JPH1012256A - Fuel cell equipment - Google Patents

Fuel cell equipment

Info

Publication number
JPH1012256A
JPH1012256A JP8164285A JP16428596A JPH1012256A JP H1012256 A JPH1012256 A JP H1012256A JP 8164285 A JP8164285 A JP 8164285A JP 16428596 A JP16428596 A JP 16428596A JP H1012256 A JPH1012256 A JP H1012256A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
cathode
temperature
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8164285A
Other languages
Japanese (ja)
Other versions
JP3728742B2 (en
Inventor
Terutoshi Uchida
輝俊 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP16428596A priority Critical patent/JP3728742B2/en
Publication of JPH1012256A publication Critical patent/JPH1012256A/en
Application granted granted Critical
Publication of JP3728742B2 publication Critical patent/JP3728742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell equipment by which an inlet temperature of anode gas and cathode gas of a fuel cell can be controlled in a proper range without adding a heating system such as an electric heater and a piping heater and without separately controlling the temperature on the anode side and the cathode side not only at high load time but also at low load time and OCV (a connecting-disconnecting condition of an output circuit) time. SOLUTION: This equipment 20 has a heat exchanger 22 to exchange heat between anode gas 2 and cathode gas 3 on the upstream side of a fuel cell 11. Here, a temperature of the cathode gas 3 of an inlet of the fuel cell 11 is adjusted by a cathode circulating gas quantity, and a temperature of the anode gas 2 of the inlet of the fuel cell 11 is adjusted by heat exchange between the cathode gas 3 and the anode gas 2. The heat exchanger 22 is a partition wall type parallel flow heat exchanger, and is arranged closest to the upstream side of the fuel cell 11, and is housed in the same housing vessel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶融炭酸塩型燃料電池
に係わり、更に詳しくは、燃料電池の入口温度を調節で
きる燃料電池設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten carbonate fuel cell, and more particularly, to a fuel cell system capable of adjusting an inlet temperature of a fuel cell.

【0002】[0002]

【従来の技術】天然ガス等を燃料とする溶融炭酸塩型燃
料電池を用いた発電設備(以下、単に燃料電池設備とい
う)では、図3に示すように天然ガス等の燃料ガス1を
水素を含むアノードガス2に改質する改質器10と、ア
ノードガス2と酸素を含むカソードガス3とから発電す
る燃料電池11とを備えており、改質器10で作られた
アノードガス2は燃料電池11のアノード側Aに供給さ
れ、燃料電池内でその大部分(例えば80%)を消費し
た後、アノード排ガス4として下流設備(例えば改質器
の燃焼室等)に供給される。一方、改質器10では、燃
料ガスの燃焼により改質管10aを加熱して改質管を通
る燃料ガス1を改質し、改質管10aによる吸熱で温度
が下がった燃焼排ガス5は外部から供給される空気6と
混合されてカソードガス3となり、燃料電池11のカソ
ード側Cに供給される。更に、燃料電池11内でその一
部が反応したカソードガス(カソード排ガス7)は高温
ブロア12によりその一部が燃料電池11の上流側に循
環され、残りが下流設備(例えばタービン圧縮機等)に
供給される。なお、この図において12aはガスヒータ
である。
2. Description of the Related Art In a power generation facility using a molten carbonate fuel cell that uses natural gas or the like as fuel (hereinafter, simply referred to as a fuel cell facility), as shown in FIG. A reformer 10 for reforming the anode gas 2 containing the fuel gas, and a fuel cell 11 for generating electricity from the anode gas 2 and the cathode gas 3 containing oxygen. After being supplied to the anode side A of the battery 11 and consuming most (for example, 80%) in the fuel cell, it is supplied as anode exhaust gas 4 to downstream equipment (for example, a combustion chamber of a reformer). On the other hand, in the reformer 10, the fuel gas 1 is reformed by heating the reforming pipe 10 a by burning the fuel gas, and the combustion exhaust gas 5 whose temperature is lowered by the endothermic heat of the reforming pipe 10 a is supplied to the outside. Is mixed with the air 6 supplied from the fuel cell and becomes the cathode gas 3 and supplied to the cathode side C of the fuel cell 11. Further, part of the cathode gas (cathode exhaust gas 7) partially reacted in the fuel cell 11 is circulated to the upstream side of the fuel cell 11 by the high-temperature blower 12, and the remainder is downstream equipment (for example, a turbine compressor or the like). Supplied to In this figure, reference numeral 12a denotes a gas heater.

【0003】[0003]

【発明が解決しようとする課題】上述したように、従来
の燃料電池設備では、燃料電池11のアノード側Aには
改質器10で生成された改質ガスがそのままアノードガ
ス2として導入され、燃料電池11のカソード側Cに
は、改質器10の燃焼排ガス5に電池反応の酸化剤とし
ての空気6を混合したものが、高温ブロア12で循環さ
れる高温のカソード排ガスと混合して温度調節を行い、
カソード側Cに送られている。
As described above, in the conventional fuel cell system, the reformed gas generated in the reformer 10 is directly introduced into the anode side A of the fuel cell 11 as the anode gas 2, On the cathode side C of the fuel cell 11, a mixture of the combustion exhaust gas 5 of the reformer 10 and the air 6 as an oxidant for the cell reaction is mixed with the high temperature cathode exhaust gas circulated by the high temperature Make adjustments,
It is sent to the cathode side C.

【0004】しかし、上述した従来の燃料電池設備で
は、カソード側の入口温度tc は、高温ブロア12によ
るカソードガスの循環量により容易に調節できるが、ア
ノード側の入口温度ta の調節が困難である問題点があ
った。以下、これを詳述する。
However, in the above-mentioned conventional fuel cell system, the inlet temperature tc on the cathode side can be easily adjusted by the circulation amount of the cathode gas by the high temperature blower 12, but it is difficult to adjust the inlet temperature ta on the anode side. There was a problem. Hereinafter, this will be described in detail.

【0005】図4は、従来の燃料電池設備における各部
の温度分布例であり、(A)は高負荷時(約100%負
荷)、(B)は低負荷時(約30%負荷)、(C)は出
力回路の切断状態(Open Circuit Voltage:OCV)を示して
いる。図4(A)に示すように、100%負荷に近い高
負荷時には、アノードガス2の改質器出口温度は、約6
30℃であり、これが放熱により約610℃になって燃
料電池11に流入する。一方、カソード側の改質器出口
温度は、約524℃であり、空気6と混合し、高温(約
630℃)のカソード排ガスと混合して約580℃で燃
料電池11に流入する。従って、高負荷時(A)には、
カソード側の入口温度を、カソードガス循環量で調節す
るだけで、両ガスの入口温度を適正範囲(例えば約58
0〜600℃)に調節することができる。
FIGS. 4A and 4B show examples of the temperature distribution of each part in a conventional fuel cell system. FIG. 4A shows a high load (about 100% load), FIG. 4B shows a low load (about 30% load), and FIG. C) indicates a disconnected state (Open Circuit Voltage: OCV) of the output circuit. As shown in FIG. 4A, at a high load close to 100% load, the reformer outlet temperature of the anode gas 2 is about 6%.
30 ° C., which becomes about 610 ° C. due to heat radiation and flows into the fuel cell 11. On the other hand, the outlet temperature of the reformer on the cathode side is about 524 ° C., mixed with the air 6, mixed with the high temperature (about 630 ° C.) cathode exhaust gas, and flows into the fuel cell 11 at about 580 ° C. Therefore, at the time of high load (A),
The inlet temperature of both gases is adjusted to an appropriate range (for example, about 58
0-600 ° C).

【0006】一方、低負荷時(B)には、アノードガス
3の改質器出口温度が低下し(例えば約584℃)、そ
のまま燃料電池11に供給すると、アノード入口温度は
更に低下してしまう。しかし、アノード入口温度が例え
ば約550℃以下になるとアノード側で炭素析出を起こ
し、発電に重大な支障を来すおそれがある。そのため、
従来の燃料電池設備では、図4(B)に示すように、改
質器10と燃料電池11の間のアノードガスラインに電
気ヒータ13と配管ヒータ14を設置し、これによりア
ノードガス2の電池入口温度が適正範囲(例えば約58
0〜600℃)になるように温度調節を行っている。し
かし、このため、電気ヒータ13と配管ヒータ14が必
要になるばかりか、カソード側のみならずアノード側も
別個に温度制御する必要がある問題点があった。
On the other hand, when the load is low (B), the outlet temperature of the reformer of the anode gas 3 decreases (for example, about 584 ° C.). If the anode gas 3 is supplied to the fuel cell 11 as it is, the anode inlet temperature further decreases. . However, when the anode inlet temperature becomes, for example, about 550 ° C. or less, carbon deposition occurs on the anode side, which may seriously hinder power generation. for that reason,
In the conventional fuel cell equipment, as shown in FIG. 4B, an electric heater 13 and a pipe heater 14 are installed in an anode gas line between the reformer 10 and the fuel cell 11, whereby a battery for the anode gas 2 is provided. If the inlet temperature is within the appropriate range (eg, about 58
(0-600 ° C.). However, this requires not only the electric heater 13 and the pipe heater 14, but also a problem that it is necessary to separately control the temperature not only on the cathode side but also on the anode side.

【0007】更に、図4(C)に示すように、OCV時
には、カソード側で必要な二酸化炭素量を確保するため
に、改質器燃焼側での空燃比を増加しなければならない
(例えば低負荷の約1.7倍)。このため、改質ガス量
に対して、燃焼排ガス量が過剰になり、アノードガスの
改質器出口温度が高くなってしまい(例えは約641
℃)、カソード側との温度差が大きくなり、電池に悪影
響を及ぼすおそれがある。
Further, as shown in FIG. 4 (C), at the time of OCV, the air-fuel ratio on the combustion side of the reformer must be increased in order to secure a necessary amount of carbon dioxide on the cathode side (for example, low air-fuel ratio). About 1.7 times the load). For this reason, the amount of the combustion exhaust gas becomes excessive with respect to the amount of the reformed gas, and the outlet temperature of the reformer of the anode gas becomes high (for example, about 641
° C), the temperature difference from the cathode side increases, which may adversely affect the battery.

【0008】本発明は上述した問題点を解決するために
創案されたものである。すなわち、本発明の目的は、高
負荷時のみならず、低負荷時及びOCV時にも、燃料電
池のアノードガス及びカソードガスの入口温度を適正範
囲(例えば約580〜600℃)に制御できる燃料電池
設備を提供することにある。また、本発明の別の目的
は、電気ヒータや配管ヒータ等の加熱装置を附加するこ
となく、かつアノード側とカソード側で別々に温度制御
することなく、燃料電池のアノードガス及びカソードガ
スの入口温度を適正範囲に制御できる燃料電池設備を提
供することにある。
The present invention has been made to solve the above-mentioned problems. That is, an object of the present invention is to provide a fuel cell in which the inlet temperatures of the anode gas and the cathode gas of the fuel cell can be controlled within an appropriate range (for example, about 580 to 600 ° C.) not only at the time of high load but also at the time of low load and OCV. To provide facilities. Another object of the present invention is to provide an anode gas and cathode gas inlet for a fuel cell without adding a heating device such as an electric heater or a pipe heater, and without separately controlling the temperature on the anode side and the cathode side. An object of the present invention is to provide a fuel cell facility capable of controlling a temperature within an appropriate range.

【0009】[0009]

【課題を解決するための手段】本願発明の発明者は、ア
ノードガスに比べてカソードガスの流量が非常に多い
(例えば約70倍)ため、アノードガスとカソードガス
を熱交換させることによりアノードガスを常にカソード
ガスの温度に近ずけられることに着眼した。本発明はか
かる新規の知見に基づくものである。
The inventor of the present invention has found that the flow rate of the cathode gas is much larger than that of the anode gas (for example, about 70 times). Was focused on being able to always approach the temperature of the cathode gas. The present invention is based on such a new finding.

【0010】すなわち、本発明によれば、燃料ガスを水
素を含むアノードガスに改質する改質器と、アノードガ
スと酸素を含むカソードガスとから発電する燃料電池
と、燃料電池を通過したカソードガスを燃料電池の上流
側に循環させるカソード循環ラインとを備えた燃料電池
設備において、更に、燃料電池の上流側にアノードガス
とカソードガスとを熱交換させる熱交換器を備え、カソ
ード循環ガス量により、燃料電池入口のカソードガス温
度を調節し、カソードガスとアノードガスとの熱交換に
より、燃料電池入口のアノードガス温度を調節する、こ
とを特徴とする燃料電池設備が提供される。
That is, according to the present invention, a reformer for reforming a fuel gas to an anode gas containing hydrogen, a fuel cell for generating electricity from the anode gas and a cathode gas containing oxygen, and a cathode passing through the fuel cell A fuel circulation system having a cathode circulation line for circulating gas upstream of the fuel cell, further comprising a heat exchanger for exchanging heat between the anode gas and the cathode gas upstream of the fuel cell; Thus, the temperature of the cathode gas at the fuel cell inlet is adjusted, and the temperature of the anode gas at the fuel cell inlet is adjusted by heat exchange between the cathode gas and the anode gas.

【0011】上記本発明の構成によれば、カソード循環
ガス量により、燃料電池入口のカソードガス温度を適正
範囲(例えば約580〜600℃)に調節するだけで、
電気ヒータや配管ヒータ等の加熱装置を附加することな
く、かつアノード側とカソード側で別々に温度制御する
ことなく、高負荷時のみならず、低負荷時及びOCV時
にも、燃料電池のアノードガス及びカソードガスの入口
温度を適正範囲(例えば約580〜600℃)に制御す
ることができる。
According to the configuration of the present invention, the temperature of the cathode gas at the fuel cell inlet is merely adjusted to an appropriate range (for example, about 580 to 600 ° C.) by the amount of the circulating cathode gas.
The anode gas of the fuel cell can be used not only at high load, but also at low load and OCV without adding a heating device such as an electric heater or a pipe heater, and without separately controlling the temperature on the anode side and the cathode side. In addition, the inlet temperature of the cathode gas can be controlled in an appropriate range (for example, about 580 to 600 ° C.).

【0012】すなわち、100%負荷に近い高負荷時に
は、図4(A)に示したように、カソード側の入口温度
を、カソードガス循環量で調節するだけで、両ガスの入
口温度を適正範囲(例えば約580〜600℃)に調節
することができる。この場合、アノード入口温度は、カ
ソードガスにより冷却されて適正温度になるが、カソー
ドガスよりはわずかに高めになる。
That is, at the time of a high load close to 100% load, as shown in FIG. 4A, the inlet temperature of both gases is adjusted only by adjusting the cathode gas inlet temperature by adjusting the amount of circulating cathode gas. (For example, about 580 to 600 ° C.). In this case, the anode inlet temperature is cooled by the cathode gas to an appropriate temperature, but slightly higher than the cathode gas.

【0013】次に、低負荷時には、図4(B)に示した
ように、改質器出口温度が約580℃程度まで下がり、
従来のように、電気ヒータや配管ヒータがないので、熱
交換器入口温度は更に低くなる。しかし、カソードガス
入口温度が適正範囲(例えば約580〜600℃)され
ており、しかもカソードガス量はアノードガス量の約7
0倍の流量を有しているので、熱交換器内の熱交換によ
り、アノードガス温度はカソードガス温度にほぼ等しい
温度まで加熱される。従って、カソード側の入口温度
を、適正範囲内で高め(例えば約590〜600℃)に
調節するだけで、両ガスの入口温度を適正範囲(例えば
約580〜600℃)に調節することができる。
Next, at a low load, as shown in FIG. 4B, the reformer outlet temperature drops to about 580 ° C.
Since there is no electric heater or pipe heater as in the related art, the heat exchanger inlet temperature is further reduced. However, the cathode gas inlet temperature is in an appropriate range (for example, about 580 to 600 ° C.), and the cathode gas amount is about 7 times the anode gas amount.
Since the flow rate is 0 times, the anode gas temperature is heated to a temperature substantially equal to the cathode gas temperature by the heat exchange in the heat exchanger. Therefore, the inlet temperature of both gases can be adjusted to an appropriate range (for example, about 580 to 600 ° C.) only by adjusting the inlet temperature on the cathode side to a higher value (for example, about 590 to 600 ° C.) within an appropriate range. .

【0014】更に、OCV時には、図4(C)に示した
ように、改質器出口温度が約640℃程度まで上がり、
熱交換器入口温度も600℃以上になるが、低負荷時と
は逆に、大量のカソードガスとの熱交換により、アノー
ドガス温度はカソードガス温度にほぼ等しい温度まで冷
却される。従って、この場合にも、カソード側の入口温
度を、適正範囲内で低め(例えば約580〜590℃)
に調節するだけで、両ガスの入口温度を適正範囲(例え
ば約580〜600℃)に調節することができる。
Further, at the time of OCV, as shown in FIG. 4C, the outlet temperature of the reformer rises to about 640 ° C.,
Although the heat exchanger inlet temperature also becomes 600 ° C. or higher, the anode gas temperature is cooled to a temperature substantially equal to the cathode gas temperature by heat exchange with a large amount of cathode gas, contrary to the low load condition. Therefore, in this case as well, the inlet temperature on the cathode side is lowered within an appropriate range (for example, about 580 to 590 ° C.).
The inlet temperature of both gases can be adjusted to an appropriate range (for example, about 580 to 600 ° C.) only by adjusting

【0015】本発明の好ましい実施形態によれば、前記
熱交換器は、隔壁式平行流熱交換器であり、燃料電池の
上流側直近に配置され、同一の格納容器内に格納され
る。この構成により、格納容器内で同圧に差圧制御され
ている容器圧力、アノードガス圧力、カソードガス圧力
と同一の圧力に、熱交換器内の圧力を何らの制御装置を
も追加することなく制御でき、熱交換器内のアノードガ
スとカソードガスの差圧が抑えられ、ガス漏れ等に対す
る安全性を高めることができる。
According to a preferred embodiment of the present invention, the heat exchanger is a partition type parallel flow heat exchanger, which is disposed immediately upstream of the fuel cell and stored in the same storage container. With this configuration, the pressure in the heat exchanger can be adjusted to the same pressure as the container pressure, the anode gas pressure, and the cathode gas pressure that are differentially controlled to the same pressure in the containment vessel without adding any control device. The pressure can be controlled, the differential pressure between the anode gas and the cathode gas in the heat exchanger can be suppressed, and the safety against gas leakage and the like can be improved.

【0016】更に、前記熱交換器は、燃料電池と一体に
形成されたガスヘッダである、ことが好ましい。この構
成により、熱交換器を燃料電池に組み込むことができ、
装置のコンパクト化とコストダウンを図ることができ
る。
Further, it is preferable that the heat exchanger is a gas header formed integrally with the fuel cell. With this configuration, the heat exchanger can be incorporated into the fuel cell,
The apparatus can be made compact and cost can be reduced.

【0017】[0017]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において、共通
する部分には同一の符号を付して使用する。図1は、本
発明による燃料電池設備の構成図である。この図におい
て、本発明の燃料電池設備20は、燃料ガス1を水素を
含むアノードガス2に改質する改質器10と、アノード
ガス2と酸素を含むカソードガス3とから発電する燃料
電池11と、燃料電池11を通過したカソードガスを燃
料電池11の上流側に循環させるカソード循環ライン1
5とを備えている。また、カソード循環ライン15に
は、高温ブロア12とガスヒータ12aが設置されてい
る。かかる構成は、図3に示した従来の燃料電池設備と
同様である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. FIG. 1 is a configuration diagram of a fuel cell facility according to the present invention. In this figure, a fuel cell system 20 of the present invention includes a reformer 10 for reforming a fuel gas 1 into an anode gas 2 containing hydrogen, and a fuel cell 11 for generating electricity from the anode gas 2 and a cathode gas 3 containing oxygen. And a cathode circulation line 1 for circulating the cathode gas passing through the fuel cell 11 to the upstream side of the fuel cell 11
5 is provided. The cathode circulation line 15 is provided with a high-temperature blower 12 and a gas heater 12a. Such a configuration is the same as that of the conventional fuel cell equipment shown in FIG.

【0018】本発明の燃料電池設備20は、更に、燃料
電池11の上流側にアノードガス2とカソードガス3と
を熱交換させる熱交換器22を備える。この熱交換器2
2は、隔壁式平行流熱交換器(例えばプレートフィン熱
交換器)であり、燃料電池11の上流側直近に配置さ
れ、かつ同一の格納容器11a内に格納されている。こ
の構成により、格納容器11a内で同圧に差圧制御され
ている容器圧力、アノードガス圧力、カソードガス圧力
と同一の圧力に、熱交換器22内の圧力を何らの制御装
置をも追加することなく制御でき、熱交換器22内のア
ノードガス2とカソードガス3の差圧が抑えられ、ガス
漏れ等に対する安全性を高めることができる。
The fuel cell equipment 20 of the present invention further includes a heat exchanger 22 for exchanging heat between the anode gas 2 and the cathode gas 3 on the upstream side of the fuel cell 11. This heat exchanger 2
Reference numeral 2 denotes a partition type parallel flow heat exchanger (for example, a plate fin heat exchanger), which is disposed immediately upstream of the fuel cell 11 and stored in the same storage container 11a. With this configuration, any control device for controlling the pressure in the heat exchanger 22 is added to the same pressure as the container pressure, the anode gas pressure, and the cathode gas pressure that are differentially controlled to the same pressure in the storage container 11a. The pressure difference between the anode gas 2 and the cathode gas 3 in the heat exchanger 22 can be suppressed, and the safety against gas leakage and the like can be improved.

【0019】なお、熱交換器22を、燃料電池11と一
体に形成されたガスヘッダとし、ガスヘッダと熱交換器
の機能を併用するようにしてもよい。この構成により、
熱交換器を燃料電池に組み込むことができ、装置のコン
パクト化とコストダウンを図ることができる。
The heat exchanger 22 may be a gas header formed integrally with the fuel cell 11, and the functions of the gas header and the heat exchanger may be used together. With this configuration,
The heat exchanger can be incorporated in the fuel cell, and the device can be reduced in size and cost.

【0020】上述した本発明の燃料電池設備20は、次
のように運転する。まず、高温ブロア12の回転数制御
により、カソード循環ライン15を通るカソード循環ガ
ス量を変化させ、これにより、燃料電池11の入口のカ
ソードガス温度tc を調節する。この制御方法は、従来
の燃料電池設備と同様であるが、温度制御範囲は後述す
るようにわずかに厳しく行う必要がある。なお、本発明
の燃料電池設備では、アノードガス温度は直接制御せ
ず、後述するように、カソードガスとアノードガスとの
熱交換により、燃料電池入口のアノードガス温度を間接
的に調節する。
The above-described fuel cell system 20 of the present invention operates as follows. First, by controlling the rotation speed of the high-temperature blower 12, the amount of the cathode circulating gas passing through the cathode circulating line 15 is changed, thereby adjusting the cathode gas temperature tc at the inlet of the fuel cell 11. This control method is the same as that of the conventional fuel cell equipment, but the temperature control range needs to be slightly strict as described later. Note that, in the fuel cell equipment of the present invention, the anode gas temperature is not directly controlled, but is indirectly adjusted by the heat exchange between the cathode gas and the anode gas, as described later.

【0021】従って、本発明の燃料電池設備では、高負
荷時のみならず、低負荷時及びOCV時にも、電気ヒー
タや配管ヒータ等の加熱装置を附加することなく、かつ
アノード側とカソード側で別々に温度制御することな
く、燃料電池のアノードガス及びカソードガスの入口温
度を適正範囲(例えば約580〜600℃)に制御する
ことができる。
Therefore, in the fuel cell system of the present invention, not only at the time of high load, but also at the time of low load and at the time of OCV, a heating device such as an electric heater or a piping heater is not added, and the anode side and the cathode side are used. Without separately controlling the temperature, the inlet temperatures of the anode gas and the cathode gas of the fuel cell can be controlled within an appropriate range (for example, about 580 to 600 ° C.).

【0022】図2は、本発明による燃料電池設備におけ
る各部の温度を示す図4と同様の図である。この図にお
いて、(A)は高負荷時(約100%負荷)、(B)は
低負荷時(約30%負荷)、(C)は出力回路の切断状
態(OCV) を示している。
FIG. 2 is a view similar to FIG. 4 showing the temperature of each part in the fuel cell equipment according to the present invention. In this figure, (A) shows a high load (about 100% load), (B) shows a low load (about 30% load), and (C) shows a disconnected state (OCV) of the output circuit.

【0023】100%負荷に近い高負荷時には、図4
(A)に示すように、カソード側の入口温度を、カソー
ドガス循環量で調節するだけで、両ガスの入口温度を適
正範囲(例えば約580〜610℃)に調節することが
できる。この場合、アノード入口温度は、カソードガス
により冷却されて適正温度になるが、カソードガスより
はわずかに高めになる。
At a high load close to 100% load, FIG.
As shown in (A), the inlet temperature of both gases can be adjusted to an appropriate range (for example, about 580 to 610 ° C.) only by adjusting the cathode side inlet temperature by the amount of circulating cathode gas. In this case, the anode inlet temperature is cooled by the cathode gas to an appropriate temperature, but slightly higher than the cathode gas.

【0024】次に、低負荷時には、図4(B)に示すよ
うに、改質器出口温度が約580℃程度まで下がり、従
来のように、電気ヒータや配管ヒータがないので、熱交
換器入口温度は更に低くなるが、カソードガス入口温度
が適正範囲(例えば約580〜600℃)されており、
しかもカソードガス量はアノードガス量の約70倍の流
量を有しているので、熱交換器内の熱交換により、アノ
ードガス温度はカソードガス温度にほぼ等しい温度まで
加熱される。従って、カソード側の入口温度を、適正範
囲内で高め(例えば約590〜600℃)に調節するだ
けで、両ガスの入口温度を適正範囲(例えば約580〜
600℃)に調節することができる。
Next, at a low load, as shown in FIG. 4B, the outlet temperature of the reformer drops to about 580 ° C., and since there is no electric heater or pipe heater as in the conventional case, the heat exchanger is not used. Although the inlet temperature is further lowered, the cathode gas inlet temperature is set in an appropriate range (for example, about 580 to 600 ° C.)
Further, since the amount of the cathode gas has a flow rate about 70 times the amount of the anode gas, the temperature of the anode gas is heated to a temperature substantially equal to the temperature of the cathode gas by heat exchange in the heat exchanger. Therefore, by merely adjusting the inlet temperature on the cathode side to a higher value (for example, about 590 to 600 ° C.) within an appropriate range, the inlet temperatures of both gases are adjusted to an appropriate range (for example, about 580 to 580 ° C.).
(600 ° C.).

【0025】更に、OCV時には、図4(C)に示すよ
うに、改質器出口温度が約641℃程度まで上がり、熱
交換器入口温度も600℃以上になるが、低負荷時とは
逆に、大量のカソードガスとの熱交換により、アノード
ガス温度はカソードガス温度にほぼ等しい温度まで冷却
される。従って、この場合にも、カソード側の入口温度
を、適正範囲内で低め(例えば約580〜590℃)に
調節するだけで、両ガスの入口温度を適正範囲(例えば
約580〜600℃)に調節することができる。
Further, at the time of OCV, as shown in FIG. 4 (C), the reformer outlet temperature rises to about 641 ° C. and the heat exchanger inlet temperature rises to 600 ° C. or higher, but is opposite to that at low load. In addition, the anode gas temperature is cooled to a temperature substantially equal to the cathode gas temperature by heat exchange with a large amount of cathode gas. Therefore, also in this case, the inlet temperature of both gases is adjusted to a proper range (for example, about 580 to 600 ° C.) only by adjusting the inlet temperature on the cathode side to be lower (for example, about 580 to 590 ° C.) within a proper range. Can be adjusted.

【0026】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々変更できる
ことは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention.

【0027】[0027]

【発明の効果】上述したように、本発明の燃料電池設備
は、高負荷時のみならず、低負荷時及びOCV時にも、
電気ヒータや配管ヒータ等の加熱装置を附加することな
く、かつアノード側とカソード側で別々に温度制御する
ことなく、燃料電池のアノードガス及びカソードガスの
入口温度を適正範囲(例えば約580〜600℃)に制
御することができる、等の優れた効果を有する。
As described above, the fuel cell system of the present invention can be used not only under high load, but also under low load and OCV.
Without adding a heating device such as an electric heater or a pipe heater, and without separately controlling the temperature on the anode side and the cathode side, the inlet temperature of the anode gas and the cathode gas of the fuel cell can be adjusted to an appropriate range (for example, about 580 to 600 ° C).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による燃料電池設備の構成図である。FIG. 1 is a configuration diagram of a fuel cell facility according to the present invention.

【図2】本発明による燃料電池設備における各部の温度
を示す図である。
FIG. 2 is a diagram showing the temperature of each part in the fuel cell equipment according to the present invention.

【図3】従来の燃料電池設備の構成図である。FIG. 3 is a configuration diagram of a conventional fuel cell facility.

【図4】従来の燃料電池設備における各部の温度を示す
図である。
FIG. 4 is a diagram showing the temperature of each part in a conventional fuel cell facility.

【符号の説明】[Explanation of symbols]

1 燃料ガス 2 アノードガス 3 カソードガス 4 アノード排ガス 5 燃焼排ガス 6 空気 7 カソード排ガス 10 改質器 10a 改質管 11 燃料電池 11a 格納容器 12 高温ブロア 12a ガスヒータ 13 電気ヒータ 14 配管ヒータ 15 カソード循環ライン 20 燃料電池設備 22 熱交換器 DESCRIPTION OF SYMBOLS 1 Fuel gas 2 Anode gas 3 Cathode gas 4 Anode exhaust gas 5 Combustion exhaust gas 6 Air 7 Cathode exhaust gas 10 Reformer 10a Reforming tube 11 Fuel cell 11a Storage container 12 High temperature blower 12a Gas heater 13 Electric heater 14 Pipe heater 15 Cathode circulation line 20 Fuel cell equipment 22 Heat exchanger

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃料ガスを水素を含むアノードガスに改
質する改質器と、アノードガスと酸素を含むカソードガ
スとから発電する燃料電池と、燃料電池を通過したカソ
ードガスを燃料電池の上流側に循環させるカソード循環
ラインとを備えた燃料電池設備において、 更に、燃料電池の上流側にアノードガスとカソードガス
とを熱交換させる熱交換器を備え、カソード循環ガス量
により、燃料電池入口のカソードガス温度を調節し、カ
ソードガスとアノードガスとの熱交換により、燃料電池
入口のアノードガス温度を調節する、ことを特徴とする
燃料電池設備。
1. A reformer for reforming a fuel gas into an anode gas containing hydrogen, a fuel cell for generating electricity from the anode gas and a cathode gas containing oxygen, and a cathode gas passing through the fuel cell being upstream of the fuel cell. A fuel cell system having a cathode circulation line circulating on the fuel cell side, and further comprising a heat exchanger for exchanging heat between the anode gas and the cathode gas on the upstream side of the fuel cell. A fuel cell system, wherein the temperature of a cathode gas is adjusted, and the temperature of the anode gas at the fuel cell inlet is adjusted by heat exchange between the cathode gas and the anode gas.
【請求項2】 前記熱交換器は、隔壁式平行流熱交換器
であり、燃料電池の上流側直近に配置され、同一の格納
容器内に格納される、ことを特徴とする請求項1に記載
の燃料電池設備。
2. The heat exchanger according to claim 1, wherein the heat exchanger is a partition type parallel flow heat exchanger, which is disposed immediately upstream of the fuel cell and stored in the same storage container. The fuel cell facility as described.
【請求項3】 前記熱交換器は、燃料電池と一体に形成
されたガスヘッダである、ことを特徴とする請求項1に
記載の燃料電池設備。
3. The fuel cell equipment according to claim 1, wherein the heat exchanger is a gas header formed integrally with a fuel cell.
JP16428596A 1996-06-25 1996-06-25 Fuel cell equipment Expired - Fee Related JP3728742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16428596A JP3728742B2 (en) 1996-06-25 1996-06-25 Fuel cell equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16428596A JP3728742B2 (en) 1996-06-25 1996-06-25 Fuel cell equipment

Publications (2)

Publication Number Publication Date
JPH1012256A true JPH1012256A (en) 1998-01-16
JP3728742B2 JP3728742B2 (en) 2005-12-21

Family

ID=15790205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16428596A Expired - Fee Related JP3728742B2 (en) 1996-06-25 1996-06-25 Fuel cell equipment

Country Status (1)

Country Link
JP (1) JP3728742B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100197A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Combined power generation system using solid oxide fuel cell
JP2007250216A (en) * 2006-03-14 2007-09-27 Equos Research Co Ltd Fuel cell system and method of operating same
EP2311127A1 (en) * 2008-07-10 2011-04-20 Wärtsilä Finland Oy Method and arrangement to enhance the preheating of a fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100197A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Combined power generation system using solid oxide fuel cell
JP2007250216A (en) * 2006-03-14 2007-09-27 Equos Research Co Ltd Fuel cell system and method of operating same
EP2311127A1 (en) * 2008-07-10 2011-04-20 Wärtsilä Finland Oy Method and arrangement to enhance the preheating of a fuel cell system
EP2311127A4 (en) * 2008-07-10 2013-10-23 Convion Oy Method and arrangement to enhance the preheating of a fuel cell system

Also Published As

Publication number Publication date
JP3728742B2 (en) 2005-12-21

Similar Documents

Publication Publication Date Title
JP5220445B2 (en) Solid oxide fuel cell power generation system
JP3742892B2 (en) Fuel cell hydrogen supply system
JP2003115315A (en) Operational method of solid electrolyte type fuel cell
US6833209B2 (en) Fuel-cell co-generation system, of electrical energy and hot water
JP2001065976A (en) Cogeneration system
JP2003059521A (en) Combined system of solid oxide fuel cell and industrial process utilizing combustion and its operating method
JP2001114502A (en) Fuel reformer and fuel cell system
JPH1012256A (en) Fuel cell equipment
JP3208970B2 (en) Fuel cell temperature control method and apparatus
JP3941159B2 (en) Fuel cell power generation system
JP2003132903A (en) Combined system of industrial furnace and solid oxide fuel cell
JPH10199556A (en) Power generating system of fused carbonate type fuel cell
JPH06314569A (en) Hybrid fuel cell
JP2002208427A (en) Reforming device for fuel cell
JP3513933B2 (en) Fuel cell power generator
JP2002154807A (en) Reforming system
US9461328B1 (en) Solid oxide fuel cell power plant having a bootstrap start-up system
JP2000306594A (en) Fuel cell system
JPH04284365A (en) Fuel cell power generating device
JPH08339815A (en) Fuel cell power generation device
JP2010044960A (en) Fuel cell power generation system and power generation method of fuel cell
JP3509948B2 (en) Fuel cell power generator
JPS6266578A (en) Air cooling type fuel cell power generating system
JPH0845522A (en) Combustion system
JP2004315284A (en) Reformer, and system using reformer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050925

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081014

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees