JPH10123107A - Method and device for measuring decarburized layer depth of steel material - Google Patents

Method and device for measuring decarburized layer depth of steel material

Info

Publication number
JPH10123107A
JPH10123107A JP8282255A JP28225596A JPH10123107A JP H10123107 A JPH10123107 A JP H10123107A JP 8282255 A JP8282255 A JP 8282255A JP 28225596 A JP28225596 A JP 28225596A JP H10123107 A JPH10123107 A JP H10123107A
Authority
JP
Japan
Prior art keywords
decarburized layer
steel material
frequency
depth
envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8282255A
Other languages
Japanese (ja)
Inventor
Shoji Yamaguchi
祥司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP8282255A priority Critical patent/JPH10123107A/en
Publication of JPH10123107A publication Critical patent/JPH10123107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a decarburized layer depth without cutting a steel material. SOLUTION: An ultrasonic probe 2 generates an ultrasonic wave due to a signal that is transmitted from a transmitter 3 via an amplifier 4 and the signal of a reflected ultrasonic wave from a steel material 1 to be measured is received by a receiver 5. An envelope detector 6 detects the envelopes (each reception intensity at each time) of reception signals from the receiver 5 and sends them to an operator 7. The operator 7 has a memory that stores the envelope data of a number of known decarburized layer depths, transmitted envelope data are compared with the known envelope being stored in a memory, and a corresponding decarburized layer depth is set to the decarburized layer depth of the steel material 1 to be measured from the constant (α) of the closest envelope out of the envelope of the memory.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋼材の表面に形成
される脱炭層の深さを測定する鋼材の脱炭層深さ測定方
法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the depth of a decarburized layer of a steel material for measuring the depth of a decarburized layer formed on the surface of the steel material.

【0002】[0002]

【従来の技術】鋼材を炉で長時間高温加熱処理を行う場
合、炉内のガスと鋼材表面とが反応して酸化又は鋼材表
層部の炭素の拡散減少(脱炭)が生じ、それらの部分が
柔らかくなって必要な機械的強度を得ることができな
い。このため、これら酸化層深さや脱炭の程度(脱炭層
深さ)を測定することにより、これを熱処理条件にフィ
ードバックさせて酸化や脱炭の発生をできるだけ抑え、
又はそれらが許容限度以内か否かをチェックすることが
行われている。ところで、酸化によるスケール(酸化
物)は外観検査から確認できるが、脱炭層深さは外観か
らは判らないので、鋼材を切断して顕微鏡による組織観
察を行うことにより測定していた。
2. Description of the Related Art When a steel material is subjected to a high-temperature heat treatment in a furnace for a long time, the gas in the furnace reacts with the surface of the steel material to cause oxidation or a reduction in carbon diffusion (decarburization) in the surface layer of the steel material. Is too soft to obtain the required mechanical strength. Therefore, by measuring the depth of the oxidized layer and the degree of decarburization (decarburized layer depth), this is fed back to the heat treatment conditions to minimize the occurrence of oxidation and decarburization.
Or, they are checked to see if they are within acceptable limits. By the way, the scale (oxide) due to the oxidation can be confirmed from the appearance inspection, but the depth of the decarburized layer cannot be determined from the appearance, so that the steel material was cut and the structure was observed by microscopic observation.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記鋼材の切
断や顕微鏡観察には多くの手間と時間を要するという問
題があった。なお、例えば特開昭60−35253号公
報には、鋼材の内部に超音波を放射して鋼材を構成する
粒子の径を非破壊で測定する手段が提案されているが、
この手段は、超音波伝播方向の粒子の径の平均を求める
ものであり、非脱炭部の粒子とは径の異なる粒子で構成
される脱炭層深さを測定することはできない。
However, there has been a problem that cutting the steel material and observing with a microscope require a lot of trouble and time. In addition, for example, Japanese Patent Application Laid-Open No. 60-35253 proposes a means for non-destructively measuring the diameter of particles constituting a steel material by radiating ultrasonic waves into the steel material.
This means obtains the average of the diameters of the particles in the ultrasonic wave propagation direction, and cannot measure the depth of the decarburized layer composed of particles having different diameters from the particles in the non-decarburized portion.

【0004】本発明の目的は、上記従来技術における課
題を解決し、鋼材を切断せずに脱炭層深さを測定するこ
とができる鋼材の脱炭層深さ測定方法および装置を提供
することにある。
An object of the present invention is to solve the above-mentioned problems in the prior art and to provide a method and an apparatus for measuring the depth of a decarburized layer of a steel material, which can measure the depth of the decarburized layer without cutting the steel material. .

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、請求項1の発明は、被測定鋼材の表面から当該鋼材
内部に超音波を放射し、その反射波信号の受信強度の包
絡線を求め、この包絡線を、予め求められている複数の
既知の脱炭層深さに対する超音波の反射波信号の受信強
度の包絡線と比較し、これら包絡線のうちの最も近い包
絡線に対応する脱炭層深さを前記被測定鋼材の脱炭層深
さとすることを特徴とする。
In order to achieve the above-mentioned object, according to the first aspect of the present invention, an ultrasonic wave is radiated from the surface of a steel material to be measured into the steel material, and the envelope of the reception intensity of the reflected wave signal is emitted. And comparing this envelope with the envelope of the reception intensity of the ultrasonic reflected wave signal for a plurality of known decarburized layer depths determined in advance, and corresponding to the closest envelope of these envelopes. The depth of the decarburized layer to be measured is defined as the decarburized layer depth of the steel material to be measured.

【0006】又、請求項2の発明は、被測定鋼材の表面
から当該鋼材内部に超音波を放射し、その反射波信号の
所定時間間隔毎の周波数成分のうちのピーク値の周波数
を求め、この周波数が、脱炭層が形成されていない鋼材
に対し予め求められている前記所定時間間隔毎の周波数
成分のうちのピーク値の周波数と一致する周波数に対応
する時間に基づいて前記被測定鋼材の脱炭層深さを求め
ることを特徴とする。
According to a second aspect of the present invention, an ultrasonic wave is radiated from the surface of the steel material to be measured into the steel material, and a frequency of a peak value among frequency components of the reflected wave signal at predetermined time intervals is obtained. The frequency of the steel material to be measured is based on a time corresponding to a frequency corresponding to a frequency of a peak value among frequency components at the predetermined time intervals previously determined for the steel material on which the decarburized layer is not formed. It is characterized by obtaining the depth of the decarburized layer.

【0007】又、請求項3の発明は、被測定鋼材の表面
に、周波数の異なる超音波を放射して弾性表面波を発生
させ、その反射波信号の各周波数毎の相対感度のうち、
予め定められた相対感度に対応する周波数に基づいて前
記被測定鋼材の脱炭層深さを求めることを特徴とする。
According to a third aspect of the present invention, a surface acoustic wave is generated by radiating ultrasonic waves having different frequencies to the surface of the steel material to be measured, and the relative sensitivity of the reflected wave signal for each frequency is defined as:
The depth of the decarburized layer of the steel material to be measured is obtained based on a frequency corresponding to a predetermined relative sensitivity.

【0008】又、請求項4の発明は、被測定鋼材へ超音
波を放射する超音波プローブと、この超音波プローブか
ら放射された超音波の反射波を受信する受信器と、前記
鋼材の複数の既知の脱炭層深さに対する超音波の反射波
信号の受信時間と受信強度より成る受信強度の包絡線の
データを各脱炭層深さ毎に格納した第1のメモリと、前
記包絡線の定数と脱炭層深さとの関係を格納する第2の
メモリと、前記受信器で受信された反射波の各受信時間
の受信強度と前記第1のメモリの各脱炭層深さ毎の対応
する各受信時間の受信強度との差を演算する第1の演算
手段と、この第1の演算手段で演算された差の合計を演
算する第2の演算手段と、この第2の演算手段で演算さ
れた差の合計が最小である各脱炭層深さの包絡線を検索
する第1の検索手段と、前記第2のメモリのデータから
前記第1の検索手段で検索された包絡線の定数に対応す
る脱炭層深さを検索する第2の検索手段とで鋼材の脱炭
層深さ測定装置を構成したことを特徴とする。
According to a fourth aspect of the present invention, there is provided an ultrasonic probe for radiating an ultrasonic wave to a steel material to be measured, a receiver for receiving a reflected wave of the ultrasonic wave radiated from the ultrasonic probe, and a plurality of the steel materials. A first memory storing, for each depth of the decarburized layer, data of the envelope of the received intensity comprising the reception time and the received intensity of the ultrasonic reflected wave signal with respect to the known decarburized layer depth, and a constant of the envelope. And a second memory for storing a relationship between the depth and the depth of the decarburized layer, the reception intensity of the reflected wave received by the receiver at each reception time, and the corresponding reception for each depth of the decarburized layer in the first memory. First calculating means for calculating the difference from the reception intensity of time, second calculating means for calculating the sum of the differences calculated by the first calculating means, and calculation by the second calculating means. A first search method for searching the envelope of each decarburized layer depth having the smallest sum of differences And a second searching means for searching the data of the second memory for a decarburized layer depth corresponding to the constant of the envelope searched by the first searching means, and It is characterized by comprising.

【0009】又、請求項5の発明は、被測定鋼材へ超音
波を放射する超音波プローブと、この超音波プローブか
ら放射された超音波の反射波を受信する受信器と、脱炭
層が形成されていない前記被測定鋼材に対する超音波の
受信信号の所定時間間隔毎のピーク周波数を格納するメ
モリと、前記受信器で受信された受信信号における前記
所定時間間隔の各時間に対応する時間毎のピーク周波数
を取り出す周波数解析部と、この周波数解析部で取り出
されたピーク周波数と前記メモリに格納されたピーク周
波数とが一致する時間を検索する検索手段と、この検索
手段で検索された時間に基づいて脱炭層深さを演算する
演算手段とで鋼材の脱炭層深さ測定装置を構成したこと
を特徴とする。
According to a fifth aspect of the present invention, there is provided an ultrasonic probe for emitting ultrasonic waves to a steel material to be measured, a receiver for receiving a reflected wave of the ultrasonic waves emitted from the ultrasonic probe, and a decarburized layer. A memory for storing a peak frequency of the received signal of the ultrasonic wave for the steel material to be measured which is not performed for each predetermined time interval, and a time interval corresponding to each time of the predetermined time interval in the received signal received by the receiver. A frequency analysis unit for extracting a peak frequency; a search unit for searching for a time when the peak frequency extracted by the frequency analysis unit matches the peak frequency stored in the memory; And a calculating means for calculating the depth of the decarburized layer by means of a decarburized layer depth measuring device for steel material.

【0010】さらに、請求項6の発明は、被測定鋼材の
表面に超音波を放射して弾性表面波を発生させその反射
波信号を受信する超音波プローブと、この超音波プロー
ブから放射される超音波の周波数を連続的に変化させる
周波数変更手段と、前記超音波プローブで受信された反
射波信号の相対感度を所定の相対感度と比較する比較手
段と、この比較手段により前記反射波信号の相対感度が
前記所定の相対感度と一致したときその相対感度に対応
する周波数に基づいて脱炭層深さを演算する演算手段と
で鋼材の脱炭層深さ測定装置を構成したことを特徴とす
る。
Further, according to a sixth aspect of the present invention, there is provided an ultrasonic probe which emits an ultrasonic wave to the surface of a steel material to be measured to generate a surface acoustic wave and receives a reflected wave signal thereof, and radiates from the ultrasonic probe. Frequency changing means for continuously changing the frequency of the ultrasonic wave, comparing means for comparing the relative sensitivity of the reflected wave signal received by the ultrasonic probe with a predetermined relative sensitivity, and the comparing means When the relative sensitivity coincides with the predetermined relative sensitivity, the calculating means for calculating the decarburized layer depth based on the frequency corresponding to the relative sensitivity constitutes a steel material decarburized layer depth measuring device.

【0011】[0011]

【発明の実施の形態】以下、本発明を図示の実施の形態
に基づいて説明する。図1は本発明の第1の実施の形態
に係る脱炭層深さ測定方法を実施する装置のブロック図
である。この図で、1は被測定鋼材、2は超音波プロー
ブである。超音波プローブ2の先端には図示しない遅延
材が設けられており、超音波の送信波と被測定鋼材1か
らの反射波とを完全に分離できるようになっている。通
常、超音波プローブ2と被測定鋼材1との間には水等の
媒質が介在せしめられる。3は超音波プローブ2を励振
させて超音波を発生させる送信器、4は送信器3の信号
を増幅する増幅器、5は超音波プローブ2からの反射波
を受信する受信器、6は包絡線検出器、7は演算器であ
る。包絡線検出器6および演算器7の機能については後
述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the illustrated embodiments. FIG. 1 is a block diagram of an apparatus for performing a decarburized layer depth measuring method according to a first embodiment of the present invention. In this figure, 1 is a steel material to be measured and 2 is an ultrasonic probe. A delay member (not shown) is provided at the tip of the ultrasonic probe 2 so that a transmitted wave of the ultrasonic wave and a reflected wave from the steel material 1 to be measured can be completely separated. Usually, a medium such as water is interposed between the ultrasonic probe 2 and the steel material 1 to be measured. 3 is a transmitter for exciting the ultrasonic probe 2 to generate an ultrasonic wave, 4 is an amplifier for amplifying the signal of the transmitter 3, 5 is a receiver for receiving a reflected wave from the ultrasonic probe 2, and 6 is an envelope. The detector 7 is an arithmetic unit. The functions of the envelope detector 6 and the calculator 7 will be described later.

【0012】図2は被測定鋼材1の表層部分の断面図で
ある。1aは被測定鋼材1の表面を示す。1bは脱炭層
(いわゆるフェライト層)、1cはフェライト、パーラ
イト層、又はマルテンサイト層を示す。脱炭層1bは表
面1aの近傍に位置し、炭素量が低い脱炭層1bを構成
する結晶粒子の径は、その下層のフェライト、パーライ
ト層、又はマルテンサイト層1cを構成する結晶粒子の
径より大きい。このように、脱炭層1bは、フェライ
ト、パーライト層、又はマルテンサイト層1cに比較し
て結晶粒子の径が大きいので入射した超音波の散乱は少
ないが、炭素量が少ないので、フェライト、パーライト
層、又はマルテンサイト層1cに比較して粒内に入射し
た超音波の減衰は大きくなる。
FIG. 2 is a sectional view of the surface layer of the steel material 1 to be measured. 1a shows the surface of the steel material 1 to be measured. 1b indicates a decarburized layer (so-called ferrite layer), and 1c indicates a ferrite, pearlite layer, or martensite layer. The decarburized layer 1b is located near the surface 1a, and the diameter of the crystal grains constituting the decarburized layer 1b having a low carbon content is larger than the diameter of the crystal grains constituting the ferrite, pearlite layer, or martensite layer 1c thereunder. . As described above, the decarburized layer 1b has a large crystal grain diameter as compared with the ferrite, pearlite layer, or martensite layer 1c, so that the scattering of the incident ultrasonic waves is small. Or, the attenuation of the ultrasonic wave incident on the grain is larger than that of the martensite layer 1c.

【0013】図3は図1に示す受信器5で受信された超
音波反射波の受信強度の波形図である。図3の(a)は
脱炭層が厚い場合の波形図、図3の(b)は脱炭層がほ
とんど存在しない場合の波形図を示す。図で、横軸には
時間が、縦軸には受信強度がとってある。I0 は送信
波、R0 は被測定鋼材1の表面反射波、Rは表面反射波
0 以降の反射波群を示す。上述のように、脱炭層1b
は超音波の散乱が少なく減衰が大きいので、図3の
(a)に示すように脱炭層が存在する場合には、反射波
群Rの受信強度は減衰度が大きく、これとは逆に、脱炭
層1bがほとんど存在しない場合には、図3の(b)に
示すように反射波群Rの受信強度の減衰は極めて小さ
い。
FIG. 3 is a waveform diagram of the reception intensity of the ultrasonic reflected wave received by the receiver 5 shown in FIG. FIG. 3A shows a waveform diagram when the decarburized layer is thick, and FIG. 3B shows a waveform diagram when the decarburized layer hardly exists. In the figure, the horizontal axis indicates time, and the vertical axis indicates reception intensity. I 0 is a transmitted wave, R 0 is a surface reflected wave of the steel material 1 to be measured, and R is a group of reflected waves after the surface reflected wave R 0 . As described above, the decarburized layer 1b
Since there is little scattering of ultrasonic waves and large attenuation, when the decarburized layer exists as shown in FIG. 3A, the reception intensity of the reflected wave group R has a large attenuation, and conversely, When the decarburized layer 1b is scarcely present, the attenuation of the reception intensity of the reflected wave group R is extremely small as shown in FIG.

【0014】本実施の形態は、以上の現象を利用するも
のであり、その測定方法を図4および図5により説明す
る。図4は図3に示す波形図と同じ波形図であり、図4
の(a)は脱炭層が厚い場合の波形図、図4の(b)は
脱炭層がほとんど存在しない場合の波形図を示す。図4
で、図3に示す波形と同一部分の波形には同一符号が付
してある。E1 は図4の(a)に示す波形の包絡線、E
2 は図4の(b)に示す波形の包絡線である。ところ
で、一般に、包絡線Eは、時間をt、定数をαとする
と、指数関数f(t)=e-αt で表すことができる。
そこで、種々の脱炭層深さを有する鋼材に超音波を放射
してそれら反射波形の各包絡線Eを求め、その定数αと
脱炭層深さとを関連付けておけば、被測定鋼材1の超音
波反射波から当該被測定鋼材1の脱炭層深さを知ること
ができる。
The present embodiment utilizes the above phenomenon, and a measuring method thereof will be described with reference to FIGS. FIG. 4 is the same waveform diagram as the waveform diagram shown in FIG.
(A) is a waveform diagram when the decarburized layer is thick, and (b) in FIG. 4 is a waveform diagram when the decarburized layer hardly exists. FIG.
The same reference numerals are given to the waveforms of the same portions as the waveforms shown in FIG. E 1 is the envelope of the waveform shown in (a) of FIG. 4, E
2 is an envelope of the waveform shown in FIG. By the way, in general, the envelope E can be represented by an exponential function f (t) = e− αt, where t is time and α is a constant.
Then, ultrasonic waves are radiated to steel materials having various decarburized layer depths to obtain the respective envelopes E of the reflected waveforms, and if the constant α is associated with the decarburized layer depth, the ultrasonic wave of the steel material 1 to be measured can be obtained. The depth of the decarburized layer of the steel material 1 to be measured can be known from the reflected wave.

【0015】図5は脱炭層深さに対する定数αの特性図
である。図で、横軸には脱炭層深さが、縦軸には定数α
がとってある。図から明らかなように、脱炭層深さと定
数αとはほぼ比例関係にある。両者の関係を示す線が検
量線として示されている。今、超音波反射波から得られ
た包絡線の定数αが図示のようにα1 であると、検量線
から得られる脱炭層深さは図示のようにd1 となる。
FIG. 5 is a characteristic diagram of the constant α with respect to the depth of the decarburized layer. In the figure, the horizontal axis represents the decarburization depth and the vertical axis represents the constant α.
There is. As is apparent from the figure, the depth of the decarburized layer is substantially proportional to the constant α. A line indicating the relationship between the two is shown as a calibration curve. Now, if the constant α of the envelope obtained from the ultrasonic reflected wave is α 1 as shown, the decarburized layer depth obtained from the calibration curve is d 1 as shown.

【0016】上記の方法を実現するため、図1に示す装
置では、それぞれマイクロコンピュータで構成される包
絡線検出器6および演算器7が設けられている。演算器
7には既知の包絡線に関するデータを格納するメモリ7
M(図8に示す)が設けられている。このメモリ7Mの
内容を図6、図7および図8により説明する。図6はあ
る脱炭層深さを有する被測定鋼材の超音波反射の受信強
度に対する包絡線を示す図であり、横軸に時間、縦軸に
受信強度がとってある。この包絡線Eは、受信強度を
A、時間をt、定数をαとすると、上述のように、A=
-αt で表される。この定数αの包絡線Eは、時間t
と受信強度Aとで規定することができる。これを図7に
より説明する。
In order to realize the above method, the apparatus shown in FIG. 1 is provided with an envelope detector 6 and a calculator 7 each constituted by a microcomputer. The arithmetic unit 7 has a memory 7 for storing data relating to a known envelope.
M (shown in FIG. 8) is provided. The contents of the memory 7M will be described with reference to FIGS. FIG. 6 is a diagram showing an envelope with respect to the reception intensity of the ultrasonic reflection of the steel material to be measured having a certain decarburized layer depth, where the horizontal axis represents time and the vertical axis represents reception intensity. Assuming that the reception intensity is A, the time is t, and the constant is α, this envelope E is A =
It is represented by e- αt . The envelope E of the constant α is expressed by the time t
And reception intensity A. This will be described with reference to FIG.

【0017】図7は図6に示す包絡線Eの規定の仕方を
説明する図であり、この図の包絡線Eは図6に示す包絡
線と同一の包絡線を示す。このような定数αの包絡線E
は、図7に示すように、時刻t1 のときの受信強度がA
1 、時刻t1 から所定の時間Δtが経過した時刻t2
ときの受信強度がA2 、時刻t2 から所定の時間Δtが
経過した時刻t3 のときの受信強度がA3 、…………、
時刻t7 から所定の時間Δtが経過した時刻t8 のとき
の受信強度がA8 、時刻t8 から所定の時間Δtが経過
した時刻t9 のときの受信強度がA9 、…………である
という態様で規定することができる。
FIG. 7 is a diagram for explaining how to define the envelope E shown in FIG. 6. The envelope E in this figure is the same as the envelope shown in FIG. The envelope E of such a constant α
Indicates that the reception intensity at time t 1 is A, as shown in FIG.
1, time t reception intensity A 2 when the first predetermined time from Δt has elapsed time t 2, the reception strength A 3 at time t 3 when the time t 2 a predetermined time Δt has elapsed, ... ……,
Reception intensity A 9 when the reception intensity is a time t 9, which has passed a predetermined time Δt from A 8, time t 8 at time t 8 to time t 7 predetermined time Δt has elapsed, ............ Is defined.

【0018】図8は上記メモリ7Mの内容説明図であ
る。メモリ7Mには、図8に示すように、多数の既知の
脱炭層深さのうちの定数α1 の包絡線のデータが、各時
刻t1〜tn における各受信強度A11〜A1nとして格納
され、又、定数α2 の包絡線のデータが、各時刻t1
n における各受信強度A21〜A2nとして格納され、
又、定数α3 の包絡線のデータが、各時刻t1 〜tn
おける受信強度A31〜A3nとして格納され、同様に、定
数α4 以下の包絡線のデータが格納されている。
FIG. 8 is an explanatory diagram of the contents of the memory 7M. The memory 7M, as shown in FIG. 8, the data of a number of known constant alpha 1 envelope of decarburized layer depth, as the reception intensity A 11 to A 1n at each time t 1 ~t n The data of the envelope of the constant α 2 is stored at each time t 1 to
are stored as the respective reception intensities A 21 to A 2n at t n ,
The data of the constant alpha 3 of the envelope is stored as the reception intensity A 31 to A 3n at each time t 1 ~t n, similarly, the data of the constant alpha 4 or less of the envelope is stored.

【0019】包絡線検出器6に受信器5から受信信号が
入力されると、包絡線検出器6は、上記各時刻t1 〜t
n に対応する当該受信信号の各受信強度を取り出し、こ
れらを演算器7に出力する。演算器7は、これら各受信
強度と、メモリ7Mに格納されている各定数α1 、α
2 、…………の各包絡線における同一時刻のデータとの
差、およびそれら差の合計を演算する。例えば、受信信
号の各時刻t1 〜tn における受信強度がA01〜A0n
すると、定数α1 の包絡線に対しては、(A01
11)、(A02−A12)、…………、(A0n−A1n)を
演算し、次に、[(A01−A11)+(A02−A12)+…
………+(A0n−A1n)]を演算する。定数α2以下の
各包絡線に対しても同様の処理を行い、差の合計又は標
準偏差の値が最小となる包絡線を上記受信信号の包絡線
とする。
When a received signal is input from the receiver 5 to the envelope detector 6, the envelope detector 6 operates at each of the times t 1 to t.
Each of the received intensities of the received signal corresponding to n is extracted, and these are output to the arithmetic unit 7. The arithmetic unit 7 calculates the respective reception intensities and the respective constants α 1 and α 1 stored in the memory 7M.
2. Calculate the difference between the data at the same time in each of the envelopes and the sum of the differences. For example, when the reception intensity at each time t 1 ~t n of the received signal is the A 01 to A 0n, for the constant alpha 1 envelope, (A 01 -
A 11), (A 02 -A 12), ............, ( calculating the A 0n -A 1n), then, [(A 01 -A 11) + (A 02 -A 12) + ...
... + (A 0n −A 1n )]. Performs the same processing with respect to the constant alpha 2 following the envelope, the total or envelope value of the standard deviation is the minimum difference and the envelope of the received signal.

【0020】なお、上記の説明では、メモリ7Mに、各
定数α1 、α2 、…………毎に各時刻t1 〜tn の受信
強度を格納する例について説明したが、メモリには、各
定数α1 、α2 、…………と、各時刻t1 〜tn のみを
格納しておき、包絡線検出器6から各時刻の受信強度が
入力されたとき、演算器7が、A=e-αt の式の定数
αと時刻tに、各数値を入れて各受信強度Aを演算し、
得られた受信強度に対して上記の演算を行うようにして
もよい。
In the above description, an example in which the reception intensity at each of the times t 1 to t n is stored in the memory 7M for each of the constants α 1 , α 2 ,... , the constants α 1, α 2, ............ and may be stored only each time t 1 ~t n, when the reception strength of each time from the envelope detector 6 is inputted, the arithmetic unit 7 , A = e −αt , each reception value A is calculated by putting each numerical value into the constant α and the time t,
The above calculation may be performed on the obtained reception strength.

【0021】このようにして包絡線が決定されると、演
算器7は、この包絡線の定数αに対応する脱炭層深さ
を、メモリ7Mの他の領域又はメモリ7Mとは異なるメ
モリに格納されている定数αと脱炭層深さとの関係(図
5に示す関係)から求め、得られた脱炭層深さを被測定
鋼材1の脱炭層深さとする。
When the envelope is determined in this way, the arithmetic unit 7 stores the depth of the decarburized layer corresponding to the constant α of the envelope in another area of the memory 7M or a memory different from the memory 7M. The depth of the decarburized layer obtained from the relationship between the constant α and the decarburized layer depth (relation shown in FIG. 5) is defined as the decarburized layer depth of the steel material 1 to be measured.

【0022】このように、本実施の形態では、被測定鋼
材からの超音波反射波を受信し、その受信強度の包絡線
を、脱炭層深さが既知である超音波受信強度の包絡線と
比較し、この比較の結果に基づいて脱炭層深さを求める
ようにしたので、鋼材を切断せずに脱炭層深さを測定す
ることができ、当該測定に何等の手間も時間も要しな
い。
As described above, in the present embodiment, the ultrasonic reflected wave from the steel material to be measured is received, and the envelope of the received intensity is defined as the envelope of the ultrasonic received intensity whose decarburization layer depth is known. Since the depth of the decarburized layer is determined based on the result of the comparison, the depth of the decarburized layer can be measured without cutting the steel material, and the measurement does not require any trouble or time.

【0023】図9および図10は本発明の第2の実施の
形態に係る脱炭層深さ測定方法を説明する図であり、図
9は超音波反射波の受信強度の波形図、図10は受信信
号の周波数特性図である。図9の(a)は脱炭層が厚い
場合の波形図、図9の(b)は脱炭層がほとんど存在し
ない場合の波形図を示す。図9で、図3に示す波形と同
一部分の波形には同一符号が付してある。t1 〜tn
受信信号Rを所定の時間間隔で区分したときの各時間区
分を示す。
FIGS. 9 and 10 are views for explaining a method for measuring the depth of the decarburized layer according to the second embodiment of the present invention. FIG. 9 is a waveform diagram of the reception intensity of the ultrasonic reflected wave, and FIG. FIG. 4 is a frequency characteristic diagram of a reception signal. FIG. 9A shows a waveform diagram when the decarburized layer is thick, and FIG. 9B shows a waveform diagram when the decarburized layer hardly exists. In FIG. 9, the same reference numerals are given to the waveforms of the same portions as the waveforms shown in FIG. t 1 to t n indicate respective time divisions when the received signal R is divided at predetermined time intervals.

【0024】一般に、結晶粒子の径が小さいほど、これ
に対する超音波反射波の高周波成分の指向性が狭いの
で、受信信号の周波数帯域も狭く、かつ、ピーク周波数
は低くなる。本実施の形態では、上記結晶粒子の超音波
に対する特性中、ピーク周波数特性を用いて脱炭層深さ
を測定するものである。これを図10に示す受信信号の
周波数特性により説明する。図10で、横軸には図9に
示す時間区分、縦軸にはピーク周波数がとってある。図
で、F0 は脱炭層がない鋼材に対する超音波受信信号の
各時間区分におけるピーク周波数をプロットした特性線
であり、この特性線F0 から明らかなように、脱炭層が
ない鋼材では、時間が経過しても(鋼材の深い部分であ
っても)超音波受信信号のピーク周波数はほぼ一定であ
る。
In general, the smaller the diameter of a crystal particle, the narrower the directivity of the high-frequency component of the reflected ultrasonic wave to the crystal particle, so that the frequency band of the received signal is narrower and the peak frequency is lower. In the present embodiment, the depth of the decarburized layer is measured using the peak frequency characteristic among the characteristics of the crystal particles with respect to the ultrasonic waves. This will be described with reference to the frequency characteristics of the received signal shown in FIG. In FIG. 10, the horizontal axis represents the time section shown in FIG. 9, and the vertical axis represents the peak frequency. In Figure, F 0 is a characteristic line obtained by plotting the peak frequency in each time segment of the ultrasonic reception signal with respect to steel no decarburized layer, as is apparent from the characteristic line F 0, in the decarburized layer is not steel, time (E.g., deep portions of steel), the peak frequency of the ultrasonic reception signal is substantially constant.

【0025】一方、F1 は脱炭層が存在する鋼材に対す
る超音波受信信号の各時間区分におけるピーク周波数を
プロットした曲線である。脱炭層の結晶粒子の径は前述
のように脱炭のない結晶粒子の径より大きい。このた
め、脱炭層からの超音波受信信号のピーク周波数は曲線
1 に示すように高い周波数を示す。しかし、鋼材表面
から深い位置になるほど、径が小さい結晶粒子が混在し
てきてピーク周波数は低い方へシフトしてゆき、脱炭層
の境界を超える位置では、脱炭層のない場合のピーク周
波数一致する。この一致した時間区分が図にtd で示さ
れている。ここで、鋼材内の超音波の伝播速度をc(既
知)とすると、脱炭層深さdは d=c・td /2 の演算を行うことにより得られる。
On the other hand, F 1 is a curve in which the peak frequency in each time section of the ultrasonic reception signal for the steel material having the decarburized layer is plotted. The diameter of the crystal particles in the decarburized layer is larger than the diameter of the crystal particles without decarburization as described above. Therefore, the peak frequency of the ultrasonic wave reception signal from the decarburized layer exhibits a higher frequency as shown by the curve F 1. However, as the position becomes deeper from the surface of the steel material, crystal grains having smaller diameters are mixed and the peak frequency shifts to a lower side. At a position beyond the boundary of the decarburized layer, the peak frequency coincides with the case where there is no decarburized layer. The matching time segment is indicated by t d in FIG. Here, assuming that the propagation speed of the ultrasonic wave in the steel material is c (known), the depth d of the decarburized layer can be obtained by calculating d = c · t d / 2.

【0026】このような本実施の形態の測定方法を実施
するためには、図1に示す包絡線検出器6に代えて周波
数解析部を設けるとともに、演算器7に、各時間区分t
1 〜tn に対するピーク周波数を格納するメモリを設
け、受信器5からの受信信号に対して上記各時間区分t
1 〜tn 毎に周波数解析を行い、各時間区分毎のピーク
周波数を演算器7に出力し、演算器7は、入力された各
ピーク周波数をメモリに格納されているピーク周波数と
比較し、両ピーク周波数が一致する時間区分tdを取り
出し、上記の演算を行って脱炭層深さを算出する。
In order to carry out the measuring method according to the present embodiment, a frequency analysis unit is provided instead of the envelope detector 6 shown in FIG.
A memory for storing peak frequencies for 1 to t n is provided.
A frequency analysis is performed for each of 1 to t n , and a peak frequency for each time section is output to the arithmetic unit 7, and the arithmetic unit 7 compares each input peak frequency with the peak frequency stored in the memory, removed time interval t d that both peak frequencies coincide, calculates the decarburized layer depth by performing the above-described operation.

【0027】このように、本実施の形態では、被測定鋼
材からの超音波反射波を受信し、その受信信号を所定の
時間間隔で区分し、各時間区分毎に受信信号のピーク周
波数を求め、このピーク周波数を脱炭層のない鋼材の各
時間区分のピーク周波数と比較し、両者が一致した時間
区分に基づいて脱炭層深さを演算するようにしたので、
鋼材を切断せずに脱炭層深さを測定することができ、当
該測定に何等の手間も時間も要しない。
As described above, in this embodiment, the ultrasonic reflected wave from the steel material to be measured is received, the received signal is divided at predetermined time intervals, and the peak frequency of the received signal is obtained for each time division. Since this peak frequency was compared with the peak frequency of each time section of the steel material without the decarburized layer, the depth of the decarburized layer was calculated based on the time section in which both coincided.
The depth of the decarburized layer can be measured without cutting the steel material, and the measurement does not require any trouble or time.

【0028】図11は本発明の第3の実施の形態に係る
脱炭層深さ測定方法を実施する装置のブロック図であ
る。この図で、1は被測定鋼材、10は超音波プローブ
である。超音波プローブ10は、送信用振動子11、集
束用レンズ12、受信用レンズ13、および受信用振動
子14で構成されている。wは水等の媒質を示す。15
は電圧制御オシレータ、16はマイクロコンピュータで
構成されるデータ解析・制御装置、17はD/A変換
器、18は受信器、19はA/D変換器、20はピーク
ホールド回路である。
FIG. 11 is a block diagram of an apparatus for performing a decarburized layer depth measuring method according to a third embodiment of the present invention. In this figure, 1 is a steel material to be measured and 10 is an ultrasonic probe. The ultrasonic probe 10 includes a transmitting transducer 11, a focusing lens 12, a receiving lens 13, and a receiving transducer 14. w indicates a medium such as water. Fifteen
Is a voltage control oscillator, 16 is a data analysis / control device composed of a microcomputer, 17 is a D / A converter, 18 is a receiver, 19 is an A / D converter, and 20 is a peak hold circuit.

【0029】本実施の形態では、被測定鋼材1の表面を
伝播する超音波の弾性表面波を用いて脱炭層深さを測定
する。被測定鋼材1の表面を伝播する弾性表面波は、当
該表面から1/2〜1波長深さの下層の影響を受けて減衰す
る。即ち、当該弾性表面波の減衰は、弾性表面波の波長
と脱炭層深さに関係する。本実施の形態では、超音波の
波長(周波数)を変化させて脱炭層深さを測定するもの
である。
In the present embodiment, the depth of the decarburized layer is measured using an ultrasonic surface acoustic wave propagating on the surface of the steel material 1 to be measured. The surface acoustic wave propagating on the surface of the steel material 1 to be measured attenuates under the influence of the lower layer having a depth of 1/2 to 1 wavelength from the surface. That is, the attenuation of the surface acoustic wave is related to the wavelength of the surface acoustic wave and the depth of the decarburized layer. In the present embodiment, the depth of the decarburized layer is measured by changing the wavelength (frequency) of the ultrasonic wave.

【0030】図12は周波数に対する弾性表面波の受信
信号の相対感度の特性図である。この図で、横軸には周
波数、縦軸には受信信号の相対感度がとってある。RS0
は脱炭層がない鋼材の特性を示す線であり、脱炭層がな
いのでどの周波数に対しても減衰は一定で変化しない。
一方、RS1、RS2、RS3は脱炭層が存在する鋼材の特性
曲線を示す。曲線RS1は脱炭層が比較的浅い場合の曲
線、曲線RS3は脱炭層が深い場合の曲線、曲線RS2は脱
炭層の深さが両者の中間の深さの場合の曲線である。例
えば、曲線RS1について考察すると、周波数が低い(波
長が長い)場合には結晶粒子の径が大きい脱炭層より結
晶粒子の径が小さい母材の影響が大きいので減衰は小さ
く、相対感度の低下も小さいが、周波数が大きくなると
(波長が短くなると)、結晶粒子の径が大きい脱炭層の
影響を大きく受けることになり、減衰が大きくなって相
対感度は急速に低下してゆく。このような特性は各曲線
について同じであり、曲線RS3に示されるように、脱炭
層が深い場合には低い周波数でも(波長が長くても)減
衰を受けて相対感度が低下する。
FIG. 12 is a characteristic diagram of the relative sensitivity of the received signal of the surface acoustic wave to the frequency. In this figure, the horizontal axis represents the frequency, and the vertical axis represents the relative sensitivity of the received signal. R S0
Is a line showing characteristics of a steel material without a decarburized layer, and since there is no decarburized layer, the attenuation is constant and does not change at any frequency.
On the other hand, R S1 , R S2 , and R S3 indicate characteristic curves of a steel material having a decarburized layer. The curve R S1 is a curve when the decarburized layer is relatively shallow, the curve R S3 is a curve when the decarburized layer is deep, and the curve R S2 is a curve when the depth of the decarburized layer is intermediate between the two. For example, considering the curve R S1 , when the frequency is low (the wavelength is long), the influence of the base material having a smaller crystal particle diameter is larger than that of the decarburized layer having a larger crystal particle diameter, so that the attenuation is small, and the relative sensitivity decreases. However, when the frequency is increased (when the wavelength is shortened), the influence of the decarburized layer having a large crystal particle diameter is greatly affected, the attenuation is increased, and the relative sensitivity is rapidly reduced. Such characteristics are the same for each curve, and as shown by the curve R S3 , when the decarburized layer is deep, even at a low frequency (even if the wavelength is long), it is attenuated to lower the relative sensitivity.

【0031】本実施例では、予め相対感度βを設定し、
受信信号の相対感度がβを示す場合の周波数を取り出
し、これに対応する波長の例えば1/2 を脱炭層深さと推
定する。即ち、波長をλ、伝播速度をc、周波数をfと
すると、λ=c/fであるから、脱炭層深さdは、d=
c/(2f)となる。
In this embodiment, the relative sensitivity β is set in advance,
The frequency when the relative sensitivity of the received signal indicates β is extracted, and for example, half of the wavelength corresponding to this is estimated as the decarburized layer depth. That is, if the wavelength is λ, the propagation velocity is c, and the frequency is f, λ = c / f, so the decarburized layer depth d is d =
c / (2f).

【0032】このような本実施の形態の測定方法の実施
は、図11に示す装置により行われる。データ解析・制
御装置16は電圧制御オシレータ15の出力信号の周波
数を連続的に変化させるディジタル信号を出力する。こ
の信号はD/A変換器17でアナログ値に変換されて電
圧制御オシレータ15へ印加される。これにより、電圧
制御オシレータ15からは連続的に周波数が変化してゆ
く送信信号が出力され、この送信信号が送信用振動子1
1に与えられ、送信用振動子11からは順次周波数の異
なる超音波が放射される。これらの超音波は集束用レン
ズで集束され、所定の角度で媒質wを介して被測定鋼材
1の表面に放射され、この超音波は弾性表面波となって
当該表面を伝播する。
The implementation of the measuring method according to the present embodiment is performed by the apparatus shown in FIG. The data analysis / control device 16 outputs a digital signal that continuously changes the frequency of the output signal of the voltage control oscillator 15. This signal is converted into an analog value by the D / A converter 17 and applied to the voltage control oscillator 15. As a result, a transmission signal whose frequency continuously changes is output from the voltage control oscillator 15, and the transmission signal is transmitted to the transmission vibrator 1.
1, ultrasonic waves having different frequencies are sequentially emitted from the transmitting transducer 11. These ultrasonic waves are focused by the focusing lens and radiated at a predetermined angle to the surface of the steel material 1 to be measured via the medium w, and the ultrasonic waves propagate as surface acoustic waves on the surface.

【0033】この伝播中、弾性表面波は上述のようにそ
の周波数と脱炭層深さに応じて減衰される。当該表面を
伝播した弾性表面波の反射波のうち、集束用レンズ11
からの入射角度と同一角度の反射波が受信用レンズ13
で受信され、受信用振動子14を励振して受信信号を発
生する。この受信信号は受信器18で受信され、A/D
変換器19でディジタル値に変換され、ピークホールド
回路20でピーク値のみが保持され、このピーク値はデ
ータ解析・制御装置16へ出力される。このような処理
は、周波数が変更される毎に行われ、結局、データ解析
・制御装置16へは、各周波数のピーク値が出力される
ことになる。データ解析・制御装置16は、入力された
各周波数のピーク値相互間の相対感度を演算し、これら
相対感度のうち予め定められた値β(例えば最大相対感
度に対する所定の率)と等しい、又はこれに最も近い相
対感度の周波数を取り出し、上述のように脱炭層深さを
算出する。
During this propagation, the surface acoustic wave is attenuated according to its frequency and the depth of the decarburized layer as described above. Of the reflected waves of the surface acoustic wave propagated on the surface, the focusing lens 11
The reflected wave having the same angle as the incident angle from the
To excite the receiving vibrator 14 to generate a received signal. This received signal is received by the receiver 18 and the A / D
The data is converted into a digital value by the converter 19, and only the peak value is held by the peak hold circuit 20, and this peak value is output to the data analysis / control device 16. Such processing is performed every time the frequency is changed, and eventually, the peak value of each frequency is output to the data analysis / control device 16. The data analysis / control device 16 calculates the relative sensitivities between the input peak values of the respective frequencies, and is equal to a predetermined value β (for example, a predetermined ratio with respect to the maximum relative sensitivity) of the relative sensitivities, The frequency of the closest relative sensitivity is taken out, and the depth of the decarburized layer is calculated as described above.

【0034】このように、本実施の形態では、周波数が
連続的に変化する超音波により被測定鋼材に弾性表面波
を発生させ、その反射波のピーク値を取り出し、各周波
数のピーク値の相対感度のうち、予め定められた値と等
しいか最も近い相対感度の周波数を取り出し、この周波
数に基づいて脱炭層深さを推定するようにしたので、鋼
材を切断せずに脱炭層深さを測定することができ、当該
測定に何等の手間も時間も要しない。
As described above, in the present embodiment, the surface acoustic wave is generated on the steel material to be measured by the ultrasonic wave whose frequency continuously changes, the peak value of the reflected wave is taken out, and the relative value of the peak value of each frequency is obtained. Of the sensitivities, the frequency of the relative sensitivity equal to or closest to the predetermined value was extracted and the depth of the decarburized layer was estimated based on this frequency, so the depth of the decarburized layer was measured without cutting the steel material And the measurement does not require any trouble or time.

【0035】[0035]

【発明の効果】以上述べたように、本発明では、被測定
鋼材に対して超音波を放射し、その受信反射波の包絡
線、又は当該受信反射波の時間区分のピーク周波数、或
いは異なる周波数の超音波の弾性表面波の受信反射波の
ピーク値の相対感度に基づいて脱炭層深さを測定するよ
うにしたので、鋼材を切断せずに脱炭層深さを測定する
ことができ、当該測定に何等の手間も時間も要しない。
As described above, according to the present invention, ultrasonic waves are radiated to the steel material to be measured, and the envelope of the received reflected wave, the peak frequency of the time division of the received reflected wave, or a different frequency is used. Since the depth of the decarburized layer was measured based on the relative sensitivity of the peak value of the received reflected wave of the surface acoustic wave of the ultrasonic wave, the depth of the decarburized layer could be measured without cutting the steel material. No effort or time is required for the measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る脱炭層深さ測
定方法を実施する装置のブロック図である。
FIG. 1 is a block diagram of an apparatus for performing a decarburized layer depth measuring method according to a first embodiment of the present invention.

【図2】被測定鋼材1の表層部分の断面図である。FIG. 2 is a cross-sectional view of a surface layer portion of the steel material 1 to be measured.

【図3】図1に示す受信器で受信された超音波反射波の
受信強度の波形図である。
FIG. 3 is a waveform diagram of the reception intensity of an ultrasonic reflected wave received by the receiver shown in FIG. 1;

【図4】図1に示す受信器で受信された超音波反射波の
受信強度の波形図である。
FIG. 4 is a waveform diagram of the reception intensity of the ultrasonic reflected wave received by the receiver shown in FIG.

【図5】脱炭層深さに対する定数αの特性図である。FIG. 5 is a characteristic diagram of a constant α with respect to a depth of a decarburized layer.

【図6】脱炭層深さを有する被測定鋼材の超音波反射の
受信強度に対する包絡線を示す図である。
FIG. 6 is a diagram showing an envelope with respect to a reception intensity of ultrasonic reflection of a steel material to be measured having a decarburized layer depth.

【図7】図6に示す包絡線Eの規定を説明する図であ
る。
FIG. 7 is a diagram for explaining the definition of an envelope E shown in FIG. 6;

【図8】メモリの内容説明図である。FIG. 8 is an explanatory diagram of the contents of a memory.

【図9】超音波反射波の受信強度の波形図である。FIG. 9 is a waveform diagram of reception intensity of an ultrasonic reflected wave.

【図10】受信信号の周波数特性図である。FIG. 10 is a frequency characteristic diagram of a received signal.

【図11】本発明の第3の実施の形態に係る脱炭層深さ
測定方法を実施する装置のブロック図である。
FIG. 11 is a block diagram of an apparatus for performing a decarburized layer depth measuring method according to a third embodiment of the present invention.

【図12】周波数に対する弾性表面波の受信信号の相対
感度の特性図である。
FIG. 12 is a characteristic diagram of a relative sensitivity of a received signal of a surface acoustic wave to a frequency.

【符号の説明】[Explanation of symbols]

1 被測定鋼材 2 超音波プローブ 3 送信器 4 増幅器 5 受信器 6 包絡線検出器 7 演算器 DESCRIPTION OF SYMBOLS 1 Steel to be measured 2 Ultrasonic probe 3 Transmitter 4 Amplifier 5 Receiver 6 Envelope detector 7 Computing unit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被測定鋼材の表面から当該鋼材内部に超
音波を放射し、その反射波信号の受信強度の包絡線を求
め、この包絡線を、予め求められている複数の既知の脱
炭層深さに対する超音波の反射波信号の受信強度の包絡
線と比較し、これら包絡線のうちの最も近い包絡線に対
応する脱炭層深さを前記被測定鋼材の脱炭層深さとする
ことを特徴とする鋼材の脱炭層深さ測定方法。
An ultrasonic wave is radiated from the surface of a steel material to be measured into the steel material, an envelope of a reception intensity of a reflected wave signal is obtained, and the envelope is determined by a plurality of known decarburization layers which are obtained in advance. Compared with the envelope of the reception intensity of the reflected wave signal of the ultrasonic wave with respect to the depth, the decarburized layer depth corresponding to the closest envelope of these envelopes is defined as the decarburized layer depth of the steel material to be measured. The method for measuring the depth of the decarburized layer of steel.
【請求項2】 被測定鋼材の表面から当該鋼材内部に超
音波を放射し、その反射波信号の所定時間間隔毎の周波
数成分のうちのピーク値の周波数を求め、この周波数
が、脱炭層が形成されていない鋼材に対し予め求められ
ている前記所定時間間隔毎の周波数成分のうちのピーク
値の周波数と一致する周波数に対応する時間に基づいて
前記被測定鋼材の脱炭層深さを求めることを特徴とする
鋼材の脱炭層深さ測定方法。
2. The ultrasonic wave is radiated from the surface of the steel material to be measured into the steel material, and the frequency of the peak value of the frequency components of the reflected wave signal at predetermined time intervals is determined. Obtaining the decarburized layer depth of the steel material to be measured based on the time corresponding to the frequency corresponding to the frequency of the peak value of the frequency component for each of the predetermined time intervals previously determined for the unformed steel material A method for measuring the depth of a decarburized layer of steel.
【請求項3】 被測定鋼材の表面に、周波数の異なる超
音波を放射して弾性表面波を発生させ、その反射波信号
の各周波数毎の相対感度のうち、予め定められた相対感
度に対応する周波数に基づいて前記被測定鋼材の脱炭層
深さを求めることを特徴とする鋼材の脱炭層深さ測定方
法。
3. A surface acoustic wave is generated by radiating ultrasonic waves having different frequencies on the surface of a steel material to be measured, and the reflected wave signal corresponds to a predetermined relative sensitivity among the relative sensitivities at each frequency. A decarburized layer depth of the steel material to be measured based on a frequency to be measured.
【請求項4】 被測定鋼材へ超音波を放射する超音波プ
ローブと、この超音波プローブから放射された超音波の
反射波を受信する受信器と、前記鋼材の複数の既知の脱
炭層深さに対する超音波の反射波信号の受信時間と受信
強度より成る受信強度の包絡線のデータを各脱炭層深さ
毎に格納した第1のメモリと、前記包絡線の定数と脱炭
層深さとの関係を格納する第2のメモリと、前記受信器
で受信された反射波の各受信時間の受信強度と前記第1
のメモリの各脱炭層深さ毎の対応する各受信時間の受信
強度との差を演算する第1の演算手段と、この第1の演
算手段で演算された差の合計を演算する第2の演算手段
と、この第2の演算手段で演算された差の合計が最小で
ある各脱炭層深さの包絡線を検索する第1の検索手段
と、前記第2のメモリのデータから前記第1の検索手段
で検索された包絡線の定数に対応する脱炭層深さを検索
する第2の検索手段とで構成したことを特徴とする鋼材
の脱炭層深さ測定装置。
4. An ultrasonic probe for radiating ultrasonic waves to a steel material to be measured, a receiver for receiving a reflected wave of the ultrasonic wave radiated from the ultrasonic probe, and a plurality of known decarburized layer depths of the steel material A first memory storing, for each of the decarburized layer depths, the data of the envelope of the received intensity composed of the reception time and the received intensity of the reflected wave signal of the ultrasonic wave, and the relationship between the constant of the envelope and the decarburized layer depth A second memory for storing the reception intensity of the reflected wave received by the receiver at each reception time and the first
A first calculating means for calculating a difference between the reception intensity at each corresponding reception time for each depth of the decarburized layer of the memory, and a second calculating means for calculating the sum of the differences calculated by the first calculation means. Calculating means; first searching means for searching an envelope of each decarburized layer depth having a minimum sum of differences calculated by the second calculating means; and And a second searching means for searching for a decarburized layer depth corresponding to the constant of the envelope searched by the searching means.
【請求項5】 被測定鋼材へ超音波を放射する超音波プ
ローブと、この超音波プローブから放射された超音波の
反射波を受信する受信器と、脱炭層が形成されていない
前記被測定鋼材に対する超音波の受信信号の所定時間間
隔毎のピーク周波数を格納するメモリと、前記受信器で
受信された受信信号における前記所定時間間隔の各時間
に対応する時間毎のピーク周波数を取り出す周波数解析
部と、この周波数解析部で取り出されたピーク周波数と
前記メモリに格納されたピーク周波数とが一致する時間
を検索する検索手段と、この検索手段で検索された時間
に基づいて脱炭層深さを演算する演算手段とで構成した
ことを特徴とする鋼材の脱炭層深さ測定装置。
5. An ultrasonic probe for radiating ultrasonic waves to a steel material to be measured, a receiver for receiving a reflected wave of the ultrasonic wave radiated from the ultrasonic probe, and the steel material to be measured without a decarburized layer A memory for storing a peak frequency of a received signal of an ultrasonic wave for each predetermined time interval, and a frequency analysis unit for extracting a peak frequency of each time corresponding to each time of the predetermined time interval in the received signal received by the receiver Search means for searching for a time at which the peak frequency extracted by the frequency analysis section matches the peak frequency stored in the memory; and calculating the depth of the decarburized layer based on the time searched by the search means. An apparatus for measuring the depth of a decarburized layer of a steel material, comprising:
【請求項6】 被測定鋼材の表面に超音波を放射して弾
性表面波を発生させその反射波信号を受信する超音波プ
ローブと、この超音波プローブから放射される超音波の
周波数を連続的に変化させる周波数変更手段と、前記超
音波プローブで受信された反射波信号の相対感度を所定
の相対感度と比較する比較手段と、この比較手段により
前記反射波信号の相対感度が前記所定の相対感度と一致
したときその相対感度に対応する周波数に基づいて脱炭
層深さを演算する演算手段とで構成したことを特徴とす
る鋼材の脱炭層深さ測定装置。
6. An ultrasonic probe which emits an ultrasonic wave to the surface of a steel material to be measured to generate a surface acoustic wave and receives a reflected wave signal thereof, and continuously adjusts the frequency of the ultrasonic wave radiated from the ultrasonic probe. Frequency changing means for changing the relative sensitivity of the reflected wave signal received by the ultrasonic probe to a predetermined relative sensitivity; and the comparing means makes the relative sensitivity of the reflected wave signal equal to the predetermined relative sensitivity. Calculating means for calculating a decarburized layer depth based on a frequency corresponding to the relative sensitivity when the sensitivity is matched with the sensitivity.
JP8282255A 1996-10-24 1996-10-24 Method and device for measuring decarburized layer depth of steel material Pending JPH10123107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8282255A JPH10123107A (en) 1996-10-24 1996-10-24 Method and device for measuring decarburized layer depth of steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8282255A JPH10123107A (en) 1996-10-24 1996-10-24 Method and device for measuring decarburized layer depth of steel material

Publications (1)

Publication Number Publication Date
JPH10123107A true JPH10123107A (en) 1998-05-15

Family

ID=17650077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8282255A Pending JPH10123107A (en) 1996-10-24 1996-10-24 Method and device for measuring decarburized layer depth of steel material

Country Status (1)

Country Link
JP (1) JPH10123107A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083944A (en) * 2001-09-13 2003-03-19 Mitsubishi Heavy Ind Ltd Waveform data analysis apparatus and system
JP2019138922A (en) * 2019-06-04 2019-08-22 原子燃料工業株式会社 Material diagnosis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083944A (en) * 2001-09-13 2003-03-19 Mitsubishi Heavy Ind Ltd Waveform data analysis apparatus and system
JP2019138922A (en) * 2019-06-04 2019-08-22 原子燃料工業株式会社 Material diagnosis method

Similar Documents

Publication Publication Date Title
US4210023A (en) Method and apparatus for measuring slag foaming using microwave lever meter
CN102253120B (en) Texture material measuring device and texture material measuring method
Willems et al. Characterization of microstructure by backscattered ultrasonic waves
US7679375B2 (en) System and method for detecting foreign objects in a product
EP0053034B1 (en) Method of determining stress distribution in a solid body
JPS601554A (en) Ultrasonic inspection apparatus
JPH10123107A (en) Method and device for measuring decarburized layer depth of steel material
US3861200A (en) Method and instrument for analysing materials by ultrasonic pulses
JPH0682244A (en) Ultrasonic thickness measuring method for furnace wall
JP2000241397A (en) Method and apparatus for detecting surface defect
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
JP2864429B2 (en) Ultrasonic flaw detector
JP2779563B2 (en) Transmitter and receiver for Doppler acoustic radar
JPH05281201A (en) Method and apparatus for measurement of depth of quenched and hardened layer
JPH0599908A (en) Gain controlling apparatus for ultrasonic flaw detector
RU2112235C1 (en) Method for measuring attenuation variables of elastic waves
JPH08201349A (en) Ultrasonic flaw detection method
SU1499130A1 (en) Method of velocity measuring ultrasound in materials
JPH0658915A (en) Physically property measuring device
JPH06148153A (en) Ultrasonic inspection device
JPH0526655A (en) Film thickness measuring method and device
SU1765765A1 (en) Device for determining gas bubbles distribution by size
JP3463729B2 (en) Non-destructive inspection method of internal organization
JPH11281629A (en) Apparatus and method for ultrasonic flaw detection
JP2001108508A (en) Frequency type liquid level detecting method with ultrasonic wave and its device