JPH1012216A - High polymer solid electrolyte battery - Google Patents

High polymer solid electrolyte battery

Info

Publication number
JPH1012216A
JPH1012216A JP8164626A JP16462696A JPH1012216A JP H1012216 A JPH1012216 A JP H1012216A JP 8164626 A JP8164626 A JP 8164626A JP 16462696 A JP16462696 A JP 16462696A JP H1012216 A JPH1012216 A JP H1012216A
Authority
JP
Japan
Prior art keywords
battery
electrode
solid electrolyte
ion
polymer solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8164626A
Other languages
Japanese (ja)
Inventor
Masaaki Sasayama
昌聡 笹山
Takashi Namikata
尚 南方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP8164626A priority Critical patent/JPH1012216A/en
Publication of JPH1012216A publication Critical patent/JPH1012216A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain improvement of a charge/discharge characteristic, reliability and stability, by coating a peripheral part and/or a bending part of a surface in contact with a high polymer solid electrolyte of at least one electrode of the positive/negative electrodes, with an ion non-permeable material. SOLUTION: A peripheral part and/or bending part of a surface in contact with a high polymer solid electrolyte of a battery in at least one of positive/ negative electrodes are coated with an ion non-permeable material, without containing a metal material and electron conductive material, of 1×10<-8> S/cm or less electron conductivity and 10<-7> S/cm or less ion conductivity. In this way, in the case of cutting work of the battery, performance decrease according to a cut peripheral part and bending work is lessened, an outflow of a plasticizer and electrolyte, from a side surface of a laminated electrode/high polymer solid electrolyte layered product, can be impeded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高分子固体電解質を
用いた電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery using a solid polymer electrolyte.

【0002】[0002]

【従来の技術】高分子固体電解質をイオン移動媒体とす
る電池は、従来の電解液をイオン移動媒体とする電池に
比べ、液漏れがないため電池の信頼性、安全性が向上す
るとともに薄膜化や積層体形成の容易さ、電池形態の自
由度が高いこと、パッケージの簡略化、軽量化が期待さ
れている。
2. Description of the Related Art A battery using a solid polymer electrolyte as an ion transfer medium has less liquid leakage than a conventional battery using an electrolyte as an ion transfer medium, thereby improving the reliability and safety of the battery and reducing the thickness of the battery. And the ease of forming a stacked body, a high degree of freedom in battery form, and simplification and weight reduction of a package are expected.

【0003】この高分子固体電解質材料として、ポリエ
チレンオキシド、ポリプロピレンオキシドなどのポリア
ルキレンオキシドを中心とする材料、ポリアクリロニト
リル、ポリフッ化ビニリデン系材料などのイオン伝導性
ポリマーに電解質、可塑剤を添加した材料が提案されて
いる。高分子固体電解質を用いた電池は、シート状の電
極と高分子固体電解質を積層した積層体や電極表面に高
分子固体電解質層を塗布形成後積層させた積層体を、切
断および/または折り曲げにより所定の形状に加工して
作製することができる。また、電極/高分子固体電解質
/電極の各層を塗工によって形成する方法も提案されて
いる。このように、シート積層や塗工などの方法が採用
できることから製造プロセスが量産性に優れることが予
想されている。また、従来の電解液系電池で起こりうる
液漏れが実質的に起こらないため製造工程管理が容易で
あり、電極/高分子固体電解質/電極積層体の直列接続
積層による高電圧化も期待されている高分子固体電解質
を利用した電池としてシート電池の電極表面に窓状電気
絶縁体層を設けた構造が提案されている(特開平7−2
49403号公報)。ところが、積層電池において電気
絶縁性シールのみではイオンが電気絶縁層に拡散するお
それがあり、それによって積層体電極間で電気化学的な
短絡を発生するという問題があった。
[0003] As the polymer solid electrolyte material, a material obtained by adding an electrolyte and a plasticizer to an ion conductive polymer such as a polyacrylonitrile or polyvinylidene fluoride material such as a material mainly composed of polyalkylene oxide such as polyethylene oxide and polypropylene oxide. Has been proposed. A battery using a polymer solid electrolyte is formed by cutting and / or bending a laminate in which a sheet-shaped electrode and a polymer solid electrolyte are laminated, or a laminate in which a polymer solid electrolyte layer is formed by applying a polymer solid electrolyte layer on the electrode surface. It can be manufactured by processing into a predetermined shape. A method of forming each layer of the electrode / polymer solid electrolyte / electrode by coating has also been proposed. As described above, since a method such as sheet lamination or coating can be adopted, it is expected that the production process is excellent in mass productivity. Further, since the liquid leakage which can occur in the conventional electrolyte battery does not substantially occur, the production process can be easily controlled, and a higher voltage is expected by the series connection lamination of the electrode / polymer solid electrolyte / electrode laminate. As a battery using a solid polymer electrolyte, a structure in which a window-like electric insulator layer is provided on the electrode surface of a sheet battery has been proposed (Japanese Patent Laid-Open No. 7-2).
49403). However, there is a problem that ions may diffuse into the electric insulating layer only in the electric insulating seal in the stacked battery, thereby causing an electrochemical short circuit between the stacked electrodes.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この切
断加工によって切断部の電極積層体の構造変形による電
池性能低下や構造破壊、電極間短絡による電池動作不良
が発生するなどの問題があった。また、電極積層体の折
り曲げ構造で電池を構成する場合、折り曲げ部分、曲率
の大きい部分に応力が集中して積層構造変形を起こした
り、電極間のイオン移動において電極の電流密度が不均
一化するなどの問題もあった。
However, this cutting process causes problems such as deterioration of battery performance due to structural deformation of the electrode stack at the cut portion, structural destruction, and battery operation failure due to short circuit between the electrodes. Further, when a battery is formed with a bent structure of an electrode laminate, stress is concentrated on a bent portion or a portion having a large curvature to cause a deformation of the laminated structure, or a non-uniform current density of the electrodes due to ion transfer between the electrodes. There were also problems such as.

【0005】また、従来の電解液系電池で起こりうる液
漏れが実質的に起こらないため製造工程管理が容易であ
り、電極/高分子固体電解質/電極積層体の直列接続積
層による高電圧化も期待されているものの、電極/高分
子固体電解質/電極積層体を単位として直列接続積層し
て高電圧電池を作製する場合、上記の問題によって積層
体単位の電圧が不均一に分配され、電池性能低下を起こ
すことにつながる問題もあった。
In addition, since the liquid leakage that can occur in the conventional electrolyte battery does not substantially occur, the production process can be easily controlled, and the voltage can be increased by the series connection of the electrode / polymer solid electrolyte / electrode laminate. Although it is expected, when a high voltage battery is manufactured by serially connecting and laminating the electrode / polymer solid electrolyte / electrode laminate as a unit, the voltage of the laminate unit is unevenly distributed due to the above problem, and the battery performance is deteriorated. There were also problems that led to a decline.

【0006】また、高分子固体電解質として可塑剤添加
系材料を用いる場合、加工における応力印加で可塑剤の
電解質溶液が押し出され漏出したり、積層体が直列接続
された高電圧電池において漏出により隣接しない電極間
でイオン移動が起こり電圧低下を起こすなどの問題もあ
った。高分子固体電解質を利用した電池としてシート電
池の電極表面に窓状電気絶縁体層を設けた構造が提案さ
れている(特開平7−249403号公報)。ところ
が、積層電池において電気絶縁性シールのみではイオン
が電気絶縁層に拡散するおそれがあり、それによって積
層体電極間で電気化学的な短絡を発生する危険性がある
という問題があった。
When a plasticizer-added material is used as the polymer solid electrolyte, an electrolyte solution of the plasticizer is extruded and leaked due to stress applied during processing, or leaks out in a high-voltage battery in which the laminates are connected in series. There is also a problem that ion transfer occurs between the electrodes that do not cause a voltage drop. As a battery using a polymer solid electrolyte, a structure in which a window-like electric insulator layer is provided on an electrode surface of a sheet battery has been proposed (Japanese Patent Application Laid-Open No. 7-249403). However, in a laminated battery, there is a problem that ions may diffuse into the electrically insulating layer only with the electric insulating seal, and there is a risk that an electrochemical short circuit may occur between the electrodes of the laminated body.

【0007】本発明は、上記の高分子固体電解質電池の
問題を解決し、信頼性安定性に優れた電池を提供すると
ともに高性能電池を効率良く製造することを目的とす
る。
An object of the present invention is to solve the above-mentioned problems of the polymer solid electrolyte battery, to provide a battery having excellent reliability and stability, and to efficiently manufacture a high-performance battery.

【0008】[0008]

【課題を解決するための手段】本発明者らは、高分子固
体電解質を用いた固体電池の研究を進め本発明の電池を
完成した。すなわち、本発明は、 (1) 正極および負極が高分子固体電解質を介して接
合された電池において、正極および負極の少なくとも一
方の電極の高分子固体電解質と接する面の周辺部および
/または折り曲げ部が、イオン非透過性材料で被覆され
た構造を有することを特徴とする電池。 (2) 電極の周辺部がイオン非透過性材料で被覆され
た正極および負極を該イオン非透過性材料で被覆された
側が向かい合うように、高分子固体電解質を介して接合
された積層構造を有し、かつ正極を被覆するイオン非透
過性材料と負極を被覆するイオン非透過性材料とが積層
構造周辺で密着されていることを特徴とする電池。 (3) 高分子固体電解質がフッ化ビニリデン系ポリマ
ーを含有することを特徴とする上記1または2の電池。
Means for Solving the Problems The present inventors have conducted research on a solid battery using a solid polymer electrolyte and completed the battery of the present invention. That is, the present invention provides: (1) In a battery in which a positive electrode and a negative electrode are joined via a solid polymer electrolyte, at least one of the positive electrode and the negative electrode has a peripheral portion and / or a bent portion of a surface in contact with the solid polymer electrolyte. Has a structure coated with an ion-impermeable material. (2) It has a laminated structure in which a positive electrode and a negative electrode whose peripheral portions are coated with an ion-impermeable material are joined via a solid polymer electrolyte such that the sides coated with the ion-impermeable material face each other. A battery characterized in that an ion-impermeable material covering the positive electrode and an ion-impermeable material covering the negative electrode are in close contact with each other around the laminated structure. (3) The battery according to (1) or (2) above, wherein the polymer solid electrolyte contains a vinylidene fluoride-based polymer.

【0009】以下、本発明を詳細に説明する。本発明の
電池は、電極表面の周辺部および/または折り曲げ部が
イオンを透過しない材料(イオン非透過性材料)で被覆
された電極を用い、高分子固体電解質と積層した積層体
により構成される。本発明においてイオン非透過性材料
を被覆する電極表面の部位は、電極の周辺部および/ま
たは折り曲げ部である。この被覆領域の規定は、製造す
る電池の製造方法、構成材料、電池構造により異なるた
め限定されないが、被覆面積が大き過ぎると電池充放電
容量低下につながるため電極被覆面積は本発明の効果を
奏する必要最小限に留めることが好ましい。
Hereinafter, the present invention will be described in detail. The battery of the present invention is constituted by a laminate in which a peripheral portion and / or a bent portion of the electrode surface are covered with a material that does not transmit ions (an ion-impermeable material) and are laminated with a solid polymer electrolyte. . In the present invention, the portion of the electrode surface that covers the ion-impermeable material is a peripheral portion and / or a bent portion of the electrode. The definition of the coating area is not limited because it differs depending on the manufacturing method, constituent materials, and battery structure of the battery to be manufactured.However, if the coating area is too large, the charge / discharge capacity of the battery is reduced, and the electrode coating area has the effect of the present invention. It is preferable to keep it to the minimum necessary.

【0010】本発明で用いるイオン非透過性材料は、金
属材料や電子導電性材料を含まず、電子伝導度が1×1
-8S/cm以下、イオン伝導度が10-7S/cm以下
である。本発明のイオン非透過性材料はイオン透過を抑
制するバリアー材として用いるため、高分子固体電解質
に含まれる電解液に長時間接触した場合においてもイオ
ン透過性を発現しないことが必要であることから、電解
液により膨潤しないことが好ましいが、電解液に微量膨
潤する材料であっても上記イオン伝導度、電子伝導度を
満たしていれば本発明の材料として用いることができ
る。この材料で被覆された部分で積層体を切断、折り曲
げ加工することにより構造変形や構造破壊による電池性
能低下や電池動作不良を低減、除去することができる。
The ion-impermeable material used in the present invention does not include a metal material or an electronic conductive material, and has an electron conductivity of 1 × 1.
0 -8 S / cm or less and ionic conductivity is 10 -7 S / cm or less. Since the ion-impermeable material of the present invention is used as a barrier material for suppressing ion permeation, it is necessary that the material does not exhibit ion permeability even when it is in contact with the electrolyte contained in the polymer solid electrolyte for a long time. Although it is preferable that the material does not swell with the electrolytic solution, even a material that swells in a trace amount in the electrolytic solution can be used as the material of the present invention as long as it satisfies the above-mentioned ion conductivity and electron conductivity. By cutting and bending the laminate at the portion covered with this material, it is possible to reduce or eliminate battery performance deterioration or battery operation failure due to structural deformation or structural destruction.

【0011】本発明の電池は、この材料被覆を正、負極
電極の単極あるいは両極行うものであり、必ずしも正極
と負極のイオン非透過性材料被覆面積が一致するもので
ないが、積層体において正極および負極のイオン非透過
性材料被覆部分が一致した部分で切断、折り曲げ加工さ
れることが好ましい。一方予め所定形状に切断した電極
シートを用いて高分子固体電解質との積層体を形成する
場合、すでに切断された電極部の周辺部で構造変形、構
造破壊を起こしている可能性があり、この周辺部をイオ
ン非透過性材料で被覆した後積層体を形成して本発明の
電池を得ることができる。また、高分子固体電解質シー
トに正負極の電極シートを積層して積層体電池を作製す
る場合、高分子固体電解質表面の周辺部および/または
折り曲げ部にイオン非透過性材料を被覆しておき、積層
体形成により電極表面にイオン非透過性材料が被覆され
た構造を形成させることもでき本発明に含まれる。
In the battery of the present invention, this material coating is performed on the positive electrode and the negative electrode in a monopolar or bipolar manner. The positive electrode and the negative electrode do not necessarily have the same ion-impermeable material coating area. It is preferable to cut and bend the portion where the ion-impermeable material-covered portion of the negative electrode is coincident. On the other hand, when a laminate with a polymer solid electrolyte is formed using an electrode sheet that has been cut into a predetermined shape in advance, there is a possibility that structural deformation or structural destruction has occurred in the periphery of the already cut electrode portion. After coating the peripheral portion with the ion-impermeable material, a laminate is formed to obtain the battery of the present invention. In addition, in the case where a positive / negative electrode sheet is laminated on a polymer solid electrolyte sheet to produce a laminated battery, a peripheral portion and / or a bent portion of the surface of the polymer solid electrolyte are coated with an ion-impermeable material, A structure in which the surface of the electrode is coated with an ion-impermeable material can be formed by forming a laminate, which is included in the present invention.

【0012】さらに、電極のイオン非透過性材料で被覆
された面のイオン非透過性材料で被覆されない部分に高
分子固体電解質を接合させ、イオン非透過性材料で被覆
された部分の少なくとも一部に高分子固体電解質がな
く、正極および負極のイオン非透過性材料被覆部分が直
接密着した構造も可能である。このイオン非透過性材料
密着部分はイオンおよび電子透過がないだけでなく、可
塑剤添加系高分子固体電解質の可塑剤流出バリアとして
働くものである。従って、積層体の周辺部分にイオン非
透過性材料密着部分を設けることによって可塑剤の流出
を阻止することができる。
Further, a solid polymer electrolyte is bonded to a portion of the electrode covered with the ion-impermeable material which is not covered with the ion-impermeable material, and at least a part of the portion covered with the ion-impermeable material is bonded. There is no polymer solid electrolyte, and a structure in which the ion-impermeable material-coated portions of the positive electrode and the negative electrode are directly adhered to each other is also possible. The contact portion of the non-permeable material not only does not transmit ions and electrons but also functions as a plasticizer outflow barrier of the plasticizer-added polymer solid electrolyte. Therefore, the outflow of the plasticizer can be prevented by providing an ion-impermeable material adhered portion in the peripheral portion of the laminate.

【0013】本発明に用いるイオン非透過性材料とし
て、たとえばポリエチレン、ポリプロピレン、ポリイソ
プレン、ポリ(エチレン・ビニルアルコール)共重合体
などのポリオレフィン系ポリマー、ポリオキシメチレ
ン、ポリ(フェニレンオキシド)などのポリエーテル系
ポリマー、ポリスチレン、ポリ(スチレン・ブタジエ
ン)共重合体、ポリ(スチレン・ブタジエン・アクリロ
ニトリル)共重合体、ポリビニルナフタレン、レゾール
樹脂、ノボラック樹脂、うるしなどの芳香環系ポリマ
ー、ポリテトラフルオロエチレン、ポリヘキサフルオロ
プロピレンオキシドなどのフッ素含有ポリマーなどの有
機ポリマー材料、シリカ、マグネシア、フッ化カルシウ
ム、フッ化マグネシウムなどのセラミック材料やこれら
材料の混合物を挙げることができる。また、これらの材
料を別の材料と積層して被覆し、前記のイオン伝導度お
よび電子伝導度を満たす場合も本発明の被覆材料に含ま
れる。
Examples of the ion-impermeable material used in the present invention include polyolefin-based polymers such as polyethylene, polypropylene, polyisoprene and poly (ethylene / vinyl alcohol) copolymer, and polyoxymethylene and poly (phenylene oxide). Ether-based polymers, polystyrene, poly (styrene-butadiene) copolymer, poly (styrene-butadiene-acrylonitrile) copolymer, polyvinylnaphthalene, resole resin, novolak resin, aromatic ring-based polymer such as urushi, polytetrafluoroethylene, Organic polymer materials such as fluorine-containing polymers such as polyhexafluoropropylene oxide; ceramic materials such as silica, magnesia, calcium fluoride, and magnesium fluoride; and mixtures of these materials. It can be. Further, a case where these materials are laminated and coated with another material to satisfy the above-described ionic conductivity and electronic conductivity is also included in the coating material of the present invention.

【0014】このイオン非透過性材料の被覆方法とし
て、圧着、溶融固化、溶液や分散体の塗布、加熱圧着、
蒸着、プラズマ重合、電解重合、スパッタリングなど公
知の方法を用いることができる。必要があれば、被覆後
電子線、γ線、紫外線、赤外線などの輻射エネルギーを
照射して接着性、安定性向上、溶媒含浸性低下を図るこ
とができる。
As a coating method of the ion-impermeable material, there are pressure bonding, melting and solidification, application of a solution or a dispersion, heat compression,
Known methods such as vapor deposition, plasma polymerization, electrolytic polymerization, and sputtering can be used. If necessary, after coating, radiation energy such as electron beam, γ-ray, ultraviolet ray, infrared ray or the like can be irradiated to improve the adhesiveness, the stability and the solvent impregnation.

【0015】本発明の電池に用いる高分子固体電解質
は、その電子伝導度が10-8S/cm以下、イオン伝導
度が10-5S/cm以上であることを特徴とする。この
材料として、高イオン伝導性、高強度、耐熱性、電気化
学的安定性などが要求される。高分子固体電解質として
マトリックスポリマー、電解質、可塑剤から構成された
混合物であり、このマトリックスポリマーとして種々の
ポリマーが適用可能である(例えば、Gray著、So
lid Polymer Electrolytes
(VCHパブリッシャー:1991年)記載のポリマー
材料)。特にマトリックスポリマーとしてポリフッ化ビ
ニリデン、フッ化ビニリデン系共重合体などのフッ化ビ
ニリデン系ポリマーを用いた高分子固体電解質材料がい
ずれの点においても優れるため好ましい。本発明の高分
子固体電解質はこのフッ化ビニリデン系ポリマーを含有
することが好ましい、ポリマーマトリックスとしてフッ
化ビニリデン系ポリマー単独体または他のポリマーと混
合物のいずれも使用可能である。本発明の高分子固体電
解質のポリマーマトリックスにおるフッ化ビニリデンユ
ニットの含有量は20重量%以上、好ましくは50重量
%以上である。
The solid polymer electrolyte used in the battery of the present invention is characterized by having an electron conductivity of 10 -8 S / cm or less and an ionic conductivity of 10 -5 S / cm or more. This material is required to have high ionic conductivity, high strength, heat resistance, electrochemical stability, and the like. It is a mixture composed of a matrix polymer, an electrolyte and a plasticizer as a polymer solid electrolyte, and various polymers can be applied as the matrix polymer (for example, by Gray, So
lid Polymer Electronics
(VCH Publisher: 1991). In particular, a polymer solid electrolyte material using a vinylidene fluoride-based polymer such as polyvinylidene fluoride or a vinylidene fluoride-based copolymer as a matrix polymer is preferable because it is excellent in any respects. The polymer solid electrolyte of the present invention preferably contains this vinylidene fluoride-based polymer. As the polymer matrix, either a vinylidene fluoride-based polymer alone or a mixture with another polymer can be used. The content of the vinylidene fluoride unit in the polymer matrix of the polymer solid electrolyte of the present invention is 20% by weight or more, preferably 50% by weight or more.

【0016】また、高分子固体電解質を構成するポリマ
ーマトリックスが架橋された構造の場合、耐熱性、寸法
安定性に優れた高分子固体電解質を提供することになり
より好ましい。また、発泡体ポリマーに電解液を含浸し
て形成した高分子固体電解質は構造中に独立した液相ド
メインを有しこれがポリマー相で封止された複合構造固
体電解質や貫通孔を有する多孔質ポリマーに電解液を含
浸させた高分子固体電解質を用いることも可能である。
Further, a structure in which the polymer matrix constituting the polymer solid electrolyte is crosslinked is more preferable because it provides a polymer solid electrolyte having excellent heat resistance and dimensional stability. In addition, a polymer solid electrolyte formed by impregnating an electrolyte solution into a foam polymer has an independent liquid phase domain in the structure, which is a composite structure solid electrolyte sealed with a polymer phase, and a porous polymer having through holes. It is also possible to use a solid polymer electrolyte impregnated with an electrolytic solution.

【0017】本発明の電池は、高分子固体電解質を用い
た電池の切断加工において切断周辺部や折り曲げ加工伴
う性能低下が小さく、積層した電極/高分子固体電解質
積層体の側面からの可塑剤や電解質流出を阻止できるた
め、電池の安定性、信頼性向上を図ることができ好まし
いものとなる。本発明の電池は、特にリチウムイオン電
池に好適であるが、これにとどまらず鉛電池、アルカリ
電池、ニッケル水素電池など種々の電池に応用できるた
め産業上有用である。
In the battery of the present invention, when the battery is cut using a solid polymer electrolyte, the performance is not significantly reduced due to the cutting peripheral portion and the bending process, and the plasticizer and the plasticizer from the side of the laminated electrode / polymer solid electrolyte laminate are removed. Since the outflow of the electrolyte can be prevented, the stability and reliability of the battery can be improved, which is preferable. The battery of the present invention is particularly suitable for a lithium ion battery, but is not limited to this and is industrially useful because it can be applied to various batteries such as a lead battery, an alkaline battery, and a nickel hydrogen battery.

【0018】[0018]

【発明の実施の形態】以下実施例で本発明を詳細に説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to embodiments.

【0019】[0019]

【実施例1】平均粒径10μmのニードルコークス粉末
をカルボキシメチルセルロース溶液とスチレンブタジエ
ンラテックス(旭化成工業(株)製 L1571 商品
名)分散液混合体に分散してスラリーを作製し、金属銅
シート(18μm厚)に塗布乾燥して膜厚120μmの
塗膜(片面塗工)を形成した。該塗膜中の組成はニード
ルコークス(NC)/カルボキシメチルセルロース/ス
チレンブタジエン=100/0.8/2であった。
Example 1 A needle coke powder having an average particle size of 10 μm was dispersed in a mixture of a carboxymethyl cellulose solution and a styrene butadiene latex (trade name: L1571 manufactured by Asahi Kasei Kogyo Co., Ltd.) to prepare a slurry, and a metal copper sheet (18 μm) was prepared. Thick) and dried to form a coating film (single-sided coating) having a thickness of 120 μm. The composition in the coating film was needle coke (NC) / carboxymethyl cellulose / styrene butadiene = 100 / 0.8 / 2.

【0020】一方、平均粒径10μmのLiCoO2
末とカーボンブラックをポリフッ化ビニリデンのN−メ
チルピロリドン溶液(5重量%)に混合分散してスラリ
ーを作製した。このスラリーをアルミ箔(膜厚20μ
m)に塗布(片面塗工)乾燥して膜厚100μmの塗膜
を作製した。なおスラリーの固形分重量組成は、LiC
oO2 (85%)、カーボンブラック(8%)、ポリマ
ー(7%)とした。
On the other hand, a slurry was prepared by mixing and dispersing LiCoO 2 powder having an average particle size of 10 μm and carbon black in an N-methylpyrrolidone solution of polyvinylidene fluoride (5% by weight). This slurry is transferred to an aluminum foil (film thickness 20μ).
m) (single-side coating) and dried to prepare a coating film having a thickness of 100 μm. The solid content weight composition of the slurry is LiC
oO 2 (85%), carbon black (8%), and polymer (7%).

【0021】該NC電極を5cm角に切断した後、切断
部分の周囲2mm幅にバインダーに用いたスチレンブタ
ジエンラテックスを塗布して電極空孔部に充填させると
ともに表面被覆した電極を作製した。次いでLiCoO
2 電極を5cm角に切断した後、切断部分の周囲2mm
にポリエチレンシートを配置し、加熱圧着して貼り合わ
せた電極を作製した。
After the NC electrode was cut into a 5 cm square, styrene-butadiene latex used as a binder was applied to a width of 2 mm around the cut portion, filled in the electrode holes, and a surface-coated electrode was produced. Then LiCoO
2 After cutting the electrode into 5 cm square, 2 mm around the cut part
Then, a polyethylene sheet was arranged, and heated and press-bonded to produce an electrode bonded together.

【0022】ポリ(ヘキサフルオロプロピレン−フッ化
ビニリデン)共重合体(ヘキサフルオロプロピレン含量
5重量%)を溶融押しだし成形して膜厚110μmのシ
ートを作製した。該ポリマーシートに電子線照射(照射
量10Mrad)を施した後フロン(HFC134a)
を含浸させ(含浸重量7%)含浸状態で加熱して発泡体
を作製した(発泡後膜厚220μm)。該発泡体にエチ
レンカーボネート(EC)/プロピレンカーボネート
(PC)/γ−ブチルラクトン(γ−BL)混合溶媒
(EC/PC/γーBL=1/1/2)のLiBF4
mol/リットル溶液に100℃の温度で2時間浸漬し
て高分子固体電解質シートを作製した。該シートを4.
8mm角に切断して前記のスチレンブタジエンラテック
スを塗布したNC電極のラテックス未塗布部分に張り合
わせた後、ポリエチレンで一部被覆したLiCoO2
極を張り合わせて電池積層体を作製した。該積層体から
電極取り出し用電極としてステンレスシートを金属銅シ
ートおよびアルミニウムシート表面に接合した後、ポリ
エチレン/アルミニウム/ポリエチレンテレフタレート
積層シートでパッケージしてシート電池を作製した。
A poly (hexafluoropropylene-vinylidene fluoride) copolymer (hexafluoropropylene content: 5% by weight) was melt-extruded and formed into a sheet having a thickness of 110 μm. After irradiating the polymer sheet with an electron beam (irradiation amount: 10 Mrad), Freon (HFC134a)
(Impregnation weight: 7%) and heated in an impregnated state to produce a foam (film thickness after foaming: 220 μm). LiBF 4 1 of a mixed solvent of ethylene carbonate (EC) / propylene carbonate (PC) / γ-butyl lactone (γ-BL) (EC / PC / γ-BL = 1/1/2) is added to the foam.
It was immersed in a mol / liter solution at a temperature of 100 ° C. for 2 hours to prepare a polymer solid electrolyte sheet. 3. The sheet
After cutting into an 8 mm square, and bonding the styrene-butadiene latex to the latex-uncoated portion of the NC electrode, a LiCoO 2 electrode partially coated with polyethylene was bonded to prepare a battery laminate. After joining a stainless steel sheet to the surface of the metal copper sheet and the aluminum sheet as an electrode for taking out the electrode from the laminate, a sheet battery was produced by packaging with a polyethylene / aluminum / polyethylene terephthalate laminated sheet.

【0023】該電池を充放電試験機(北斗電工製、10
1SM6型)の端子に接続して充放電を行った。充放電
条件として、充電は電流25mA、定電流の後4.2V
定電位充電、放電は電流25mAで2.7Vカットで行
った。充放電効率(電気量)は初回80%、2回目98
%であり、初回の放電量は負極電極の炭素重量当たり2
10mAh/gであった。
The battery was charged to a charge / discharge tester (Hokuto Denko, 10
(1SM6 type) for charging and discharging. Charging and discharging conditions were as follows: charging was 25 mA, and 4.2 V after constant current.
The constant potential charging and discharging were performed at a current of 25 mA with a 2.7 V cut. Charge / discharge efficiency (electricity) is 80% for the first and 98 for the second
%, And the initial discharge amount is 2% per carbon weight of the negative electrode.
It was 10 mAh / g.

【0024】別に切断したNC電極シートおよびLiC
oO2 電極シートそれぞれに上記と同様の方法で被覆を
行い、この被覆した表面にステンレスシートを押さえつ
けステンレスシートと銅またはアルミニウム間の電気抵
抗およびイオン伝導度を測定した。なお、(電気抵抗は
直流2端子法により、イオン伝導度は交流インピーダン
ス法により行った。スチレンブタジエンラテックス被覆
層は電子伝導度1×10-9S/cm以下であり、イオン
伝導度は1×10-8S/cm以下であった。また、ポリ
エチレン被覆層の電子伝導度は1×10-11 S/cm以
下、イオン伝導度は1×10-8S/cm以下であった。
NC electrode sheet and LiC separately cut
Each oO 2 electrode sheet was coated in the same manner as described above, and the stainless steel sheet was pressed onto the coated surface to measure the electrical resistance and ionic conductivity between the stainless sheet and copper or aluminum. (The electrical resistance was measured by a DC two-terminal method, and the ion conductivity was measured by an AC impedance method. The styrene-butadiene latex coating layer had an electron conductivity of 1 × 10 −9 S / cm or less, and the ion conductivity was 1 ×. 10-8 was less than S / cm. Further, the electron conductivity of the polyethylene-coated layer is 1 × 10 -11 S / cm or less, ionic conductivity was less than 1 × 10 -8 S / cm.

【0025】[0025]

【実施例2】実施例1で作製したニードルコークス電極
(負極)とLiCoO2 電極シート(正極)をそれぞれ
幅40mm幅にスリットして長尺シートを作製した。正
極および負極のそれぞれの長尺シートの長手方向に50
mm毎に、長手方向と直角に幅2mm長さ50mmのポ
リエチレン短冊(膜厚100μm)を配置した後、加熱
ロール(最高温度140℃)で圧着した表面被覆電極シ
ートを作製した。
EXAMPLE 2 The needle coke electrode (negative electrode) and the LiCoO 2 electrode sheet (positive electrode) prepared in Example 1 were each slit to a width of 40 mm to produce a long sheet. 50 in the longitudinal direction of each of the long sheets of the positive electrode and the negative electrode
After arranging polyethylene strips (film thickness 100 μm) having a width of 2 mm and a length of 50 mm at right angles to the longitudinal direction for each mm, a surface-coated electrode sheet was produced by pressing with a heating roll (maximum temperature 140 ° C.).

【0026】実施例1で作製したポリ(ヘキサフルオロ
プロピレン−フッ化ビニリデン)共重合体(ヘキサフル
オロプロピレン含量5重量%)を溶融押しだしシートを
発泡体させて作製した高分子固体電解質シート(エチレ
ンカーボネート(EC)/プロピレンカーボネート(P
C)/γ−ブチルラクトン(γ−BL)混合溶媒(EC
/PC/γーBL=1/1/2)のLiBF4 1mol
/リットル溶液に100℃の温度で2時間浸漬して作製
した。)を切断(幅42mm、長さ50mm、膜厚28
0μm)した。該切断シートを上記で作製した表面被覆
電極の未被覆部に配置して正極および負極の未被覆部分
が向かい合う配置で積層した後、加熱ロールで熱圧着さ
せ積層体を作製した。次いで、ポリエチレン短冊被覆部
分で4回折り曲げた電池積層体を作製した。該積層体
は、上面に正極集電体であるアルミニウムが露出し、下
面に負極集電体である金属銅が露出した構造を有し、こ
れらの面に外部接続端子としてステンレスシート(10
mm幅、長さ60mm)を圧着させた後全体をポリエチ
レン/アルミニウム/ポリエチレンテレフタレート積層
シートでパッケージして電池を作製した。
A polymer solid electrolyte sheet (ethylene carbonate) prepared by melting and extruding the poly (hexafluoropropylene-vinylidene fluoride) copolymer (hexafluoropropylene content: 5% by weight) prepared in Example 1 and foaming the sheet. (EC) / Propylene carbonate (P
C) / γ-butyllactone (γ-BL) mixed solvent (EC
/ PC / γ-BL = 1/1/2) 1 mol of LiBF 4
/ Liter solution at a temperature of 100 ° C. for 2 hours. ) (Width 42 mm, length 50 mm, film thickness 28)
0 μm). The cut sheet was placed on the uncoated portion of the surface-coated electrode prepared above, laminated in such a manner that the uncoated portions of the positive electrode and the negative electrode faced each other, and then thermocompressed with a heating roll to produce a laminate. Next, a battery stack was bent four times at the portion covered with the polyethylene strip to produce a battery stack. The laminate has a structure in which aluminum, which is a positive electrode current collector, is exposed on the upper surface, and metal copper, which is a negative electrode current collector, is exposed on the lower surface, and a stainless steel sheet (10
(mm width, length 60 mm), and the whole was packaged with a polyethylene / aluminum / polyethylene terephthalate laminated sheet to produce a battery.

【0027】該電池を実施例1と同様に充放電試験機の
端子に接続して充放電を行った。充放電条件として、充
電は電流100mA、定電流の後4.2V定電位充電、
放電は電流100mAで2.7Vカットで行った。充放
電効率(電気量)は初回81%、2回目99%であり、
初回の放電量は表面被覆していない部分の負極電極の炭
素重量当たり212mAh/gであった。
The battery was connected to a terminal of a charge / discharge tester and charged / discharged in the same manner as in Example 1. As charging and discharging conditions, charging was performed at a current of 100 mA, followed by 4.2 V constant potential charging after a constant current.
Discharge was performed at a current of 100 mA and a 2.7 V cut. The charge and discharge efficiency (electricity) is 81% for the first time and 99% for the second time,
The initial discharge amount was 212 mAh / g per carbon weight of the portion of the negative electrode where the surface was not coated.

【0028】この電極積層体の電極表面被覆部を幅1.
5mmに切断し、それぞれの集電体表面にステンレスシ
ートを押さえつけ電極間の電気抵抗及びイオン伝導度を
測定した結果、電子伝導度は1×10-11 S/cm以
下、イオン伝導度は1×10-8S/cm以下(被覆部分
のポリエチレンの膜厚を200μmとして計算)であっ
た。
The electrode surface covering portion of the electrode laminate has a width of 1.
It was cut into 5 mm, and a stainless steel sheet was pressed against the surface of each current collector to measure the electric resistance between the electrodes and the ionic conductivity. As a result, the electron conductivity was 1 × 10 −11 S / cm or less, and the ionic conductivity was 1 ×. It was 10 −8 S / cm or less (calculated assuming that the film thickness of the polyethylene in the coating portion was 200 μm).

【0029】[0029]

【比較例1】実施例1で作製したニードルコークス電極
(負極)とLiCoO2 電極シート(正極)をそれぞれ
50mm×50mmに切断したシートを作製した。次い
で、実施例1で用いた高分子固体電解質シートを50m
m角に切断し、この正極および負極の間に挟み込み積層
した後、電極の外部取り出し端子としてステンレスシー
トを集電体側に配置した後、実施例1と同様にポリエチ
レン/アルミニウム/ポリエチレンテレフタレート積層
シートでパッケージして電池を作製した。
Comparative Example 1 Sheets were prepared by cutting the needle coke electrode (negative electrode) and the LiCoO 2 electrode sheet (positive electrode) prepared in Example 1 into 50 mm × 50 mm, respectively. Then, the polymer solid electrolyte sheet used in Example 1 was
After cutting into an m-square and sandwiching and laminating between the positive electrode and the negative electrode, a stainless steel sheet was arranged on the current collector side as an external extraction terminal of the electrode, and then a polyethylene / aluminum / polyethylene terephthalate laminated sheet was used as in Example 1. A battery was fabricated by packaging.

【0030】該電池を実施例1と同様に充放電試験機の
端子に接続して充放電を行った。充放電条件として、充
電は電流25mA、定電流の後4.2V定電位充電、放
電は電流25mAで2.7Vカットで行った。充放電効
率(電気量)は初回70%、2回目12%であり、3回
目充電途中で電位の急激な低下が起こり、放電は観測で
きなかった。この後電極間抵抗を測定した結果、10m
ohm 以下であり電極間短絡が発生していることが予想さ
れた。また初回の放電量は表面被覆していない部分の負
極電極の炭素重量当たり175mAh/gであった。同
様の作製手順で電池を作製したが、充放電電池特性が安
定しなかった。
The battery was connected to the terminal of a charge / discharge tester and charged / discharged in the same manner as in Example 1. As charging and discharging conditions, charging was performed at a current of 25 mA, constant-current charging at a constant potential of 4.2 V, and discharging was performed at a current of 25 mA at a 2.7 V cut. The charge / discharge efficiency (electrical amount) was 70% at the first time and 12% at the second time, and a sudden drop in potential occurred during the third charge, and no discharge was observed. Thereafter, the resistance between the electrodes was measured, and as a result, 10 m
It is expected that a short circuit between the electrodes has occurred, which is less than ohm. The initial discharge amount was 175 mAh / g per carbon weight of the portion of the negative electrode where the surface was not coated. A battery was manufactured in the same manufacturing procedure, but the charge / discharge battery characteristics were not stable.

【0031】[0031]

【比較例2】実施例2と同様にして作製した電極長尺シ
ート(幅40mm)を用い、電極表面のポリエチレン短
冊シート被覆を行わない状態で、長尺高分子固体電解質
シート(幅42mm)を積層して作製した積層体を50
mm毎に折り曲げて電池積層体を作製した。さらに実施
例2と同様にして電池パッケージを作製した。該電池の
外部取り出し端子に接続して充放電試験を試みたが、充
放電試験前に電極間短絡が発生しており充放電を行えな
かった。
Comparative Example 2 Using a long electrode sheet (width 40 mm) produced in the same manner as in Example 2, a long polymer solid electrolyte sheet (width 42 mm) was prepared without coating the electrode strip with a polyethylene strip sheet. 50 laminates produced by lamination
The battery was folded at every mm to produce a battery laminate. Further, a battery package was manufactured in the same manner as in Example 2. A charge / discharge test was attempted by connecting the battery to the external take-out terminal. However, a short circuit occurred between the electrodes before the charge / discharge test, and charge / discharge was not performed.

【0032】[0032]

【発明の効果】本発明は、電池の充放電特性、特性の信
頼性、安定性に優れた高分子固体電解質電池を提供する
ことが可能になった。
According to the present invention, it has become possible to provide a solid polymer electrolyte battery having excellent charge / discharge characteristics, reliability of characteristics and stability.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極および負極が高分子固体電解質を介
して接合された電池において、正極および負極の少なく
とも一方の電極の高分子固体電解質と接する面の周辺部
および/または折り曲げ部が、イオン非透過性材料で被
覆された構造を有することを特徴とする電池。
In a battery in which a positive electrode and a negative electrode are joined via a solid polymer electrolyte, at least one of the positive electrode and the negative electrode has a peripheral portion and / or a bent portion on a surface in contact with the solid polymer electrolyte, and has a non-ionic structure. A battery having a structure covered with a permeable material.
【請求項2】 電極の周辺部がイオン非透過性材料で被
覆された正極および負極を該イオン非透過性材料で被覆
された側が向かい合うように、高分子固体電解質を介し
て接合された積層構造を有し、かつ正極を被覆するイオ
ン非透過性材料と負極を被覆するイオン非透過性材料と
が積層構造周辺で密着されていることを特徴とする電
池。
2. A laminated structure in which a positive electrode and a negative electrode whose peripheral portions are coated with an ion-impermeable material are joined via a solid polymer electrolyte such that the sides coated with the ion-impermeable material face each other. And a non-permeable material covering the positive electrode and a non-permeable material covering the negative electrode are closely adhered around the laminated structure.
【請求項3】 高分子固体電解質がフッ化ビニリデン系
ポリマーを含有することを特徴とする請求項1または2
記載の電池。
3. A solid polymer electrolyte containing a vinylidene fluoride-based polymer.
The battery as described.
JP8164626A 1996-06-25 1996-06-25 High polymer solid electrolyte battery Withdrawn JPH1012216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8164626A JPH1012216A (en) 1996-06-25 1996-06-25 High polymer solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8164626A JPH1012216A (en) 1996-06-25 1996-06-25 High polymer solid electrolyte battery

Publications (1)

Publication Number Publication Date
JPH1012216A true JPH1012216A (en) 1998-01-16

Family

ID=15796783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8164626A Withdrawn JPH1012216A (en) 1996-06-25 1996-06-25 High polymer solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPH1012216A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002534775A (en) * 1999-01-05 2002-10-15 エス・アール・アイ・インターナシヨナル Fabrication of electrodes and devices containing electrodes
JP2005174653A (en) * 2003-12-09 2005-06-30 Sanyo Electric Co Ltd Lithium secondary battery and manufacturing method thereof
KR100537605B1 (en) * 1999-08-20 2005-12-19 삼성에스디아이 주식회사 Polymer matrix composition for lithium polymer battery
JP2010176901A (en) * 2009-01-27 2010-08-12 Sony Corp Secondary battery
JP2014007165A (en) * 2013-09-10 2014-01-16 Sony Corp Battery element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002534775A (en) * 1999-01-05 2002-10-15 エス・アール・アイ・インターナシヨナル Fabrication of electrodes and devices containing electrodes
KR100537605B1 (en) * 1999-08-20 2005-12-19 삼성에스디아이 주식회사 Polymer matrix composition for lithium polymer battery
JP2005174653A (en) * 2003-12-09 2005-06-30 Sanyo Electric Co Ltd Lithium secondary battery and manufacturing method thereof
JP2010176901A (en) * 2009-01-27 2010-08-12 Sony Corp Secondary battery
JP2014007165A (en) * 2013-09-10 2014-01-16 Sony Corp Battery element

Similar Documents

Publication Publication Date Title
KR100279071B1 (en) Lithium ion secondary battery
US6723467B2 (en) Separator for battery and battery
JP3722797B2 (en) Electrolyte-containing granular electrode for lithium storage battery
JP5432417B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
US6617074B1 (en) Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery
JP4184057B2 (en) Electrode forming coating liquid, electrode and electrochemical element, and electrode forming coating liquid manufacturing method, electrode manufacturing method and electrochemical element manufacturing method
JP5163439B2 (en) FIBER-CONTAINING POLYMER FILM AND METHOD FOR PRODUCING SAME, ELECTROCHEMICAL DEVICE AND METHOD FOR PRODUCING SAME
JP5195341B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
CN103219521A (en) Bipolarity current collector and preparation method
JP2002260739A (en) Nonaqueous electrolyte secondary battery and manufacturing method
WO2000013252A1 (en) Method for producing nonaqueous gel electrolyte cell
JP2002541633A (en) Porous electrode or partition used for non-aqueous battery and method for producing the same
EP2765629B1 (en) Separator with heat-resistant insulating layer
JP7066719B2 (en) Electrode sheet manufacturing method, all-solid-state battery and all-solid-state battery manufacturing method
JPH11242953A (en) Battery having roughened electrode terminal
CN115461909A (en) Electrochemical device and electronic device comprising same
CN115552706A (en) Separator for electrochemical device, and electronic device
JP3260310B2 (en) Manufacturing method of sheet type electrode / electrolyte structure
JP4561041B2 (en) Lithium secondary battery
US20030072999A1 (en) Method for manufacturing an electrode-separator assembly for galvanic elements
CN215578623U (en) Negative plate and diaphragm-free battery cell
JPH10261386A (en) Battery case and battery
JP3752913B2 (en) Secondary battery
WO1999048162A1 (en) Lithium ion battery and method of manufacture thereof
JPH1012216A (en) High polymer solid electrolyte battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030902