JPH10122704A - Heat exchanger of air conditioner - Google Patents

Heat exchanger of air conditioner

Info

Publication number
JPH10122704A
JPH10122704A JP28065996A JP28065996A JPH10122704A JP H10122704 A JPH10122704 A JP H10122704A JP 28065996 A JP28065996 A JP 28065996A JP 28065996 A JP28065996 A JP 28065996A JP H10122704 A JPH10122704 A JP H10122704A
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchanger
refrigerant
indoor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28065996A
Other languages
Japanese (ja)
Inventor
Hideaki Motohashi
橋 秀 明 本
Keiichi Morita
田 慶 一 守
Shigenori Hori
繁 典 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba AVE Co Ltd
Original Assignee
Toshiba Corp
Toshiba AVE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba AVE Co Ltd filed Critical Toshiba Corp
Priority to JP28065996A priority Critical patent/JPH10122704A/en
Publication of JPH10122704A publication Critical patent/JPH10122704A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve performance without changing the sectional area of a heat transfer pipe or the number of passes, in the heat exchanger of an air conditioner using a refrigerant having a saturation pressure of 2500kPa or over at 50 deg.C. SOLUTION: The indoor heat exchanger 5 which constitutes the freezing cycle of an air conditioner has heat transfer pipes 21-24 where refrigerant flows and a large number of plate-shaped fins 20a-20c. Inside all or part of the heat transfer pipes 21-24, heat transfer accelerating members (spacers S1) having the so-called 'twist tape' form are inserted. The heat transfer on the refrigerant side (inside of the pipe) of the heat transfer pipes 21-24 at large is accelerated by causing the forced secondary flow (radial flow) in the refrigerant mainly within the heat transfer pipes 21-24 by the heat transfer accelerating member S1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒の流れる伝熱
管を有する空気調和装置の熱交換器に係り、とりわけ、
伝熱管の冷媒側の熱伝達を促進させることにより性能向
上を図った熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for an air conditioner having a heat transfer tube through which a refrigerant flows.
The present invention relates to a heat exchanger whose performance is improved by promoting heat transfer on the refrigerant side of a heat transfer tube.

【0002】[0002]

【従来の技術】従来、空気調和装置の室内熱交換器とし
て、図17及び図18に示すようなものが用いられてい
る。図17及び図18において、室内熱交換器5′は、
第1熱交換器8aと第2熱交換器8bとからなる主室内
熱交換器8と、この主室内熱交換器8の第2熱交換器8
bの上方に配設された補助熱交換器9とを備えている。
2. Description of the Related Art Conventionally, an indoor heat exchanger of an air conditioner as shown in FIGS. 17 and 18 has been used. 17 and 18, the indoor heat exchanger 5 '
A main indoor heat exchanger 8 including a first heat exchanger 8a and a second heat exchanger 8b, and a second heat exchanger 8 of the main indoor heat exchanger 8;
b) and an auxiliary heat exchanger 9 disposed above b.

【0003】また、主室内熱交換器8は、それぞれ第1
熱交換器8a及び第2熱交換器8bを構成するフィン2
0a及びフィン20bであって、互いに間隔をおいて積
層した多数の板状フィン20a, 20bを有している。
一方、補助熱交換器9は、主室内熱交換器8のフィン2
0a, 20bとは分離した多数の板状フィン20cを有
している。なお、図18においては、フィン20aとフ
ィン20bとを特に区別せずに表している。
[0003] The main indoor heat exchanger 8 has a first
Fin 2 constituting heat exchanger 8a and second heat exchanger 8b
0a and the fins 20b, which have a large number of plate-like fins 20a and 20b stacked at intervals.
On the other hand, the auxiliary heat exchanger 9 is a fin 2 of the main indoor heat exchanger 8.
It has a large number of plate-like fins 20c separated from 0a and 20b. In FIG. 18, the fins 20a and the fins 20b are shown without any particular distinction.

【0004】また、室内熱交換器5′は、冷媒の流れる
伝熱管21〜24であって、主室内熱交換器8を構成す
る伝熱管21〜23と、補助熱交換器9を構成する伝熱
管24とを備えている。ここで、図17及び図18にお
いて、矢印は暖房運転時の冷媒の流れを示し、符号Iと
符号Oはそれぞれ、その場合の冷媒の入口と出口を示し
ている。そして、伝熱管21〜24は、暖房運転時にお
ける流路が、冷媒の入口I部分で2本に分岐した流路
(伝熱管21, 22)が合流部Jで合流して一本の流路
(伝熱管23, 24)となって出口Oに至る、いわゆる
2−1パス構成(冷房運転時を基準とすれば1−2パス
構成)の伝熱管である。
The indoor heat exchanger 5 ′ is a heat transfer tube 21 to 24 through which a refrigerant flows. The heat transfer tubes 21 to 23 forming the main indoor heat exchanger 8 and a transfer tube forming the auxiliary heat exchanger 9. A heat tube 24 is provided. Here, in FIGS. 17 and 18, arrows indicate the flow of the refrigerant during the heating operation, and reference numerals I and O indicate the inlet and the outlet of the refrigerant in that case, respectively. In the heat transfer tubes 21 to 24, the flow path during the heating operation is such that the flow paths (heat transfer pipes 21 and 22) branched into two at the inlet I of the refrigerant join at the junction J to form one flow path. The heat transfer tubes have a so-called 2-1 pass configuration (a 1-2 pass configuration based on the cooling operation) as the heat transfer tubes (heat transfer tubes 23 and 24) reaching the outlet O.

【0005】また、各パスの伝熱管21〜24はそれぞ
れ、上記多数の板状フィン20a〜20cを貫通する複
数の直管部31〜34と、隣り合う直管部31〜34の
端部同士を連結する複数のU字状連結管(リターンベン
ド)41〜44とを有している。
[0005] The heat transfer tubes 21 to 24 of each pass are respectively connected to a plurality of straight tube portions 31 to 34 penetrating the plate-like fins 20a to 20c and end portions of the adjacent straight tube portions 31 to 34. And a plurality of U-shaped connecting pipes (return bends) 41 to 44 for connecting them.

【0006】なお、図17及び図18において、空気調
和装置の室内熱交換器5′の例について説明したが、室
外熱交換器の場合も、基本的な構成は室内熱交換器の場
合と同様である。
Although the example of the indoor heat exchanger 5 'of the air conditioner has been described with reference to FIGS. 17 and 18, the basic structure of the outdoor heat exchanger is the same as that of the indoor heat exchanger. It is.

【0007】以上のような冷媒の流れる複数パス構成の
伝熱管を有する空気調和装置の熱交換器において、従来
より冷媒側(管内)の熱伝達率を上げて熱交換器の性能
向上を図るために種々の手段が用いられている。そし
て、そのような手段の一つとして、50℃の飽和圧力が
2500キロパスカル(kPa)以上の冷媒(例えば、
R32/ 125の混合冷媒)を用いる空気調和装置の熱
交換器において、伝熱管の断面積(管径)やパス数(流
路の分岐数)を減少させることにより、伝熱管内の冷媒
の流速を上げて冷媒側(管内)の熱伝達率の向上を図っ
たものとして、特願平7−54381号がある。
In a heat exchanger of an air conditioner having a heat transfer tube having a plurality of paths through which a refrigerant flows as described above, the performance of the heat exchanger can be improved by increasing the heat transfer coefficient on the refrigerant side (inside the tube). Various means are used. As one of such means, a refrigerant having a saturation pressure at 50 ° C. of 2500 kilopascals (kPa) or more (for example,
In a heat exchanger of an air conditioner using a mixed refrigerant of R32 / 125), the cross-sectional area (tube diameter) and the number of passes (the number of branches of a flow path) of the heat transfer tube are reduced, so that the flow rate of the refrigerant in the heat transfer tube Japanese Patent Application No. 7-54381 discloses a method for improving the heat transfer coefficient on the refrigerant side (inside the pipe) by increasing the temperature.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな空気調和装置の熱交換器は、以下のような問題点が
ある。すなわち、例えば上記伝熱管21〜24の直管部
31〜34と、U字状連結管(リターンベンド)41〜
44とは一般にロウ付けによって接合されているが、伝
熱管21〜24の管径を小さくすると、このロウ付けが
難しくなり、生産性が悪くなるとともに、ロウ詰まり等
の問題も起こりやすくなる。
However, such a heat exchanger for an air conditioner has the following problems. That is, for example, the straight pipe portions 31 to 34 of the heat transfer tubes 21 to 24 and the U-shaped connecting pipes (return bends) 41 to 41
44 is generally joined by brazing. However, if the diameter of the heat transfer tubes 21 to 24 is reduced, the brazing becomes difficult, the productivity is deteriorated, and problems such as clogging of the brazing easily occur.

【0009】また、複数パス構成の伝熱管を有する熱交
換器(特に熱交換器内で流路を分岐する形式のもの)に
おいては、一般にパス数の少ないものほど、蒸発器とし
て用いる場合の流路の分岐点が下流側となる。そして、
このような熱交換器においてパス数を減少させると、蒸
発器として用いる場合に、流路の分岐点が下流側になる
ことに伴って、分岐点の冷媒の流動状態が環状流(液冷
媒が伝熱管の内壁面側に偏った状態の流れ)となりやす
くなる。このため、分岐点における冷媒の分流が不均一
となり、却って熱交換器の性能が低下してしまうことに
もなりかねない。
In a heat exchanger having a heat transfer tube having a plurality of paths (particularly, a type in which a flow path is branched in the heat exchanger), generally, the smaller the number of passes, the more the flow rate when used as an evaporator. The branch point of the road is on the downstream side. And
When the number of passes is reduced in such a heat exchanger, when used as an evaporator, the flow state of the refrigerant at the branch point changes to an annular flow (the liquid refrigerant is (Flow in a state biased toward the inner wall surface side of the heat transfer tube). For this reason, the branch flow of the refrigerant at the branch point becomes non-uniform, and on the contrary, the performance of the heat exchanger may be reduced.

【0010】本発明は、このような点を考慮してなされ
たものであり、50℃の飽和圧力が2500キロパスカ
ル(kPa)以上の冷媒を用いる空気調和装置の熱交換
器において、伝熱管の断面積やパス数を変更することな
く熱交換器の性能を向上させることを目的とする。
The present invention has been made in view of the above points, and is intended to provide a heat exchanger for an air conditioner using a refrigerant having a saturation pressure of 50 ° C. of 2500 kilopascals (kPa) or more. An object is to improve the performance of a heat exchanger without changing the cross-sectional area or the number of passes.

【0011】[0011]

【課題を解決するための手段】第1の手段は、冷媒の流
れる伝熱管を有する空気調和装置の熱交換器において、
前記冷媒に、50℃の飽和圧力が2500キロパスカル
(kPa)以上の冷媒を用いるとともに、前記伝熱管内
に、前記冷媒の流れの状態を変化させて熱伝達を促進す
るための伝熱促進部材を挿着したことを特徴とする。
A first means is a heat exchanger of an air conditioner having a heat transfer tube through which a refrigerant flows.
A heat transfer promoting member for using a refrigerant having a saturation pressure at 50 ° C. of 2500 kilopascals (kPa) or more and changing a flow state of the refrigerant in the heat transfer tube to promote heat transfer. Is inserted.

【0012】この第1の手段によれば、伝熱管内に挿着
した伝熱促進部材によって、伝熱管の冷媒側の熱伝達を
促進することができる。
According to the first means, heat transfer on the refrigerant side of the heat transfer tube can be promoted by the heat transfer promoting member inserted into the heat transfer tube.

【0013】第2の手段は、第1の手段において、前記
伝熱促進部材は、ねじれテープ形状を有するものであ
る。
According to a second aspect, in the first aspect, the heat transfer promoting member has a twisted tape shape.

【0014】この第2の手段によれば、第1の手段にお
いて、ねじれテープ形状を有する伝熱促進部材によっ
て、主に伝熱管内の冷媒に強制的な二次流れを起こさせ
ることにより、伝熱管の冷媒側の熱伝達を促進すること
ができる。
[0014] According to the second means, in the first means, the heat transfer promoting member having a twisted tape shape mainly causes a forced secondary flow of the refrigerant in the heat transfer tube, thereby transferring the heat. Heat transfer on the refrigerant side of the heat tube can be promoted.

【0015】第3の手段は、第1の手段において、前記
伝熱促進部材は、コイルばね形状を有するものである。
According to a third aspect, in the first aspect, the heat transfer promoting member has a coil spring shape.

【0016】この第3の手段によれば、第1の手段にお
いて、コイルばね形状を有する伝熱促進部材によって、
主に伝熱管内の冷媒の流れを乱すことにより、伝熱管の
冷媒側の熱伝達を促進することができる。
According to the third means, in the first means, the heat transfer promoting member having a coil spring shape is used.
By mainly disturbing the flow of the refrigerant in the heat transfer tube, heat transfer on the refrigerant side of the heat transfer tube can be promoted.

【0017】第4の手段は、第1乃至第3の手段のいず
れかにおいて、前記伝熱管のうち、熱交換器が凝縮器と
なる場合の冷媒流れ方向の下流側の部分にのみ、前記伝
熱促進部材を挿着したものである。
In a fourth aspect, the heat transfer tube according to any one of the first to third means is provided only in a portion of the heat transfer tube on the downstream side in the refrigerant flow direction when the heat exchanger is a condenser. A heat promoting member is inserted.

【0018】この第4の手段によれば、第1乃至第3の
手段のいずれかにおいて、熱交換器が凝縮器となる場合
の冷媒流れ方向の下流側の部分で、伝熱促進部材によっ
て伝熱管の冷媒側の熱伝達が促進される。また、同じく
上流側(熱交換器が蒸発器となる場合の冷媒流れ方向の
下流側)の部分では、伝熱促進部材が挿着されている場
合に比べて圧力損失が小さくなる。このことにより、熱
交換器が蒸発器となる場合と凝縮器となる場合とのバラ
ンスを取りながら、熱交換器の性能を向上させることが
できる。
According to the fourth means, in any one of the first to third means, the heat transfer promoting member is provided at the downstream side in the refrigerant flow direction when the heat exchanger is a condenser. Heat transfer on the refrigerant side of the heat tube is promoted. Similarly, the pressure loss at the upstream side (downstream in the refrigerant flow direction when the heat exchanger becomes an evaporator) is smaller than when the heat transfer promoting member is inserted. Thereby, the performance of the heat exchanger can be improved while balancing the case where the heat exchanger becomes an evaporator and the case where the heat exchanger becomes a condenser.

【0019】第5の手段は、第1乃至第3の手段のいず
れかにおいて、前記伝熱管は、熱交換器が凝縮器となる
場合において1または2以上の合流部を有する複数パス
構成となっており、前記伝熱管のうち、熱交換器が凝縮
器となる場合の冷媒流れ方向における、前記合流部の全
部または一部より下流側の部分にのみ、前記伝熱促進部
材を挿着したものである。
The fifth means is that in any one of the first to third means, when the heat exchanger is a condenser, the heat transfer tube has a multi-pass structure having one or more junctions. The heat transfer tube, wherein the heat transfer promoting member is inserted only in a portion downstream of all or a part of the junction in the refrigerant flow direction when the heat exchanger is a condenser. It is.

【0020】この第5の手段によれば、第1乃至第3の
手段のいずれかにおいて、熱交換器が凝縮器となる場合
の冷媒流れ方向における、合流部の全部または一部より
下流側の部分で、伝熱促進部材によって、乾き度の低い
又は単相域の冷媒の熱伝達が促進される。また、同じく
上流側(熱交換器が蒸発器となる場合の冷媒流れ方向の
下流側)の部分では、伝熱促進部材が挿着されている場
合に比べて圧力損失が小さくなる。このことにより、熱
交換器が蒸発器となる場合と凝縮器となる場合とのバラ
ンスを取りながら、熱交換器の性能を向上させることが
できる。
According to the fifth means, in any one of the first to third means, in the flow direction of the refrigerant in the case where the heat exchanger serves as a condenser, a portion downstream of all or a part of the merging portion is provided. In part, the heat transfer enhancing member enhances the heat transfer of the low-dryness or single-phase refrigerant. Similarly, the pressure loss at the upstream side (downstream in the refrigerant flow direction when the heat exchanger becomes an evaporator) is smaller than when the heat transfer promoting member is inserted. Thereby, the performance of the heat exchanger can be improved while balancing the case where the heat exchanger becomes an evaporator and the case where the heat exchanger becomes a condenser.

【0021】第6の手段は、室内熱交換器と室外熱交換
器とを備え、前記室内熱交換器または前記室外熱交換器
のいずれか一方が、上記第1乃至第5の手段のいずれか
の熱交換器であることを特徴とする空気調和装置であ
る。
The sixth means includes an indoor heat exchanger and an outdoor heat exchanger, and one of the indoor heat exchanger and the outdoor heat exchanger is any one of the first to fifth means. It is an air conditioner characterized by being a heat exchanger.

【0022】この第6の手段によれば、室内熱交換器と
室外熱交換器の諸条件の相違に応じて、いずれか一方の
熱交換器の伝熱管の冷媒側の熱伝達を伝熱促進部材によ
って促進することができる。このことにより、室内熱交
換器と室外熱交換器の両方の性能をバランスよく向上さ
せることができる。
According to the sixth means, the heat transfer on the refrigerant side of the heat transfer tube of one of the heat exchangers is promoted according to the difference in various conditions between the indoor heat exchanger and the outdoor heat exchanger. It can be facilitated by a member. As a result, the performance of both the indoor heat exchanger and the outdoor heat exchanger can be improved in a well-balanced manner.

【0023】[0023]

【発明の実施の形態】次に、図面を参照して本発明の実
施の形態について説明する。図1乃至図16は本発明に
よる空気調和装置の熱交換器の実施の形態を示す図であ
る。なお、図1乃至図16に示す本発明の実施の形態に
おいて、図17乃び図18に示す従来例と同一の構成部
分には同一符号を付して説明する。
Next, an embodiment of the present invention will be described with reference to the drawings. 1 to 16 are diagrams showing an embodiment of a heat exchanger of an air conditioner according to the present invention. In the embodiments of the present invention shown in FIGS. 1 to 16, the same components as those of the conventional example shown in FIGS.

【0024】[第1の実施形態]まず、図1乃至図8に
より本発明の第1の実施形態について説明する。図1に
おいて、空気調和装置は、圧縮機1、四方弁2、室外熱
交換器3、膨脹弁4、及び室内熱交換器5を冷媒配管に
よって順次連結してなる冷凍サイクルを備えている。こ
のうち、室内熱交換器5は、主室内熱交換器8と補助室
内熱交換器9とからなっている。また、図1に符号6、
7で示すのは、それぞれ室外ファン、室内ファンであ
る。
[First Embodiment] First, a first embodiment of the present invention will be described with reference to FIGS. In FIG. 1, the air conditioner includes a refrigeration cycle in which a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, and an indoor heat exchanger 5 are sequentially connected by refrigerant piping. The indoor heat exchanger 5 includes a main indoor heat exchanger 8 and an auxiliary indoor heat exchanger 9. Also, in FIG.
Reference numeral 7 denotes an outdoor fan and an indoor fan, respectively.

【0025】また、図1において、実線の矢印は冷房運
転時の冷媒の流れを示し、破線の矢印は暖房運転時の冷
媒の流れを示している。そして、冷房運転時において
は、室外熱交換器3が凝縮器となり、室内熱交換器5が
蒸発器となる。一方、暖房運転時においては、これと反
対に、室外熱交換器3が蒸発器となり、室内熱交換器8
が凝縮器となる。
In FIG. 1, the solid arrows indicate the flow of the refrigerant during the cooling operation, and the dashed arrows indicate the flow of the refrigerant during the heating operation. During the cooling operation, the outdoor heat exchanger 3 functions as a condenser, and the indoor heat exchanger 5 functions as an evaporator. On the other hand, during the heating operation, on the contrary, the outdoor heat exchanger 3 becomes an evaporator and the indoor heat exchanger 8
Becomes a condenser.

【0026】ここで、上記冷媒には、50℃の飽和圧力
が2500キロパスカル(kPa)以上の冷媒が用いら
れている。このような冷媒としては、例えば、R32
(CH2 2 :ジフルオロエタン)とR125(CHF
2 −CF3 :ペンタフルオロエタン)の合成組成が80
%以上のもの、R143a(CF3 −CH3 :1,1,
1−トリフルオロエタン)とR125の合成組成が80
%以上のもの、及びR32の組成が45%以上のもの
等、CFC冷媒やHCFC冷媒の代替冷媒となるHFC
冷媒がある。
Here, a refrigerant having a saturation pressure at 50 ° C. of 2500 kilopascals (kPa) or more is used as the refrigerant. As such a refrigerant, for example, R32
(CH 2 F 2 : difluoroethane) and R125 (CHF
2- CF 3 : pentafluoroethane) has a synthetic composition of 80
% Or more, R143a (CF 3 —CH 3 : 1,1,1)
1-trifluoroethane) and R125 have a synthetic composition of 80
% Or more, and those with a composition of R32 of 45% or more.
There is a refrigerant.

【0027】次に、図2に示すように、空気調和装置
は、室外機Aと室内機Bとを備えている。このうち、室
外機Aは、図1に示す圧縮機1、四方弁2、室外熱交換
器3、膨脹弁4、及び室外ファン6を内蔵しており、室
内機Bは、図1に示す室内熱交換器5及び室内ファン7
を内蔵しいる。また、室外機Aと室内機Bとの間は、ガ
ス側接続配管C1及び液側接続配管C2(図1参照)を
内蔵した渡配管Cによって連結されている。
Next, as shown in FIG. 2, the air conditioner includes an outdoor unit A and an indoor unit B. Among them, the outdoor unit A incorporates the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion valve 4, and the outdoor fan 6 shown in FIG. 1, and the indoor unit B is the indoor unit shown in FIG. Heat exchanger 5 and indoor fan 7
Has a built-in. The outdoor unit A and the indoor unit B are connected by a connecting pipe C having a gas-side connecting pipe C1 and a liquid-side connecting pipe C2 (see FIG. 1).

【0028】次に、上記室内機Bは、図3に示すよう
に、上記室内熱交換器5と室内ファン7とを覆う前面パ
ネル15を有している。また、室内熱交換器5のうち逆
V字状の上記主室内熱交換器8は、室内ファン7の前方
に位置する第1熱交換器8aと、室内ファン7の後上方
に位置する第2熱交換器8bとからなっている。また、
上記補助熱交換器9は第2熱交換器8bの上方側に重ね
て配設されている。また、前面パネル15には、第1熱
交換器8aに対応する前面吸込グリル12と、補助室内
熱交換器9及び第2熱交換器8bに対応する上面吸込グ
リル13とが設けられている(図2参照)。また、前面
パネル15の前下方部分には吹出口14が設けられ、こ
の吹出口14に左右風向板10及び上下風向板11が設
けられている。
Next, as shown in FIG. 3, the indoor unit B has a front panel 15 that covers the indoor heat exchanger 5 and the indoor fan 7. The inverted V-shaped main indoor heat exchanger 8 of the indoor heat exchanger 5 includes a first heat exchanger 8a located in front of the indoor fan 7 and a second heat exchanger 8a located behind and above the indoor fan 7. And a heat exchanger 8b. Also,
The auxiliary heat exchanger 9 is disposed on the upper side of the second heat exchanger 8b. Further, the front panel 15 is provided with a front suction grill 12 corresponding to the first heat exchanger 8a, and a top suction grill 13 corresponding to the auxiliary indoor heat exchanger 9 and the second heat exchanger 8b (see FIG. 2). (See FIG. 2). An outlet 14 is provided at a front lower portion of the front panel 15, and the outlet 14 is provided with a left and right wind direction plate 10 and a vertical wind direction plate 11.

【0029】そして、室内ファン7の回転により、室内
空気が前面吸込グリル12及び上面吸込グリル13から
吸い込まれるようになっている。このうち、前面吸込グ
リル12から吸い込まれた室内空気は、第1熱交換器8
aを通り、上面吸込グリル13から吸い込まれた室内空
気は、補助室内熱交換器9と第2熱交換器8bとを通
り、ともに空調空気として吹出口14から吹き出される
ようになっている。
The rotation of the indoor fan 7 allows the indoor air to be sucked from the front suction grill 12 and the top suction grill 13. Among them, the indoor air sucked from the front suction grill 12 is supplied to the first heat exchanger 8.
a, the indoor air sucked from the upper surface suction grill 13 passes through the auxiliary indoor heat exchanger 9 and the second heat exchanger 8b, and is both blown out from the outlet 14 as conditioned air.

【0030】次に、図4、及び図5に模式的に示すよう
に、主室内熱交換器8は、それぞれ第1熱交換器8a及
び第2熱交換器8bを構成するフィン20a及びフィン
20bであって、互いに間隔をおいて積層した多数の板
状フィン20a, 20bを有している。一方、補助熱交
換器9は、主室内熱交換器8のフィン20a, 20bと
は分離した多数の板状フィン20cを有している。な
お、図5においては、フィン20aとフィン20bとを
特に区別せずに表している。
Next, as schematically shown in FIGS. 4 and 5, the main indoor heat exchanger 8 comprises fins 20a and 20b constituting the first heat exchanger 8a and the second heat exchanger 8b, respectively. And has a large number of plate-like fins 20a and 20b stacked at intervals. On the other hand, the auxiliary heat exchanger 9 has many plate-like fins 20c separated from the fins 20a and 20b of the main indoor heat exchanger 8. In FIG. 5, the fins 20a and the fins 20b are shown without distinction.

【0031】また、室内熱交換器5は、冷媒の流れる伝
熱管21〜24であって、主室内熱交換器8を構成する
伝熱管21〜23と、補助熱交換器9を構成する伝熱管
24とを備えている。そして、伝熱管21〜24は、暖
房運転時において、冷媒の入口I部分で2本に分岐した
流路(伝熱管21, 22)が途中の合流部Jで合流して
1本の流路(伝熱管23, 24)となって出口Oに至
る、いわゆる2−1パス構成(冷房運転時を基準とすれ
ば1−2パス構成)の伝熱管である。
The indoor heat exchangers 5 are heat transfer tubes 21 to 24 through which a refrigerant flows. The heat transfer tubes 21 to 23 forming the main indoor heat exchanger 8 and the heat transfer tubes forming the auxiliary heat exchanger 9. 24. During the heating operation, the heat transfer tubes 21 to 24 are combined into one flow passage (heat transfer tubes 21, 22) at the junction J on the way to form a single flow passage (the heat transfer tubes 21 and 22). The heat transfer tubes have a so-called 2-1 pass configuration (a 1-2 pass configuration based on the cooling operation) as the heat transfer tubes 23 and 24) and reach the outlet O.

【0032】また、各パスの伝熱管21, 22, 23,
24はそれぞれ、上記多数の板状フィン20a〜20c
を貫通する複数の直管部31, 32, 33, 34と、隣
り合う直管部31〜34の端部同士を連結する複数のU
字状連結管(リターンベンド)41, 42, 43, 44
とを有している。
The heat transfer tubes 21, 22, 23,
Reference numeral 24 denotes a number of the plate-like fins 20a to 20c, respectively.
And a plurality of U connecting the end portions of the adjacent straight pipe portions 31 to 34 with the end portions of the adjacent straight pipe portions 31 to 34
-Shaped connecting pipe (return bend) 41, 42, 43, 44
And

【0033】次に、図6に示すように、室内熱交換器5
の伝熱管21〜24全体の内部には、いわゆる「ねじれ
テープ(Twisted Tape)」形状を有する伝熱促進部材
(スペーサ)S1が挿着されている。この伝熱促進部材
S1は、伝熱管21〜24の軸線方向に延びる薄い平板
(テープ)を、その軸線回りにねじったような形状を有
し、その両側縁100が伝熱管21〜24の内壁にほぼ
当接するようになっている。この伝熱促進部材S1は、
伝熱管21〜24内部の冷媒の流れを強制的に螺旋状に
変化させるようになっている。
Next, as shown in FIG.
Inside the entirety of the heat transfer tubes 21 to 24, a heat transfer promoting member (spacer) S1 having a so-called “Twisted Tape” shape is inserted. The heat transfer promoting member S1 has a shape in which a thin flat plate (tape) extending in the axial direction of the heat transfer tubes 21 to 24 is twisted around its axis, and both side edges 100 have inner walls of the heat transfer tubes 21 to 24. Is almost in contact with. This heat transfer promoting member S1
The flow of the refrigerant inside the heat transfer tubes 21 to 24 is forcibly changed into a spiral shape.

【0034】次に、このような構成よりなる本実施形態
の作用について説明する。本実施形態によれば、伝熱促
進部材S1によって、主に伝熱管21〜24内の冷媒の
流れを螺旋状に変化させ、強制的な二次流れ(半径方向
流)を起こさせることにより、伝熱管21〜24全体の
冷媒側(管内側)の熱伝達(強制対流熱伝達)を促進す
ることができる。このことにより、50℃の飽和圧力が
2500キロパスカル(kPa)以上の冷媒を用いる空
気調和装置の熱交換器において、伝熱管の断面積やパス
数を変更することなく熱交換器の性能を向上させること
ができる。
Next, the operation of the present embodiment having such a configuration will be described. According to the present embodiment, the heat transfer promoting member S1 mainly changes the flow of the refrigerant in the heat transfer tubes 21 to 24 in a helical manner to cause a forced secondary flow (radial flow). Heat transfer (forced convection heat transfer) on the refrigerant side (inside of the tubes) of the entire heat transfer tubes 21 to 24 can be promoted. As a result, in a heat exchanger of an air conditioner using a refrigerant having a saturation pressure at 50 ° C. of 2500 kilopascals (kPa) or more, the performance of the heat exchanger is improved without changing the cross-sectional area of the heat transfer tube or the number of passes. Can be done.

【0035】次に、図7及び図8により、本実施形態の
変形例について説明する。第1の変形例は、図6に示す
上記伝熱促進部材S1に代えて、図7に示す伝熱促進部
材S1′を用いたものである。図7に示すように、伝熱
促進部材S1′は、上記伝熱促進部材S1に多数の小孔
110を穿設してなるものである。また、第2の変形例
は、上記伝熱促進部材S1に代えて、図8に示す伝熱促
進部材S1″を用いたものである。図8に示すように、
伝熱促進部材S1″は、上記伝熱促進部材S1の両側縁
100から伝熱管21〜24の半径方向内側に延びる多
数の切込み120を刻設してなるものである。この場
合、伝熱促進部材S1″は、予め薄い平板(テープ)状
の材料に上記多数の切込み120を刻設しておき、これ
をねじって上記「ねじれテープ」形状とすることによ
り、切込み120によって分離された隣り合う長方形部
分122同士が少しずつ食い違ってゆくような形状とす
ることが好ましい。
Next, a modification of this embodiment will be described with reference to FIGS. In the first modification, a heat transfer promoting member S1 'shown in FIG. 7 is used instead of the heat transfer promoting member S1 shown in FIG. As shown in FIG. 7, the heat transfer promoting member S1 'is formed by forming a large number of small holes 110 in the heat transfer promoting member S1. In the second modification, a heat transfer promoting member S1 ″ shown in FIG. 8 is used instead of the heat transfer promoting member S1. As shown in FIG.
The heat transfer promoting member S1 ″ is formed by engraving a large number of cuts 120 extending from both side edges 100 of the heat transfer promoting member S1 to the inside in the radial direction of the heat transfer tubes 21 to 24. In this case, heat transfer is promoted. The member S1 ″ is formed by cutting a large number of cuts 120 in a thin plate (tape) -like material in advance, and twisting the cuts into the “twisted tape” shape, so that adjacent cuts 120 are separated by the cuts 120. It is preferable that the rectangular portions 122 be shaped so as to be slightly different from each other.

【0036】これらの変形例によれば、伝熱促進部材S
1′, S1″によって、伝熱管21〜24内部の冷媒に
強制的な二次流れを起こさせるとともに、冷媒の流れの
混合や乱れを誘起することにより、伝熱管21〜24の
冷媒側の熱伝達をより一層促進することができる。
According to these modifications, the heat transfer promoting member S
1 ′, S1 ″ causes a forced secondary flow in the refrigerant inside the heat transfer tubes 21 to 24, and induces mixing and turbulence of the flow of the refrigerant, so that the heat on the refrigerant side of the heat transfer tubes 21 to 24 is generated. Communication can be further promoted.

【0037】[第2の実施形態]次に、図9乃び図10
により、本発明の第2の実施形態について説明する。本
実施形態は、上記第1の実施形態の伝熱促進部材S1に
代えて、図9に示す伝熱促進部材S2を用いたものであ
り、その他の構成は図1乃至図6に示す上記第1の実施
形態と同様である。
[Second Embodiment] Next, FIGS.
The second embodiment of the present invention will be described below. In the present embodiment, a heat transfer promoting member S2 shown in FIG. 9 is used instead of the heat transfer promoting member S1 of the first embodiment, and other configurations are the same as those of the first embodiment shown in FIGS. This is similar to the first embodiment.

【0038】図9に示すように、本実施形態の伝熱促進
部材S2は、その外周部130が伝熱管21〜24の内
壁にほぼ当接するようなコイルばね形状を有している。
この伝熱促進部材S2を構成する線材の横断面形状は、
図9に示す半円形の他、図10(a)〜(c)にそれぞ
れ示す四角形、円形、又は三角形等の形状であってもよ
い。
As shown in FIG. 9, the heat transfer promoting member S2 of the present embodiment has a coil spring shape such that its outer peripheral portion 130 substantially contacts the inner walls of the heat transfer tubes 21 to 24.
The cross-sectional shape of the wire constituting the heat transfer promoting member S2 is:
In addition to the semicircle shown in FIG. 9, the shape may be a square, a circle, a triangle, or the like shown in FIGS.

【0039】次に、このような構成よりなる本実施形態
の作用について説明する。本実施形態によれば、コイル
ばね形状を有する伝熱促進部材S2によって、主に伝熱
管21〜24内の冷媒の流れを乱して温度境界層の発達
を抑えることにより、伝熱管21〜24全体の冷媒側の
熱伝達を促進することができる。このことにより、50
℃の飽和圧力が2500キロパスカル(kPa)以上の
冷媒を用いる空気調和装置の熱交換器において、伝熱管
の断面積やパス数を変更することなく熱交換器の性能を
向上させることができる。
Next, the operation of the present embodiment having such a configuration will be described. According to the present embodiment, the heat transfer promoting member S2 having a coil spring shape mainly disturbs the flow of the refrigerant in the heat transfer tubes 21 to 24 and suppresses the development of the temperature boundary layer. Heat transfer on the entire refrigerant side can be promoted. This allows 50
In a heat exchanger of an air conditioner that uses a refrigerant having a saturation pressure of 2,500 kPa (kPa) or more, the performance of the heat exchanger can be improved without changing the cross-sectional area or the number of passes of the heat transfer tubes.

【0040】[第3の実施形態]次に、図11乃び図1
2により本発明の第3の実施形態について説明する。図
11乃び図12に示すように、本実施形態は、室内熱交
換器5A〜5Cの伝熱管21〜24のうち、室内熱交換
器5A〜5Cが凝縮器となる場合の冷媒流れ方向(図1
1乃び図12の矢印方向)の下流側の部分(図11乃び
図12の黒塗り部分)にのみ上記伝熱促進部材S1〜S
1″, S2が挿着されている点で、上記第1, 第2の実
施形態と異なり、その他の構成は図1乃至図10に示す
上記第1,第2の実施形態と同様である。
Third Embodiment Next, FIG. 11 and FIG.
2, a third embodiment of the present invention will be described. As shown in FIGS. 11 and 12, in the present embodiment, among the heat transfer tubes 21 to 24 of the indoor heat exchangers 5A to 5C, the refrigerant flow direction when the indoor heat exchangers 5A to 5C serve as condensers ( FIG.
The heat transfer promoting members S1 to S are provided only on the downstream side (in the direction of the arrow in FIG. 1 and FIG. 12) (the black portion in FIG. 11 and FIG. 12).
The difference from the first and second embodiments is that 1 ″ and S2 are inserted, and the other configuration is the same as the first and second embodiments shown in FIGS. 1 to 10.

【0041】まず、図11に示す熱交換器5Aは、伝熱
管21, 22のうち、最も入口I側に近い直管部31,
32には伝熱促進部材S1〜S1″, S2が挿着されて
おらず、伝熱管21, 22のそれより下流側の部分、及
び伝熱管23, 24の内部に、伝熱促進部材S1〜S
1″, S2が挿着されている。
First, the heat exchanger 5A shown in FIG. 11 has a straight pipe section 31, which is closest to the inlet I side among the heat transfer pipes 21, 22.
32, the heat transfer promoting members S1 to S1 ″ and S2 are not inserted, and the heat transfer promoting members S1 to S1 ″ and S2 are provided on the downstream side of the heat transfer tubes 21 and 22 and inside the heat transfer tubes 23 and 24. S
1 ″ and S2 are inserted.

【0042】次に、図12(a)に示す熱交換器5Bに
おいては、合流部Jより上流側の伝熱管21, 22には
伝熱促進部材S1〜S1″, S2が挿着されておらず、
合流部Jより下流側の伝熱管23, 24の内部にのみ、
伝熱促進部材S1〜S1″,S2が挿着されている。
Next, in the heat exchanger 5B shown in FIG. 12 (a), the heat transfer promotion members S1 to S1 ″ and S2 are inserted into the heat transfer tubes 21 and 22 upstream of the junction J. Without
Only inside the heat transfer tubes 23, 24 downstream of the junction J,
Heat transfer promoting members S1 to S1 ″, S2 are inserted.

【0043】また、図12(b)に示す熱交換器5Cに
おいては、図12(a)に示す熱交換器5Bの場合より
さらに下流側の伝熱管23の途中部分まで、伝熱促進部
材S1〜S1″, S2が挿着されておらず、伝熱管23
の途中部分より下流側、及び伝熱管24の内部にのみ、
伝熱促進部材S1〜S1″, S2が挿着されている。
Further, in the heat exchanger 5C shown in FIG. 12B, the heat transfer promoting member S1 is further extended to the intermediate portion of the heat transfer tube 23 further downstream than the case of the heat exchanger 5B shown in FIG. ~ S1 ″ and S2 are not inserted and the heat transfer tubes 23
Only on the downstream side of the middle part of and in the heat transfer tube 24,
Heat transfer promoting members S1 to S1 ″ and S2 are inserted.

【0044】次に、このような構成よりなる本実施形態
の作用について説明する。本実施形態によれば、伝熱管
21〜24のうち室内熱交換器5A〜5Cが凝縮器とな
る場合の冷媒流れ方向の下流側の部分で、伝熱促進部材
S1〜S1″, S2によって、乾き度の低い又は単相域
(液域)の冷媒の熱伝達が促進される。また、伝熱管2
1〜24のうち同じく上流側(室内熱交換器5A〜5C
が蒸発器となる場合の冷媒流れ方向の下流側)の部分で
は、伝熱促進部材S1〜S1″, S2が挿着されている
場合に比べて冷媒の圧力損失が小さくなる。
Next, the operation of the present embodiment having such a configuration will be described. According to the present embodiment, the heat transfer promoting members S1 to S1 ″ and S2 are provided at the downstream side of the heat transfer tubes 21 to 24 in the refrigerant flow direction when the indoor heat exchangers 5A to 5C serve as condensers. Heat transfer of the refrigerant having a low dryness or a single-phase region (liquid region) is promoted.
1 to 24 (the indoor heat exchangers 5A to 5C)
At the downstream side in the refrigerant flow direction when the evaporator becomes an evaporator), the pressure loss of the refrigerant is smaller than when the heat transfer promoting members S1 to S1 ″ and S2 are inserted.

【0045】このことにより、室内熱交換器5A〜5C
が蒸発器となる場合(冷房運転時)と凝縮器となる場合
(暖房運転時)とのバランスを取りながら、室内熱交換
器5A〜5Cの性能を向上させることができる。
Thus, the indoor heat exchangers 5A to 5C
The performance of the indoor heat exchangers 5A to 5C can be improved while maintaining a balance between a case in which evaporator becomes an evaporator (during cooling operation) and a case in which it becomes a condenser (during heating operation).

【0046】[第4の実施形態]次に、図13乃至図1
5により本発明の第4の実施形態について説明する。図
13乃至図15に示す本実施形態は、上記第1, 第2の
実施形態の室内熱交換器5に代えて室内熱交換器105
A, 105B, 105Cを用いたものであり、その他の
構成は図1乃至図10に示す上記第1, 第2の実施形態
と同様である。
[Fourth Embodiment] Next, FIGS.
5, a fourth embodiment of the present invention will be described. The present embodiment shown in FIGS. 13 to 15 is different from the first and second embodiments in that the indoor heat exchanger 105 is used instead of the indoor heat exchanger 5.
A, 105B, and 105C are used, and other configurations are the same as those of the first and second embodiments shown in FIGS.

【0047】図13、図14、及び図15に模式的に示
すように、本実施形態の室内熱交換器105A〜105
Cは、冷媒の流れる伝熱管51〜57, 24であって、
主室内熱交換器8を構成する伝熱管51〜57と、補助
熱交換器9を構成する伝熱管24とを備えている。そし
て、伝熱管51〜57, 24は、暖房運転時において、
冷媒の入口I部分で4本に分岐した流路(伝熱管51〜
54)が途中の合流部J1, J2で合流して2本の流路
(伝熱管55, 56)となり、更に合流部J3で合流し
て1本の流路(伝熱管57, 24)となって出口Oに至
る、いわゆる4−2−1パス構成(冷房運転時を基準と
すれば1−2−4パス構成)の伝熱管である。
As shown schematically in FIGS. 13, 14 and 15, the indoor heat exchangers 105A to 105
C is a heat transfer tube 51-57, 24 through which the refrigerant flows,
Heat transfer tubes 51 to 57 forming the main indoor heat exchanger 8 and heat transfer tubes 24 forming the auxiliary heat exchanger 9 are provided. Then, the heat transfer tubes 51 to 57, 24 are
A flow path (heat transfer tubes 51 to 51) branched into four at the inlet I of the refrigerant
54) merge at the junctions J1 and J2 on the way to form two flow paths (heat transfer tubes 55 and 56), and further merge at the junction J3 to form one flow path (heat transfer tubes 57 and 24). This is a heat transfer tube having a so-called 4-2-1 pass configuration (1-2-4 pass configuration on the basis of the cooling operation) reaching the outlet O.

【0048】また、各パスの伝熱管51〜57, 24は
それぞれ、図5に示す上記伝熱管21〜24と同様、多
数の板状フィン20a〜20cを貫通する複数の直管部
と、隣り合う直管部の端部同士を連結する複数のU字状
連結管(リターンベンド)とを有している。
The heat transfer tubes 51 to 57 and 24 of each pass are, like the heat transfer tubes 21 to 24 shown in FIG. 5, respectively, connected to a plurality of straight tube portions penetrating a large number of plate fins 20a to 20c. It has a plurality of U-shaped connecting pipes (return bends) connecting the ends of the matching straight pipe sections.

【0049】そして、図13乃び図14に示すように、
本実施形態においては、室内熱交換器105A〜105
Cの伝熱管51〜57, 24のうち、室内熱交換器10
5A〜105Cが凝縮器となる場合の冷媒流れ方向(図
13乃至図15の矢印方向)の下流側の部分(図13乃
び図14の黒塗り部分)にのみ上記伝熱促進部材S1〜
S1″, S2が挿着されている。
Then, as shown in FIGS. 13 and 14,
In the present embodiment, the indoor heat exchangers 105A to 105A
Among the heat transfer tubes 51 to 57, 24 of C, the indoor heat exchanger 10
The heat transfer promoting members S1 to 5A to 105C serve only as condensers only in the downstream portion (the black portion in FIGS. 13 and 14) in the refrigerant flow direction (the direction of the arrow in FIGS. 13 to 15).
S1 ″ and S2 are inserted.

【0050】まず、図13(a)に示す熱交換器105
Aにおいては、上流側の伝熱管51〜54には伝熱促進
部材S1〜S1″, S2が挿着されておらず、合流部J
1,J2より下流側の伝熱管55〜57, 24の内部
に、伝熱促進部材S1〜S1″, S2が挿着されてい
る。
First, the heat exchanger 105 shown in FIG.
In A, the heat transfer promoting members S1 to S1 ″, S2 are not inserted into the heat transfer tubes 51 to 54 on the upstream side, and the junction J
Heat transfer promoting members S1 to S1 ″ and S2 are inserted into heat transfer tubes 55 to 57 and 24 downstream of 1, J2.

【0051】次に、図13(b)に示す熱交換器105
Bにおいては、伝熱管51〜54、及び伝熱管55, 5
6のうち第2熱交換器8aを構成する部分には、伝熱促
進部材S1〜S1″, S2が挿着されていない。そし
て、伝熱管55, 56のうち第2熱交換器8aを構成す
る下流側の部分、及び伝熱管57, 24の内部にのみ、
伝熱促進部材S1〜S1″, S2が挿着されている。
Next, the heat exchanger 105 shown in FIG.
In B, the heat transfer tubes 51 to 54 and the heat transfer tubes 55, 5
6, the heat transfer promoting members S1 to S1 ″, S2 are not inserted in the portions that form the second heat exchanger 8a. The second heat exchanger 8a among the heat transfer tubes 55, 56 is formed. Only on the downstream side, and inside the heat transfer tubes 57, 24,
Heat transfer promoting members S1 to S1 ″ and S2 are inserted.

【0052】また、図14に示す熱交換器105Cにお
いては、合流部J3より上流側の伝熱管51〜56には
伝熱促進部材S1〜S1″, S2が挿着されておらず、
合流部J3より下流側の伝熱管57, 24の内部にの
み、伝熱促進部材S1〜S1″, S2が挿着されてい
る。
In the heat exchanger 105C shown in FIG. 14, the heat transfer promotion members S1 to S1 ″ and S2 are not inserted into the heat transfer tubes 51 to 56 upstream of the junction J3.
Heat transfer promoting members S1 to S1 ″ and S2 are inserted only into the heat transfer tubes 57 and 24 downstream of the junction J3.

【0053】次に、このような構成よりなる本実施形態
の作用について説明する。本実施形態によれば、伝熱管
51〜57, 24のうち室内熱交換器105A〜105
Cが凝縮器となる場合の冷媒流れ方向の下流側の部分
で、伝熱促進部材S1〜S1″, S2によって、乾き度
の低い又は単相域(液域)の冷媒の熱伝達が促進され
る。また、伝熱管51〜57, 24のうち同じく上流側
(室内熱交換器105A〜105Cが蒸発器となる場合
の冷媒流れ方向の下流側)の部分では、伝熱促進部材S
1〜S1″, S2が挿着されている場合に比べて冷媒の
圧力損失が小さくなる。
Next, the operation of the present embodiment having such a configuration will be described. According to this embodiment, among the heat transfer tubes 51 to 57, 24, the indoor heat exchangers 105A to 105A
The heat transfer promoting members S1 to S1 ″, S2 promote the heat transfer of the refrigerant having a low dryness or a single-phase region (liquid region) in a downstream portion of the refrigerant flow direction when C is a condenser. Similarly, in the portion of the heat transfer tubes 51 to 57, 24 on the upstream side (downstream in the refrigerant flow direction when the indoor heat exchangers 105A to 105C become evaporators), the heat transfer promoting member S
The pressure loss of the refrigerant is smaller than when 1 to S1 ″ and S2 are inserted.

【0054】このことにより、室内熱交換器105A〜
105Cが蒸発器となる場合(冷房運転時)と凝縮器と
なる場合(暖房運転時)とのバランスを取りながら、室
内熱交換器105A〜105Cの性能を向上させること
ができる。
Thus, the indoor heat exchangers 105A-105A
The performance of the indoor heat exchangers 105A to 105C can be improved while balancing the case where 105C becomes an evaporator (during cooling operation) and the case where 105C becomes a condenser (during heating operation).

【0055】なお、上記第3、第4の実施形態におい
て、室内熱交換器5A〜105Cの伝熱管21〜24,
51〜57のうち、室内熱交換器5A〜105Cが凝縮
器となる場合の下流側である特定の部分のみに伝熱促進
部材S1〜S1″, S2を装着した場合の例について説
明したが、伝熱促進部材S1〜S1″, S2を装着する
伝熱管21〜24, 51〜57の部分は、上記第3、第
4の実施形態において具体的に特定した部分に限られる
ものではない。すなわち、室内熱交換器5A〜105C
が凝縮器となる暖房運転時と、同じく蒸発器となる冷房
運転時との性能のバランスを考慮して、伝熱促進部材S
1〜S1″, S2を挿着する伝熱管21〜24, 51〜
57の部分を適宜に調節してもよい。
In the third and fourth embodiments, the heat transfer tubes 21 to 24 of the indoor heat exchangers 5A to 105C,
Among the 51 to 57, the example in which the heat transfer promoting members S1 to S1 ″ and S2 are attached only to a specific portion on the downstream side when the indoor heat exchangers 5A to 105C serve as condensers has been described. The portions of the heat transfer tubes 21 to 24 and 51 to 57 on which the heat transfer promoting members S1 to S1 ″ and S2 are mounted are not limited to the portions specifically specified in the third and fourth embodiments. That is, the indoor heat exchangers 5A to 105C
In consideration of the balance between the performance during the heating operation in which the condenser serves as a condenser and the performance in the cooling operation also serving as an evaporator, the heat transfer promoting member S
1 to S1 ″, heat transfer tubes 21 to 24 for inserting S2, 51 to 51
The portion 57 may be appropriately adjusted.

【0056】[第5の実施形態]次に、図16により本
発明の第5の実施形態について説明する。図16に示す
本実施形態は、上記第1, 第2の実施形態の室内熱交換
器5または上記第4の実施形態の室内熱交換器105A
において、暖房運転時に下流側である補助室内熱交換器
9を構成する伝熱管24のみに伝熱促進部材S1〜S
1″, S2を挿着したものであり、その他の構成は図1
乃至図10に示す上記第1, 第2の実施形態、または図
13乃至図15に示す上記第4の実施形態と同様であ
る。
[Fifth Embodiment] Next, a fifth embodiment of the present invention will be described with reference to FIG. In the present embodiment shown in FIG. 16, the indoor heat exchanger 5 of the first and second embodiments or the indoor heat exchanger 105A of the fourth embodiment is described.
In the heating operation, only the heat transfer tubes 24 constituting the auxiliary indoor heat exchanger 9 on the downstream side during the heating operation are provided with the heat transfer promoting members S1 to S.
1 ″, S2 is inserted.
This is the same as the first and second embodiments shown in FIGS. 10 to 10 or the fourth embodiment shown in FIGS.

【0057】まず、図16(a)に示す室内熱交換器5
Dは、図4に示す上記第1の実施形態の室内熱交換器5
において、補助室内熱交換器9を構成する伝熱管24の
みに伝熱促進部材S1〜S1″, S2を挿着したもので
ある。また、図16(b)に示す室内熱交換器105D
は、図13(a)に示す上記第4の実施形態の室内熱交
換器105Aにおいて、補助室内熱交換器9を構成する
伝熱管24のみに伝熱促進部材S1〜S1″, S2を挿
着したものである。
First, the indoor heat exchanger 5 shown in FIG.
D is the indoor heat exchanger 5 of the first embodiment shown in FIG.
, Heat transfer promoting members S1 to S1 ″, S2 are inserted only into the heat transfer tubes 24 that constitute the auxiliary indoor heat exchanger 9. The indoor heat exchanger 105D shown in FIG.
In the indoor heat exchanger 105A of the fourth embodiment shown in FIG. 13A, heat transfer promoting members S1 to S1 ″ and S2 are inserted only into the heat transfer tubes 24 constituting the auxiliary indoor heat exchanger 9. It was done.

【0058】ここで、上述したように、補助室内熱交換
器9のフィン20cは主室内熱交換器8のフィン20
a, 20bとは分離しているので、室内熱交換器5D,
105Dが凝縮器となる場合(暖房運転時)において、
冷媒の出口O側となる補助室内熱交換器9は、いわゆる
過冷却熱交換器となり、その伝熱管24内の冷媒は全て
単相域(液域)となる傾向にある。
As described above, the fin 20c of the auxiliary indoor heat exchanger 9 is connected to the fin 20c of the main indoor heat exchanger 8.
a, 20b, the indoor heat exchanger 5D,
When 105D becomes a condenser (during heating operation),
The auxiliary indoor heat exchanger 9 on the refrigerant outlet O side is a so-called supercooling heat exchanger, and all the refrigerant in the heat transfer tube 24 tends to be in a single-phase region (liquid region).

【0059】次に、このような構成よりなる本実施形態
の作用について説明する。本実施形態によれば、室内熱
交換器5D, 105Dが凝縮器となる場合において、伝
熱促進部材S1〜S1″, S2によって補助室内熱交換
器9を構成する伝熱管24内の単相域の冷媒の熱伝達が
促進される。このことにより、室内熱交換器5D, 10
5Dが凝縮器となる場合の補助室内熱交換器9による冷
媒の過冷却が一層促進されるので、空気調和装置の暖房
能力を向上させることができる。
Next, the operation of the present embodiment having such a configuration will be described. According to the present embodiment, when the indoor heat exchangers 5D and 105D serve as condensers, the single-phase region in the heat transfer tube 24 constituting the auxiliary indoor heat exchanger 9 by the heat transfer promoting members S1 to S1 ″ and S2. This promotes the heat transfer of the refrigerant of the indoor heat exchangers 5D, 10D.
Since the sub-cooling of the refrigerant by the auxiliary indoor heat exchanger 9 when the 5D is a condenser is further promoted, the heating capacity of the air conditioner can be improved.

【0060】また、主室内熱交換器8を構成する伝熱管
21〜23, 51〜57においては、伝熱促進部材S1
〜S1″, S2が挿着されていないので、伝熱促進部材
S1〜S1″, S2が挿着されている場合に比べて冷媒
の圧力損失が小さくなる。このことにより、室内熱交換
器5D, 105Dが蒸発器となる場合の性能の低下を抑
えることができる。
In the heat transfer tubes 21 to 23 and 51 to 57 constituting the main indoor heat exchanger 8, the heat transfer promoting member S1 is provided.
Since S1 "and S2 are not inserted, the pressure loss of the refrigerant is smaller than when heat transfer promoting members S1 to S1" and S2 are inserted. As a result, it is possible to suppress a decrease in performance when the indoor heat exchangers 5D and 105D serve as evaporators.

【0061】なお、以上の実施形態において、空気調和
装置の室内熱交換器5, 5A〜5D, 105A〜105
D(以下、単に「室内熱交換器5等」という。)につい
て説明したが、図1に示す室外熱交換器3の場合も、基
本的な構成は図4及び図5(または図13乃至図15)
に示す室内熱交換器5等の場合と同様、伝熱管と多数の
板状フィンとを有するものである。そして、空気調和装
置において、その室外熱交換器3の伝熱管の全部または
一部にも、室内熱交換器5等と同様に伝熱促進部材S1
〜S1″, S2を挿着してもよい。
In the above embodiment, the indoor heat exchangers 5, 5A to 5D, 105A to 105 of the air conditioner are used.
D (hereinafter simply referred to as “indoor heat exchanger 5 etc.”) has been described, but also in the case of the outdoor heat exchanger 3 shown in FIG. 1, the basic configuration is shown in FIGS. 4 and 5 (or FIGS. 13 to 13). 15)
As in the case of the indoor heat exchanger 5 shown in FIG. In the air conditioner, all or a part of the heat transfer tubes of the outdoor heat exchanger 3 is provided with the heat transfer promoting member S1 similarly to the indoor heat exchanger 5 and the like.
~ S1 "and S2 may be inserted.

【0062】また、室外熱交換器3と室内熱交換器5等
のいずれか一方の伝熱管のみに、伝熱促進部材S1〜S
1″, S2を挿着してもよい。この場合、室外熱交換器
3と室内熱交換器5等のうち、その大きさ、内外容積
比、伝熱管の径(断面積)等を考慮して、伝熱管の冷媒
側の熱伝達を促進する必要の大きい方の伝熱管に伝熱促
進部材S1〜S1″, S2を挿着することが好ましい。
このことにより、室内熱交換器3と室外熱交換器5の両
方の性能をバランスよく向上させることができる。
Further, only one of the heat transfer tubes such as the outdoor heat exchanger 3 and the indoor heat exchanger 5 is provided with the heat transfer promoting members S1 to S
1 ", S2 may be inserted. In this case, among the outdoor heat exchanger 3 and the indoor heat exchanger 5, etc., the size, the inner / outer volume ratio, the diameter (cross-sectional area) of the heat transfer tube, etc. are taken into consideration. Therefore, it is preferable to insert the heat transfer promoting members S1 to S1 ″ and S2 into the heat transfer tube that needs to promote heat transfer on the refrigerant side of the heat transfer tube.
As a result, the performance of both the indoor heat exchanger 3 and the outdoor heat exchanger 5 can be improved in a well-balanced manner.

【0063】具体的には、室外熱交換器3と室内熱交換
器5の伝熱管のうち、液域の冷媒側の熱伝達率が低下し
やすい、断面積(内径)の大きい方の伝熱管に伝熱促進
部材S1〜S1″, S2を挿着することが好ましい。次
に、室外熱交換器3と室内熱交換器5のうち、凝縮器と
なる場合の過冷却度(凝縮温度と熱交換器出口温度との
差)の小さい方の伝熱管に挿着することが好ましい。ま
た、室外熱交換器3と室内熱交換器5のうち、熱交換器
出口温度と吸込み空気温度との差の大きい方の伝熱管に
挿着することが好ましい。
Specifically, of the heat transfer tubes of the outdoor heat exchanger 3 and the indoor heat exchanger 5, the heat transfer tube having a larger cross-sectional area (inner diameter) in which the heat transfer coefficient on the refrigerant side of the liquid region is apt to decrease. It is preferable to insert the heat transfer promoting members S1 to S1 ″ and S2 into the outside heat exchanger. Next, of the outdoor heat exchanger 3 and the indoor heat exchanger 5, the supercooling degree (condensation temperature and heat (Difference with the temperature at the outlet of the exchanger) is preferably inserted into the smaller heat transfer tube. It is preferable to insert the heat transfer tube into the larger heat transfer tube.

【0064】ところで、以上の実施形態においては、5
0℃の飽和圧力が2500キロパスカル(kPa)以上
の比較的高圧の冷媒を用いるので、R22等の比較的低
圧の冷媒を用いる場合に比べて、図2に示すガス側接続
配管C1及び液側接続配管C2の管径を細くすることが
できる。具体的には、冷房定格能力3. 2kW以上の空
気調和装置において、冷媒にR22を用いるものは通
常、ガス側接続配管C1が外径12. 7mm(1/ 2inc
h)のもので、液側接続配管C2が外径6. 4mm(1/
4inch)のものであるのに対して、本発明による冷房定
格能力3. 2kW以上の空気調和装置においては、例え
ばガス側接続配管C1に外径9. 5mm(3/8inch)の
ものを用いてもよい。そして、このようにガス側接続配
管C1又は液側接続配管C2の管径を細くすることによ
り、図2に示す渡配管Cの占めるスペースが減少すると
ともに、接続配管C1, C2がより柔軟になること等に
より、空気調和装置の渡配管C回りの据付の作業性が向
上する。
By the way, in the above embodiment, 5
Since a relatively high-pressure refrigerant having a saturation pressure of 0 ° C. of 2500 kilopascals (kPa) or more is used, the gas side connection pipe C1 and the liquid side shown in FIG. The pipe diameter of the connection pipe C2 can be reduced. Specifically, in an air conditioner having a cooling rated capacity of 3.2 kW or more, one using R22 as a refrigerant usually has an outer diameter of 12.7 mm (1/2 inc.).
h), and the liquid side connection pipe C2 has an outer diameter of 6.4 mm (1/1 /
On the other hand, in an air conditioner having a cooling rating of 3.2 kW or more according to the present invention, the gas-side connection pipe C1 having an outer diameter of 9.5 mm (3/8 inch) is used. Is also good. By reducing the diameter of the gas-side connection pipe C1 or the liquid-side connection pipe C2 in this way, the space occupied by the transfer pipe C shown in FIG. 2 is reduced, and the connection pipes C1, C2 are more flexible. Thus, the workability of the installation around the connecting pipe C of the air conditioner is improved.

【0065】[0065]

【発明の効果】本発明によれば、伝熱管内に挿着した伝
熱促進部材によって、伝熱管の冷媒側の熱伝達を促進す
ることができる。このため、50℃の飽和圧力が250
0キロパスカル(kPa)以上の冷媒を用いる空気調和
装置の熱交換器において、伝熱管の断面積やパス数を変
更することなく熱交換器の性能を向上させることができ
る。
According to the present invention, the heat transfer on the refrigerant side of the heat transfer tube can be promoted by the heat transfer promoting member inserted into the heat transfer tube. Therefore, the saturation pressure at 50 ° C. is 250
In a heat exchanger of an air conditioner using a refrigerant of 0 kilopascals (kPa) or more, the performance of the heat exchanger can be improved without changing the cross-sectional area of the heat transfer tube or the number of passes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による熱交換器が適用される空気調和装
置の冷凍サイクルの例を示すブロック図。
FIG. 1 is a block diagram showing an example of a refrigeration cycle of an air conditioner to which a heat exchanger according to the present invention is applied.

【図2】本発明による熱交換器が適用される空気調和装
置の外観を示す斜視図。
FIG. 2 is a perspective view showing an external appearance of an air conditioner to which the heat exchanger according to the present invention is applied.

【図3】図2に示す室内機の横断面図。FIG. 3 is a cross-sectional view of the indoor unit shown in FIG.

【図4】本発明の第1の実施形態における、室内熱交換
器の横断面図。
FIG. 4 is a cross-sectional view of the indoor heat exchanger according to the first embodiment of the present invention.

【図5】図4に示す室内熱交換器のパス構成を示す模式
図。
FIG. 5 is a schematic diagram showing a path configuration of the indoor heat exchanger shown in FIG.

【図6】図4に示す室内熱交換器を部分的に拡大して示
す縦断面図。
FIG. 6 is a longitudinal sectional view showing the indoor heat exchanger shown in FIG. 4 in a partially enlarged manner.

【図7】本発明の第1の実施形態における、第1の変形
例の伝熱促進部材を示す側面図。
FIG. 7 is a side view showing a heat transfer promoting member of a first modified example in the first embodiment of the present invention.

【図8】本発明の第1の実施形態における、第2の変形
例の伝熱促進部材を示す斜視図。
FIG. 8 is a perspective view showing a heat transfer promoting member according to a second modification in the first embodiment of the present invention.

【図9】本発明の第2の実施形態における、室内熱交換
器の横断面図。
FIG. 9 is a cross-sectional view of the indoor heat exchanger according to the second embodiment of the present invention.

【図10】図9に示す伝熱促進部材の他の断面形状の例
を示す図。
FIG. 10 is a view showing another example of the cross-sectional shape of the heat transfer promoting member shown in FIG. 9;

【図11】本発明の第3の実施形態における、室内熱交
換器の横断面図。
FIG. 11 is a cross-sectional view of an indoor heat exchanger according to a third embodiment of the present invention.

【図12】本発明の第3の実施形態における、他の室内
熱交換器の横断面図。
FIG. 12 is a cross-sectional view of another indoor heat exchanger according to the third embodiment of the present invention.

【図13】本発明の第4の実施形態における、室内熱交
換器の横断面図。
FIG. 13 is a cross-sectional view of an indoor heat exchanger according to a fourth embodiment of the present invention.

【図14】本発明の第4の実施形態における、他の室内
熱交換器の横断面図。
FIG. 14 is a cross-sectional view of another indoor heat exchanger according to the fourth embodiment of the present invention.

【図15】図13及び図14に示す室内熱交換器のパス
構成を示す模式図。
FIG. 15 is a schematic diagram showing a path configuration of the indoor heat exchanger shown in FIGS. 13 and 14.

【図16】本発明の第5の実施形態における、室内熱交
換器の横断面図。
FIG. 16 is a cross-sectional view of an indoor heat exchanger according to a fifth embodiment of the present invention.

【図17】従来の空気調和装置の室内熱交換器の例を示
す横断面図。
FIG. 17 is a cross-sectional view showing an example of an indoor heat exchanger of a conventional air conditioner.

【図18】図17に示す室内熱交換器のパス構成を示す
模式図。
FIG. 18 is a schematic diagram showing a path configuration of the indoor heat exchanger shown in FIG.

【符号の説明】[Explanation of symbols]

3 室外熱交換器 5, 5A〜5D, 105A〜105D, 5′ 室内熱交
換器 8 主室内熱交換器 8a 第1熱交換器 8b 第2熱交換器 9 補助熱交換器 21〜24, 51〜57 伝熱管 31〜34 直管部 41〜44 U字状連結管(リターンベント) A 室外機 B 室内機 J, J1〜J3 合流部 S1, S1′, S1″ ねじれテープ形状の伝熱促進部
材 S2 コイルばね形状の伝熱促進部材
3 Outdoor heat exchanger 5, 5A-5D, 105A-105D, 5 'Indoor heat exchanger 8 Main indoor heat exchanger 8a First heat exchanger 8b Second heat exchanger 9 Auxiliary heat exchangers 21-24, 51-51 57 Heat transfer tube 31-34 Straight tube portion 41-44 U-shaped connecting tube (return vent) A outdoor unit B indoor unit J, J1-J3 junction S1, S1 ', S1 "Heat transfer promoting member in twisted tape shape S2 Coil spring shaped heat transfer promoting member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀 繁 典 東京都港区新橋3丁目3番9号 東芝エ ー・ブイ・イー株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Shigenori Hori 3-3-9, Shimbashi, Minato-ku, Tokyo Inside Toshiba AV EE Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】冷媒の流れる伝熱管を有する空気調和装置
の熱交換器において、 前記冷媒に、50℃の飽和圧力が2500キロパスカル
(kPa)以上の冷媒を用いるとともに、 前記伝熱管内に、前記冷媒の流れの状態を変化させて熱
伝達を促進するための伝熱促進部材を挿着したことを特
徴とする空気調和装置の熱交換器。
In a heat exchanger of an air conditioner having a heat transfer tube through which a refrigerant flows, a refrigerant having a saturation pressure of 50 ° C. and a pressure of 2500 kilopascals (kPa) or more is used as the refrigerant. A heat exchanger for an air conditioner, wherein a heat transfer promoting member for changing a flow state of the refrigerant to promote heat transfer is inserted.
【請求項2】前記伝熱促進部材は、ねじれテープ形状を
有することを特徴とする請求項1記載の空気調和装置の
熱交換器。
2. The heat exchanger according to claim 1, wherein the heat transfer promoting member has a twisted tape shape.
【請求項3】前記伝熱促進部材は、コイルばね形状を有
することを特徴とする請求項1記載の空気調和装置の熱
交換器。
3. The heat exchanger according to claim 1, wherein the heat transfer promoting member has a coil spring shape.
【請求項4】前記伝熱管のうち、熱交換器が凝縮器とな
る場合の冷媒流れ方向の下流側の部分にのみ、前記伝熱
促進部材を挿着したことを特徴とする請求項1乃至3の
いずれかに記載の空気調和装置の熱交換器。
4. The heat transfer promoting member is inserted only into a portion of the heat transfer tube on the downstream side in the refrigerant flow direction when the heat exchanger is a condenser. 4. The heat exchanger for an air conditioner according to any one of 3.
【請求項5】前記伝熱管は、熱交換器が凝縮器となる場
合において1または2以上の合流部を有する複数パス構
成となっており、 前記伝熱管のうち、熱交換器が凝縮器となる場合の冷媒
流れ方向における、前記合流部の全部または一部より下
流側の部分にのみ、前記伝熱促進部材を挿着したことを
特徴とする請求項1乃至3のいずれかに記載の空気調和
装置の熱交換器。
5. The heat transfer tube has a multi-pass configuration having one or more junctions when the heat exchanger is a condenser, wherein the heat exchanger is a condenser and a heat exchanger. The air according to any one of claims 1 to 3, wherein the heat transfer promoting member is inserted only in a portion downstream of all or a part of the merging portion in a refrigerant flow direction. A heat exchanger for a harmony device.
【請求項6】室内熱交換器と室外熱交換器とを備え、 前記室内熱交換器または前記室外熱交換器のいずれか一
方が、請求項1乃至5のいずれかに記載の熱交換器であ
ることを特徴とする空気調和装置。
6. The heat exchanger according to claim 1, further comprising an indoor heat exchanger and an outdoor heat exchanger, wherein one of the indoor heat exchanger and the outdoor heat exchanger is the heat exchanger according to claim 1. An air conditioner, comprising:
JP28065996A 1996-10-23 1996-10-23 Heat exchanger of air conditioner Withdrawn JPH10122704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28065996A JPH10122704A (en) 1996-10-23 1996-10-23 Heat exchanger of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28065996A JPH10122704A (en) 1996-10-23 1996-10-23 Heat exchanger of air conditioner

Publications (1)

Publication Number Publication Date
JPH10122704A true JPH10122704A (en) 1998-05-15

Family

ID=17628147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28065996A Withdrawn JPH10122704A (en) 1996-10-23 1996-10-23 Heat exchanger of air conditioner

Country Status (1)

Country Link
JP (1) JPH10122704A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304702A (en) * 2000-04-19 2001-10-31 Daikin Ind Ltd Refrigeration apparatus
JP2009300021A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device
JP2010078187A (en) * 2008-09-24 2010-04-08 Chubu Shatai Kk Refrigerant diffuser for air conditioning device, and air conditioning device using the same
JP2012013412A (en) * 2011-09-12 2012-01-19 Mitsubishi Electric Corp Refrigerating cycle device
WO2015140827A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Heat pump device
JP2015224804A (en) * 2014-05-26 2015-12-14 株式会社ノーリツ Heat exchanger
JPWO2015140886A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
CN109724446A (en) * 2017-10-27 2019-05-07 中国石油化工股份有限公司 Augmentation of heat transfer pipe and pyrolysis furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304702A (en) * 2000-04-19 2001-10-31 Daikin Ind Ltd Refrigeration apparatus
JP2009300021A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device
JP2010078187A (en) * 2008-09-24 2010-04-08 Chubu Shatai Kk Refrigerant diffuser for air conditioning device, and air conditioning device using the same
JP2012013412A (en) * 2011-09-12 2012-01-19 Mitsubishi Electric Corp Refrigerating cycle device
WO2015140827A1 (en) * 2014-03-17 2015-09-24 三菱電機株式会社 Heat pump device
JPWO2015140886A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
JPWO2015140827A1 (en) * 2014-03-17 2017-04-06 三菱電機株式会社 Heat pump equipment
JP2015224804A (en) * 2014-05-26 2015-12-14 株式会社ノーリツ Heat exchanger
CN109724446A (en) * 2017-10-27 2019-05-07 中国石油化工股份有限公司 Augmentation of heat transfer pipe and pyrolysis furnace

Similar Documents

Publication Publication Date Title
AU2007303268B2 (en) Indoor unit for air conditioner
JP2002139282A (en) Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger
JPH0875384A (en) Heat transfer tube for non-azeotrope refrigerant, heat exchanger using the same tube, assembling method and refrigerating air conditioner using the same exchanger
JPH10176867A (en) Air conditioner
JP2008002746A (en) Air heat exchanger of high performance
JP6576577B1 (en) Refrigerant distributor, heat exchanger, and air conditioner
JPH10122704A (en) Heat exchanger of air conditioner
WO2020259671A1 (en) Heat exchanger, and air conditioning unit having multiple refrigeration systems
JPH08247678A (en) Heat-exchanger made of aluminum
JP2006336909A (en) Condenser, and indoor unit for air conditioner using it
CN110595111A (en) Heat exchanger and multi-refrigerating-system air conditioning unit
JP2012052676A (en) Heat exchanger and air conditioner using the same
JP7292510B2 (en) heat exchangers and air conditioners
JPH11257800A (en) Heat exchanger and air conditioner with exchanger
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
CN210320743U (en) Heat exchanger and multi-refrigerating-system air conditioning unit
JPH10132480A (en) Heat exchanger for air conditioner
WO2021131038A1 (en) Heat exchanger and refrigeration cycle device
JP6599056B1 (en) Gas header, heat exchanger and refrigeration cycle apparatus
JP2004332958A (en) Heat exchanger of air conditioner
JPH08145490A (en) Heat exchanger for heat pump air conditioner
JP3421130B2 (en) Air conditioner
JPH10339594A (en) Heat exchanger
JPH10196984A (en) Air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106