JPH10122082A - Accumulative fuel injector - Google Patents

Accumulative fuel injector

Info

Publication number
JPH10122082A
JPH10122082A JP16722997A JP16722997A JPH10122082A JP H10122082 A JPH10122082 A JP H10122082A JP 16722997 A JP16722997 A JP 16722997A JP 16722997 A JP16722997 A JP 16722997A JP H10122082 A JPH10122082 A JP H10122082A
Authority
JP
Japan
Prior art keywords
fuel
pressure
passage
movable member
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16722997A
Other languages
Japanese (ja)
Other versions
JP3719468B2 (en
Inventor
Masafumi Murakami
雅史 邑上
Shuichi Matsumoto
修一 松本
Tetsuya Toyao
哲也 鳥谷尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP16722997A priority Critical patent/JP3719468B2/en
Priority to DE1997138351 priority patent/DE19738351B4/en
Priority to FR9710907A priority patent/FR2752883B1/en
Publication of JPH10122082A publication Critical patent/JPH10122082A/en
Application granted granted Critical
Publication of JP3719468B2 publication Critical patent/JP3719468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/165Filtering elements specially adapted in fuel inlets to injector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0017Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0077Valve seat details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/02Fuel-injection apparatus having means for reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9038Coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Lift Valve (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact, easy-to-work and durable fuel injector which suppresses the leakage of fuel. SOLUTION: A spherical member 43 is made of ceramics or cemented carbide, and a flat plate 51 is coated at its base metal with a hard anodic oxidation coating 71. The base metal is made of high-speed tool steel or high-temperature tempered die steel, and is coated at its seat part for the spherical member 43 with a film of TiN, CrN, DLC or the like as the hard anodic oxidation coating 71. Since that formation of the spherical member 43 and the seat part of the flat plate 51 out of abrasion-resistant materials suppresses their abrasion resulting from collision between the spherical member 43 and the flat plate 51 as well as caused by hard contaminant contained in fuel, the leakage of fuel out of a pressure control chamber is suppressed at the closing of a solenoid valve and desired characteristics of fuel injection are accurately obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高圧燃料を一種の
サージタンクであるコモンレールに蓄圧し、この蓄圧さ
れた高圧燃料を電磁制御式のインジェクタから噴射する
ようにした蓄圧式燃料噴射装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure-accumulation fuel injection device in which high-pressure fuel is accumulated in a common rail, which is a kind of surge tank, and the accumulated high-pressure fuel is injected from an electromagnetically controlled injector. It is.

【0002】[0002]

【従来の技術】従来より、高圧供給ポンプによってコモ
ンレールに高圧燃料を加圧圧送して蓄圧し、この蓄圧さ
れた高圧燃料を電磁制御式のインジェクタに供給し、イ
ンジェクタから内燃機関(以下、「内燃機関」をエンジ
ンという)に噴射する燃料噴射装置として、特開平5−
133296号公報、特開平1−232161号公報に
示されるものが知られている。
2. Description of the Related Art Conventionally, high-pressure fuel is sent to a common rail under high pressure by a high-pressure supply pump to accumulate pressure, and the accumulated high-pressure fuel is supplied to an electromagnetically controlled injector. Japanese Patent Application Laid-Open No. Hei 5-
The ones disclosed in JP-A-133296 and JP-A-1-232161 are known.

【0003】特開平5−133296号公報および特開
平1−232161号公報に開示されている燃料噴射装
置は、噴孔を開閉する弁部材の反噴孔側に高圧燃料を導
入する圧力制御室を有し、この圧力制御室と低圧側とを
電磁二方弁で断続することにより、弁部材による噴孔の
開閉を制御している。そして、電磁弁の可動部材と弁座
としての非可動部材とが平面同士で密着することにより
圧力制御室と低圧側との連通が遮断される構造である。
シート部を平面状に加工することは、円錐状のシート面
を有する可動部材および非可動部材のシート部の加工よ
りも容易である。また、シート面積を広くできるためシ
ート部における摩耗が減少し、良好なシール性を維持で
きる。
The fuel injection device disclosed in JP-A-5-133296 and JP-A-1-232161 has a pressure control chamber for introducing high-pressure fuel to a valve member that opens and closes an injection hole on a side opposite to the injection hole. By opening and closing the pressure control chamber and the low-pressure side with an electromagnetic two-way valve, the opening and closing of the injection hole by the valve member is controlled. The movable member of the solenoid valve and the non-movable member as a valve seat are in close contact with each other in a plane, so that the communication between the pressure control chamber and the low pressure side is cut off.
Processing the sheet portion into a planar shape is easier than processing the sheet portions of a movable member and a non-movable member having a conical seat surface. Further, since the seat area can be increased, abrasion at the seat portion is reduced, and good sealing performance can be maintained.

【0004】しかしながら、特開平5−133296号
公報に開示されているものでは、圧力制御室の燃料圧力
から可動部材のシート部が受ける力は電磁弁の開弁方向
に作用するので可動部材を非可動部材に着座させるばね
力が大きくなる。このため、このばね力に抗して非可動
部材から可動部材を離座させる電磁弁の吸引力を増加す
る必要があるので電磁弁の体格が大きくなるという問題
がある。
However, in the apparatus disclosed in Japanese Patent Application Laid-Open No. 5-133296, the force received by the seat portion of the movable member from the fuel pressure in the pressure control chamber acts in the valve opening direction of the solenoid valve, so that the movable member is not opened. The spring force seated on the movable member increases. For this reason, it is necessary to increase the attraction force of the solenoid valve that separates the movable member from the non-movable member against this spring force, so that there is a problem that the size of the solenoid valve increases.

【0005】また、特開平1−232161号公報に開
示されているものでは、高圧燃料の圧力として500kg
/cm2(約50MPa )程度を開示しているが、100MPa
以上の高圧燃料を切り換える電磁二方弁に用いるには、
可動部材と非可動部材との接触面積を著しく大きくし過
ぎると電磁弁の開弁方向に働く油圧荷重が大きくなるの
で実用上適さないと考えられる。また、可動部材の設定
ストローク量が小さい場合や開弁直後の低ストローク時
には可動部材と非可動部材との対向面積が大きいので流
量係数が極めて小さくなることにより圧力損失が必要以
上に大きくなり過ぎるという問題がある。このため、可
動部材が非可動部材から離座しても開放圧力が十分に下
がらなかったり、電磁弁に開弁信号が送出されたあとも
実際に圧力が下がるまでに時間遅れが発生するという問
題がある。さらに、燃料溝により可動部材を非可動部材
から離座し易い構成にすることは、逆に言えば可動部材
が非可動部材に着座するときに反発力となって働くの
で、着座時の可動部材の跳ね上がり低減効果は期待でき
ない。また、可動部材と非可動部材との接触面積を開口
面積に較べ著しく大きくすることによりインジェクタの
径が大きくなるので、小型ディーゼルエンジンへの使用
に適さない。
[0005] Further, in the system disclosed in Japanese Patent Application Laid-Open No. 1-2232161, the pressure of the high-pressure fuel is 500 kg.
/ cm 2 (about 50MPa), but 100MPa
To use the above two-way solenoid valve for switching high pressure fuel,
It is considered that if the contact area between the movable member and the non-movable member is too large, the hydraulic load acting in the valve opening direction of the solenoid valve increases, which is not suitable for practical use. Further, when the set stroke amount of the movable member is small or at the time of a low stroke immediately after the valve is opened, the facing area between the movable member and the non-movable member is large, so that the flow coefficient becomes extremely small, so that the pressure loss becomes excessively large. There's a problem. For this reason, the opening pressure does not drop sufficiently even when the movable member separates from the non-movable member, and a time delay occurs until the pressure actually drops even after the valve opening signal is sent to the solenoid valve. There is. Further, the structure in which the movable member is easily separated from the non-movable member by the fuel groove means that the movable member acts as a repulsive force when the movable member is seated on the non-movable member. The effect of reducing the bounce of can not be expected. Further, since the diameter of the injector is increased by making the contact area between the movable member and the non-movable member significantly larger than the opening area, it is not suitable for use in a small diesel engine.

【0006】本出願人は、このような問題を解決する燃
料噴射装置を、特願平7−190464号明細書で開示
している。この燃料噴射装置では、電磁弁の可動部材と
非可動部材との密着領域内において燃料逃し通路を設け
ることにより、密着面積を小さくするとともに、シート
面圧を上昇させることなく確実なシール性を確保してい
る。
The present applicant discloses a fuel injection device which solves such a problem in Japanese Patent Application No. 7-190664. In this fuel injection device, by providing a fuel release passage in the contact area between the movable member and the non-movable member of the solenoid valve, the contact area is reduced, and secure sealing performance is ensured without increasing the seat pressure. doing.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特願平
7−190464号明細書に示される燃料噴射装置で
は、可動部材の表面に対して垂直方向に流速が大きい燃
料が衝突するので、燃料中に異物(以下、「異物」をコ
ンタミという)が混入している場合可動部材の表面が摩
耗する。燃料中に混入したコンタミの中で粒径が約2μ
m以下の小さなものは、インジェクタに取り付けられた
燃料フィルタを通り抜けインジェクタ内部に侵入可能で
ある。コンタミの中でも硬い成分である砂すなわちセラ
ミック系のものがインジェクタ内部に侵入すると可動部
材を激しく摩耗させる。可動部材が摩耗するとこの摩耗
部に侵入するコンタミにより非可動部材も摩耗する。特
願平7−190464号明細書に示される燃料噴射装置
のように可動部材と非可動部材との密着領域内において
燃料逃し通路を設けたものではシート面積が小さくなっ
ているので、シート部の摩耗により燃料のリーク量が増
加しやすく、その結果燃料噴射特性が変化する。
However, in the fuel injection device disclosed in Japanese Patent Application No. Hei 7-190264, fuel having a large flow velocity collides in the direction perpendicular to the surface of the movable member. When foreign matter (hereinafter, "foreign matter" is referred to as contamination) is mixed, the surface of the movable member is worn. Particle size of about 2μ in contamination mixed in fuel
Those smaller than m can penetrate into the injector through fuel filters attached to the injector. Sand, which is a hard component among the contaminants, that is, a ceramic-based material, enters the inside of the injector and causes severe wear of the movable member. When the movable member wears, the non-movable member also wears due to contamination penetrating into the worn portion. In a fuel injection device disclosed in Japanese Patent Application No. Hei 7-190264, in which a fuel escape passage is provided in a contact area between a movable member and a non-movable member, the seat area is small. The amount of fuel leakage tends to increase due to wear, and as a result, the fuel injection characteristics change.

【0008】可動部材に鉄鋼を使用した場合、比較的に
硬度が高い高速度工具鋼でもその硬度はHv=700〜8
00程度であるので、セラミック系コンタミの硬度がHv
=1000〜2000なのに対し圧倒的に硬度が低い。
したがって、セラミック系のコンタミによる可動部材の
摩耗が大きくなるので耐久性が低下する。可動部材の摩
耗が大きくなると、可動部材の摩耗部に浸入するコンタ
ミにより非可動部材の摩耗も大きくなる。
When steel is used for the movable member, the hardness of the high-speed tool steel having a relatively high hardness is Hv = 700-8.
Since the hardness of ceramic contamination is Hv
= 1000 to 2000, but the hardness is overwhelmingly low.
Therefore, the wear of the movable member due to the contamination of the ceramic system is increased, and the durability is reduced. When the wear of the movable member increases, the wear of the non-movable member also increases due to contamination penetrating into the wear portion of the movable member.

【0009】非可動部材とのシート部が平坦に形成さ
れ、回動自在に支持される球状部材を有する可動部材の
場合、可動部材が非可動部材に着座するときに球状部材
の傾きにより球状部材の平面部よりも平面部外周のエッ
ジ部が先に非可動部材に衝突することがある。すると、
球状部材のエッジ部あるいはエッジ部が衝突する非可動
部材のシート部が極度に摩耗することにより、シート面
積が減少しシート面圧が増加する。シート面圧が増加す
ることにより、可動部材のシート部または非可動部材の
シート部の摩耗または破損がさらに激しくなる。上記の
ように耐久性に劣る材質で可動部材および非可動部材を
形成すると、使用中に燃料リーク量が著しく増加し、燃
料噴射特性が大きく変化するという間題点がある。
In the case of a movable member having a spherical member which is formed so that the seat portion with the non-movable member is flat and is rotatably supported, the spherical member is inclined by the inclination of the spherical member when the movable member is seated on the non-movable member. In some cases, the edge of the outer periphery of the flat portion may collide with the non-movable member earlier than the flat portion. Then
Extreme wear of the edge portion of the spherical member or the sheet portion of the non-movable member against which the edge portion collides reduces the sheet area and increases the sheet surface pressure. As the seat pressure increases, wear or breakage of the seat portion of the movable member or the seat portion of the non-movable member becomes more severe. When the movable member and the non-movable member are formed of a material having poor durability as described above, there is a problem that the amount of fuel leak increases remarkably during use, and the fuel injection characteristics are greatly changed.

【0010】さらに、電磁弁の非可動部材に燃料逃し通
路を設け、可動部材とのシート部の面積を小さくした場
合、電磁弁閉弁時、あるいは閉弁直前の可動部材の低リ
フト時において、圧力制御室と低圧空間とを連通可能な
連通路近傍の薄肉部が連通路内部の燃料圧力により変形
し易く、破壊強度に対する信頼性が低いという問題があ
る。
Further, when a fuel release passage is provided in the non-movable member of the solenoid valve to reduce the area of the seat portion with the movable member, when the solenoid valve is closed, or when the movable member immediately before closing the valve has a low lift, There is a problem that the thin portion near the communication passage that can communicate the pressure control chamber and the low-pressure space is easily deformed by the fuel pressure inside the communication passage, and the reliability with respect to the breaking strength is low.

【0011】特開平5−99095号公報および特開平
7−63135号公報に開示されている燃料噴射装置に
おいては、噴孔を開閉する弁部材および弁座部の少なく
とも一方の表面部分を耐摩耗性および耐食性を有する非
導電性材料で形成するか、または少なくともいずれか一
方に所定硬度の高硬度材皮膜を形成することによりシー
ト部の耐久性を保持しようとしている。
In the fuel injection devices disclosed in JP-A-5-99095 and JP-A-7-63135, at least one surface of a valve member for opening / closing an injection hole and a valve seat is provided with wear resistance. Further, it is intended to maintain the durability of the sheet portion by forming it from a non-conductive material having corrosion resistance or forming a high hardness material film having a predetermined hardness on at least one of the materials.

【0012】しかしながら、特開平5−99095号公
報および特開平7−63135号公報に開示されている
燃料噴射装置では、噴孔を開閉する弁部材と弁座部とは
平面同士による密着ではなく、球面と円錐面、または円
錐面と円錐面との当接である。したがって、平面加工を
する場合に比べシート部の加工精度を向上させることが
困難である。
However, in the fuel injection device disclosed in JP-A-5-99095 and JP-A-7-63135, the valve member for opening and closing the injection hole and the valve seat are not in close contact with each other by flat surfaces, The contact between a spherical surface and a conical surface or between a conical surface and a conical surface. Therefore, it is more difficult to improve the processing accuracy of the sheet portion than in the case of performing flat processing.

【0013】さらに、電磁弁の可動部材と非可動部材と
のいずれか一方あるいは両方のシート部に所定硬度の高
硬度材皮膜を形成した場合、例えば皮膜の蒸着方向に対
して平行な面のように、皮膜の膜厚の不均一な箇所があ
ると燃料の流れを妨げ、皮膜が燃料の流れにより剥離し
易いという問題がある。本発明はこのような問題を解決
するためになされたものであり、燃料リーク量を低減し
小型化可能で加工が容易であり、高い耐久性を有する燃
料噴射装置を提供することを目的とする。
Further, when a high-hardness material film having a predetermined hardness is formed on one or both of the movable member and the non-movable member of the solenoid valve, for example, the surface may be parallel to the deposition direction of the film. In addition, there is a problem that if there is a portion where the film thickness is uneven, the flow of the fuel is hindered, and the film is easily peeled off by the flow of the fuel. The present invention has been made to solve such a problem, and it is an object of the present invention to provide a fuel injection device that can reduce the amount of fuel leakage, can be reduced in size, is easy to process, and has high durability. .

【0014】[0014]

【課題を解決するための手段】本発明の請求項1または
5記載の燃料噴射装置によると、圧力制御室の燃料から
電磁弁の可動部材が開弁方向に受ける力を小さくでき、
シート面圧を上昇させることなく確実なシール性が確保
できる。したがって、可動部材を閉弁方向に付勢する付
勢力を小さくすることが可能となるので、この付勢力に
抗して可動部材を吸引する電磁弁の磁力を低減できる。
以上の作用によりシート部の耐久性が向上するとともに
電磁弁のソレノイド部分を小型化可能である。
According to the fuel injection device of the present invention, the force that the movable member of the solenoid valve receives from the fuel in the pressure control chamber in the valve opening direction can be reduced.
Reliable sealing performance can be ensured without increasing the seat pressure. Therefore, the urging force for urging the movable member in the valve closing direction can be reduced, and the magnetic force of the electromagnetic valve that attracts the movable member against this urging force can be reduced.
By the above operation, the durability of the seat portion is improved and the solenoid portion of the solenoid valve can be downsized.

【0015】また、電磁弁閉弁時の高圧燃料のシール性
が向上すると高圧燃料のリーク量が減少するため、本発
明を採用することによってコモンレールに高圧燃料を供
給する高圧ポンプの負荷を軽減し、駆動トルクを低下で
きるので高圧ポンプの小型化が可能となる。また、可動
部材のシート部を耐摩耗性を有する材質で形成すること
により、平面弁座との衝突による可動部材の摩耗を低減
できる。さらに、燃料中に混入している硬度の高いセラ
ミック系のコンタミが可動部材に衝突しても可動部材の
摩耗量を低減できる。したがって、シート面積が減少し
てシート面圧が増加することを防止できるので、燃料リ
ーク量の増加を抑制し、燃料噴射特性を高精度に保持可
能である。
Further, when the sealing property of the high-pressure fuel when the solenoid valve is closed is improved, the leakage amount of the high-pressure fuel is reduced. Therefore, by employing the present invention, the load on the high-pressure pump for supplying the high-pressure fuel to the common rail is reduced. Since the driving torque can be reduced, the size of the high-pressure pump can be reduced. Further, by forming the seat portion of the movable member with a material having wear resistance, it is possible to reduce wear of the movable member due to collision with the flat valve seat. Further, even if a high-hardness ceramic-based contamination mixed in the fuel collides with the movable member, the wear amount of the movable member can be reduced. Therefore, it is possible to prevent an increase in the seat pressure due to a decrease in the seat area, thereby suppressing an increase in the amount of fuel leakage and maintaining the fuel injection characteristics with high accuracy.

【0016】このように耐摩耗性に優れた材質として、
TiN 、CrN 、DLC(Dimond Like Carbon) のいずれか一種
による硬質皮膜か、あるいはセラミックまたは超硬合金
を用いることが望ましい。本発明の請求項2記載の燃料
噴射装置によると、可動部材に加え平面弁座のシート部
を耐摩耗性を有する材質で形成することにより、可動部
材との衝突による平面弁座の摩耗を低減できる。さら
に、燃料中に混入しているコンタミによる平面弁座の摩
耗を低減できる。
As such a material having excellent wear resistance,
It is desirable to use a hard coating made of any one of TiN, CrN, and DLC (Dimond Like Carbon), or a ceramic or cemented carbide. According to the fuel injection device of the second aspect of the present invention, in addition to the movable member, the seat portion of the flat valve seat is formed of a material having wear resistance, thereby reducing wear of the flat valve seat due to collision with the movable member. it can. Further, wear of the flat valve seat due to contamination mixed in the fuel can be reduced.

【0017】本発明の請求項3記載の燃料噴射装置によ
ると、圧力制御室の燃料から電磁弁の可動部材が開弁方
向に受ける力を小さくでき、シート面圧を上昇させるこ
となく確実なシール性が確保できる。したがって、可動
部材を閉弁方向に付勢する付勢力を小さくすることが可
能となるので、この付勢力に抗して可動部材を吸引する
電磁弁の磁力を低減できる。以上の作用によりシート部
分の耐久性が向上するとともに電磁弁のソレノイド部分
を小型化可能である。
According to the fuel injection device of the third aspect of the present invention, the force that the movable member of the solenoid valve receives from the fuel in the pressure control chamber in the valve opening direction can be reduced, and the seal can be surely secured without increasing the seat pressure. Nature can be secured. Therefore, the urging force for urging the movable member in the valve closing direction can be reduced, and the magnetic force of the electromagnetic valve that attracts the movable member against this urging force can be reduced. By the above operation, the durability of the seat portion is improved, and the solenoid portion of the solenoid valve can be downsized.

【0018】また、電磁弁閉弁時の高圧燃料のシール性
が向上すると高圧燃料のリーク量が減少するため、本発
明を採用することによってコモンレールに高圧燃料を供
給する高圧ポンプの負荷を軽減し、駆動トルクを低下で
きるので高圧ポンプの小型化が可能となる。また、平面
弁座の可動部材とのシート部を耐摩耗性を有する材質で
形成することにより、可動部材との衝突による平面弁座
の摩耗を低減できる。さらに、燃料中に混入しているコ
ンタミによる平面弁座の摩耗を低減できる。したがっ
て、シート面積が減少してシート面圧が増加することを
防止できるので、燃料リーク量の増加を抑制し燃料噴射
特性を高精度に保持可能である。
Further, when the sealing property of the high-pressure fuel when the solenoid valve is closed is improved, the amount of leakage of the high-pressure fuel is reduced. Therefore, by employing the present invention, the load on the high-pressure pump for supplying the high-pressure fuel to the common rail is reduced. Since the driving torque can be reduced, the size of the high-pressure pump can be reduced. Further, by forming the seat portion of the flat valve seat with the movable member using a material having wear resistance, the wear of the flat valve seat due to collision with the movable member can be reduced. Further, wear of the flat valve seat due to contamination mixed in the fuel can be reduced. Therefore, it is possible to prevent a decrease in the seat area and an increase in the seat pressure, thereby suppressing an increase in the amount of fuel leakage and maintaining the fuel injection characteristics with high accuracy.

【0019】本発明の請求項4記載の燃料噴射装置によ
ると、平面弁座と当接する球状部材が軸部材に回動自在
に支持されることにより、球状部材の動きにより球状部
材と平面弁座とが平面同士で良好に密着する。さらに、
球状部材のシート部が耐摩耗性を有する材質で形成され
ているので球状部材の平面部外周が平面弁座と衝突して
も球状部材の平面部外周が摩耗しにくいという効果があ
る。
According to the fuel injection device of the fourth aspect of the present invention, since the spherical member abutting on the flat valve seat is rotatably supported by the shaft member, the spherical member and the flat valve seat are moved by the movement of the spherical member. Are in good contact with each other on flat surfaces. further,
Since the seat portion of the spherical member is formed of a material having wear resistance, there is an effect that even when the outer periphery of the flat portion of the spherical member collides with the flat valve seat, the outer periphery of the flat portion of the spherical member is hardly worn.

【0020】本発明の請求項6記載の燃料噴射装置によ
ると、圧力制御室の燃料から電磁弁の可動部材が開弁方
向に受ける力を小さくでき、シート面圧を上昇させるこ
となく確実なシール性が確保できる。したがって、可動
部材を閉弁方向に付勢する付勢力を小さくすることが可
能となるので、この付勢力に抗して可動部材を吸引する
電磁弁の磁力を低減できる。以上の作用によりシート部
分の耐久性が向上するとともに電磁弁のソレノイド部分
を小型化可能である。
According to the fuel injection device of the sixth aspect of the present invention, the force that the movable member of the solenoid valve receives from the fuel in the pressure control chamber in the valve opening direction can be reduced, and a reliable seal can be obtained without increasing the seat pressure. Nature can be secured. Therefore, the urging force for urging the movable member in the valve closing direction can be reduced, and the magnetic force of the electromagnetic valve that attracts the movable member against this urging force can be reduced. By the above operation, the durability of the seat portion is improved, and the solenoid portion of the solenoid valve can be downsized.

【0021】また、電磁弁閉弁時の高圧燃料のシール性
が向上すると高圧燃料のリーク量が減少するため、本発
明を採用することによってコモンレールに高圧燃料を供
給する高圧ポンプの負荷を軽減し、駆動トルクを低下で
きるので高圧ポンプの小型化が可能となる。また、可動
部材と平面弁座との少なくともいずれか一方のシート部
に耐摩耗性を有する皮膜を形成することにより、可動部
材と平面弁座との衝突による可動部材あるいは平面弁座
の摩耗を低減できる。さらに、燃料中に混入しているコ
ンタミによる可動部材あるいは平面弁座の摩耗を低減で
きる。したがって、シート面積が減少してシート面圧が
増加することを防止できるので、燃料リーク量の増加を
抑制し燃料噴射特性を高精度に保持可能である。
Further, when the sealing property of the high-pressure fuel when the solenoid valve is closed is improved, the leakage amount of the high-pressure fuel is reduced. Therefore, by employing the present invention, the load on the high-pressure pump for supplying the high-pressure fuel to the common rail is reduced. Since the driving torque can be reduced, the size of the high-pressure pump can be reduced. Further, by forming a film having wear resistance on at least one of the seats of the movable member and the flat valve seat, wear of the movable member or the flat valve seat due to collision between the movable member and the flat valve seat is reduced. it can. Furthermore, wear of the movable member or the flat valve seat due to contamination mixed in the fuel can be reduced. Therefore, it is possible to prevent a decrease in the seat area and an increase in the seat pressure, thereby suppressing an increase in the amount of fuel leakage and maintaining the fuel injection characteristics with high accuracy.

【0022】本発明の請求項7記載の燃料噴射装置によ
ると、燃料逃し通路を有する部材のシート部に形成され
る皮膜と燃料逃し通路を形成する側壁に形成される皮膜
とは膜厚が略同一であり連続するので、電磁弁開弁時の
側壁近傍の燃料の流れを妨げることがなく、皮膜の剥離
を防止することができる。本発明の請求項8記載の燃料
噴射装置によると、圧力制御室の燃料から電磁弁の可動
部材が開弁方向に受ける力を小さくでき、シート面圧を
上昇させることなく確実なシール性が確保できる。した
がって、可動部材を閉弁方向に付勢する付勢力を小さく
することが可能となるので、この付勢力に抗して可動部
材を吸引する電磁弁の磁力を低減できる。以上の作用に
よりシート部分の耐久性が向上するとともに電磁弁のソ
レノイド部分を小型化可能である。
According to the fuel injection device of the present invention, the film formed on the sheet portion of the member having the fuel release passage and the film formed on the side wall forming the fuel release passage have substantially the same thickness. Since they are the same and are continuous, the flow of fuel near the side wall when the solenoid valve is opened is not hindered, and peeling of the film can be prevented. According to the fuel injection device of the eighth aspect of the present invention, the force that the movable member of the solenoid valve receives from the fuel in the pressure control chamber in the valve opening direction can be reduced, and the reliable sealing performance is ensured without increasing the seat pressure. it can. Therefore, the urging force for urging the movable member in the valve closing direction can be reduced, and the magnetic force of the electromagnetic valve that attracts the movable member against this urging force can be reduced. By the above operation, the durability of the seat portion is improved, and the solenoid portion of the solenoid valve can be downsized.

【0023】また、電磁弁閉弁時の高圧燃料のシール性
が向上すると高圧燃料のリーク量が減少するため、本発
明を採用することによってコモンレールに高圧燃料を供
給する高圧ポンプの負荷を軽減し、駆動トルクを低下で
きるので高圧ポンプの小型化が可能となる。また、燃料
逃し通路を平面弁座に形成し、平面弁座の少なくとも連
通路と燃料逃し通路との間に平面弁座よりも硬い材質で
皮膜を形成することにより、連通路近傍の薄肉部の連通
路内部の燃料圧力に対する破壊強度を向上することがで
きる。したがって、連通路近傍の薄肉部が連通路内部の
燃料圧力により変形するのを抑制し、破壊強度に対する
信頼性を向上することができ、閉弁時のシール性をより
確実なものとすることができる。
Further, when the sealing property of the high-pressure fuel when the solenoid valve is closed is improved, the leak amount of the high-pressure fuel is reduced. Therefore, by employing the present invention, the load on the high-pressure pump for supplying the high-pressure fuel to the common rail is reduced. Since the driving torque can be reduced, the size of the high-pressure pump can be reduced. In addition, the fuel release passage is formed in the flat valve seat, and a film is formed of a material harder than the flat valve seat between at least the communication passage and the fuel release passage of the flat valve seat, so that a thin portion near the communication passage is formed. The breaking strength against the fuel pressure inside the communication passage can be improved. Therefore, it is possible to suppress the thin portion in the vicinity of the communication passage from being deformed by the fuel pressure inside the communication passage, to improve the reliability with respect to the breaking strength, and to further ensure the sealing performance when the valve is closed. it can.

【0024】本発明の請求項9記載の燃料噴射装置によ
ると、平面弁座の連通路近傍の径方向の上面幅は燃料逃
し通路の深さよりも小さいので、圧力制御室の燃料から
電磁弁の可動部材が開弁方向に受ける力を小さくでき
る。したがって、可動部材を閉弁方向に付勢する付勢力
を小さくすることが可能となるので、この付勢力に抗し
て可動部材を吸引する電磁弁の磁力を低減でき、電磁弁
のソレノイド部分を比較的小型にすることが可能であ
る。
According to the fuel injection device of the ninth aspect of the present invention, the width of the upper surface in the radial direction near the communication passage of the flat valve seat is smaller than the depth of the fuel escape passage. The force that the movable member receives in the valve opening direction can be reduced. Therefore, the urging force for urging the movable member in the valve closing direction can be reduced, so that the magnetic force of the electromagnetic valve that attracts the movable member against this urging force can be reduced, and the solenoid portion of the electromagnetic valve is It can be relatively small.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態を示す
複数の実施例を図面に基づいて説明する。 (第1実施例)本発明の第1実施例による燃料噴射装置
を図1〜図4に示す。図3に示すインジェクタ1には、
図示しないコモンレールで蓄圧された一定圧の高圧燃料
が図示しない燃料配管を介して燃料フィルタ60を通っ
て供給されている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first embodiment of the present invention; (First Embodiment) FIGS. 1 to 4 show a fuel injection device according to a first embodiment of the present invention. The injector 1 shown in FIG.
High-pressure fuel of a constant pressure stored in a common rail (not shown) is supplied through a fuel filter 60 via a fuel pipe (not shown).

【0026】インジェクタ1の噴孔側に設けられた噴射
ノズル10のノズルボディ11には、噴孔11aを開閉
するニードル弁20が往復移動可能に収容されている。
ノズルボディ11およびインジェクタボディ13はパッ
キンチップ12を挟んでリテーニングナット14で結合
されている。ニードル弁20の反噴孔側にはプレッシャ
ピン21が配設されており、プレッシャピン21の反噴
孔側にはプレッシャピン21に接触あるいは連結する制
御ピストン22が配設されている。ニードル弁20、プ
レッシャピン21および制御ピストン22は、特許請求
の範囲に記載した「弁部材」を構成している。プレッシ
ャピン21はスプリング23内に貫挿されており、スプ
リング23はプレッシャピン21を図3の下方、つまり
噴孔閉塞方向に付勢している。制御ピストン22の反噴
孔側には圧力制御室61が設けられている。
A needle valve 20 for opening and closing the injection hole 11a is accommodated in the nozzle body 11 of the injection nozzle 10 provided on the injection hole side of the injector 1 so as to be able to reciprocate.
The nozzle body 11 and the injector body 13 are connected by a retaining nut 14 with the packing tip 12 interposed therebetween. A pressure pin 21 is disposed on the side opposite to the injection hole of the needle valve 20, and a control piston 22 that is in contact with or is connected to the pressure pin 21 is disposed on the side opposite to the injection hole of the pressure pin 21. The needle valve 20, the pressure pin 21, and the control piston 22 constitute a "valve member" described in the claims. The pressure pin 21 is inserted through a spring 23, and the spring 23 urges the pressure pin 21 downward in FIG. 3, that is, in the injection hole closing direction. A pressure control chamber 61 is provided on the side opposite to the injection hole of the control piston 22.

【0027】燃料フィルタ60とインジェクタボディ1
3の内周面との隙間は25μm程度に設定されており、
この隙間に燃料を通すことで燃料中のコンタミを濾過す
る。燃料フィルタ60から導入された高圧燃料は、高圧
燃料通路62と高圧燃料通路63に分岐する。高圧燃料
通路62に分岐した高圧燃料はニードル弁20の周囲に
環状に形成された燃料溜まり24に供給され、高圧燃料
通路63に分岐した高圧燃料は圧力制御室61に供給さ
れている。燃料溜まり24内の高圧燃料の圧力は図3の
上方、つまり燃料溜まり24と噴孔11aとが連通する
リフト方向にニードル弁20を付勢し、圧力制御室61
内の高圧燃料の圧力は図3の下方、つまりニードル弁2
0が噴孔11aを閉塞する方向に制御ピストン22を付
勢する。
Fuel filter 60 and injector body 1
The gap with the inner peripheral surface of No. 3 is set to about 25 μm,
By passing the fuel through this gap, contamination in the fuel is filtered. The high-pressure fuel introduced from the fuel filter 60 branches into a high-pressure fuel passage 62 and a high-pressure fuel passage 63. The high-pressure fuel branched into the high-pressure fuel passage 62 is supplied to the annular fuel reservoir 24 around the needle valve 20, and the high-pressure fuel branched into the high-pressure fuel passage 63 is supplied to the pressure control chamber 61. The pressure of the high-pressure fuel in the fuel reservoir 24 urges the needle valve 20 upward in FIG. 3, that is, in the lift direction in which the fuel reservoir 24 and the injection hole 11a communicate with each other, and the pressure control chamber 61
The pressure of the high pressure fuel in the lower part of FIG.
0 urges the control piston 22 in a direction to close the injection hole 11a.

【0028】図4に示すように、高圧燃料通路63と圧
力制御室61とは高圧燃料通路63から圧力制御室61
への流入燃料量を規制する第1の絞り部としての第1の
絞り孔65で連通されている。平面弁座としての平板プ
レート51には平板プレート51を軸方向に貫通し第1
の絞り孔65よりも通路抵抗の小さい第2の絞り部とし
ての第2の絞り孔66が形成されている。
As shown in FIG. 4, the high pressure fuel passage 63 and the pressure control chamber 61 are separated from the high pressure fuel passage 63 by the pressure control chamber 61.
A first throttle hole 65 as a first throttle portion that regulates the amount of fuel flowing into the tank is communicated. The flat plate 51 as the flat valve seat extends through the flat plate
A second throttle hole 66 is formed as a second throttle portion having a smaller passage resistance than the throttle hole 65 of FIG.

【0029】低圧燃料通路64は制御ピストン22およ
びニードル弁20の摺動クリアランスからのリーク燃料
を回収するための燃料通路であり、低圧燃料室67に連
通している。低圧燃料通路68は低圧燃料室67に連通
し、インジェクタ内の余剰燃料を外部に排出するための
通路である。低圧燃料通路64、低圧燃料室67および
低圧燃料通路68は、特許請求の範囲に記載した「低圧
空間」を構成している。
The low-pressure fuel passage 64 is a fuel passage for collecting leaked fuel from the sliding clearance between the control piston 22 and the needle valve 20, and communicates with the low-pressure fuel chamber 67. The low-pressure fuel passage 68 communicates with the low-pressure fuel chamber 67 and is a passage for discharging excess fuel in the injector to the outside. The low-pressure fuel passage 64, the low-pressure fuel chamber 67, and the low-pressure fuel passage 68 constitute a "low-pressure space" described in the claims.

【0030】電磁弁30は、圧力制御室61と低圧燃料
室67とを断続する電磁二方弁であり、リーテーニング
ナット52とインジェクタボディ13との間に配設され
ている。電磁コイル32はコア31内に巻装されてお
り、コネクタ33から電力が供給される。可動部材40
はシャフト41、支持部材42、球状部材43およびプ
ッシュロッド44からなり、シリンダ53に往復移動可
能に支持されている。シャフト41の電磁コイル32側
にはアーマチャ34が固定されている。シャフト41お
よび支持部材42は特許請求の範囲に記載した「軸部
材」を構成する。可動部材40のリフト量はスペーサ5
4の軸長を変更することにより調整できる。
The solenoid valve 30 is an electromagnetic two-way valve that connects and disconnects the pressure control chamber 61 and the low-pressure fuel chamber 67, and is disposed between the retaining nut 52 and the injector body 13. The electromagnetic coil 32 is wound around the core 31, and power is supplied from the connector 33. Movable member 40
Is composed of a shaft 41, a support member 42, a spherical member 43, and a push rod 44, and is supported by a cylinder 53 so as to be able to reciprocate. An armature 34 is fixed to the shaft 41 on the side of the electromagnetic coil 32. The shaft 41 and the support member 42 constitute a "shaft member" described in the claims. The lift amount of the movable member 40 is the spacer 5
4 can be adjusted by changing the axial length.

【0031】図1に示すように、シャフト41の先端部
には円筒状に形成された支持部材42が圧入または溶接
等で固定されている。支持部材42と球状部材43との
間には数μmのクリアランスが形成されており、球状部
材43はシャフト41の先端に形成された円錐状凹面4
1aと支持部材42の内壁とにより回動自在に組み付け
られている。支持部材42の先端部をかしめることによ
り球状部材43は支持部材42からの脱落を防止されて
いる。球状部材43は、セラミックまたは超硬合金の球
の一部分に平面部43aが加工された構造になってい
る。
As shown in FIG. 1, a cylindrical support member 42 is fixed to the tip of the shaft 41 by press-fitting or welding. A clearance of several μm is formed between the support member 42 and the spherical member 43, and the spherical member 43 has a conical concave surface 4 formed at the tip of the shaft 41.
1a and the inner wall of the support member 42 are rotatably assembled. By caulking the tip of the support member 42, the spherical member 43 is prevented from dropping from the support member 42. The spherical member 43 has a structure in which a flat portion 43a is formed on a part of a ceramic or cemented carbide sphere.

【0032】シリンダ53とインジェクタボディ13と
の間には平板プレート51が挟持されている。平板プレ
ート51には平板プレート51を軸方向に貫通する第2
の絞り孔66が形成されており、圧力制御室61と低圧
燃料室67とを連通可能である。図4に示す平板プレー
ト51は、後述する環状溝等を省略している。図2の
(B)に示すように、平板プレート51は母材70の表
面に硬質皮膜71をコーティングして形成されている。
母材70には焼き戻し温度が500〜650℃と高い高
速度工具鋼や高温戻しダイス鋼等を用いることが好まし
い。母材70の球状部材43とのシート部にTiN 、CrN
、DLC 等の中から一種がコーティングされ硬質皮膜7
1を形成している。TiN 、CrN 、DLC の硬度範囲はHV=
1000〜3000である。母材70を図2に示す形状
に加工後、真空アーク放電を利用し、陰極に取り付けた
皮膜材料を蒸気化またはイオン化して母材70上に皮膜
を形成するイオンプレーティング法の一種であるAIP 法
により硬質皮膜71が形成される。
A flat plate 51 is sandwiched between the cylinder 53 and the injector body 13. A second flat plate 51 axially penetrates the flat plate 51.
Are formed, and the pressure control chamber 61 and the low-pressure fuel chamber 67 can communicate with each other. The flat plate 51 shown in FIG. 4 omits an annular groove and the like described later. As shown in FIG. 2B, the flat plate 51 is formed by coating a surface of a base material 70 with a hard film 71.
For the base material 70, it is preferable to use a high-speed tool steel having a tempering temperature as high as 500 to 650 ° C., a high-temperature tempering die steel, or the like. TiN, CrN are applied to the sheet portion of the base material 70 with the spherical member 43.
, DLC, etc. coated with a hard coating 7
1 are formed. The hardness range of TiN, CrN and DLC is HV =
1000 to 3000. After processing the base material 70 into the shape shown in FIG. 2, it is a type of ion plating method in which a film material attached to the cathode is vaporized or ionized to form a film on the base material 70 using vacuum arc discharge. The hard coating 71 is formed by the AIP method.

【0033】球状部材43をTiN 、CrN 、DLC 等の硬質
皮膜でコーティングを施した鋼で構成することも可能で
あるし、平板プレート51をセラミックまたは超硬合金
で形成することも可能である。図1および図2に示すよ
うに、平板プレート51の球状部材43とのシート部に
は、第2の絞り孔66の開口周囲に環状の座面51aが
形成されている。この環状座面51aの外周側に環状の
溝が形成され、この環状溝により環状溝通路51bが形
成されている。前記環状溝から径方向外側に向けて放射
状に十字状の溝が形成されており、この十字状溝により
燃料溝通路51cが形成されている。燃料溝通路51c
の一端は環状溝通路51bと連通し燃料溝通路51cの
他端は低圧燃料室67に連通している。環状溝通路51
bおよび燃料溝通路51cは、特許請求の範囲に記載し
た「燃料逃し通路」を構成している。環状溝通路51b
および燃料溝通路51cは球状部材43と平板プレート
51との密着領域内に形成されており、球状部材43が
平板プレート51に着座した状態においても低圧燃料室
67と連通している。環状溝通路51bおよび燃料溝通
路51cにより扇状の座面51dが区切られている。
The spherical member 43 can be made of steel coated with a hard film such as TiN, CrN, DLC or the like, and the flat plate 51 can be made of ceramic or cemented carbide. As shown in FIGS. 1 and 2, an annular seating surface 51 a is formed around the opening of the second throttle hole 66 in the sheet portion of the flat plate 51 with the spherical member 43. An annular groove is formed on the outer peripheral side of the annular seating surface 51a, and an annular groove passage 51b is formed by the annular groove. A cross-shaped groove is formed radially outward from the annular groove, and a fuel groove passage 51c is formed by the cross-shaped groove. Fuel groove passage 51c
Has one end communicating with the annular groove passage 51b and the other end of the fuel groove passage 51c communicating with the low-pressure fuel chamber 67. Annular groove passage 51
b and the fuel groove passage 51c constitute a "fuel release passage" described in the claims. Annular groove passage 51b
The fuel groove passage 51c is formed in the contact area between the spherical member 43 and the flat plate 51, and communicates with the low-pressure fuel chamber 67 even when the spherical member 43 is seated on the flat plate 51. The fan-shaped seating surface 51d is partitioned by the annular groove passage 51b and the fuel groove passage 51c.

【0034】座面51aと座面51dとの平面高さは同
一高さに設定されており、電磁二方弁の閉弁時の球状部
材43と平板プレート51との接触は、環状溝を挟んで
内側および外側の両座面で行われる構成となっている。
座面51aの外周縁から径方向外側に向けてから環状溝
通路51bの深さが次第に深くなるようにテーパ面72
が形成されている。このような構成にしたのは次に述べ
る理由からである。
The flat surfaces of the seat surface 51a and the seat surface 51d are set at the same height. When the electromagnetic two-way valve is closed, the contact between the spherical member 43 and the flat plate 51 is made with the annular groove interposed therebetween. And is performed on both the inner and outer seating surfaces.
The tapered surface 72 is formed so that the depth of the annular groove passage 51b gradually increases from the outer peripheral edge of the seat surface 51a toward the radial outside.
Are formed. This configuration is adopted for the following reason.

【0035】圧力制御室61は100MPa 以上の高圧に
なるため、第2の絞り孔66近傍の座面51aには大き
な力が加わり弾性変形してしまう可能性がある。第1実
施例の如く、座面51aの外周縁に続いてテーパ面72
を設け第2の絞り孔66近傍の径方向の肉厚を大きくと
ることによって、座面51aの変形を抑制し閉弁時のシ
ール性をより確実にできる。
Since the pressure in the pressure control chamber 61 is higher than 100 MPa, a large force may be applied to the seating surface 51a near the second throttle hole 66, and may be elastically deformed. As in the first embodiment, the tapered surface 72 follows the outer peripheral edge of the seat surface 51a.
By increasing the radial thickness near the second throttle hole 66, deformation of the seating surface 51a can be suppressed, and the sealing performance when the valve is closed can be further ensured.

【0036】球状部材43の平面部43aは座面51a
と座面51dの一部とに着座可能であり、球状部材43
が平板プレート51に着座すると第2の絞り孔66と環
状溝通路51bとの連通が遮断される。図1に示す各寸
法の具体例を次に示す。平面部43aの直径D1 =1.
6mm、球状部材43の直径D2 =2.0mm、第2の絞り
孔66の径D3 =0.35mm、環状溝通路51bの内径
4 =0.5mm、環状溝通路51bの外径D5 =1.0
mm、制御ピストン22の径D6 =4.5mmである。ま
た、球状部材43の削り代=0.4mm、第1の絞り孔6
5の径=0.25mm、可動部材40のリフト量=0.1
2mmである。
The flat portion 43a of the spherical member 43 has a seating surface 51a.
And a part of the seating surface 51d.
Is seated on the flat plate 51, the communication between the second throttle hole 66 and the annular groove passage 51b is cut off. Specific examples of the dimensions shown in FIG. 1 are shown below. The diameter D 1 of the flat portion 43a = 1.
6 mm, the diameter D 2 of the spherical member 43 = 2.0 mm, the diameter D 3 of the second throttle hole 66 = 0.35 mm, the inner diameter D 4 of the annular groove passage 51b = 0.5 mm, and the outer diameter D of the annular groove passage 51b. 5 = 1.0
mm, and the diameter D 6 of the control piston 22 is 4.5 mm. Also, the cutting allowance of the spherical member 43 = 0.4 mm, and the first aperture 6
5 = 0.25 mm, lift amount of the movable member 40 = 0.1
2 mm.

【0037】テーパ面を形成しない構成でシール性を確
認した結果、圧力制御室内の燃料圧力が150MPa 程度
まで良好なシール性を得るためには、第2の絞り孔周囲
の径方向の座面の厚みが約0.2mm以上必要である。
0.1mm程度であれば、本実施例のように環状の座面5
1aの外周縁からテーパ面72を設ける形状が有効とな
る。
As a result of confirming the sealing performance with the configuration in which the tapered surface is not formed, in order to obtain good sealing performance until the fuel pressure in the pressure control chamber reaches about 150 MPa, the radial seating surface around the second throttle hole is required. The thickness must be about 0.2 mm or more.
If it is about 0.1 mm, the annular seating surface 5 as in this embodiment is used.
The shape in which the tapered surface 72 is provided from the outer peripheral edge of 1a is effective.

【0038】次に、燃料噴射装置の作動について説明す
る。 (1) 電磁コイル32への通電オフ時、スプリング45の
付勢力によりプッシュロッド44が図3の下方に押下さ
れ、球状部材43が平板プレート51に着座する。図1
に示す球状部材43の平面部43aが平板プレート51
の座面51a、51dに当接することにより、圧力制御
室61と低圧燃料室67との連通が遮断される。スプリ
ング45のセット荷重は65Nに設定されており、イン
ジェクタ使用時における圧力制御室61の最大圧力が1
50MPa になったときに可動部材40が開弁方向に受け
る油圧荷重21.1Nよりも大きく設定されているの
で、コイル32への通電をオフした状態で可動部材40
がリフトすることはない。
Next, the operation of the fuel injection device will be described. (1) When the power to the electromagnetic coil 32 is turned off, the push rod 44 is pressed downward in FIG. 3 by the urging force of the spring 45, and the spherical member 43 is seated on the flat plate 51. FIG.
The flat portion 43a of the spherical member 43 shown in FIG.
The communication between the pressure control chamber 61 and the low-pressure fuel chamber 67 is interrupted by contact with the seat surfaces 51a and 51d. The set load of the spring 45 is set to 65N, and the maximum pressure of the pressure control chamber 61 when using the injector is 1
Since the hydraulic load applied to the movable member 40 in the valve opening direction at 50 MPa is set to be larger than 21.1 N, the movable member 40 is turned off in the state where the coil 32 is de-energized.
But will not lift.

【0039】制御ピストン22の受圧面積はニードル弁
20の受圧面積よりも大きく、スプリング23の付勢力
は噴孔閉塞方向に働いているので、圧力制御室61の燃
料圧力から制御ピストン22が噴孔閉塞方向に受ける力
とスプリング23の付勢力との和は、燃料溜まり24の
燃料圧力からニードル弁20がリフト方向に受ける力よ
りも大きい。したがって、エンジン始動直後における高
圧燃料通路62、63の圧力上昇速度が約25〜30MP
a/sec 程度の状態においても、ニードル弁20により噴
孔11aは閉塞され燃料噴射は行われない。
The pressure receiving area of the control piston 22 is larger than the pressure receiving area of the needle valve 20, and the urging force of the spring 23 acts in the injection hole closing direction. The sum of the force received in the closing direction and the urging force of the spring 23 is greater than the force received by the needle valve 20 in the lift direction from the fuel pressure in the fuel reservoir 24. Therefore, the pressure increasing speed of the high-pressure fuel passages 62 and 63 immediately after the start of the engine is about 25 to 30 MP.
Even in the state of about a / sec, the injection hole 11a is closed by the needle valve 20, and fuel injection is not performed.

【0040】(2) 電磁コイル32への通電をオンする
と、コイル32に発生するアーマチャ34を吸引する電
磁力は約100Nに設定されているので、この電磁力と
圧力制御室61の燃料圧力から可動部材40が開弁方向
に受ける力との和がスプリング45の付勢力よりも大き
くなるので可動部材40が平板プレート51から離座す
る。球状部材43が平板プレート51から離座すると、
第2の絞り孔66と低圧燃料室67とが連通し、第2の
絞り孔66、低圧燃料室67、低圧燃料通路68、封止
部材55に形成された燃料回収通路55aを経て圧力制
御室61内の高圧燃料がインジェクタ1から排出され
る。第2の絞り孔66の通路抵抗は第1の絞り孔65の
通路抵抗よりも小さいので、球状部材43が平板プレー
ト51から離座し圧力制御室61と低圧燃料室67とが
連通すると圧力制御室61の燃料圧力が低下する。圧力
制御室61の燃料圧力が低下し、圧力制御室61の燃料
圧力から制御ピストン22が噴孔閉塞方向に受ける力と
スプリング23の付勢力との和が、燃料溜まり24の燃
料圧力からニードル弁20がリフト方向に受ける力より
も小さくなると、ニードル弁20がリフトし、噴孔11
aから燃料が噴射される。
(2) When the power supply to the electromagnetic coil 32 is turned on, the electromagnetic force for attracting the armature 34 generated in the coil 32 is set to about 100 N. Since the sum of the force applied to the movable member 40 in the valve opening direction is larger than the urging force of the spring 45, the movable member 40 is separated from the flat plate 51. When the spherical member 43 separates from the flat plate 51,
The second throttle hole 66 communicates with the low-pressure fuel chamber 67, and the pressure control chamber passes through the second throttle hole 66, the low-pressure fuel chamber 67, the low-pressure fuel passage 68, and the fuel recovery passage 55 a formed in the sealing member 55. The high-pressure fuel in 61 is discharged from the injector 1. Since the passage resistance of the second throttle hole 66 is smaller than the passage resistance of the first throttle hole 65, the pressure control is performed when the spherical member 43 separates from the flat plate 51 and the pressure control chamber 61 and the low-pressure fuel chamber 67 communicate with each other. The fuel pressure in the chamber 61 decreases. The fuel pressure in the pressure control chamber 61 decreases, and the sum of the force received by the control piston 22 in the injection hole closing direction and the urging force of the spring 23 from the fuel pressure in the pressure control chamber 61 is calculated from the fuel pressure in the fuel reservoir 24 by the needle valve. When the force applied to the needle valve 20 in the lift direction becomes smaller, the needle valve 20 lifts,
Fuel is injected from a.

【0041】次に、燃料逃し通路の有無による燃料噴射
装置の作用および効果の相違点について説明する。図5
の(A)は、圧力制御室61内の高圧燃料によって、球
状部材43の平面部43aに作用する圧力分布を示した
ものであり、環状溝通路51bおよび燃料溝通路51c
がない場合と比較してその分布形態の違いを模式的に表
したものである。図5の(B)は、第1実施例に用いた
寸法諸元のものに対して、圧力分布の理論値を計算した
結果である。さらに図6は、図5の圧力分布を受けた場
合の平面部43aが開弁方向に受ける油圧荷重を平面部
43a全域で積分して求めた値を示したものである。
Next, the difference between the operation and the effect of the fuel injection device depending on the presence or absence of the fuel escape passage will be described. FIG.
(A) shows the pressure distribution acting on the flat portion 43a of the spherical member 43 by the high-pressure fuel in the pressure control chamber 61, and shows the annular groove passage 51b and the fuel groove passage 51c.
7 schematically shows the difference in the distribution form as compared with the case where there is no. FIG. 5B shows the result of calculating the theoretical value of the pressure distribution with respect to the dimensions used in the first embodiment. Further, FIG. 6 shows values obtained by integrating the hydraulic load applied to the flat portion 43a in the valve opening direction when the pressure distribution of FIG. 5 is received in the entirety of the flat portion 43a.

【0042】電磁弁30が閉弁し高圧燃料をシールして
いる場合、高圧燃料はある圧力分布をもって球状部材4
3と平板プレート51との密着平面内に回り込む。第1
実施例では、この密着平面内に設けられた環状溝通路5
1bおよび燃料溝通路51cが低圧燃料室67に連通し
ていることにより、環状溝通路51bおよび燃料溝通路
51cは低圧燃料室67内の圧力(ドレン圧≒0)まで
降圧する。したがってその圧力分布は、図5に示すよう
に、第2の絞り孔66から環状溝通路51bまでをLO
G関数でつないだ平行円盤間の隙間流れであらわされる
周知の圧力分布を得る。
When the solenoid valve 30 is closed to seal high-pressure fuel, the high-pressure fuel has a certain pressure distribution and the spherical member 4
3 and the flat plate 51 wrap around. First
In the embodiment, the annular groove passage 5 provided in the close contact plane is used.
Since the first groove 1b and the fuel groove passage 51c communicate with the low-pressure fuel chamber 67, the pressure of the annular groove passage 51b and the fuel groove passage 51c is reduced to the pressure in the low-pressure fuel chamber 67 (drain pressure ≒ 0). Therefore, as shown in FIG. 5, the pressure distribution from the second throttle hole 66 to the annular groove passage 51b is low.
A well-known pressure distribution represented by a gap flow between parallel disks connected by a G function is obtained.

【0043】一方、低圧燃料室67と連通する環状溝通
路51bおよび燃料溝通路51cが構成されていない従
来のインジェクタの場合、図5の(B)に示した点線の
ように球状部材の平面部の外周縁部まで密着平面内の圧
力がドレン圧にまで降圧しないため、上記圧力分布は半
径方向に長い分布を有することになる。図6より、燃料
逃し通路が有る場合に電磁弁開弁方向に発生する油圧力
は、燃料逃し通路がない場合に比較して70%以上も低
減できることが分かる。このため、電磁弁閉弁方向に可
動部材40を付勢するスプリング45の付勢力を小さく
できるとともに、スプリング45の付勢力に抗して可動
部材40をリフトさせる電磁コイル32の磁力も小さく
できるので、電磁弁の体格を小型化できる。以上の効果
は、球状部材の平面部43aと平板プレート51のいず
れかを小径化することによっても得ることができる。た
だし、平面部43aと平板プレート51のいずれかを小
径化することにより電磁弁閉弁時のシート面積を極端に
小さくすると、シート面圧が極端に上昇するため初期性
能を得ることができても耐久性に問題が生じるので実用
上適さない。
On the other hand, in the case of a conventional injector in which the annular groove passage 51b and the fuel groove passage 51c communicating with the low-pressure fuel chamber 67 are not formed, the flat portion of the spherical member is indicated by a dotted line shown in FIG. Since the pressure in the close contact plane does not drop to the drain pressure up to the outer peripheral edge of the above, the pressure distribution has a long distribution in the radial direction. FIG. 6 shows that the oil pressure generated in the solenoid valve opening direction when there is a fuel release passage can be reduced by 70% or more as compared with the case where there is no fuel release passage. Therefore, the urging force of the spring 45 for urging the movable member 40 in the solenoid valve closing direction can be reduced, and the magnetic force of the electromagnetic coil 32 for lifting the movable member 40 against the urging force of the spring 45 can also be reduced. The size of the solenoid valve can be reduced. The above effects can also be obtained by reducing the diameter of either the flat portion 43a of the spherical member or the flat plate 51. However, if the seat area when the solenoid valve is closed is extremely reduced by reducing the diameter of either the flat portion 43a or the flat plate 51, the initial performance can be obtained because the seat pressure increases extremely. It is not suitable for practical use because of a problem in durability.

【0044】また、電磁弁閉弁直前の状態における球状
部材43と平板プレート51との間隔が極めて小さい場
合においても、当然同様の効果が得られることは言うま
でもない。さらには、低圧燃料室67に連通する環状溝
通路51bおよび燃料溝通路51cは、第2の絞り孔6
6を中心にして十字状に延びる点対称位置に配設されて
いるため、平面部43aに働く圧力分布も対称形となっ
て分布する。すなわち、平面部43aの中心から径方向
に向けて対称形の圧力分布を得ることができるので、電
磁弁開閉弁時において球状部材43の傾きや偏心が発生
しにくく、安定した開閉弁制御が可能となっている。
It is needless to say that the same effect can be obtained even when the distance between the spherical member 43 and the flat plate 51 is very small immediately before the solenoid valve is closed. Further, the annular groove passage 51 b and the fuel groove passage 51 c communicating with the low-pressure fuel chamber 67 are provided with the second throttle hole 6.
Since it is arranged at a point symmetrical position extending in a cross shape around the center 6, the pressure distribution acting on the plane portion 43a is also distributed symmetrically. That is, since a symmetrical pressure distribution can be obtained in the radial direction from the center of the flat portion 43a, inclination and eccentricity of the spherical member 43 hardly occur at the time of opening and closing the solenoid valve, and stable opening / closing valve control is possible. It has become.

【0045】さらに、円錐状凹面41aを有するシャフ
ト41に球状凸面を有する球状部材43が回動自在に収
容され、球状部材43の平面部43aが平板プレート5
1に着座する構成であるため、着座時の軸ずれを吸収で
き、球状部材43により圧力制御室61と低圧側とを確
実にシールできるとともに、電磁弁30の作動中に球状
部材43が流体によって動くことがなく安定した制御を
も可能とする。したがって、この構造は本実施例に示す
球状部材のみに限定されて使用されるものでなく、例え
ばボール弁の先端形状に応用しても良好な結果が得られ
ることは言うまでもない。
Further, a spherical member 43 having a spherical convex surface is rotatably housed in a shaft 41 having a conical concave surface 41a, and a flat portion 43a of the spherical member 43 is
1, the axial displacement at the time of seating can be absorbed, the pressure control chamber 61 and the low pressure side can be reliably sealed by the spherical member 43, and the spherical member 43 is fluidized during the operation of the solenoid valve 30. It enables stable control without movement. Therefore, it is needless to say that this structure is not limited to the spherical member shown in the present embodiment, and that a good result can be obtained even when it is applied to, for example, the tip shape of a ball valve.

【0046】次に、球状部材43および平板プレート5
1のシート部を耐摩耗性に優れた材質で形成したことに
よる第1実施例の効果を比較例と比較して説明する。図
7、図8および図9に示す比較例は、球状部材101を
軸受用鋼球(SUJ2)、平板プレート110を高速度工具
鋼(SKH2)または炭素工具鋼(SK4F)で形成したもので
ある。軸受用鋼球、高速度工具鋼および炭素工具鋼の硬
度は、それぞれHV=700〜800である。第1実施例
としては、球状部材43はセラミック(Si3N4)で形成
し、平板プレート51は高速度工具鋼(SKH2)の母材70
にTiN をコーティングして硬質皮膜を形成したものを用
いる。TiN による硬質皮膜71の硬度はHV=2200〜
2800である。
Next, the spherical member 43 and the flat plate 5
The effect of the first embodiment in which the sheet portion 1 is made of a material having excellent wear resistance will be described in comparison with a comparative example. In the comparative examples shown in FIGS. 7, 8 and 9, the spherical member 101 is formed of a steel ball for bearing (SUJ2), and the flat plate 110 is formed of high-speed tool steel (SKH2) or carbon tool steel (SK4F). . The hardness of the bearing steel ball, high-speed tool steel, and carbon tool steel is HV = 700 to 800, respectively. In the first embodiment, the spherical member 43 is formed of ceramic (Si 3 N 4 ), and the flat plate 51 is formed of a high-speed tool steel (SKH2) base material 70.
A hard film formed by coating TiN on the surface is used. The hardness of the hard coating 71 made of TiN is HV = 2200
2800.

【0047】球状部材および平板プレートのシート部の
摩耗は、(1) 球状部材と平板プレートとの衝突、(2) 燃
料中に混入したコンタミの衝突の二つの要因により発生
する。 (1) 可動部材100が平板プレート110に着座する場
合、球状部材101の平面部101aの中心が第2の絞
り孔102の中心からずれていると、図7の(A)およ
び図8の(A)に示すように、球状部材101が傾き平
面部101aの外周縁部(以下、エッジという)101
bが平板プレート110の平面部110aに衝突しやす
い。その結果、図7の(B)に示すようにエッジ101
bが摩耗する。すると、図7の(A)に示す摩耗前のシ
ート径d1 に対し、図7の(B)に示す摩耗後のシート
径d2 が小さくなる。
Abrasion of the spherical member and the sheet portion of the flat plate occurs due to two factors: (1) collision between the spherical member and the flat plate, and (2) collision of contaminants mixed in the fuel. (1) When the movable member 100 is seated on the flat plate 110, if the center of the flat portion 101a of the spherical member 101 is shifted from the center of the second throttle hole 102, (A) in FIG. As shown in FIG. 1A, the spherical member 101 is inclined at the outer peripheral edge (hereinafter referred to as an edge) 101 of the flat plane portion 101a.
b easily collides with the flat portion 110a of the flat plate 110. As a result, as shown in FIG.
b wears out. Then, with respect to the seat diameter d 1 before wear shown in (A) of FIG. 7, the seat diameter d 2 after wear shown in FIG. 7 (B) is reduced.

【0048】また、平板プレート110の平面部110
aもエッジ101bの衝突により、図8の(B)に示す
ようにえぐられるように摩耗する。すると、摩耗前の図
8の(A)に示すシート径d1 に対し、摩耗後のシート
径d3 が小さくなる。シート径が小さくなるとシート面
積が小さくなりシート面圧が上昇するので、球状部材1
01および平板プレート110のシート部の摩耗が加速
度的に進行する。また、球状部材101および平板プレ
ート110のシート部が衝突時の衝撃により疲労破壊を
起こしやすい状態になる。
The flat portion 110 of the flat plate 110
As shown in FIG. 8B, a is also worn by the collision of the edge 101b. Then, with respect to the seat diameter d 1 shown in FIG. 8 (A) prior to wear, it is the seat diameter d 3 after wear is reduced. As the sheet diameter decreases, the sheet area decreases and the sheet surface pressure increases.
01 and the sheet portion of the flat plate 110 accelerate at an accelerated rate. Further, the spherical member 101 and the sheet portion of the flat plate 110 are in a state of easily causing fatigue fracture due to an impact at the time of collision.

【0049】(2) 球状部材101および平板プレート1
10は燃料中に混入したコンタミによっても摩耗する。
自動車の燃料タンク中には、燃料の補給時あるいは配管
接続部の取り外しによって混入した砂に代表されるセラ
ミック系のコンタミが存在する。これらの平均的な硬度
は約Hv=1000〜2000と非常に硬い。これらコン
タミの中で、インジェクタに取り付けた燃料フィルタの
25μmの隙間を通過可能な粒径の小さいものはインジ
ェンタの内部に侵入する。図9の(A)に示すように、
コンタミが高圧燃料とともに球状部材101に対して垂
直方向から衝突すると、第2の絞り孔102に面した平
面部101aが点線で示すように激しく摩耗する。平面
部101aが摩耗すると、図9の(B)に示すように平
面部101aの摩耗部を燃料とともにコンタミが流れて
ゆくことにより、球状部材101および平板プレート1
10が点線で示すようにさらに摩耗する。
(2) Spherical member 101 and flat plate 1
10 also wears out due to contamination mixed in the fuel.
In a fuel tank of an automobile, there is a ceramic contamination represented by sand mixed in at the time of refueling or by removing a pipe connection. Their average hardness is very hard, about Hv = 1000-2000. Among these contaminants, those having a small particle diameter that can pass through a 25 μm gap of the fuel filter attached to the injector enter the inside of the injector. As shown in FIG.
When the contaminant collides with the high-pressure fuel against the spherical member 101 from the vertical direction, the flat portion 101a facing the second throttle hole 102 is severely worn as shown by a dotted line. When the flat portion 101a is worn, as shown in FIG. 9B, the contamination flows along with the fuel through the worn portion of the flat portion 101a, so that the spherical member 101 and the flat plate 1
10 wears further as indicated by the dotted line.

【0050】本実施例および比較例の球状部材における
摩耗量δを比較した結果を図10に示す。図10に記載
されたAは、本実施例と比較例とを空気中にて107
作動させた場合を示し、球状部材が平板プレートに衝突
することにより生じる球状部材の摩耗量を示している。
Bは、コンタミ(アルミナAl2O3 、粒径0.39μm)
を混入した燃料の供給圧力が120MPa となるように設
定し24時間作動させた場合の摩耗量を示している。本
実施例のセラミックで形成した球状部材は、AおよびB
のどちらの条件においても比較例に対して摩耗量が圧倒
的に少ないことがわかる。
FIG. 10 shows the results of comparison of the wear amount δ between the spherical members of this embodiment and the comparative example. A described in FIG. 10, a comparative example with the present embodiment shows a case was operated 10 7 times in air, shows the wear amount of the spherical member caused by the spherical member collides with the flat plate I have.
B is contamination (alumina Al 2 O 3 , particle size 0.39 μm)
Shows the amount of wear when the supply pressure of the fuel mixed with is set to 120 MPa and operated for 24 hours. The spherical members formed of the ceramic of the present embodiment are A and B
It can be seen that the wear amount is overwhelmingly smaller than that of the comparative example under either condition.

【0051】本実施例および比較例による、時間経過に
ともなう燃料リーク量および噴射量の変化を図11に示
す。本実施例と比較例との加工寸法に違いがあるので、
摩耗前の燃料リーク量および燃料噴射量は一致していな
いが、時間経過にともなう燃料リーク量および燃料噴射
量の変化の違いをみることができる。比較例では6時間
で急増したリーク量が、本実施例では24時間を経過し
てもほとんど増加していない。また、比較例では噴射量
も増加しているのに対し、本実施例ではほとんど変化し
ていない。球状部材に摩耗が生じると、球状部材と平板
プレートとのシート性能が著しく低下し、インジェクタ
のリーク量および噴射量を増加させることがわかる。こ
のように、球状部材をセラミックで形成することにより
シート部分の耐久性は著しく向上する。
FIG. 11 shows changes in the amount of fuel leak and the amount of injection over time according to the present embodiment and the comparative example. Since there is a difference in processing dimensions between the present embodiment and the comparative example,
Although the amount of fuel leak and the amount of fuel injection before wear do not match, the difference between the amount of fuel leak and the amount of fuel injection over time can be seen. In the comparative example, the leak amount increased rapidly in 6 hours, but in the present example, it hardly increased even after 24 hours. Further, while the injection amount also increased in the comparative example, it hardly changed in the present embodiment. It can be seen that when the spherical member is worn, the sheet performance between the spherical member and the flat plate is significantly reduced, and the leak amount and the injection amount of the injector are increased. Thus, the durability of the sheet portion is significantly improved by forming the spherical member from ceramic.

【0052】本実施例および比較例の平板プレートにお
ける摩耗量の違いを図12に示す。図12は、本実施例
と比較例とを空気中にて107 回作動させた場合の平板
プレートの摩耗量δを示している。本実施例では、高速
度工具鋼にTiN コーティングを施すことにより平板プレ
ートの表面を高硬度に形成しているので、球状部材のエ
ッジ部分で平板プレートをえぐるような損傷が少ない。
したがってシート面積の減少が少ないので、燃料リーク
量を低減し燃料噴射特性を高精度に制御できる。
FIG. 12 shows the difference in the amount of wear between the flat plate of the present embodiment and the flat plate of the comparative example. Figure 12 is a comparative example with the present embodiment shows the δ wear amount of the flat plate when operated 107 times in the air. In this embodiment, the surface of the flat plate is formed with high hardness by applying a TiN coating to the high-speed tool steel, so that the edge of the spherical member is less likely to go around the flat plate.
Therefore, since the decrease in the seat area is small, the amount of fuel leakage can be reduced and the fuel injection characteristics can be controlled with high accuracy.

【0053】本発明の第1実施例によると、電磁弁閉弁
時、あるいは閉弁直前の可動部材の低リフト時において
も、可動部材40に発生する開弁方向に作用する圧力分
布を半径方向に短くできるためスプリング45の付勢力
に抗して可動部材40をリフトさせる電磁コイル32の
吸引力が小さくなるので電磁コイル32を小型化するこ
とができる。これは、座面51aに加えて扇状の座面5
1dの一部に可動部材40を密着させる構成であるため
シート面圧を上昇させることなく実現できるので、耐久
性を損なうことがないことは言うまでもない。また、電
磁弁閉弁時の高圧燃料のシールを確実にすることができ
るため、高圧燃料のリーク量を低減でき、コモンレール
に高圧燃料を供給するための高圧ポンプの負荷を軽減す
ることができるので、高圧ポンプの駆動トルクを小さく
できるとともに高圧ポンプの体格も小さくできる。
According to the first embodiment of the present invention, even when the solenoid valve is closed, or when the movable member is in a low lift state immediately before closing, the pressure distribution acting on the movable member 40 in the valve opening direction is reduced in the radial direction. Therefore, the attractive force of the electromagnetic coil 32 that lifts the movable member 40 against the urging force of the spring 45 is reduced, so that the electromagnetic coil 32 can be downsized. This is a fan-shaped seating surface 5 in addition to the seating surface 51a.
Since the movable member 40 is in close contact with a part of 1d, it can be realized without increasing the sheet surface pressure, so that it goes without saying that the durability is not impaired. Also, since the high-pressure fuel can be reliably sealed when the solenoid valve is closed, the amount of high-pressure fuel leakage can be reduced, and the load on the high-pressure pump for supplying high-pressure fuel to the common rail can be reduced. In addition, the driving torque of the high-pressure pump can be reduced, and the size of the high-pressure pump can be reduced.

【0054】また、球状部材43の中心軸に対して半径
方向に等しい圧力分布となるため、球状部材43の傾き
や偏心が発生しにくく、安定した開閉弁制御が可能とな
る。これにより、均一な噴射量を得ることができ、安定
した噴射量制御を実現できる。特に微少量噴射制御を安
定して行うことができる。さらに、球状部材着座時の軸
ずれが吸収できるため、確実にシート面を密着すること
ができ、球状部材着座時の燃料リーク量をほぼゼロにす
ることも可能であり、高圧燃料のリーク量を低減でき
る。
Further, since the pressure distribution becomes equal in the radial direction with respect to the center axis of the spherical member 43, the spherical member 43 is less likely to be inclined or eccentric, and stable opening / closing valve control is possible. As a result, a uniform injection amount can be obtained, and stable injection amount control can be realized. In particular, it is possible to stably control the minute injection. Further, since the axis deviation when the spherical member is seated can be absorbed, the seat surface can be securely adhered, and the fuel leak amount when the spherical member is seated can be reduced to almost zero. Can be reduced.

【0055】また第1実施例では、球状部材43と平板
プレート51との密着領域内に環状溝通路51bおよび
燃料溝通路51dを形成したことにより、球状部材43
と平板プレート51とのシート面積を減少させる構成と
なっている。このような構成においては、球状部材43
と平板プレート51とのシート部の摩耗によるシート面
積の減少が燃料リーク量の増加をまねき、燃料噴射特性
を変化させる要因となる。しかしながら、球状部材43
と平板プレート51とのシート部が耐摩耗性に優れた材
質で形成されていることにより、シート面積の減少を防
止し、燃料噴射特性を高精度に保持できる。
Further, in the first embodiment, the annular groove passage 51b and the fuel groove passage 51d are formed in the contact area between the spherical member 43 and the flat plate 51, so that the spherical member 43 is formed.
And the plate area of the flat plate 51 is reduced. In such a configuration, the spherical member 43
The decrease in the sheet area due to the wear of the sheet portion between the plate and the flat plate 51 leads to an increase in the amount of fuel leakage, which is a factor for changing the fuel injection characteristics. However, the spherical member 43
Since the sheet portion of the plate and the flat plate 51 is formed of a material having excellent wear resistance, a decrease in the sheet area can be prevented, and the fuel injection characteristics can be maintained with high accuracy.

【0056】上述の如く、第1実施例による燃料噴射装
置は、安価な手法で電磁弁からの燃料リーク量を低減で
きる上、コモンレールに高圧燃料を供給する高圧ポンプ
の体格を小型化することが可能で、安定した燃料噴射制
御を小さな電磁力で駆動できる。さらには高い耐久性を
も兼ね備えている。 (第2実施例)本発明の第2実施例を図13に示す。第
2実施例は、平板プレート51の環状溝通路51bの角
部を直角に形成したものであり、その他の構成は第1実
施例と同一である。
As described above, the fuel injection device according to the first embodiment can reduce the amount of fuel leakage from the solenoid valve by an inexpensive method and can reduce the size of the high-pressure pump that supplies high-pressure fuel to the common rail. It is possible to drive stable and stable fuel injection control with a small electromagnetic force. It also has high durability. (Second Embodiment) FIG. 13 shows a second embodiment of the present invention. In the second embodiment, the corners of the annular groove passages 51b of the flat plate 51 are formed at right angles, and the other configuration is the same as that of the first embodiment.

【0057】環状溝通路51bの角部を直角に形成した
ことにより第2の絞り孔66近傍の径方向の肉圧が第1
実施例に比べて小さくなる。したがって、圧力制御室内
の燃料圧力が150MPa 程度まで良好なシール性を得る
ためには、径方向の座面51aの厚みが約0.2mm以上
必要である。 (第3実施例)本発明の第3実施例を図14に示す。第
1実施例と実質的に同一構成部分には同一符号を付す。
Since the corner of the annular groove passage 51b is formed at a right angle, the radial wall pressure near the second throttle hole 66 is reduced to the first wall.
It is smaller than in the embodiment. Therefore, in order to obtain a good sealing performance until the fuel pressure in the pressure control chamber is about 150 MPa, the thickness of the radial bearing surface 51a needs to be about 0.2 mm or more. Third Embodiment FIG. 14 shows a third embodiment of the present invention. Components substantially the same as those in the first embodiment are denoted by the same reference numerals.

【0058】第3実施例では、平板プレート80に設け
た第2の絞り孔66を中心として燃料通路51cを放射
状に等間隔に五本設けている。これは、可動部材40に
発生する圧力分布の半径方向長さを確実に短くするため
の実施例を示したものであり、特に150MPa 以上の高
圧を制御する場合に有効である。すなわち、これは15
0MPa 以上の高圧を制御するときに環状溝通路51bを
完全にドレン圧まで下げる手法である。ただし、燃料通
路本数は多いほどその効果は大きく、五本に限るもので
はない。
In the third embodiment, five fuel passages 51c are provided radially at equal intervals around the second throttle hole 66 provided in the flat plate 80. This shows an embodiment for surely shortening the radial length of the pressure distribution generated in the movable member 40, and is particularly effective when controlling a high pressure of 150 MPa or more. That is, this is 15
This is a method of completely reducing the annular groove passage 51b to the drain pressure when controlling a high pressure of 0 MPa or more. However, the effect is greater as the number of fuel passages is larger, and is not limited to five.

【0059】以上説明した第1実施例〜第3実施例で
は、支持部材とシャフトとを別体に形成しているため、
シャフトの熱処理工程が極めて容易となる。シャフト
は、電磁弁30の作動に伴うガイド部分(摺動部分)の
耐久性と、球状部材との高応力発生面(接触面)の耐久
性を確保することを目的に熱処理されている。このた
め、第1実施例のように最終工程にてシャフト先端をか
しめて球状部材の脱落を防止する場合、例えば合金綱を
材料にかしめ先端部を防炭処理した後、浸炭熱処理を実
施することになる。しかしながら、球状部材の直径は、
第1実施例で示したφ2.0mmと如く極めて小さいた
め、シャフト先端の防炭処理長さが小さく、この作業に
時間を要してしまう。そこで第1実施例〜第3実施例で
は、円筒状の支持部材をシャフトと別体に設けることに
より、シャフトの熱処理作業が容易になる。シャフトに
は組付け工程前に焼き入れ処理がなされており、その熱
処理工程は極めて容易に行うことができる。
In the first to third embodiments described above, since the support member and the shaft are formed separately,
The heat treatment step of the shaft becomes extremely easy. The shaft is heat-treated for the purpose of ensuring the durability of the guide portion (sliding portion) associated with the operation of the solenoid valve 30 and the durability of the high stress generating surface (contact surface) with the spherical member. For this reason, in the case where the tip of the shaft is caulked in the final step to prevent the spherical member from falling off as in the first embodiment, for example, after caulking an alloy steel to a material and performing a carburizing treatment on the tip, a carburizing heat treatment is performed. become. However, the diameter of the spherical member is
Since it is extremely small, such as φ2.0 mm shown in the first embodiment, the length of the carbon prevention treatment at the tip of the shaft is small, and this operation takes time. Therefore, in the first to third embodiments, the heat treatment of the shaft is facilitated by providing the cylindrical support member separately from the shaft. The shaft is subjected to a quenching process before the assembling process, and the heat treatment process can be performed very easily.

【0060】また、第1実施例〜第3実施例では、圧入
または溶接によりシャフトに支持部材を取付けたが、本
発明ではねじ結合によりシャフトに支持部材を取付ける
ことも可能である。 (第4実施例)本発明の第4実施例を図15および図1
6に示す。第1実施例と実質的に同一構成部分には同一
符号を付す。第1実施例〜第3実施例では、平板プレー
ト側に燃料逃し通路を設けたが、第4実施例では球状部
材側に燃料逃し通路を設けている。図15に示す球状部
材91は、高速度工具鋼や高温戻しダイス鋼等からなる
母材のシート部側にTiN 、CrN 、DLC 等の中から一種が
コーティングされ硬質皮膜を形成している。図16に示
す平板プレート96は、セラミックまたは超硬合金によ
り形成されている。
In the first to third embodiments, the support member is attached to the shaft by press-fitting or welding. However, in the present invention, the support member can be attached to the shaft by screw connection. (Fourth Embodiment) FIGS. 15 and 1 show a fourth embodiment of the present invention.
6 is shown. Components substantially the same as those in the first embodiment are denoted by the same reference numerals. In the first to third embodiments, the fuel release passage is provided on the flat plate side. In the fourth embodiment, the fuel release passage is provided on the spherical member side. In the spherical member 91 shown in FIG. 15, one of TiN, CrN, DLC and the like is coated on the sheet side of a base material made of high-speed tool steel, high-temperature returning die steel or the like to form a hard coating. The flat plate 96 shown in FIG. 16 is formed of ceramic or cemented carbide.

【0061】図15の(B)に示すように、シャフト9
0は第1実施例におけるシャフト41と支持部材42と
を兼ねている。球状部材91の平面部の中央部には円形
の当接面92が形成され、この当接面92の周囲に環状
の環状溝通路93が形成されている。この環状溝通路9
3に連通し、当接面92を中心にして放射状に三本の燃
料溝通路94が等間隔に設けられている。球状部材に放
射状に形成される燃料溝通路の本数は、三本に限るもの
ではない。扇状の座面95は環状溝通路93および燃料
溝通路94に囲まれている。
As shown in FIG. 15B, the shaft 9
Numeral 0 serves both as the shaft 41 and the support member 42 in the first embodiment. A circular contact surface 92 is formed at the center of the flat surface of the spherical member 91, and an annular annular groove passage 93 is formed around the contact surface 92. This annular groove passage 9
3, three fuel groove passages 94 are provided at equal intervals radially around the contact surface 92. The number of fuel groove passages radially formed in the spherical member is not limited to three. The fan-shaped seating surface 95 is surrounded by the annular groove passage 93 and the fuel groove passage 94.

【0062】図16の(A)および(B)に示すよう
に、平板プレート96には、第2の絞り孔66が形成さ
ているだけである。第4実施例では、平板プレート96
に第2の絞り孔66だけが形成されているため、第1実
施例〜第3実施例のように燃料溝通路近傍に薄肉部をも
たないのでより良好なシール性が確保できる。
As shown in FIGS. 16A and 16B, the plate plate 96 has only a second aperture 66 formed therein. In the fourth embodiment, the flat plate 96
Since only the second throttle hole 66 is formed in the first embodiment, since there is no thin portion near the fuel groove passage unlike the first to third embodiments, better sealing performance can be secured.

【0063】以上説明した本発明の上記各実施例では、
球状部材および平板プレートのシート部をいずれも耐摩
耗性を有する材質で形成したが、球状部材および平板プ
レートの少なくともいずれか一方を耐摩耗性を有する材
質で形成することによっても、球状部材と平板プレート
とのシート部における摩耗を減少し、燃料噴射特性を高
精度に制御することができる。
In each of the above-described embodiments of the present invention,
Although the spherical member and the sheet portion of the flat plate are both formed of a wear-resistant material, at least one of the spherical member and the flat plate may be formed of a wear-resistant material. It is possible to reduce abrasion in the seat portion with the plate and control the fuel injection characteristics with high accuracy.

【0064】(第5実施例)本発明の第5実施例を図1
7に示す。第1実施例と実質的に同一構成部分には同一
符号を付す。第5実施例では、平板プレート51には平
板プレート51を軸方向に貫通する第2の絞り孔66が
形成されており、圧力制御室61と低圧燃料室67とを
連通可能である。また、平板プレート51の環状溝通路
51bの底面と扇状の座面51dとの間には側壁51e
が設けられている。第2の絞り孔66近傍の座面51a
と扇状の座面51dとの平面高さhは同一高さに設定さ
れており、座面51aの上面幅wは平面高さhよりも小
さく設定されている。図17の(B)における各寸法の
具体例は、平面高さh=0.1mmであり、上面幅w=
0.08mmである。ここで、第2の絞り孔66は特許請
求の範囲に記載した「連通路」を構成し、平面高さhは
特許請求の範囲に記載された「燃料逃し通路の深さ」に
相当する。
(Fifth Embodiment) FIG. 1 shows a fifth embodiment of the present invention.
FIG. Components substantially the same as those in the first embodiment are denoted by the same reference numerals. In the fifth embodiment, a second throttle hole 66 that penetrates the flat plate 51 in the axial direction is formed in the flat plate 51 so that the pressure control chamber 61 and the low-pressure fuel chamber 67 can communicate with each other. A side wall 51e is provided between the bottom surface of the annular groove passage 51b of the flat plate 51 and the fan-shaped seating surface 51d.
Is provided. The seating surface 51a near the second throttle hole 66
And the fan-shaped seating surface 51d have the same plane height h, and the upper surface width w of the seating surface 51a is set smaller than the plane height h. A specific example of each dimension in FIG. 17B is a plane height h = 0.1 mm and an upper surface width w =
0.08 mm. Here, the second throttle hole 66 forms a “communication passage” described in the claims, and the plane height h corresponds to “depth of the fuel escape passage” described in the claims.

【0065】平板プレート51は高速度工具鋼や高温戻
しダイス鋼等からなる母材70の表面にTiN 、CrN 、DL
C 等の中から一種がコーティングされ硬質皮膜71を形
成している。硬質皮膜71の硬度範囲はHV=1000〜
3000であり、母材70の硬度はHV=700〜800
程度である。母材70を図17に示す形状に加工後、真
空アーク放電を利用し、陰極に取り付けた皮膜材料を蒸
気化またはイオン化して母材70上に皮膜を形成するイ
オンプレーティング法の一種であるAIP 法により硬質皮
膜71が形成される。このため硬質皮膜71は、例えば
蒸着により形成された皮膜に比べて膜厚が均一に形成さ
れ、特に側壁51e近傍が連続的に形成される。さら
に、第2の絞り孔66近傍の薄肉部および座面51aの
破壊強度を向上している。
The flat plate 51 is made of TiN, CrN, DL on the surface of a base material 70 made of high-speed tool steel, high-temperature returning die steel, or the like.
One of C and the like is coated to form a hard film 71. The hardness range of the hard coating 71 is HV = 1000-
3000, and the hardness of the base material 70 is HV = 700-800.
It is about. This is a type of ion plating method in which a base material 70 is processed into a shape shown in FIG. 17, and then a film material attached to the cathode is vaporized or ionized to form a film on the base material 70 by using vacuum arc discharge. The hard coating 71 is formed by the AIP method. For this reason, the hard film 71 is formed to have a uniform thickness as compared with a film formed by, for example, vapor deposition, and particularly, the vicinity of the side wall 51e is continuously formed. Further, the breaking strength of the thin portion near the second throttle hole 66 and the seat surface 51a is improved.

【0066】第5実施例では、硬質皮膜71は膜厚が均
一に連続的に形成されているので、電磁弁開弁時の側壁
51e近傍の燃料の流れを妨げることがなく、硬質皮膜
71の剥離を防止することができる。さらに、電磁弁閉
弁時、あるいは閉弁直前の可動部材の低リフト時におい
て、第2の絞り孔66近傍の薄肉部および座面51aが
第2の絞り孔66内部の制御室圧により変形するのを硬
質皮膜71により抑制しているので、第2の絞り孔66
近傍の薄肉部および座面51aの破壊強度に対する信頼
性を向上することができ、閉弁時のシール性をより確実
なものとすることができる。
In the fifth embodiment, since the hard coating 71 is formed to have a uniform thickness continuously, the flow of fuel near the side wall 51e when the solenoid valve is opened is not hindered. Peeling can be prevented. Further, at the time of closing the solenoid valve or at the time of low lift of the movable member immediately before closing, the thin portion near the second throttle hole 66 and the seat surface 51 a are deformed by the control chamber pressure inside the second throttle hole 66. Is suppressed by the hard coating 71, so that the second throttle hole 66
The reliability with respect to the breaking strength of the thin portion and the seating surface 51a in the vicinity can be improved, and the sealing performance at the time of closing the valve can be further ensured.

【0067】さらにまた、座面51aの上面幅wは平面
高さhよりも小さく設定されているため、可動部材40
に発生する開弁方向に作用する圧力分布を半径方向に短
くできる。したがって、スプリング45の付勢力に抗し
て可動部材40をリフトさせる電磁コイル32の吸引力
が小さくなるので、電磁コイル32を比較的小型にする
ことができる。
Further, since the upper surface width w of the seat surface 51a is set smaller than the plane height h, the movable member 40
The pressure distribution acting on the valve in the valve opening direction can be shortened in the radial direction. Therefore, the attraction force of the electromagnetic coil 32 that lifts the movable member 40 against the urging force of the spring 45 is reduced, so that the electromagnetic coil 32 can be made relatively small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例による蓄圧式燃料噴射装置
における電磁弁の主要部を示す斜視図である。
FIG. 1 is a perspective view showing a main part of an electromagnetic valve in a pressure accumulating fuel injection device according to a first embodiment of the present invention.

【図2】第1実施例の平板プレートを示すものであり、
(A)は平面図を示し、(B)は(A)のB−B線断面
図を示す。
FIG. 2 shows a flat plate of the first embodiment,
(A) shows a plan view, and (B) shows a cross-sectional view taken along line BB of (A).

【図3】第1実施例の蓄圧式燃料噴射装置を示す断面図
である。
FIG. 3 is a cross-sectional view illustrating a pressure accumulating fuel injection device according to a first embodiment.

【図4】第1実施例の蓄圧式燃料噴射装置の主要部を示
す断面図である。
FIG. 4 is a sectional view showing a main part of the pressure accumulating fuel injection device of the first embodiment.

【図5】第1実施例の電磁弁におけるシート部の圧力分
布を示し、(A)は断面形状と圧力分布との位置関係を
示し、(B)はシート部の半径方向距離と圧力との関係
を示す特性図である。
5A and 5B show the pressure distribution of the seat portion in the solenoid valve of the first embodiment, FIG. 5A shows the positional relationship between the cross-sectional shape and the pressure distribution, and FIG. 5B shows the relationship between the radial distance of the seat portion and the pressure. FIG. 4 is a characteristic diagram illustrating a relationship.

【図6】燃料逃し通路が有る場合と無い場合の油圧荷重
の違いを示す特性図である。
FIG. 6 is a characteristic diagram showing a difference in hydraulic load between when there is a fuel release passage and when there is no fuel release passage.

【図7】(A)は第1実施例における球状部材の回動状
態を示す模式的断面図であり、(B)は球状部材の外周
縁部の摩耗を示す模式的断面図である。
FIG. 7A is a schematic cross-sectional view showing a rotating state of the spherical member in the first embodiment, and FIG. 7B is a schematic cross-sectional view showing wear of the outer peripheral edge of the spherical member.

【図8】(A)は第1実施例における球状部材の回動状
態を示す模式的断面図であり、(B)は平板プレートの
摩耗状態を示す模式的断面図である。
FIG. 8A is a schematic sectional view showing a rotating state of a spherical member in the first embodiment, and FIG. 8B is a schematic sectional view showing a worn state of a flat plate.

【図9】(A)は第1実施例における燃料中のコンタミ
による球状部材の摩耗状態を示す模式的断面図であり、
(B)は球状部材および平板プレートの摩耗を示す模式
的断面図である。
FIG. 9A is a schematic cross-sectional view showing a state of wear of a spherical member due to contamination in fuel in the first embodiment;
(B) is a schematic sectional view showing wear of the spherical member and the flat plate.

【図10】球状部材の材質による摩耗の違いを示す特性
図である。
FIG. 10 is a characteristic diagram showing a difference in wear depending on a material of a spherical member.

【図11】噴射量およびリーク量の経時変化を示す特性
図である。
FIG. 11 is a characteristic diagram showing a change over time in an injection amount and a leak amount.

【図12】平板プレートの材質による摩耗の違いを示す
特性図である。
FIG. 12 is a characteristic diagram showing a difference in wear depending on a material of a flat plate.

【図13】第2実施例の平板プレートを示すものであ
り、(A)は平面図を示し、(B)は(A)のB−B線
断面図を示す。
13A and 13B show a flat plate according to a second embodiment, wherein FIG. 13A is a plan view and FIG. 13B is a cross-sectional view taken along line BB of FIG. 13A.

【図14】第3実施例の平板プレートを示すものであ
り、(A)は平面図を示し、(B)は(A)のB−B線
断面図を示す。
14A and 14B show a flat plate of a third embodiment, wherein FIG. 14A is a plan view and FIG. 14B is a cross-sectional view taken along line BB of FIG.

【図15】第4実施例の球状部材を示すものであり、
(A)は側面図を示し、(B)は(A)のB方向矢視図
を示す。
FIG. 15 shows a spherical member of a fourth embodiment,
(A) shows a side view and (B) shows a view in the direction of arrow B in (A).

【図16】第4実施例の平板プレートを示すものであ
り、(A)は平面図を示し、(B)は(A)のB−B線
断面図を示す。
16A and 16B show a flat plate of a fourth embodiment, wherein FIG. 16A is a plan view, and FIG. 16B is a sectional view taken along line BB of FIG.

【図17】第5実施例の平板プレートを示すものであ
り、(A)は平面図を示し、(B)は(A)のB−B線
断面図を示す。
17A and 17B show a flat plate of a fifth embodiment, wherein FIG. 17A is a plan view, and FIG. 17B is a sectional view taken along line BB of FIG.

【符号の説明】[Explanation of symbols]

1 インジェクタ 10 噴射ノズル 11a 噴孔 20 ニードル弁(弁部材) 21 プレッシャピン(弁部材) 22 制御ピストン(弁部材) 30 電磁弁 40 可動部材 41 シャフト(軸部材) 41a 円錐状凹面 42 支持部材(軸部材) 43 球状部材 43a 平面部(シート部) 51 平板プレート(平面弁座) 51a、51d 座面(シート部) 51b 環状溝通路(燃料逃し通路) 51c 燃料溝通路(燃料逃し通路) 51e 側壁 62、63 高圧燃料通路 64、68 低圧燃料通路 65 第1の絞り孔 66 第2の絞り孔(連通路) 67 低圧燃料室 70 母材 71 硬質皮膜 80 平板プレート(平面弁座) 91 球状部材 96 平板プレート(平面弁座) DESCRIPTION OF SYMBOLS 1 Injector 10 Injection nozzle 11a Injection hole 20 Needle valve (valve member) 21 Pressure pin (valve member) 22 Control piston (valve member) 30 Solenoid valve 40 Movable member 41 Shaft (shaft member) 41a Conical concave surface 42 Support member (shaft) 43) Spherical member 43a Flat portion (seat portion) 51 Flat plate (flat valve seat) 51a, 51d Seat surface (seat portion) 51b Annular groove passage (fuel release passage) 51c Fuel groove passage (fuel release passage) 51e Side wall 62 , 63 High-pressure fuel passage 64, 68 Low-pressure fuel passage 65 First throttle hole 66 Second throttle hole (communication passage) 67 Low-pressure fuel chamber 70 Base material 71 Hard coating 80 Flat plate (flat valve seat) 91 Spherical member 96 Flat plate Plate (flat valve seat)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02M 51/06 F02M 51/06 Z F16K 1/14 F16K 1/14 A 25/04 25/04 31/06 305 31/06 305L 305M 385 385A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F02M 51/06 F02M 51/06 Z F16K 1/14 F16K 1/14 A 25/04 25/04 31/06 305 31/06 305L 305M 385 385A

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 コモンレールで蓄圧された高圧燃料をイ
ンジェクタの噴射ノズルから内燃機関に噴射する蓄圧式
燃料噴射装置であって、 噴射ノズルの噴孔に高圧燃料を供給可能な高圧燃料通路
と前記噴孔とを断続する弁部材と、 前記弁部材の反噴孔側に設けられ前記高圧燃料通路から
供給される燃料圧力により前記弁部材を前記噴孔遮断方
向に付勢する圧力制御室と低圧燃料通路または低圧燃料
室からなる低圧空間とを断続する電磁弁とを備え、 前記電磁弁は、前記圧力制御室と前記低圧空間とを連通
可能な連通路周囲に形成された平面弁座、および前記平
面弁座に平面同士で密着することにより前記圧力制御室
と前記低圧空間との連通を遮断する可動部材を有し、 前記可動部材と前記平面弁座との密着領域内において前
記低圧空間と連通する燃料逃し通路が前記可動部材また
は前記平面弁座のいずれか一方に形成され、 前記可動部材の少なくとも前記平面弁座とのシート部を
耐摩耗性を有する材質で形成することを特徴とする蓄圧
式燃料噴射装置。
1. An accumulator type fuel injection device for injecting high pressure fuel accumulated in a common rail from an injection nozzle of an injector to an internal combustion engine, comprising a high pressure fuel passage capable of supplying high pressure fuel to an injection hole of the injection nozzle, and the injection. A valve member intermittently communicating with the hole, a pressure control chamber provided on the opposite side of the valve member from the injection hole, and a pressure control chamber for urging the valve member in the injection hole blocking direction by fuel pressure supplied from the high pressure fuel passage; An electromagnetic valve for intermittently interposing a passage or a low-pressure space formed of a low-pressure fuel chamber, wherein the electromagnetic valve is a planar valve seat formed around a communication passage capable of communicating the pressure control chamber and the low-pressure space; and A movable member that closes communication between the pressure control chamber and the low-pressure space by closely contacting the flat valve seats with each other on a flat surface, and communicates with the low-pressure space in a contact region between the movable member and the flat valve seat; A fuel escape passage formed in one of the movable member and the flat valve seat, wherein at least a seat portion of the movable member with the flat valve seat is formed of a material having wear resistance. Type fuel injection device.
【請求項2】 前記平面弁座の少なくとも前記可動部材
とのシート部を耐摩耗性を有する材質で形成することを
特徴とする請求項1記載の蓄圧式燃料噴射装置。
2. The accumulator type fuel injection device according to claim 1, wherein at least a seat portion of said flat valve seat with said movable member is formed of a material having wear resistance.
【請求項3】 コモンレールで蓄圧された高圧燃料をイ
ンジェクタの噴射ノズルから内燃機関に噴射する蓄圧式
燃料噴射装置であって、 噴射ノズルの噴孔に高圧燃料を供給可能な高圧燃料通路
と前記噴孔とを断続する弁部材と、 前記弁部材の反噴孔側に設けられ前記高圧燃料通路から
供給される燃料圧力により前記弁部材を前記噴孔遮断方
向に付勢する圧力制御室と低圧燃料通路または低圧燃料
室からなる低圧空間とを断続する電磁弁とを備え、 前記電磁弁は、前記圧力制御室と前記低圧空間とを連通
可能な連通路周囲に形成された平面弁座、および前記平
面弁座に平面同士で密着することにより前記圧力制御室
と前記低圧空間との連通を遮断する可動部材を有し、 前記可動部材と前記平面弁座との密着領域内において前
記低圧空間と連通する燃料逃し通路が前記可動部材また
は前記平面弁座のいずれか一方に形成され、 前記平面弁座の少なくとも前記可動部材とのシート部を
耐摩耗性を有する材質で形成することを特徴とする蓄圧
式燃料噴射装置。
3. A pressure accumulating fuel injection device for injecting high pressure fuel accumulated in a common rail from an injection nozzle of an injector to an internal combustion engine, wherein the high pressure fuel passage is capable of supplying high pressure fuel to an injection hole of the injection nozzle. A valve member intermittently communicating with the hole, a pressure control chamber provided on the opposite side of the valve member from the injection hole, and a pressure control chamber for urging the valve member in the injection hole blocking direction by fuel pressure supplied from the high pressure fuel passage; An electromagnetic valve for intermittently interposing a passage or a low-pressure space formed of a low-pressure fuel chamber, wherein the electromagnetic valve is a planar valve seat formed around a communication passage capable of communicating the pressure control chamber and the low-pressure space; and A movable member that closes communication between the pressure control chamber and the low-pressure space by closely contacting the flat valve seats with each other on a flat surface, and communicates with the low-pressure space in a contact region between the movable member and the flat valve seat; A fuel escape passage formed in one of the movable member and the flat valve seat, wherein at least a seat portion of the flat valve seat with the movable member is formed of a material having wear resistance. Type fuel injection device.
【請求項4】 前記可動部材は、軸部材および前記軸部
材に回動自在に支持される球状部材を有し、前記球状部
材は、前記平面弁座と平面同士で密着する平面部および
前記軸部材と摺動する球状凸面部を有することを特徴と
する請求項1、2または3記載の蓄圧式燃料噴射装置。
4. The movable member includes a shaft member and a spherical member rotatably supported by the shaft member, wherein the spherical member has a flat portion in close contact with the flat valve seat in a plane and the shaft. 4. The accumulator type fuel injection device according to claim 1, further comprising a spherical convex portion sliding with a member.
【請求項5】 前記耐摩耗性を有する材質は、TiN 、Cr
N 、DLC のいずれか一種による硬質皮膜か、あるいはセ
ラミックまたは超硬合金であることを特徴とする請求項
1〜4のいずれか一項記載の蓄圧式燃料噴射装置。
5. The material having wear resistance is TiN, Cr.
The accumulator type fuel injection device according to any one of claims 1 to 4, wherein the fuel injection device is a hard coating made of any one of N and DLC, or a ceramic or cemented carbide.
【請求項6】 コモンレールで蓄圧された高圧燃料をイ
ンジェクタの噴射ノズルから内燃機関に噴射する蓄圧式
燃料噴射装置であって、 噴射ノズルの噴孔に高圧燃料を供給可能な高圧燃料通路
と前記噴孔とを断続する弁部材と、 前記弁部材の反噴孔側に設けられ前記高圧燃料通路から
供給される燃料圧力により前記弁部材を前記噴孔遮断方
向に付勢する圧力制御室と低圧燃料通路または低圧燃料
室からなる低圧空間とを断続する電磁弁とを備え、 前記電磁弁は、前記圧力制御室と前記低圧空間とを連通
可能な連通路周囲に形成された平面弁座、および前記平
面弁座に平面同士で密着することにより前記圧力制御室
と前記低圧空間との連通を遮断する可動部材を有し、 前記可動部材と前記平面弁座との密着領域内において前
記低圧空間と連通する燃料逃し通路が前記可動部材また
は前記平面弁座のいずれか一方に形成され、 前記可動部材と前記平面弁座との少なくともいずれか一
方のシート部に耐摩耗性を有する皮膜を形成することを
特徴とする蓄圧式燃料噴射装置。
6. A pressure-accumulation type fuel injection device for injecting high-pressure fuel accumulated in a common rail from an injection nozzle of an injector to an internal combustion engine, comprising a high-pressure fuel passage capable of supplying high-pressure fuel to an injection hole of the injection nozzle, and the fuel injection device. A valve member intermittently communicating with the hole, a pressure control chamber provided on the opposite side of the valve member from the injection hole, and a pressure control chamber for urging the valve member in the injection hole blocking direction by fuel pressure supplied from the high pressure fuel passage; An electromagnetic valve for intermittently interposing a passage or a low-pressure space formed of a low-pressure fuel chamber, wherein the electromagnetic valve is a planar valve seat formed around a communication passage capable of communicating the pressure control chamber and the low-pressure space; and A movable member that closes communication between the pressure control chamber and the low-pressure space by closely contacting the flat valve seats with each other on a flat surface, and communicates with the low-pressure space in a contact region between the movable member and the flat valve seat; A fuel release passage formed in one of the movable member and the flat valve seat, and forming a wear-resistant coating on at least one of the seats of the movable member and the flat valve seat. A pressure accumulating fuel injection device.
【請求項7】 前記燃料逃し通路を有する部材のシート
部と、前記燃料逃し通路を形成する側壁とに耐摩耗性を
有する皮膜を形成し、 前記燃料逃し通路を有する部材のシート部に形成される
皮膜と前記側壁に形成される皮膜とは、膜厚が略同一で
あり、連続することを特徴とする請求項6記載の蓄圧式
燃料噴射装置。
7. A film having wear resistance is formed on a seat portion of a member having the fuel escape passage and a side wall forming the fuel escape passage, and is formed on a seat portion of the member having the fuel escape passage. 7. The accumulator type fuel injection device according to claim 6, wherein the film formed on the side wall and the film formed on the side wall have substantially the same thickness and are continuous.
【請求項8】 コモンレールで蓄圧された高圧燃料をイ
ンジェクタの噴射ノズルから内燃機関に噴射する蓄圧式
燃料噴射装置であって、 噴射ノズルの噴孔に高圧燃料を供給可能な高圧燃料通路
と前記噴孔とを断続する弁部材と、 前記弁部材の反噴孔側に設けられ前記高圧燃料通路から
供給される燃料圧力により前記弁部材を前記噴孔遮断方
向に付勢する圧力制御室と低圧燃料通路または低圧燃料
室からなる低圧空間とを断続する電磁弁とを備え、 前記電磁弁は、前記圧力制御室と前記低圧空間とを連通
可能な連通路周囲に形成された平面弁座、および前記平
面弁座に平面同士で密着することにより前記圧力制御室
と前記低圧空間との連通を遮断する可動部材を有し、 前記可動部材と前記平面弁座との密着領域内において前
記低圧空間と連通する燃料逃し通路が前記平面弁座に形
成され、 前記平面弁座の少なくとも前記圧力制御室と前記低圧空
間とを連通可能な連通路と前記燃料逃し通路との間に前
記平面弁座よりも硬い材質で皮膜を形成することを特徴
とする蓄圧式燃料噴射装置。
8. A pressure-accumulation type fuel injection device for injecting high-pressure fuel accumulated in a common rail from an injection nozzle of an injector to an internal combustion engine, comprising: a high-pressure fuel passage capable of supplying high-pressure fuel to an injection hole of the injection nozzle; A valve member intermittently communicating with the hole, a pressure control chamber provided on the opposite side of the valve member from the injection hole, and a pressure control chamber for urging the valve member in the injection hole blocking direction by fuel pressure supplied from the high pressure fuel passage; An electromagnetic valve for intermittently interposing a passage or a low-pressure space formed of a low-pressure fuel chamber, wherein the electromagnetic valve is a planar valve seat formed around a communication passage capable of communicating the pressure control chamber and the low-pressure space; and A movable member that closes communication between the pressure control chamber and the low-pressure space by closely contacting the flat valve seats with each other on a flat surface, and communicates with the low-pressure space in a contact region between the movable member and the flat valve seat; A fuel release passage formed in the flat valve seat, and a harder than the flat valve seat between the fuel release passage and a communication passage that can communicate at least the pressure control chamber and the low-pressure space of the flat valve seat. An accumulator type fuel injection device characterized in that a film is formed of a material.
【請求項9】 前記平面弁座の前記連通路近傍の径方向
の上面幅は前記燃料逃し通路の深さよりも小さいことを
特徴とする請求項8記載の蓄圧式燃料噴射装置。
9. The accumulator type fuel injection device according to claim 8, wherein a radial upper surface width of the flat valve seat near the communication passage is smaller than a depth of the fuel escape passage.
JP16722997A 1996-09-02 1997-06-24 Accumulated fuel injection system Expired - Fee Related JP3719468B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP16722997A JP3719468B2 (en) 1996-09-02 1997-06-24 Accumulated fuel injection system
DE1997138351 DE19738351B4 (en) 1996-09-02 1997-09-02 Storage fuel injection system
FR9710907A FR2752883B1 (en) 1996-09-02 1997-09-02 FUEL INJECTION DEVICE WITH ACCUMULATOR

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23169296 1996-09-02
JP8-231692 1996-09-02
JP16722997A JP3719468B2 (en) 1996-09-02 1997-06-24 Accumulated fuel injection system

Publications (2)

Publication Number Publication Date
JPH10122082A true JPH10122082A (en) 1998-05-12
JP3719468B2 JP3719468B2 (en) 2005-11-24

Family

ID=26491336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16722997A Expired - Fee Related JP3719468B2 (en) 1996-09-02 1997-06-24 Accumulated fuel injection system

Country Status (3)

Country Link
JP (1) JP3719468B2 (en)
DE (1) DE19738351B4 (en)
FR (1) FR2752883B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020024680A (en) * 2000-09-26 2002-04-01 박상록 Compressible Fuel Injection Device for Diesel Engine
KR20020024681A (en) * 2000-09-26 2002-04-01 박상록 Compressible Fuel Injection Device for Diesel Engine
JP2008510914A (en) * 2004-08-24 2008-04-10 ロバート ボッシュ ゲーエムベーハー Injection nozzle for internal combustion machine
JP2008510915A (en) * 2004-08-24 2008-04-10 ロバート ボッシュ ゲーエムベーハー Control valve for injection valve
KR100822955B1 (en) 2004-08-06 2008-04-16 로베르트 보쉬 게엠베하 Device for the injection of fuel into the combustion chamber of an internal combustion engine
JP2008208825A (en) * 2007-01-31 2008-09-11 Denso Corp Injector
JP2009215892A (en) * 2008-03-07 2009-09-24 Denso Corp Control valve and injector
CN102251896A (en) * 2011-06-14 2011-11-23 常州博瑞油泵油嘴有限公司 Plane opening and closing structure of high-pressure common rail oil injector of diesel engine
JP2018084291A (en) * 2016-11-24 2018-05-31 株式会社Soken Valve structure
JP2019090350A (en) * 2017-11-13 2019-06-13 株式会社デンソー Valve device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9810208D0 (en) * 1998-05-13 1998-07-08 Lucas Ind Plc Fuel injector
US6802457B1 (en) 1998-09-21 2004-10-12 Caterpillar Inc Coatings for use in fuel system components
DE19847839A1 (en) 1998-10-16 2000-04-20 Gen Motors Corp Fuel injection device alters pressure in pressure chamber by allowing or interrupting outlet channel flow to actuate nozzle element with pressure chamber connected to fuel pressure line
DE19939450A1 (en) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Fuel injection device for internal combustion engines
EP1177375A1 (en) * 2000-02-15 2002-02-06 Caterpillar Inc. Thin film coatings for fuel injector components
US6715693B1 (en) 2000-02-15 2004-04-06 Caterpillar Inc Thin film coating for fuel injector components
US6508416B1 (en) * 2000-04-28 2003-01-21 Delphi Technologies, Inc. Coated fuel injector valve
DE102008000171B4 (en) * 2007-01-31 2017-04-06 Denso Corporation Injector and plate component for this
DE102008055178A1 (en) 2008-12-30 2010-07-01 Robert Bosch Gmbh Fuel injector with piezoelectric actuator
AT508050B1 (en) * 2009-03-24 2011-09-15 Bosch Gmbh Robert DEVICE FOR INJECTING FUEL IN THE COMBUSTION ENGINE OF AN INTERNAL COMBUSTION ENGINE
DE102009015528B4 (en) * 2009-04-02 2021-08-12 Man Energy Solutions Se Valve unit of a fuel supply system
DE102013212140A1 (en) * 2013-06-25 2015-01-08 Robert Bosch Gmbh control valve
US10626834B2 (en) 2016-05-03 2020-04-21 GM Global Technology Operations LLC Fuel injector for an internal combustion engine
CN108506130B (en) * 2018-04-18 2024-06-11 莆田市博泰动力设备有限公司 Fuel injector capable of reducing dynamic leakage of high-pressure common rail fuel
DE102018113662A1 (en) * 2018-06-08 2019-12-12 Liebherr-Components Deggendorf Gmbh Seat plate for an injector
DE102020108668A1 (en) 2020-03-30 2021-09-30 Liebherr-Components Deggendorf Gmbh Needle lift switch and fuel injector with such a needle lift switch

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709679A (en) * 1985-03-25 1987-12-01 Stanadyne, Inc. Modular accumulator injector
US4951878A (en) * 1987-11-16 1990-08-28 Casey Gary L Pico fuel injector valve
JPH01232161A (en) * 1988-03-14 1989-09-18 Yamaha Motor Co Ltd High pressure fuel injection device for engine
DE3814156A1 (en) * 1988-04-27 1989-11-09 Mesenich Gerhard PULSE-MODULATED HYDRAULIC VALVE
US4999052A (en) * 1988-10-05 1991-03-12 United Kingdon Atomic Energy Authority Method of producing nitrogen-strengthened alloys
EP0378230A1 (en) * 1989-01-13 1990-07-18 Idemitsu Petrochemical Co. Ltd. Method of and apparatus for producing diamond thin films
IT220662Z2 (en) * 1990-10-31 1993-10-08 Elasis Sistema Ricerca Fita Nel Mezzogiorno Soc.Consortile P.A. IMPROVEMENTS TO THE PILOT VALVE AND TO THE RELATED STILL OF ORDER AN ELECTROMAGNETIC INJECTOR FOR FUEL INJECTION SYSTEMS OF INTERNAL COMBUSTION ENGINES
IT220660Z2 (en) * 1990-10-31 1993-10-08 Elasis Sistema Ricerca Fiat IMPROVEMENTS IN THE HIGH PRESSURE SHUTTER SYSTEM IN A PILOT VALVE OF AN ELECTROMAGNETIC INJECTOR FOR FUEL INJECTION SYSTEMS OF INTERNAL COMBUSTION ENGINES
WO1993005191A1 (en) * 1991-09-02 1993-03-18 Sumitomo Electric Industries, Ltd. Hard alloy and production thereof
JP2655769B2 (en) * 1991-10-01 1997-09-24 株式会社日立製作所 Electromagnetic fuel injection valve
EP0745764B1 (en) * 1995-06-02 2001-03-21 Ganser-Hydromag Ag Fuel injection valve for internal combustion engines
JP3584554B2 (en) * 1995-07-26 2004-11-04 株式会社デンソー Accumulation type fuel injection device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020024680A (en) * 2000-09-26 2002-04-01 박상록 Compressible Fuel Injection Device for Diesel Engine
KR20020024681A (en) * 2000-09-26 2002-04-01 박상록 Compressible Fuel Injection Device for Diesel Engine
KR100822955B1 (en) 2004-08-06 2008-04-16 로베르트 보쉬 게엠베하 Device for the injection of fuel into the combustion chamber of an internal combustion engine
JP2008510914A (en) * 2004-08-24 2008-04-10 ロバート ボッシュ ゲーエムベーハー Injection nozzle for internal combustion machine
JP2008510915A (en) * 2004-08-24 2008-04-10 ロバート ボッシュ ゲーエムベーハー Control valve for injection valve
KR100850594B1 (en) * 2004-08-24 2008-08-05 로베르트 보쉬 게엠베하 Injection nozzle for internal combustion engines
JP2008208825A (en) * 2007-01-31 2008-09-11 Denso Corp Injector
JP4513831B2 (en) * 2007-01-31 2010-07-28 株式会社デンソー Injector
JP2009215892A (en) * 2008-03-07 2009-09-24 Denso Corp Control valve and injector
JP4670878B2 (en) * 2008-03-07 2011-04-13 株式会社デンソー Control valves and injectors
CN102251896A (en) * 2011-06-14 2011-11-23 常州博瑞油泵油嘴有限公司 Plane opening and closing structure of high-pressure common rail oil injector of diesel engine
JP2018084291A (en) * 2016-11-24 2018-05-31 株式会社Soken Valve structure
JP2019090350A (en) * 2017-11-13 2019-06-13 株式会社デンソー Valve device

Also Published As

Publication number Publication date
FR2752883A1 (en) 1998-03-06
DE19738351B4 (en) 2013-10-24
FR2752883B1 (en) 2000-12-15
JP3719468B2 (en) 2005-11-24
DE19738351A1 (en) 1998-03-05

Similar Documents

Publication Publication Date Title
JP3719468B2 (en) Accumulated fuel injection system
JP3584554B2 (en) Accumulation type fuel injection device
DE10039169B4 (en) Process for the surface treatment of a fuel pump part
US5732888A (en) Electromagnetically operable valve
JP4591593B2 (en) Fuel injection valve
US9777719B2 (en) Fuel pump with discharge control
US6764061B2 (en) Solenoid valve for controlling an injection valve of an internal combustion engine
US7303214B2 (en) Metallic compression joint and fuel injector having a metallic compression joint
US7055766B2 (en) Internal combustion engine fuel injector
EP1452717B1 (en) Fuel injection valve
US20070261673A1 (en) Fuel Injector with Punch-Formed Valve Seat for Reducing Armature Stroke Drift
US6526949B2 (en) Valve apparatus
JP2002106740A (en) Solenoid valve, and high-pressure pump using the same
EP0978650B1 (en) Seal
US6142394A (en) Valve seat for a ball and pin valve member in a hydraulically actuated fuel injector
JPH10153154A (en) Accumulator type fuel injection device
JPH10153155A (en) Accumulator type fuel injection device
EP0976923A2 (en) Fuel-injection apparatus
JPS59221456A (en) Electromagnetic type fuel injection valve
JP2002349745A (en) Solenoid valve
US6758416B2 (en) Fuel injector having an expansion tank accumulator
CN114109681A (en) Fuel injection pump
JP3589323B2 (en) Accumulation type fuel injection device
JP2022075382A (en) Cam shaft of internal combustion engine
JP2002295339A (en) Sliding member and fuel injection pump using this

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040406

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees