wound with coils m and n, respectively, and maintain a sufficiently safe insulation interval than electric wires A, B, and C, and the height of coil m is close to the human phase, and then close to the B phase. Place the coil n at the farthest position from the C phase.
The height of the electric wire A is close to the C phase, then the B phase G, and the electric wire A is placed at a position where it is farthest from the human phase.
, B, C, and the overhead ground wire G, and its direction is in the direction of the overhead ground wire. coil m
, n are connected so as to obtain a composite value of the electromotive forces m and n generated in each coil, as shown in FIGS. 1-3. (In addition, the value is a vector quantity, and the scalar quantity E
To distinguish it from the above, do nodo was added. same as below. ) Now, when a three-phase alternating current flows through electric wires A, B, and C, magnetic lines of force a and b center around each electric wire due to the current.

Cが生じ、鉄心DI 、D2を磁路としてコイルm。C occurs, and the coil m is formed using the iron core DI and D2 as the magnetic path.

nを貫通するので、コイルに電磁誘導起電力が発生する
。いま、人相電流によりコイルm、nに生じる起電力を
IEma、  1Enaとし、B相電流によりコイルm
、nに生じる起電力をamb+  1Enbとし、C相
電流によりコイルに生じる起電力を亡mc+  Enc
とすると、合成起電力は、 人相分 eA=ema+Ena。
Since it passes through n, an electromagnetic induced electromotive force is generated in the coil. Now, let the electromotive force generated in coils m and n due to the human phase current be IEma, 1Ena, and the electromotive force generated in coil m due to the B phase current.
, the electromotive force generated in n is amb+ 1Enb, and the electromotive force generated in the coil due to the C phase current is mc+ Enc
Then, the combined electromotive force is human phase eA=ema+Ena.

B相分 eB=emb+enb。B phase component eB=emb+enb.

C相分 e+)、 −emc+enc   となるO起
電力は、電線の電流が大きい程犬となる。また、コイル
と電線との距離が近い程大となるほか、磁軸、即ち鉄心
の長手方向にコイルを貫く線と、電線とコイルを結ぶ線
とのなす角が直角に近付く程大となるなど、電線に対す
るコイルの位置によって変わる。このほか、鉄心の長さ
、断面積、コイルの巻数などにより変わるので、これら
を調整して、各相の電流値が等しく、位相が120゛ず
つずれている非事故時の送電状態で、総合合成起電力立
へ+eB+ecの値が零又は微少になるようにする。と
ころで、亡へ十eB+亡(H−em+百〇であるから、
亡A十亡B十亡C=0即ち、亡m−−亡nが成立するた
めには、第2図のようにEm−En、l8m l+1θ
n  l = 180°となればよい。なお、θm 、
θmは電流のある相を基準にとったときの、コイルm、
nに誘起される電圧のそれぞれの位相角である。
The O electromotive force, which is C phase component e+), -emc+enc, increases as the electric wire current increases. In addition, the closer the distance between the coil and the wire is, the larger the value becomes, and the closer the angle between the magnetic axis, that is, the line that passes through the coil in the longitudinal direction of the iron core, and the line that connects the wire and the coil becomes a right angle, the larger the value becomes. , depending on the position of the coil relative to the wire. In addition, it varies depending on the length of the iron core, cross-sectional area, number of turns of the coil, etc., so by adjusting these, the overall The value of +eB+ec to the combined electromotive force is set to be zero or very small. By the way, since death is 10 eB + death (H-em + 100,
In other words, in order for death A ten death B ten death C = 0, death m - death n to hold, Em - En, l8m l + 1θ as shown in Figure 2.
It is sufficient that n l = 180°. Note that θm,
θm is the coil m when the phase with current is taken as a reference,
is the respective phase angle of the voltage induced in n.

ところが、送電線に事故が起こり各相電流に不平衡が生
じると、tA、eB、fE、cにも不平衡が生じ、送電
線の零相電流に比例した合成起電力が第1−3図の合成
回路の出力に出て、零相電流を検出することができる。
However, if an accident occurs on the transmission line and imbalance occurs in each phase current, imbalance will also occur in tA, eB, fE, and c, and the resultant electromotive force proportional to the zero-sequence current of the transmission line will be as shown in Figure 1-3. The zero-sequence current can be detected at the output of the composite circuit.

なお、第1−3図では2個のコイルを直列に接続した例
を示したが、並列に接続して検出する場合もある。
Although FIGS. 1-3 show an example in which two coils are connected in series, they may also be connected in parallel for detection.

以上は架空地線のない場合であるが、一般には第1−1
図に示すように架空地線Gがあり、A相。
The above is a case without an overhead ground wire, but in general,
As shown in the figure, there is an overhead ground wire G and the A phase.

C相、C相からの誘導により架空地線には誘導電流が流
れており、送電線に事故がない場合はその電流値は一般
に僅少であるが、事故がある場合はその値も大きくなる
ほか、地絡電流が追加されたりして電流値は大きくなり
、それによる磁力線gl、g2がコイルm、nを貫通し
て生じた誘導起電力が、上記亡A、亡B、亡Cの合成値
に加わることになり、送電線の零相電流に比例しない合
成出力が第1−3図の合成回路の出力に出て、零相電流
検出の誤差となる。架空地線を流れる電流は、鉄塔の接
地抵抗の天候による変化、事故地点の送電線両端の電気
所よりの遠近による変化その他の理由で一定でないので
、上記の誤差の値も変化し、零相電流検出をますます困
難にすることになる。
An induced current flows in the overhead ground wire due to induction from C phase and C phase.If there is no fault on the transmission line, the current value is generally small, but if there is a fault, the current value increases. , the current value increases due to the addition of ground fault current, and the induced electromotive force generated when the magnetic lines of force gl and g2 pass through the coils m and n is the composite value of the above A, B, and C. As a result, a composite output that is not proportional to the zero-sequence current of the power transmission line appears at the output of the composite circuit shown in FIG. 1-3, resulting in an error in zero-sequence current detection. The current flowing through the overhead ground wire is not constant due to changes in the grounding resistance of the tower due to weather, changes due to distance from the electric station at both ends of the transmission line, and other reasons, so the above error value also changes, and the zero-phase This makes current detection increasingly difficult.

本発明では、コイル、鉄心の長手方向を架空地線の方向
に向け、且つ両者間の角度が直角になるようにしている
ので、架空地線の電流により生ずる磁力線はコイルを貫
通しないようになり、架空地線の電流の影響を受けずに
送電線の零相電流を検出することが可能である。
In the present invention, the longitudinal direction of the coil and the iron core are directed toward the overhead ground wire, and the angle between the two is at right angles, so that the magnetic lines of force generated by the current in the overhead ground wire do not penetrate the coil. , it is possible to detect the zero-sequence current of the power transmission line without being affected by the current of the overhead ground wire.

鉄心は上記のように各相の間を別々に設ける方法以外に
、第3図に示すように各相共通の一体構造でも可能であ
る。
In addition to the method in which the iron core is provided separately between each phase as described above, it is also possible to have an integral structure common to each phase as shown in FIG.

以上は2回線の標準的な鉄塔の1回線装柱の場合である
が、2回線装柱の場合を第3図に示す。
The above is a case of a standard two-line steel tower with a single line installed on a pole, but FIG. 3 shows a case where a two-line line is installed on a pole.

A、B、Cは1号線の電線A相、C相、C相を、R,S
、Tは2号線の電線R相、S相、T相をそれぞれ表す。
A, B, and C are wires A phase, C phase, and C phase of line 1, and R, S
, T represent the R phase, S phase, and T phase of the wire No. 2, respectively.

一般に、2回線の標準的な鉄塔では、1号線と2号線の
電線配置は左右対称であるので、鉄心り及びコイルm、
nを1号線と2号線の中心線に置き、且つ架空地縁Gの
方向に向けて、且つ電線A、B、C,R,S、T及び架
空地線Gと直角になるように配置し、更に1号線のA相
、C相。
In general, in a standard two-line steel tower, the wire arrangement of line 1 and line 2 is symmetrical, so the iron core and coil m,
Place n on the center line of line 1 and line 2, and place it facing the direction of the overhead ground line G and at right angles to the electric wires A, B, C, R, S, T and the overhead ground line G, Furthermore, Phase A and C of Line 1.

C相の平衡した電流により、コイルrn、nに誘起され
る合成起電力A相分=、、、B相分eB、C相分tcを
鉄心りの高さ、長さ、断面積とコイルm。
Combined electromotive force induced in coils rn and n by the balanced current of C phase A phase component = , B phase component eB, C phase component tc as the height, length, cross-sectional area of iron core and coil m .

nの位置、巻数を調整し、C相分の総合合成起電力eへ
十eB +ecを零あるいは微少にすれば、送電線1号
線の事故のときは、零相電流に比例する起電力が発生し
、零相電流検出が可能である。
By adjusting the position and number of turns of n and making the total combined electromotive force e for the C phase 10eB +ec zero or very small, in the event of an accident on transmission line 1, an electromotive force proportional to the zero-sequence current will be generated. However, zero-sequence current detection is possible.

この場合の2号線R相、S相、T相の影響を考えると、
1号線、2号線は既述のように左右対称であるので、2
傍線R相、S相、−T相の平衡した電流により、コイル
m、nに誘起される合成起電力R相分eR,S相分es
、T相分を丁の2号線による総合合成起電力eR十亡S
十亡Tは、1号線による総合合成起電力亡A +4:a
 +ecが零あるいは微少のとき、自動的に零又は微少
となって発生しない。すなわち1号線と2号線との相互
影響はなくなり1号線、2号線の何れに事故があっても
、1号線、2号線の零相電流の検出が可能である。
Considering the influence of Line 2 R phase, S phase, and T phase in this case,
Lines 1 and 2 are symmetrical as mentioned above, so 2
Combined electromotive force R phase component eR, S phase component es induced in coils m and n by the balanced currents of side lines R phase, S phase, -T phase
, the T phase component is the total combined electromotive force eRjukuS by line 2 of D
The total combined electromotive force caused by Line 1 is A +4:a
When +ec is zero or very small, it automatically becomes zero or very small and does not occur. That is, there is no mutual influence between line 1 and line 2, and even if there is an accident in line 1 or line 2, the zero-sequence current in line 1 or line 2 can be detected.

もし、鉄心り及びコイルm、nが1号線と2号線との中
心線上にない場合は、1号線の上記C相分の総合合成起
電力f=s +4B +#cを零あるいは微少となるよ
うに鉄心、コイルを調整しても、2号線の上記C相分の
総合合成起電力亡R−1−es−+4.1−は零あるい
は微少とならないので、2号線の電流が大きいとこの値
も大きく出て、あたかも零相電流が発生しているような
現象を生じて、零相電流の検出には適さないことになる
If the iron core and coils m and n are not on the center line of line 1 and line 2, make sure that the total combined electromotive force f=s +4B +#c for the above C phase of line 1 is zero or very small. Even if the iron core and coil are adjusted to is also large, causing a phenomenon as if a zero-sequence current is occurring, making it unsuitable for detecting a zero-sequence current.

次に、送電線事故時に架空地線に流れる電流の大きさは
、送電線両端の電気所より事故地点までの距離、鉄塔の
接地抵抗の値などにより変化する。
Next, the magnitude of the current flowing through the overhead ground wire in the event of a transmission line accident varies depending on the distance from the electrical stations at both ends of the transmission line to the accident point, the value of the grounding resistance of the steel tower, etc.

ところでコイルm、nに誘起する起電力は、電線の各相
電流から誘起されるほか、架空地線を流れる電流からも
誘起されるので、零相電流に比例しない起電力が生じ、
零相電流検出には不都合である。本発明は、この欠点を
なくすため、鉄心の長手方向を架空地線の方向に向け、
架空地線を流れる電流によって生じる磁力線が鉄心を経
てコイルを貫通しないようにして、コイルに誘起起電力
を発生しないようにしたものであることは、既述の通り
である。
By the way, the electromotive force induced in the coils m and n is not only induced from each phase current of the electric wire, but also from the current flowing through the overhead ground wire, so an electromotive force that is not proportional to the zero-phase current is generated.
This is inconvenient for zero-sequence current detection. In order to eliminate this drawback, the present invention aims to orient the longitudinal direction of the iron core in the direction of the overhead ground wire,
As mentioned above, the magnetic field lines generated by the current flowing through the overhead ground wire are prevented from penetrating the coil via the iron core, so that no induced electromotive force is generated in the coil.

第1−1図、第1−2図、第3図は、架空地線1条の場
合である。架空地線2条の場合は、第4図のように、架
空地線の配置は一般に鉄塔の上部で左右対称の位置にあ
るので、鉄心1〕を中心線に置くことにより、コイルm
、nに生じる架空地線G1を流れる電流による起電力と
架空地線G2を流れる電流による起電力は、方向が逆で
相殺されるので、架空地線に流れる電流の大小に拘わら
ず、常に零となる。
Figures 1-1, 1-2, and 3 show the case of one overhead ground wire. In the case of two overhead ground wires, as shown in Figure 4, the overhead ground wires are generally arranged symmetrically at the top of the tower, so by placing the iron core 1 on the center line, the coil m
, n, the electromotive force caused by the current flowing through the overhead ground wire G1 and the electromotive force caused by the current flowing through the overhead ground wire G2 are opposite in direction and cancel each other out, so they are always zero regardless of the magnitude of the current flowing through the overhead ground wire. becomes.

架空地線3条の場合は第5図のように、一般に架空地線
1条Goは送電線の中心に、他の2条G1 、 G2は
これを挟んで左右対称となるように配置されるので、鉄
心り及びコイルm、nを送電線の中心線に設置すること
により、上記と同じ理由でコイルm、nには架空地線G
o、ci 、G2を流れる電流による誘起起電力は発生
しない。
In the case of three overhead ground wires, as shown in Figure 5, one overhead ground wire Go is generally placed at the center of the transmission line, and the other two ground wires G1 and G2 are placed symmetrically across this. Therefore, by installing the iron core and coils m and n on the center line of the power transmission line, coils m and n are connected to the overhead ground wire G for the same reason as above.
No induced electromotive force is generated due to the current flowing through o, ci, and G2.

以上は2回線の標準的な鉄塔の場合を例にとって説明し
たが、多回線鉄塔や電力線3相配列の構造を異にする1
回線鉄塔の場合も適用可能である。
The above explanation is based on the case of a standard two-line steel tower, but a case with a multi-line steel tower or a three-phase power line arrangement with a different structure is explained above.
It is also applicable to the case of line towers.

多回線鉄塔に適用する例を第6図に示し、1回線鉄塔に
適用する例として、三角配列をした送電線の架空地線が
ある場合を第7図に、架空地線がない場合を第8図に、
また水平配列をした送電線の架空地線がない場合を第9
図に示す。これらの作用は、上述した例について説明し
たものと同様である。
An example of application to a multi-line tower is shown in Figure 6. As an example of application to a single-line tower, Figure 7 shows a case where there is an overhead ground wire for power transmission lines arranged in a triangular arrangement, and Figure 7 shows a case where there is no overhead ground wire. In Figure 8,
In addition, the case where there is no overhead ground wire for horizontally arranged power transmission lines is
As shown in the figure. These effects are similar to those described for the example above.

これらの適用例の中で第7図の場合、鉄心及びコイルは
、鉄心の長手方向を架空地線の方向に向け、且つ鉄塔中
心線から左右対称となるように配置する。コイルm、n
は第1−3図に示したように、各コイルに発生する起電
力E m +亡nの合成値が、この場合に限りベクトル
gem−tnとして得られるように接続する。
Among these application examples, in the case of FIG. 7, the iron core and coil are arranged so that the longitudinal direction of the iron core is directed toward the overhead ground wire and is symmetrical from the center line of the tower. coil m, n
As shown in FIG. 1-3, these are connected in such a way that the composite value of the electromotive force E m + n generated in each coil is obtained as a vector gem-tn only in this case.

合成起電力は、 人相骨 tp、 −ems−ena B相分 eB =emb−enb C相分 亡C=emc−enc となり、差の形で表される。The combined electromotive force is Physiognomic bones tp, -ems-ena B phase component eB = emb-enb C phase part death C=emc-enc and is expressed in the form of a difference.

非事故時の送電状態で、総合合成起電力p2A+eB+
lEcの値を零とするためには、em −IEn−〇と
なればよく、これから第2図に示したようなベクトルの
大きさと位相の関係が導かれる。
In the non-fault power transmission state, the total combined electromotive force p2A+eB+
In order to make the value of lEc zero, em -IEn-0 is sufficient, and from this the relationship between the magnitude and phase of the vector as shown in FIG. 2 is derived.

上述したように、本発明の零相電流検出方法は、磁路を
形成するための細長い形状の鉄心を、3相交流の送電線
の電力線に直角に、界つ各電力線との間隔を電力線の加
圧電圧に充分耐える間隔で配設し、当該鉄心にコイル2
個を設け、電力線からの電磁誘導によりコイルに発生し
た起電力の合成° が、電力線各相の電流が等しい場合
に零又は微少となるように、鉄心の長さ、断面積1位置
、コイルの巻数等の磁気的定数を設定し、送電線に零相
電流が発生した場合に、これに比例して誘起されるコイ
ルの合成起電力により零相電流を検出するようにしたの
で、3個の鉄心、コイルを設置する先の発明による方法
に比較して、調整作業が著しく改善されるという効果を
奏するものである。
As described above, in the zero-sequence current detection method of the present invention, an elongated iron core for forming a magnetic path is placed perpendicularly to the power line of a three-phase AC power transmission line, and the distance between the two power lines is determined by Coil 2 is placed on the core at intervals sufficient to withstand the applied voltage.
The length of the iron core, the cross-sectional area of one position, and the position of the coil should be adjusted so that the composite of the electromotive force generated in the coil by electromagnetic induction from the power line becomes zero or very small when the current in each phase of the power line is equal. By setting magnetic constants such as the number of turns, and when a zero-sequence current is generated in the transmission line, the zero-sequence current is detected by the composite electromotive force of the coils that is induced in proportion to the zero-sequence current. Compared to the method according to the previous invention in which iron cores and coils are installed, the adjustment work is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1−1図は本発明による零相電流検出の原理を説明す
る正面図、第1−2図はその側面図、第1−3図はコイ
ルの接続例を示す説明図、第2図は理想的な調整を行な
ったときの各コイルの起電力の位相関係を説明するベク
トル図、第3図は2回線の装柱例を示す正面図、第4図
及び第5図は架空地線が2条及び3条の場合の鉄心とコ
イルの配置を示す説明図、第6図は4回線鉄塔の場合の
鉄心とコイルの配置を示す説明図、第7図は1回線三角
配列の架空地線が1条の場合の鉄心とコイルの配置を示
す説明図、第8図及び第9図はそれぞれ1回線の対称配
線の架空地線がない場合の鉄心とコイルの配置を示す説
明図である。 Dl、D2.D:鉄心 m、、  n、 ml 、  nl 、 m2.  n
2:コイルG、G1 、G2.Go :架空地線 A、  B、  C,R,S、  T AI  、  A2  、  B1 、  B2Cl 
 、  C2、R1、R2 51,32,TI 、T2  :電線 特許出願人  二シム電子工業 株式会社代理人 手掘
 益(ほか2名) 第1−1図     第1−2図 1 bo9        B \ \ 第1−3図 第3図 旧Oat ! 第 4 薗     第 5 図 G2  GI         G2GOG+第6図 
    第7図 第8図    第9図
Figure 1-1 is a front view explaining the principle of zero-sequence current detection according to the present invention, Figure 1-2 is a side view thereof, Figure 1-3 is an explanatory diagram showing an example of coil connection, and Figure 2 is A vector diagram explaining the phase relationship of the electromotive force of each coil when ideal adjustment is made. Figure 3 is a front view showing an example of installing two circuits on a pole. Figures 4 and 5 are diagrams showing an example of an overhead ground wire. An explanatory diagram showing the arrangement of the iron core and coil in the case of 2 and 3 strands, Fig. 6 is an explanatory diagram showing the arrangement of the iron core and coil in the case of a 4-circuit tower, and Fig. 7 shows an overhead ground wire in a 1-circuit triangular arrangement. FIGS. 8 and 9 are explanatory diagrams showing the arrangement of the iron core and coil when there is only one wire, and FIGS. 8 and 9 are explanatory diagrams showing the arrangement of the iron core and coil when there is no overhead ground wire of one line of symmetrical wiring, respectively. Dl, D2. D: Iron core m,, n, ml, nl, m2. n
2: Coils G, G1, G2. Go: Overhead ground wire A, B, C, R, S, T AI, A2, B1, B2Cl
, C2, R1, R2 51, 32, TI, T2: Wire patent applicant Nishimu Electronics Co., Ltd. Agent Masu Tegori (and 2 others) Figure 1-1 Figure 1-2 Figure 1 bo9 B \ \ th Figure 1-3 Figure 3 Old Oat! No. 4 No. 5 Figure G2 GI G2GOG + Figure 6
Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 1、磁路を形成するための細長い形状の鉄心を、3相交
流の送電線の電力線に直角に、且つ各電力線との間隔を
電力線の加圧電圧に充分耐える間隔で配設し、当該鉄心
にコイル2個を設け、電力線からの電磁誘導によりコイ
ルに発生した起電力の合成が、電力線各相の電流が等し
い場合に零又は微少となるように、鉄心の長さ、断面積
2位置、コイルの巻数等の磁気的定数を設定し、送電線
に零相電流が発生した場合に、これに比例して誘起され
るコイルの合成起電力により零相電流を検出することを
特徴とする零相電流検出方法。 2、電線配置が左右対称となる偶数回線の送電線の場合
は、鉄心を左右の対称電線の中心線上に配置することを
特徴とする特許請求の範囲第1項記載の零相電流検出方
法。 3.1条の架空地線を有する送電線の場合には、鉄心の
長手方向の延長方向が当該架空地線を指向するように配
設して、架空地線に流れる電流によるコイルへの誘導起
電力の発生を抑制することを特徴とする特許請求の範囲
第1項又は第2項記載の零相電流検出方法。 4.2条以上の対称配置の架空地線を有する送電線の場
合には、鉄心の長手方向の延長線が架空地線の左右対称
の中心線と一致するように配設して、架空地線に流れる
電流によるコイルへの誘導起電力の発生を抑制すること
を特徴とする特許請求の範囲第1項又は第2項記載の零
相電流検出方法。
[Claims] 1. An elongated iron core for forming a magnetic path is placed perpendicular to the power line of a three-phase AC power transmission line, and the distance from each power line is set at a distance sufficient to withstand the pressurized voltage of the power line. Two coils are installed on the core, and the length of the core is set so that the combination of the electromotive force generated in the coil by electromagnetic induction from the power line becomes zero or very small when the current in each phase of the power line is equal. , set magnetic constants such as the cross-sectional area, two positions, and the number of turns of the coil, and when a zero-sequence current occurs in the power transmission line, the zero-sequence current is detected by the composite electromotive force of the coil that is induced in proportion to this. A zero-sequence current detection method characterized by the following. 2. In the case of an even-numbered power transmission line in which the wire arrangement is symmetrical, the zero-sequence current detection method according to claim 1, characterized in that the iron core is arranged on the center line of the symmetrical wires. 3. In the case of a power transmission line with one overhead ground wire, the iron core should be arranged so that the longitudinal direction of extension points toward the overhead ground wire, so that the current flowing through the overhead ground wire can be induced into the coil. The zero-sequence current detection method according to claim 1 or 2, characterized in that generation of electromotive force is suppressed. 4. In the case of a power transmission line with two or more symmetrically arranged overhead ground wires, the longitudinal extension line of the iron core should be aligned with the symmetrical center line of the overhead ground wire, and the overhead ground wire should be The zero-sequence current detection method according to claim 1 or 2, characterized in that the generation of induced electromotive force in the coil due to the current flowing in the line is suppressed.
JP58060307A 1983-04-06 1983-04-06 Zero phase current detecting method Granted JPS59188327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58060307A JPS59188327A (en) 1983-04-06 1983-04-06 Zero phase current detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58060307A JPS59188327A (en) 1983-04-06 1983-04-06 Zero phase current detecting method

Publications (2)

Publication Number Publication Date
JPS59188327A true JPS59188327A (en) 1984-10-25
JPH028530B2 JPH028530B2 (en) 1990-02-26

Family

ID=13138367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58060307A Granted JPS59188327A (en) 1983-04-06 1983-04-06 Zero phase current detecting method

Country Status (1)

Country Link
JP (1) JPS59188327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255431A (en) * 1988-04-04 1989-10-12 Nishimu Denshi Kogyo Kk Detection of fault section of power transmission line
JPH0226218A (en) * 1988-07-12 1990-01-29 Nishimu Denshi Kogyo Kk Detecting method for short-circuit trouble zone of transmission line

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255431A (en) * 1988-04-04 1989-10-12 Nishimu Denshi Kogyo Kk Detection of fault section of power transmission line
JPH07108058B2 (en) * 1988-04-04 1995-11-15 ニシム電子工業株式会社 Transmission line fault section detection method
JPH0226218A (en) * 1988-07-12 1990-01-29 Nishimu Denshi Kogyo Kk Detecting method for short-circuit trouble zone of transmission line

Also Published As

Publication number Publication date
JPH028530B2 (en) 1990-02-26

Similar Documents

Publication Publication Date Title
Chen et al. A new method for power current measurement using a coreless Hall effect current transformer
CN111771250B (en) Current transformer
Yamazaki et al. Requirements for power line magnetic field mitigation using a passive loop conductor
Sidhu et al. A power transformer protection technique with stability during current transformer saturation and ratio-mismatch conditions
JPS59188327A (en) Zero phase current detecting method
JPS6257229B2 (en)
US10324140B2 (en) Zero sequence sensing apparatus and method
Du et al. Experimental investigation into harmonic impedance of low-voltage cables
FI108167B (en) Measurement of electrical conductivity
JP3942308B2 (en) Instrument transformer
JPH0424455Y2 (en)
JPH028531B2 (en)
JPS62261078A (en) Detection of fault point for cable
RU2551632C2 (en) Measuring device of differential current protection of buses
JPS636695Y2 (en)
JPH02287168A (en) Locating method for faulty point of underground line
JP2684925B2 (en) A method for obtaining voltage phase information of power cable lines
JP3528544B2 (en) Method of locating insulation breakdown of power cable line
JPH08152448A (en) Zero-phase-current measuring circuit of three-phase alternating current
JPS5939774Y2 (en) water cooled cable current detector
JPH11281699A (en) Leak detection method and leak breaker using the same
WO1996027802A2 (en) Measuring device for measuring a current flowing in the overhead wires of a medium-voltage line
JP2638231B2 (en) Underground track accident point location method
RU17749U1 (en) DIFFERENTIAL CURRENT TRANSFORMER
JPH0222529B2 (en)