JPH10153155A - Accumulator type fuel injection device - Google Patents

Accumulator type fuel injection device

Info

Publication number
JPH10153155A
JPH10153155A JP31332896A JP31332896A JPH10153155A JP H10153155 A JPH10153155 A JP H10153155A JP 31332896 A JP31332896 A JP 31332896A JP 31332896 A JP31332896 A JP 31332896A JP H10153155 A JPH10153155 A JP H10153155A
Authority
JP
Japan
Prior art keywords
fuel
pressure
throttle hole
valve seat
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31332896A
Other languages
Japanese (ja)
Other versions
JP3719461B2 (en
Inventor
Tetsuya Toyao
哲也 鳥谷尾
Shuichi Matsumoto
修一 松本
Masafumi Murakami
雅史 邑上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP31332896A priority Critical patent/JP3719461B2/en
Priority to US08/975,397 priority patent/US6027037A/en
Priority to DE1997619461 priority patent/DE69719461T2/en
Priority to EP19970120502 priority patent/EP0844385B1/en
Publication of JPH10153155A publication Critical patent/JPH10153155A/en
Application granted granted Critical
Publication of JP3719461B2 publication Critical patent/JP3719461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressure accumulator type fuel injection device with an easy processing which can obtain a desired injection characteristic, even if the lift amount of the movable member of a solenoid valve is minified. SOLUTION: A cylindrical fuel space 68 with a larger diameter than a second throttle hole 67, in short a smaller passage resistance than the second throttle hole 67 is formed so as to communicate with the second throttle hole 67 in the fuel flow out side of the second throttle hole 67. At the open time of a solenoid valve 30, the passage resistance of a ring shape fuel passage formed between the plane part 43a of a spherical member 43 and a plane valve seat 53 becomes smaller in comparison with the case when the second throttle hole 67 is directly opened/closed by the plane part 43a without providing the fuel space 68. Therefore, even if the lift amount of a movable member 40 is minified, a desired injection characteristic decided by the flow rate characteristic of first/second throttle holes 66, 67 can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高圧燃料を一種の
サージタンクであるコモンレールに蓄圧し、この蓄圧さ
れた高圧燃料を内燃機関に噴射するようにした電磁制御
式の蓄圧式燃料噴射装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetically controlled pressure-accumulating fuel injection device which accumulates high-pressure fuel in a common rail, which is a kind of surge tank, and injects the accumulated high-pressure fuel into an internal combustion engine. Things.

【0002】[0002]

【従来の技術】従来より、高圧供給ポンプによってコモ
ンレールに高圧燃料を加圧圧送して蓄圧し、コモンレー
ルで蓄圧された高圧燃料を内燃機関(以下、「内燃機
関」をエンジンという)に噴射する電磁制御式の蓄圧式
燃料噴射装置として、特開平5−133296号公報、
米国特許番号第5464156号明細書に示されるもの
が知られている。これら燃料噴射装置は、噴孔を開閉す
る弁部材の反噴孔側に高圧燃料通路と連通する圧力制御
室を設け、この圧力制御室と低圧側空間とを電磁二方弁
で断続することにより燃料噴射を制御している。そし
て、高圧燃料通路から圧力制御室に流入する燃料流量を
第1の絞り孔により規制し、電磁二方弁の開弁時に圧力
制御室から低圧側空間に流出する燃料流量を第2の絞り
孔により規制している。
2. Description of the Related Art Conventionally, a high-pressure supply pump pumps high-pressure fuel to a common rail under pressure and accumulates the pressure, and injects the high-pressure fuel accumulated on the common rail into an internal combustion engine (hereinafter referred to as an "internal combustion engine"). JP-A-5-133296 discloses a control type accumulator type fuel injection device.
The one shown in U.S. Pat. No. 5,464,156 is known. In these fuel injection devices, a pressure control chamber communicating with the high pressure fuel passage is provided on the side opposite to the injection hole of the valve member that opens and closes the injection hole, and the pressure control chamber and the low pressure side space are connected and disconnected by an electromagnetic two-way valve. Controlling fuel injection. The first throttle hole regulates the flow rate of the fuel flowing from the high-pressure fuel passage into the pressure control chamber, and the second throttle hole controls the fuel flow rate flowing out of the pressure control chamber to the low-pressure side space when the electromagnetic two-way valve is opened. Regulated by

【0003】したがって、燃料噴射量および燃料噴射率
は、高圧燃料通路から圧力制御室に流入する燃料流量と
電磁二方弁の開弁時に圧力制御室から低圧側空間に流出
する燃料流量とによって制御されることになる。また、
噴射開始時期、噴射終了時期、および噴射初期の噴射量
は、電磁二方弁が開弁した際の高圧燃料通路から圧力制
御室へ流入する燃料流量と、圧力制御室から低圧側空間
に流出する燃料流量との差によって決定され、噴射後期
の噴射量は、電磁二方弁が閉弁した際の高圧燃料通路か
ら圧力制御室に流入する燃料流量によって決定されるこ
とになる。すなわち、上述の構成を有する蓄圧式燃料噴
射装置は、第1の絞り孔および第2の絞り孔の流量特性
によって噴射時期、噴射量、燃料噴射率がほぼ一義的に
決定される構造を有している。このように第1の絞り孔
および第2の絞り孔の流量特性によって噴射特性が一義
的に決定されるためには、電磁二方弁の開弁時において
電磁二方弁の可動部材と弁座との間に形成される環状の
燃料通路の通路抵抗が第2の絞り孔の通路抵抗よりも小
さくなければならない。
Accordingly, the fuel injection amount and the fuel injection rate are controlled by the flow rate of the fuel flowing from the high pressure fuel passage into the pressure control chamber and the flow rate of the fuel flowing from the pressure control chamber to the low pressure side space when the electromagnetic two-way valve is opened. Will be done. Also,
The injection start time, the injection end time, and the injection amount at the beginning of the injection flow out from the high-pressure fuel passage into the pressure control chamber when the electromagnetic two-way valve is opened, and flow out from the pressure control chamber to the low-pressure side space. It is determined by the difference from the fuel flow rate, and the injection amount in the latter half of the injection is determined by the fuel flow rate flowing into the pressure control chamber from the high-pressure fuel passage when the electromagnetic two-way valve is closed. That is, the pressure accumulating fuel injection device having the above-described configuration has a structure in which the injection timing, the injection amount, and the fuel injection rate are almost uniquely determined by the flow rate characteristics of the first throttle hole and the second throttle hole. ing. In order for the injection characteristic to be uniquely determined by the flow characteristics of the first throttle hole and the second throttle hole in this manner, the movable member of the electromagnetic two-way valve and the valve seat when the electromagnetic two-way valve is opened. Must be smaller than the passage resistance of the second throttle hole.

【0004】一般に、電磁二方弁の可動部材のリフト量
を小さく設定すればするほど応答性向上・作動音低減・
耐摩耗性向上・開閉弁バウンス低減に有効であるが、電
磁二方弁の可動部材のリフト量を小さく設定すると、第
2の絞り孔の圧力損失よりも可動部材と弁座との間に形
成される燃料通路を通過する燃料の圧力損失の方が大き
くなるので、第1の絞り孔および第2の絞り孔の流量特
性により決定されるべき噴射量特性が大きく変化する恐
れがある。
In general, the smaller the lift amount of the movable member of the electromagnetic two-way valve is set, the higher the response, the lower the operating noise,
Although effective for improving wear resistance and reducing bounce of the on-off valve, when the lift amount of the movable member of the electromagnetic two-way valve is set small, the pressure loss between the movable member and the valve seat is smaller than the pressure loss of the second throttle hole. Since the pressure loss of the fuel passing through the fuel passage becomes larger, the injection amount characteristic to be determined by the flow rate characteristics of the first throttle hole and the second throttle hole may greatly change.

【0005】特開平5−133296号公報に示される
蓄圧式燃料噴射装置は、可動部材と弁座とが平面同士で
当接することにより直接第2の絞り孔を閉塞する構成で
あるので、可動部材のリフト量を小さく設定すると第2
の絞り孔の開口部周縁の弁座と可動部材の平面部との間
に形成される燃料通路の通路抵抗が第2の絞り孔の通路
抵抗よりも大きくなるので所望の噴射特性を得ることが
できない。したがって、電磁弁の開弁時に第2の絞り孔
の開口部周縁の弁座と可動部材の平面部との間に形成さ
れる燃料通路の通路抵抗が第2の絞り孔の通路抵抗より
も小さくなるように可動部材のリフト量をある程度大き
くする必要があるので、応答性向上・作動音低減・耐摩
耗性向上・開閉弁バウンス低減等の課題に対してある限
界値を有している。また必要以上にリフト量を下げる
と、リフト量のばらつきが第2の絞り孔の開口部周縁の
弁座と可動部材の平面部との間に形成される燃料通路を
通過する燃料流量のばらつきを招き、インジェクタ個体
間の噴射特性がばらつくという問題がある。
[0005] The accumulator type fuel injection device disclosed in Japanese Patent Application Laid-Open No. 5-133296 has a structure in which the movable member and the valve seat abut against each other in a plane to directly close the second throttle hole. If the lift amount is set small, the second
Since the passage resistance of the fuel passage formed between the valve seat at the periphery of the opening of the throttle hole and the flat portion of the movable member is larger than the passage resistance of the second throttle hole, desired injection characteristics can be obtained. Can not. Therefore, the passage resistance of the fuel passage formed between the valve seat at the periphery of the opening of the second throttle hole and the flat portion of the movable member when the solenoid valve is opened is smaller than the passage resistance of the second throttle hole. It is necessary to increase the lift amount of the movable member to some extent so that there is a certain limit value for problems such as improvement of responsiveness, reduction of operation noise, improvement of wear resistance, and reduction of bounce of the on-off valve. Further, if the lift amount is reduced more than necessary, the dispersion of the lift amount causes the dispersion of the fuel flow rate passing through the fuel passage formed between the valve seat around the opening of the second throttle hole and the flat portion of the movable member. As a result, there is a problem that the injection characteristics between the individual injectors vary.

【0006】[0006]

【発明が解決しようとする課題】米国特許番号第546
4156号明細書に示される蓄圧式燃料噴射装置では、
第2の絞り孔の燃料流出側に径の拡がるテーパ状の弁座
を設け、弁座と電磁二方弁のボール弁とが離隔または当
接することにより第2の絞り孔を開閉する構成が示され
ている。テーパ状の弁座の開口径は第2の絞り孔の径よ
りも大きく、ボール弁が弁座から離座した状態では、ボ
ール弁と弁座との間に形成される燃料通路の通路抵抗は
第2の絞り孔の通路抵抗よりも小さくなる。したがっ
て、可動部材であるボール弁のリフト量が小さくてもボ
ール弁と弁座との間に形成される燃料通路の通路抵抗を
第2の絞り孔よりも小さくできるので、応答性向上・作
動音低減・耐摩耗性向上・開閉弁バウンス低減等の要求
に応えることができる。
SUMMARY OF THE INVENTION United States Patent No. 546
In the accumulator type fuel injection device described in the specification of Japanese Patent No. 4156,
There is shown a configuration in which a tapered valve seat having an enlarged diameter is provided on the fuel outflow side of the second throttle hole, and the second throttle hole is opened and closed by separating or abutting the valve seat and the ball valve of the electromagnetic two-way valve. Have been. The opening diameter of the tapered valve seat is larger than the diameter of the second throttle hole, and when the ball valve is separated from the valve seat, the passage resistance of the fuel passage formed between the ball valve and the valve seat is reduced. It becomes smaller than the passage resistance of the second throttle hole. Therefore, even if the lift amount of the ball valve as the movable member is small, the passage resistance of the fuel passage formed between the ball valve and the valve seat can be made smaller than that of the second throttle hole, so that the responsiveness is improved and the operation noise is improved. It can meet the demands for reduction, improvement of wear resistance, bounce of on-off valve, etc.

【0007】しかしながら、第2の絞り孔の燃料流出側
にテーパ状の弁座を設け、この弁座に電磁二方弁の可動
部材が当接する構成では、可動部材と弁座との接触面積
が小さいので圧力制御室の高圧燃料を良好にシールする
ためには両者を高精度に加工する必要があり、加工工数
が増加するという問題がある。本発明の目的は、電磁弁
の可動部材のリフト量を小さくしても所望の噴射特性を
得ることのできる、加工の容易な蓄圧式燃料噴射装置を
提供することにある。
However, in a configuration in which a tapered valve seat is provided on the fuel outlet side of the second throttle hole and the movable member of the electromagnetic two-way valve abuts on the valve seat, the contact area between the movable member and the valve seat is reduced. Since both are small, in order to seal the high-pressure fuel in the pressure control chamber satisfactorily, both need to be processed with high precision, and there is a problem that the number of processing steps increases. An object of the present invention is to provide a pressure-accumulation type fuel injection device which can obtain desired injection characteristics even when the lift amount of a movable member of an electromagnetic valve is reduced and which is easy to process.

【0008】本発明の他の目的は、小型化可能な蓄圧式
燃料噴射装置を提供することにある。
Another object of the present invention is to provide an accumulator type fuel injection device which can be reduced in size.

【0009】[0009]

【課題を解決するための手段】本発明の請求項1記載の
蓄圧式燃料噴射装置によると、電磁弁の可動部材と平面
弁座とが平面同士で当接可能であり、第2の絞り孔の燃
料流出側と電磁弁の閉弁時に連通しており、第2の絞り
孔の径よりも開口径が大きく可動部材の平面部の面積よ
りも開口面積が小さい燃料空間を有することにより、電
磁二方弁の開弁時において可動部材の平面部と平面弁座
との間に形成される燃料通路の通路抵抗を第2の絞り孔
の通路抵抗に比較して小さくできる。したがって、可動
部材のリフト量が小さくても第1の絞り孔および第2の
絞り孔の流量特性により噴射特性が一義的に決定され
る。
According to the pressure accumulating fuel injection device of the present invention, the movable member of the solenoid valve and the flat valve seat can contact each other in a plane, and the second throttle hole is provided. And a fuel space having an opening diameter larger than the diameter of the second throttle hole and having an opening area smaller than the area of the flat portion of the movable member. When the two-way valve is opened, the passage resistance of the fuel passage formed between the plane portion of the movable member and the plane valve seat can be made smaller than the passage resistance of the second throttle hole. Therefore, even if the lift amount of the movable member is small, the injection characteristics are uniquely determined by the flow characteristics of the first throttle hole and the second throttle hole.

【0010】また、可動部材のリフト量を小さくできる
ので、応答性向上・作動音低減・耐摩耗性向上・開閉弁
バウンス低減等の効果がある。また、可動部材の平面部
と平面弁座とが平面同士で当接することにより、互いの
当接面を高精度に加工しなくても燃料を良好にシールで
きるので、加工が容易になり加工工数が減少する。
Further, since the lift amount of the movable member can be reduced, there are effects such as improvement of responsiveness, reduction of operation noise, improvement of wear resistance, and reduction of bounce of the on-off valve. Further, since the flat portion of the movable member and the flat valve seat abut on each other, the fuel can be sealed well without processing the abutting surfaces with high precision, so that the working becomes easy and the number of working steps is reduced. Decrease.

【0011】本発明の請求項2記載の蓄圧式燃料噴射装
置によると、平面部と平面弁座とのいずれか一方の当接
面内に低圧側空間と連通する燃料逃がし通路を形成する
ことにより、電磁弁閉弁時において平面部と平面弁座と
の密着当接面の間に入り込む高圧燃料から可動部材がリ
フト方向に力を受ける受圧面積が小さくなる。したがっ
て、シート面圧を上昇させることなく確実なシール性を
確保できるので可動部材を平面弁座に付勢する付勢手段
の力を小さくでき、かつ、可動部材をリフト方向に引き
上げる電磁弁の吸引力を小さくできる。したがって、電
磁弁の体格を小さくできるので燃料噴射装置を小型化で
きる。
According to the pressure accumulating fuel injection device of the second aspect of the present invention, a fuel release passage communicating with the low pressure side space is formed in one of the contact surfaces of the flat portion and the flat valve seat. When the solenoid valve is closed, the pressure receiving area in which the movable member receives a force in the lift direction from the high-pressure fuel that enters between the flat contact portion between the flat portion and the flat valve seat is reduced. Therefore, a reliable sealing property can be ensured without increasing the seat surface pressure, so that the force of the urging means for urging the movable member toward the flat valve seat can be reduced, and the electromagnetic valve that lifts the movable member in the lift direction can be attracted. Power can be reduced. Therefore, the size of the solenoid valve can be reduced, and the fuel injection device can be reduced in size.

【0012】本発明の請求項3記載の蓄圧式燃料噴射装
置によると、可動部材のリフト方向に働く燃料の圧力分
布が平面部の中心を対称中心として点対称になるので、
可動部材の傾きや偏心が抑制される。したがって、安定
した電磁弁の開閉弁制御が可能であり、噴射ノズルから
均一な燃料量を噴射できる。特に、微少量噴射を高精度
に制御できる。
According to the pressure accumulating fuel injection device according to the third aspect of the present invention, the pressure distribution of the fuel acting in the lift direction of the movable member is point-symmetric with respect to the center of the plane portion as the center of symmetry.
The inclination and eccentricity of the movable member are suppressed. Therefore, stable opening / closing control of the electromagnetic valve is possible, and a uniform fuel amount can be injected from the injection nozzle. In particular, it is possible to control the minute amount injection with high accuracy.

【0013】本発明の請求項4記載の蓄圧式燃料噴射装
置によると、平面弁座側に燃料空間を形成した後に第2
の絞り孔を形成することにより、燃料空間よりも小径の
第2の絞り孔を燃料空間をガイドとして形成し、かつ第
2の絞り孔の加工長を短縮できるので、小径の第2の絞
り孔の加工が容易になる。第2の絞り孔は電磁弁閉弁時
において圧力制御室と燃料空間とを連通できればよいの
で、第2の絞り孔と電磁弁との軸ズレが発生しても性能
上なんら問題が起きることはない。
According to the pressure accumulating type fuel injection device according to the fourth aspect of the present invention, after the fuel space is formed on the flat valve seat side, the second fuel injection device can be used.
Since the second throttle hole having a smaller diameter than the fuel space can be formed using the fuel space as a guide and the processing length of the second throttle hole can be shortened, the second throttle hole having a smaller diameter can be formed. Processing becomes easy. The second throttle hole only needs to be able to communicate between the pressure control chamber and the fuel space when the solenoid valve is closed. Therefore, even if an axis misalignment between the second throttle hole and the solenoid valve occurs, no problem occurs in performance. Absent.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を示す
複数の実施例を図面に基づいて説明する。 (第1実施例)本発明の第1実施例による蓄圧式燃料噴
射装置を図1〜図4に示す。図2に示すインジェクタ1
は、図示しないディーゼルエンジンの燃焼室内へ間欠的
に燃料を噴射する電磁制御式の蓄圧式燃料噴射装置であ
って、高圧燃料を蓄圧する図示しないコモンレールから
図示しない燃料配管がインレット60に接続されてお
り、コモンレールから高圧燃料が供給されている。ま
た、図示しないエンジン制御装置(以下、「エンジン制
御装置」をECUという)からインジェクタ1に制御信
号を送出するワイヤハーネスがコネクタ70に接続され
ており、ECUから送出される制御信号によりインジェ
クタ1の燃料噴射が制御される。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first embodiment of the present invention; (First Embodiment) FIGS. 1 to 4 show an accumulator type fuel injection device according to a first embodiment of the present invention. Injector 1 shown in FIG.
Is an electromagnetically controlled accumulator type fuel injection device for intermittently injecting fuel into a combustion chamber of a diesel engine (not shown). A fuel pipe (not shown) is connected to an inlet 60 from a common rail (not shown) for accumulating high-pressure fuel. And high-pressure fuel is supplied from the common rail. A wire harness for transmitting a control signal from an engine control device (not shown) (hereinafter, referred to as an “ECU”) to the injector 1 is connected to the connector 70, and the control signal transmitted from the ECU controls the injector 1. Fuel injection is controlled.

【0015】インジェクタ1の噴孔側に設けられた噴射
ノズル10のノズルボディ11には、噴孔11aを開閉
するニードル弁20が往復移動可能に収容されている。
ノズルボディ11およびインジェクタボディ13はパッ
キンチップ12を挟んでリテーニングナット14で結合
されている。ニードル弁20の反噴孔側にはプレッシャ
ピン21が配設されており、プレッシャピン21の反噴
孔側にはプレッシャピン21に接触あるいは連結する制
御ピストン22が配設されている。ニードル弁20、プ
レッシャピン21および制御ピストン22は、特許請求
の範囲に記載した「弁部材」を構成している。プレッシ
ャピン21はスプリング23内に貫挿されており、スプ
リング23はプレッシャピン21を図2の下方、つまり
噴孔閉塞方向に付勢している。25と26はニードル弁
20を閉弁方向に付勢するためのスプリング23のセッ
ト荷重調整用のスペーサである。制御ピストン22の反
噴孔側には圧力制御室62が設けられている。
A needle valve 20 for opening and closing the injection hole 11a is accommodated in the nozzle body 11 of the injection nozzle 10 provided on the injection hole side of the injector 1 in a reciprocating manner.
The nozzle body 11 and the injector body 13 are connected by a retaining nut 14 with the packing tip 12 interposed therebetween. A pressure pin 21 is disposed on the side opposite to the injection hole of the needle valve 20, and a control piston 22 that is in contact with or is connected to the pressure pin 21 is disposed on the side opposite to the injection hole of the pressure pin 21. The needle valve 20, the pressure pin 21, and the control piston 22 constitute a "valve member" described in the claims. The pressure pin 21 is inserted through a spring 23, and the spring 23 urges the pressure pin 21 downward in FIG. 2, that is, in the injection hole closing direction. Reference numerals 25 and 26 denote spacers for adjusting the set load of the spring 23 for urging the needle valve 20 in the valve closing direction. A pressure control chamber 62 is provided on the side opposite to the injection hole of the control piston 22.

【0016】インレット60内に収容された燃料フィル
タ61から導入された高圧燃料は、高圧燃料通路63と
高圧燃料通路64とに分岐する。高圧燃料通路63に分
岐した高圧燃料はニードル弁20の周囲に環状に形成さ
れた燃料溜まり24に供給され、高圧燃料通路64に分
岐した高圧燃料は圧力制御室62に供給されている。燃
料溜まり24内の高圧燃料の圧力は、図2の上方つまり
燃料溜まり24と噴孔11aとが連通するリフト方向に
ニードル弁20を付勢し、圧力制御室62内の高圧燃料
の圧力は、図2の下方つまりニードル弁20が噴孔11
aを閉塞する方向に制御ピストン22を付勢する。
The high-pressure fuel introduced from the fuel filter 61 housed in the inlet 60 branches into a high-pressure fuel passage 63 and a high-pressure fuel passage 64. The high-pressure fuel branched to the high-pressure fuel passage 63 is supplied to a fuel reservoir 24 formed in an annular shape around the needle valve 20, and the high-pressure fuel branched to the high-pressure fuel passage 64 is supplied to a pressure control chamber 62. The pressure of the high-pressure fuel in the fuel reservoir 24 urges the needle valve 20 in the upward direction of FIG. 2, that is, in the lift direction in which the fuel reservoir 24 and the injection hole 11a communicate with each other, and the pressure of the high-pressure fuel in the pressure control chamber 62 becomes The lower part of FIG.
The control piston 22 is urged in a direction to close a.

【0017】図1に示す低圧燃料通路65は、制御ピス
トン22およびニードル弁20の摺動クリアランスから
のリーク燃料を回収するための燃料通路であり、スプリ
ング23を収容する図2に示すばね室27と連通してい
る。図1に示すように、低圧燃料通路65は、後述する
第1絞り板51および第2絞り板52にそれぞれ形成さ
れた燃料通路51a、52aを介して低圧側空間として
の低圧燃料室45aに連通している。低圧燃料室45a
の燃料は、バルブシリンダ45内に設けられた低圧燃料
通路45b、弁軸41内に設けられた低圧燃料通路41
a、押圧部材42に設けられた低圧燃料通路42a、ア
ーマチャ34を貫通する貫通孔34a、コア31の中心
を連通する低圧燃料通路31a、ハウジング50内に設
けられた低圧燃料通路69を経て、図2に示すリーク燃
料回収用のユニオン73内の低圧燃料通路73aに流出
する。したがって、インジェクタ内の余剰燃料は最終的
には低圧燃料通路69、低圧燃料通路73aを介してイ
ンジェクタ1の外部に排出される。
The low-pressure fuel passage 65 shown in FIG. 1 is a fuel passage for recovering leaked fuel from the sliding clearance between the control piston 22 and the needle valve 20, and the spring chamber 27 shown in FIG. Is in communication with As shown in FIG. 1, the low-pressure fuel passage 65 communicates with a low-pressure fuel chamber 45a as a low-pressure space via fuel passages 51a and 52a formed in a first throttle plate 51 and a second throttle plate 52, respectively, which will be described later. doing. Low pressure fuel chamber 45a
Is supplied to the low-pressure fuel passage 45b provided in the valve cylinder 45 and the low-pressure fuel passage 41 provided in the valve shaft 41.
a, a low-pressure fuel passage 42a provided in the pressing member 42, a through-hole 34a penetrating the armature 34, a low-pressure fuel passage 31a communicating the center of the core 31, and a low-pressure fuel passage 69 provided in the housing 50. 2 flows out to the low-pressure fuel passage 73a in the union 73 for collecting leaked fuel. Therefore, surplus fuel in the injector is finally discharged to the outside of the injector 1 through the low-pressure fuel passage 69 and the low-pressure fuel passage 73a.

【0018】図1に示すように、第1の絞り板51、第
2の絞り板52はインジェクタボディ13とバルブシリ
ンダ45との間に重ねられて挟持されている。第1の絞
り孔66は第1の絞り板51に形成され、高圧燃料通路
64から圧力制御室62へ流入する燃料流量を規制して
いる。第2の絞り孔67は第2の絞り板52に形成さ
れ、圧力制御室62から低圧燃料室45aへ流出する燃
料流量を規制している。
As shown in FIG. 1, the first throttle plate 51 and the second throttle plate 52 are sandwiched between the injector body 13 and the valve cylinder 45 so as to overlap. The first throttle hole 66 is formed in the first throttle plate 51, and regulates the flow rate of fuel flowing from the high-pressure fuel passage 64 into the pressure control chamber 62. The second throttle hole 67 is formed in the second throttle plate 52 and regulates the flow rate of fuel flowing from the pressure control chamber 62 to the low-pressure fuel chamber 45a.

【0019】図3の(A)に示すように、第2の絞り板
52は円板状に形成され、中心軸から同一間隔だけオフ
セットされた位置に貫通孔52bが2個形成されてい
る。第1の絞り板51も第2の絞り板52と同様に円板
状に形成され、中心軸から同一間隔だけオフセットさ
れ、かつ第2の絞り板52に形成された貫通孔52bと
対応する位置に図示しない貫通孔が2個形成されてい
る。各貫通孔は位置決め用のノックピンを貫挿する孔で
ある。2本のノックピンによってインジェクタボディ1
3に対する各絞り板の位置決めがなされた状態で、イン
ジェクタボディ13とバルブシリンダ45とがねじ結合
している。
As shown in FIG. 3A, the second diaphragm plate 52 is formed in a disk shape, and has two through holes 52b at positions offset by the same distance from the center axis. The first diaphragm plate 51 is also formed in a disk shape similarly to the second diaphragm plate 52, is offset from the center axis by the same interval, and corresponds to the through hole 52b formed in the second diaphragm plate 52. Are formed with two through holes (not shown). Each through hole is a hole through which a positioning knock pin is inserted. Injector body 1 with two knock pins
The injector body 13 and the valve cylinder 45 are screwed together with each throttle plate positioned with respect to 3.

【0020】図3および図4に示すように、第2の絞り
孔67の燃料流出側に第2の絞り孔67よりも径が大き
い、つまり第2の絞り孔67よりも通路抵抗が小さい円
筒状の燃料空間68が第2の絞り孔67と連通するよう
に形成されている。燃料空間68の開口面積は、電磁弁
30の球状部材43に形成された平面部43aの面積よ
りも小さい。燃料空間68は電磁弁30の開弁時に低圧
燃料室45aと連通するので、燃料空間68を介して圧
力制御室62の高圧燃料が低圧燃料室45aに流出す
る。
As shown in FIGS. 3 and 4, a cylinder having a larger diameter than the second throttle hole 67, that is, a passage resistance smaller than that of the second throttle hole 67, is provided on the fuel outflow side of the second throttle hole 67. A fuel space 68 is formed so as to communicate with the second throttle hole 67. The opening area of the fuel space 68 is smaller than the area of the flat portion 43 a formed on the spherical member 43 of the solenoid valve 30. Since the fuel space 68 communicates with the low-pressure fuel chamber 45a when the solenoid valve 30 is opened, the high-pressure fuel in the pressure control chamber 62 flows out to the low-pressure fuel chamber 45a via the fuel space 68.

【0021】平面弁座53は、環状弁座53aおよび扇
状弁座53bからなり、球状部材43の平面部43aと
平面同士で当接可能に形成されている。環状弁座53a
は燃料空間68の開口の外周に環状に形成されており、
扇状弁座53bは環状弁座53aの外周側に4個形成さ
れている。環状弁座53aおよび扇状弁座53bは同一
平面状に形成されており、環状弁座53aの全面および
扇状弁座53bの内周側に平面部43aが当接可能であ
る。
The flat valve seat 53 comprises an annular valve seat 53a and a fan-shaped valve seat 53b, and is formed so as to be in contact with the flat portion 43a of the spherical member 43 in a plane. Annular valve seat 53a
Is formed in an annular shape around the opening of the fuel space 68,
Four fan-shaped valve seats 53b are formed on the outer peripheral side of the annular valve seat 53a. The annular valve seat 53a and the fan-shaped valve seat 53b are formed in the same plane, and the flat portion 43a can contact the entire surface of the annular valve seat 53a and the inner peripheral side of the fan-shaped valve seat 53b.

【0022】燃料逃がし通路54は、環状通路54aお
よび連通路54bからなり、電磁弁30の閉弁時に平面
部43aと平面弁座53とが当接した状態においても低
圧燃料室45aと連通している。環状通路54aは環状
弁座53aの外周側かつ扇状弁座53bの内周側に燃料
空間68と略同心円上に形成されている。連通路54b
は、環状通路54aと連通し、各扇状弁座53bの間に
環状通路54aから90°間隔で放射状に4本延びてい
る。平面部43aが平面弁座53に着座した図1に示す
状態において、連通路54bは低圧燃料室45aと連通
している。したがって、環状通路54aも低圧燃料室4
5aと連通している。
The fuel release passage 54 includes an annular passage 54a and a communication passage 54b, and communicates with the low-pressure fuel chamber 45a even when the flat portion 43a is in contact with the flat valve seat 53 when the solenoid valve 30 is closed. I have. The annular passage 54a is formed substantially concentrically with the fuel space 68 on the outer peripheral side of the annular valve seat 53a and on the inner peripheral side of the fan-shaped valve seat 53b. Communication passage 54b
Are connected to the annular passage 54a, and extend radially from the annular passage 54a at intervals of 90 ° between the fan-shaped valve seats 53b. In the state shown in FIG. 1 in which the flat portion 43a is seated on the flat valve seat 53, the communication passage 54b communicates with the low-pressure fuel chamber 45a. Therefore, the annular passage 54a is also connected to the low-pressure fuel chamber 4
5a.

【0023】環状空間55は、連通路54bの外周に形
成され、連通路54bと連通している。環状空間55
は、低圧燃料室45aの容積を補うためのものであり、
電磁弁30の開弁時において低圧側に高圧燃料を流出し
易くしている。図1に示す電磁弁30は、圧力制御室6
2と低圧燃料室45aとを断続する電磁二方弁であり、
リーテーニングナット59とインジェクタボディ13と
の間に配設されている。ピン56はコア31とハウジン
グ50との回転方向の位置決めを行うものであり、かつ
リテーニングナット59を締めつけるときにコア31と
ハウジング50とが互いに相対回動しコイル32に給電
する図示しない給電ターミナルに負荷が加わることを防
止するものである。
The annular space 55 is formed on the outer periphery of the communication passage 54b and communicates with the communication passage 54b. Annular space 55
Is for supplementing the volume of the low-pressure fuel chamber 45a,
When the solenoid valve 30 is opened, the high-pressure fuel can easily flow out to the low-pressure side. The solenoid valve 30 shown in FIG.
2 is an electromagnetic two-way valve for intermittently connecting the low pressure fuel chamber 45a to the
It is arranged between the retaining nut 59 and the injector body 13. The pin 56 is for positioning the core 31 and the housing 50 in the rotational direction, and is a power supply terminal (not shown) for rotating the core 31 and the housing 50 relative to each other when the retaining nut 59 is tightened to supply power to the coil 32. This is to prevent the load from being applied to the vehicle.

【0024】コイル32はコア31内に巻装されてお
り、図2に示すコネクタ70に埋設されたターミナル7
1から電力が供給される。コア31は厚さ0.2mm程度
の珪素鋼板をスパイラル状に積層して形成したものであ
り、内周に配設した図1に示す円筒部材33に珪素鋼板
が溶接されている。後述する可動部材40の押圧部材4
2は円筒部材33の内部に貫挿されている。
The coil 32 is wound around the core 31, and the terminal 7 embedded in the connector 70 shown in FIG.
1 supplies power. The core 31 is formed by stacking silicon steel plates having a thickness of about 0.2 mm in a spiral shape, and the silicon steel plates are welded to a cylindrical member 33 disposed on the inner periphery and shown in FIG. Pressing member 4 of movable member 40 described later
2 is inserted through the inside of the cylindrical member 33.

【0025】可動部材40は、弁軸41、押圧部材4
2、球状部材43および支持部材44からなる。弁軸4
1と押圧部材42とは圧力制御室62の燃料圧力から受
ける力およびスプリング47の付勢力により互いに押圧
されており、別体に形成されてはいるが離反しないで往
復移動する。押圧部材42は磁気回路への影響を避ける
ために非磁性ステンレス等で構成されている。弁軸41
はコア31の噴孔側に配設されたバルブシリンダ45に
往復移動可能に支持されており、耐摩耗性に優れた材質
で形成されている。弁軸41は磁気回路外にあるので磁
性体で形成してもよい。弁軸41のコア側には径方向お
よび軸方向に正確に位置決めされたアーマチャ34が圧
入、かしめ、溶接のいずれかまたは複数の手段で固定さ
れており、弁軸41はアーマチャ34とともに往復移動
する。アーマチャ34は耐摩耗性よりも磁気回路の一部
としての特性が要求されるので、例えば珪素鋼により形
成されている。アーマチャ34には燃料中の移動抵抗を
低減するために複数の貫通孔34aが形成されている。
The movable member 40 includes a valve shaft 41, a pressing member 4
2. It comprises a spherical member 43 and a support member 44. Valve shaft 4
1 and the pressing member 42 are pressed against each other by the force received from the fuel pressure in the pressure control chamber 62 and the urging force of the spring 47, and reciprocate without being separated from each other although they are formed separately. The pressing member 42 is made of non-magnetic stainless steel or the like in order to avoid affecting the magnetic circuit. Valve shaft 41
Is reciprocally supported by a valve cylinder 45 disposed on the injection hole side of the core 31, and is formed of a material having excellent wear resistance. Since the valve shaft 41 is outside the magnetic circuit, it may be formed of a magnetic material. An armature 34 accurately positioned in the radial and axial directions is fixed to the core side of the valve shaft 41 by one or more of press-fitting, caulking, and welding, and the valve shaft 41 reciprocates together with the armature 34. . The armature 34 is required to have a characteristic as a part of the magnetic circuit rather than the wear resistance, and is made of, for example, silicon steel. A plurality of through holes 34a are formed in the armature 34 in order to reduce the movement resistance in the fuel.

【0026】可動部材40のリフト量はスペーサ57の
軸長を変更することにより調整できる。可動部材40の
最大リフト位置は、弁軸41が円筒部材33に係止され
ることにより規定される。このとき、アーマチャ34と
コア31との間にはエアギャップが確保されるので、コ
イル32への通電をオンからオフにするときに速やかに
可動部材40が図1の下方に移動する。
The lift amount of the movable member 40 can be adjusted by changing the axial length of the spacer 57. The maximum lift position of the movable member 40 is defined by locking the valve shaft 41 to the cylindrical member 33. At this time, since an air gap is secured between the armature 34 and the core 31, the movable member 40 quickly moves downward in FIG. 1 when the power supply to the coil 32 is turned off from on.

【0027】図4の(A)に示すように、弁軸41の先
端部には円筒状に形成された支持部材44が圧入または
溶接等で固定されている。支持部材44と球状部材43
との間には数μmのクリアランスが形成されており、球
状部材43は弁軸41の先端に形成された円錐状凹面と
支持部材44の内壁とにより回動自在に組み付けられて
いる。支持部材44の先端部をかしめることにより球状
部材43は支持部材44からの脱落を防止されている。
球状部材43はセラミックまたは超硬合金の球の一部分
に平面部43aが加工された構造になっている。弁軸4
1のリフト量は100μm程度であるから、弁軸41の
リフト位置に関わらず球状部材43が所定角度以上回転
しようとしても平面部43aが第2の絞り板52に係止
される。したがって、平面部43aは常に第2の絞り板
52に面している。平面部43aは第2の絞り板52に
形成された平面弁座53との平面同士の当接により燃料
空間68を閉塞するので、球状部材43と第2の絞り板
52とのシール面積が大きくなり圧力制御室62からの
燃料リーク料を低減することができる。また、球状部材
43と燃料空間68との位置や相対角度がずれた場合に
も確実に球状部材43が燃料空間68を閉塞できる。
As shown in FIG. 4A, a cylindrical support member 44 is fixed to the distal end of the valve shaft 41 by press-fitting or welding. Support member 44 and spherical member 43
The spherical member 43 is rotatably assembled with a conical concave surface formed at the tip of the valve shaft 41 and the inner wall of the support member 44. By caulking the tip of the support member 44, the spherical member 43 is prevented from dropping from the support member 44.
The spherical member 43 has a structure in which a flat portion 43a is machined on a part of a ceramic or cemented carbide sphere. Valve shaft 4
Since the lift amount of 1 is about 100 μm, the flat portion 43 a is locked to the second throttle plate 52 even if the spherical member 43 attempts to rotate by a predetermined angle or more regardless of the lift position of the valve shaft 41. Therefore, the flat portion 43a always faces the second diaphragm plate 52. Since the flat portion 43a closes the fuel space 68 by abutment of the flat surfaces with the flat valve seat 53 formed on the second throttle plate 52, the sealing area between the spherical member 43 and the second throttle plate 52 is large. The fuel leak from the pressure control chamber 62 can be reduced. Further, even when the position and the relative angle between the spherical member 43 and the fuel space 68 are shifted, the spherical member 43 can reliably close the fuel space 68.

【0028】押圧部材42は、摺動クリアランスよりも
大きなクリアランスを円筒部材33と形成して円筒部材
33に往復移動自在に貫挿されている。スプリング47
は球状部材43が燃料空間68を閉塞する方向に押圧部
材42を付勢している。スプリング47の付勢力はシム
46の厚みを変更することにより調節できる。次に、第
1実施例における各部寸法を示す。
The pressing member 42 forms a clearance larger than the sliding clearance with the cylindrical member 33, and is inserted through the cylindrical member 33 so as to be reciprocally movable. Spring 47
Urges the pressing member 42 in the direction in which the spherical member 43 closes the fuel space 68. The biasing force of the spring 47 can be adjusted by changing the thickness of the shim 46. Next, the dimensions of each part in the first embodiment will be described.

【0029】第1の絞り孔66の直径a=φ0.19m
m、第2の絞り孔67の直径b=φ0.29mm、燃料空
間68の直径c(環状弁座53aの内径)=φ0.4m
m、環状通路53aの内径d(環状弁座53aの外径)
=φ0.7mm、環状通路53aの外径e=φ1.2mm、
環状通路53aの深さ=0.1mm、連通路53bの幅=
0.4mm、連通路53bの深さ=0.1mm、球状部材4
3の球径f=φ2.0mm、平面部43aの直径g=φ
1.63mm、制御ピストン22の径h=φ5.0mm、可
動部材40のリフト量=0.1mm、ニードル弁20の直
径=φ4.0mm、ニードル弁20のシート径=φ2.2
5mm、スプリング47の荷重=50N、スプリング23
の荷重=40Nである。
The diameter a of the first throttle hole 66 is 0.19 m.
m, diameter b of second throttle hole 67 = 0.29 mm, diameter c of fuel space 68 (inner diameter of annular valve seat 53a) = 0.4 m
m, inner diameter d of annular passage 53a (outer diameter of annular valve seat 53a)
= Φ0.7mm, outer diameter e of the annular passage 53a = φ1.2mm,
Depth of annular passage 53a = 0.1 mm, width of communication passage 53b =
0.4 mm, depth of communication passage 53b = 0.1 mm, spherical member 4
3, the ball diameter f = φ2.0 mm, the diameter g of the plane portion 43a = φ
1.63 mm, diameter h of control piston 22 = 5.0 mm, lift amount of movable member 40 = 0.1 mm, diameter of needle valve 20 = 4.0 mm, seat diameter of needle valve 20 = 2.2
5mm, load of spring 47 = 50N, spring 23
Is 40N.

【0030】次に、インジェクタ1の作動について説明
する。 (1) コイル32への通電オフ時、スプリング47の付勢
力により押圧部材42が図1の下方に押下される。球状
部材43の平面部43aは第2の絞り板52の平面弁座
53に着座し、圧力制御室62と低圧燃料室45aとの
連通が遮断される。
Next, the operation of the injector 1 will be described. (1) When the power to the coil 32 is turned off, the urging force of the spring 47 pushes the pressing member 42 downward in FIG. The flat portion 43a of the spherical member 43 is seated on the flat valve seat 53 of the second throttle plate 52, and the communication between the pressure control chamber 62 and the low-pressure fuel chamber 45a is cut off.

【0031】電磁弁30が閉弁し高圧燃料をシールした
状態、あるいは閉弁直前の可動部材40が低リフト状態
にある場合、高圧燃料がシール面である平面部43aと
平面弁座53との密着当接面の間に入り込もうとする。
しかしながら、環状弁座53aの外周側かつ扇状弁座5
3bの内周側に環状通路54aが形成されており、この
環状通路54aが低圧燃料室45aと連通する連通路5
4bと連通しているので、燃料逃し通路54の部分では
完全に低圧(ドレン圧)まで降圧させることができる。
When the solenoid valve 30 is closed and high-pressure fuel is sealed, or when the movable member 40 immediately before closing is in a low lift state, the high-pressure fuel seals between the flat portion 43 a and the flat valve seat 53. Attempts to penetrate between the contact surfaces.
However, the outer peripheral side of the annular valve seat 53a and the fan-shaped valve seat 5
3b, an annular passage 54a is formed on the inner peripheral side, and the annular passage 54a communicates with the low-pressure fuel chamber 45a.
4b, the pressure in the fuel release passage 54 can be completely reduced to a low pressure (drain pressure).

【0032】平面部43aと環状弁座53aとの密着当
接面の間の圧力分布は、環状弁座53aの内周縁部にお
ける圧力制御室62の圧力(燃料空間68の開口部にお
ける圧力)から環状弁座53aの外周縁部におけるドレ
ン圧(連通路54bにおける圧力)まで降圧するような
点対象形のLOG関数分布となる。一方、燃料逃し通路
が形成されていない従来の電磁弁の場合には、可動部材
の平面部または平面弁座のいずれか小径側の外径(>環
状通路53aの内径)までLOG関数の圧力分布が発生
することになるので、燃料逃がし通路を設けたものに比
較して圧力の積分値が大きくなる。したがって、燃料逃
し通路が形成されていれば、電磁弁の閉弁時に開弁方向
に働く油圧荷重を低減できる。
The pressure distribution between the flat contact portion between the flat portion 43a and the annular valve seat 53a depends on the pressure in the pressure control chamber 62 (the pressure at the opening of the fuel space 68) at the inner peripheral edge of the annular valve seat 53a. The LOG function distribution has a point symmetrical shape such that the pressure decreases to the drain pressure (the pressure in the communication passage 54b) at the outer peripheral edge of the annular valve seat 53a. On the other hand, in the case of the conventional solenoid valve in which the fuel release passage is not formed, the pressure distribution of the LOG function up to the outer diameter (> the inner diameter of the annular passage 53a) on the smaller diameter side of either the flat portion of the movable member or the flat valve seat. Is generated, so that the integrated value of the pressure is larger than that in the case where the fuel release passage is provided. Therefore, if the fuel release passage is formed, the hydraulic load acting in the valve opening direction when the solenoid valve is closed can be reduced.

【0033】第1実施例では、環状弁座53aの内径c
=φ0.4mm、環状弁座53aの外径d=φ0.7mmに
設定されており、燃料空間68から受ける力に加え、平
面部43aと環状弁座53aとの密着当接面間における
点対象形の圧力のLOG関数分布を考慮すると、コモン
レールから導入される燃料圧力(≒圧力制御室圧力)が
150MPaの場合においても電磁弁30を開弁方向に
作用させる油圧荷重は35Nである。また、電磁弁30
の可動部材40を閉弁方向に付勢するためのスプリング
47のセット荷重は前述した油圧荷重に基づいて設定す
ればよく、油圧荷重が小さくなればスプリング47のセ
ット荷重も小さくできる。第1実施例では50Nに設定
されており、コイル32への通電がオフされている限り
可動部材40はリフトしない。
In the first embodiment, the inner diameter c of the annular valve seat 53a
= Φ0.4 mm, and the outer diameter d of the annular valve seat 53a is set to 0.7 mm. In addition to the force received from the fuel space 68, the point object between the close contact surfaces of the flat portion 43a and the annular valve seat 53a is set. Considering the LOG function distribution of the pressure of the shape, even when the fuel pressure (≒ pressure control chamber pressure) introduced from the common rail is 150 MPa, the hydraulic load for operating the solenoid valve 30 in the valve opening direction is 35N. Also, the solenoid valve 30
The set load of the spring 47 for urging the movable member 40 in the valve closing direction may be set based on the above-described hydraulic load. If the hydraulic load is reduced, the set load of the spring 47 can be reduced. In the first embodiment, the value is set to 50 N, and the movable member 40 does not lift as long as the power supply to the coil 32 is turned off.

【0034】また、制御ピストン22の直径=φ5.0
mm、ニードル弁20の直径=φ4.0mm、ニードル弁2
0のシート径=φ2.25mmであることから、制御ピス
トン22の受圧面積はニードル弁20の受圧面積よりも
大きく、その差は約11mm2に設定されている。さら
に、スプリング23の付勢力は噴孔閉塞方向に働いてい
るので、コイル32への通電がオフされている限り圧力
制御室62の燃料圧力から制御ピストン22が噴孔閉塞
方向に受ける力とスプリング23の付勢力との和は、燃
料溜まり24の燃料圧力からニードル弁20がリフト方
向に受ける力よりも大きい。したがって、ニードル弁2
0により噴孔11aは閉塞され燃料噴射は行われない。
The diameter of the control piston 22 = φ5.0
mm, diameter of needle valve 20 = φ4.0 mm, needle valve 2
Since the sheet diameter of 0 is φ2.25 mm, the pressure receiving area of the control piston 22 is larger than the pressure receiving area of the needle valve 20, and the difference is set to about 11 mm 2 . Further, since the urging force of the spring 23 acts in the injection hole closing direction, the force received by the control piston 22 in the injection hole closing direction from the fuel pressure in the pressure control chamber 62 and the spring force as long as the power to the coil 32 is turned off. The sum of the urging force of the needle valve 23 and the urging force of the needle valve 20 is greater than the force received by the needle valve 20 in the lift direction from the fuel pressure of the fuel reservoir 24. Therefore, the needle valve 2
With 0, the injection hole 11a is closed and fuel injection is not performed.

【0035】(2) コイル32への通電をオンすることに
より生じる電磁力は約60Nに設定されているので、コ
イル32に発生するアーマチャ34を吸引する電磁力と
圧力制御室62の燃料圧力から可動部材40が開弁方向
に受ける力との和がスプリング47の付勢力よりも大き
くなるので可動部材40がリフトし球状部材43は第2
の絞り板52から離座する。球状部材43が第2の絞り
板52から離座すると、燃料空間68と低圧燃料室45
aとが連通し、圧力制御室62の燃料が第2の絞り孔6
7を経て、燃料空間68から低圧燃料室45aに流出す
る。
(2) Since the electromagnetic force generated by turning on the power supply to the coil 32 is set to about 60 N, the electromagnetic force for attracting the armature 34 generated in the coil 32 and the fuel pressure of the pressure control chamber 62 are Since the sum of the force received by the movable member 40 in the valve opening direction is larger than the urging force of the spring 47, the movable member 40 is lifted, and the spherical member 43 is moved to the second position.
From the diaphragm plate 52. When the spherical member 43 is separated from the second throttle plate 52, the fuel space 68 and the low-pressure fuel chamber 45
a and the fuel in the pressure control chamber 62 flows through the second throttle hole 6.
7, the fuel flows out of the fuel space 68 into the low-pressure fuel chamber 45a.

【0036】このとき、燃料空間68の径を第2の絞り
孔67の径よりも大きく設定しているので、環状弁座5
3aと平面部43aとの間に形成される円環状の燃料通
路の最内周における流路面積は、燃料空間68を設けず
第2の絞り孔67を平面部43aで直接開閉する場合に
比べて大きくなる。したがって、燃料空間68を設けた
第1実施例は、燃料空間68を設けず第2の絞り孔67
を直接開閉するものよりも環状弁座53aと平面部43
aとの間に形成される燃料通路の通路抵抗が小さくな
る。したがって、可動部材40のリフト量を小さくして
も燃料通路の通路抵抗を第2の絞り孔67の通路抵抗よ
りも小さくなるように設定できるので、環状弁座53a
と平面部43aとの間に形成される燃料通路を通過する
燃料流量は第2の絞り孔67を通過する燃料流量よりも
減少することはない。第2の絞り孔67の通路抵抗は第
1の絞り孔66の通路抵抗よりも小さいので、球状部材
43が第2の絞り板52から離座し圧力制御室62と低
圧燃料室45aとが連通すると圧力制御室62の燃料圧
力が低下する。圧力制御室62の燃料圧力が低下し、圧
力制御室62の燃料圧力から制御ピストン22が噴孔閉
塞方向に受ける力とスプリング23の付勢力との和が、
燃料溜まり24の燃料圧力からニードル弁20がリフト
方向に受ける力よりも小さくなると、ニードル弁20が
リフトし、噴孔11aから燃料が噴射される。
At this time, since the diameter of the fuel space 68 is set to be larger than the diameter of the second throttle hole 67, the annular valve seat 5
The flow path area at the innermost periphery of the annular fuel passage formed between 3a and the plane portion 43a is smaller than that in the case where the second throttle hole 67 is directly opened and closed by the plane portion 43a without providing the fuel space 68. It becomes bigger. Therefore, in the first embodiment in which the fuel space 68 is provided, the second throttle hole 67 is provided without the fuel space 68.
The annular valve seat 53a and the flat portion 43 are
a becomes smaller. Therefore, even if the lift amount of the movable member 40 is reduced, the passage resistance of the fuel passage can be set to be smaller than the passage resistance of the second throttle hole 67, so that the annular valve seat 53a.
The flow rate of fuel passing through the fuel passage formed between the second throttle hole 67 and the flat portion 43a does not decrease less than the flow rate of fuel passing through the second throttle hole 67. Since the passage resistance of the second throttle hole 67 is smaller than the passage resistance of the first throttle hole 66, the spherical member 43 is separated from the second throttle plate 52, and the pressure control chamber 62 communicates with the low-pressure fuel chamber 45a. Then, the fuel pressure in the pressure control chamber 62 decreases. The fuel pressure in the pressure control chamber 62 decreases, and the sum of the force received by the control piston 22 in the injection hole closing direction and the urging force of the spring 23 from the fuel pressure in the pressure control chamber 62 is:
When the force received by the needle valve 20 in the lift direction becomes smaller from the fuel pressure in the fuel pool 24, the needle valve 20 is lifted, and fuel is injected from the injection hole 11a.

【0037】第2の絞り孔67よりも径の大きい燃料空
間68を第2の絞り孔67の燃料流出側に設けたことに
より、電磁弁30の開弁時に低圧燃料室45aに流出す
る燃料流量は、第2の絞り孔67の流量特性により決定
される。したがって、インジェクタ1の噴射特性は、第
1の絞り孔66から圧力制御室62に流入する燃料流量
と、第2の絞り孔66を介して圧力制御室62から低圧
燃料室68に流出する燃料流量とによって概ね決定され
る。噴射特性の内、噴射開始時期、初期噴射率の上昇度
合いは、電磁弁30が開弁した後に圧力制御室62へ流
入する燃料流量と、圧力制御室62から低圧燃料室68
に流出する燃料流量との差によって決定される。すなわ
ち、第1の絞り孔66および第2の絞り孔67の流量特
性が変われば、電磁弁30が開弁した直後の圧力制御室
62における圧力の降下速度が変わり、噴射開始時期が
変わる。
Since the fuel space 68 having a diameter larger than that of the second throttle hole 67 is provided on the fuel outlet side of the second throttle hole 67, the fuel flow rate flowing out to the low-pressure fuel chamber 45a when the solenoid valve 30 is opened. Is determined by the flow characteristic of the second throttle hole 67. Therefore, the injection characteristics of the injector 1 are determined by the fuel flow rate flowing into the pressure control chamber 62 from the first throttle hole 66 and the fuel flow rate flowing from the pressure control chamber 62 to the low-pressure fuel chamber 68 through the second throttle hole 66. And is generally determined by Among the injection characteristics, the injection start timing and the degree of increase of the initial injection rate are determined by the flow rate of the fuel flowing into the pressure control chamber 62 after the solenoid valve 30 is opened and the low pressure fuel chamber 68 from the pressure control chamber 62.
Is determined by the difference from the flow rate of the fuel flowing out of the tank. That is, if the flow characteristics of the first throttle hole 66 and the second throttle hole 67 change, the rate of pressure drop in the pressure control chamber 62 immediately after the solenoid valve 30 is opened changes, and the injection start timing changes.

【0038】圧力制御室22の圧力が降下し制御ピスト
ン22の開弁圧に達し制御ピストン22が開弁行程に入
ると、制御ピストン22に作用する開弁方向と閉弁方向
の力は静的に釣り合った状態となる。しかしながら、第
1実施例では第2の絞り孔67の通路抵抗を第1の絞り
孔66の通路抵抗よりも小さくすることにより圧力制御
室62から流出する燃料流量を圧力制御室62に流入す
る燃料流量よりも大きくなるように設定してあるので、
次の瞬間には圧力制御室62の圧力が低下する。このた
め、静的な力の釣り合いが崩れ開弁方向の力が閉弁方向
の力より大きくなるので、制御ピストン22が開閉弁方
向に力の釣り合う位置までリフトする。この繰り返しに
より、最終的に制御ピストン22は設定された所定のリ
フト位置まで到達する。制御ピストン22の開弁行程に
おける圧力制御室62の圧力はほぼ一定している。ま
た、制御ピストン22が動き始める圧力制御室62の圧
力である開弁圧は、第1の絞り孔66および第2の絞り
孔67の流量特性によらず、噴孔開放方向と噴孔閉塞方
向にそれぞれ作用するニードル弁20と制御ピストン2
2との受圧面積の差とニードル弁20を噴孔閉塞方向に
付勢するスプリング23の付勢力とから一義的に決ま
る。また一定圧力が継続する時間は制御ピストン22が
フルリフト点まで到達するまでの時間であるため、第1
の絞り孔66および第2の絞り孔67の流量特性が変化
すれば変化する構造となっている。
When the pressure in the pressure control chamber 22 drops and reaches the valve-opening pressure of the control piston 22 and the control piston 22 enters the valve-opening stroke, the forces in the valve-opening and valve-closing directions acting on the control piston 22 are static. The state is balanced. However, in the first embodiment, the flow rate of the fuel flowing out of the pressure control chamber 62 is reduced by making the passage resistance of the second throttle hole 67 smaller than the passage resistance of the first throttle hole 66 so that the fuel flowing into the pressure control chamber 62 flows. Since it is set to be larger than the flow rate,
At the next moment, the pressure in the pressure control chamber 62 decreases. For this reason, since the static force balance is lost and the force in the valve opening direction becomes larger than the force in the valve closing direction, the control piston 22 is lifted to a position where the force is balanced in the opening and closing valve direction. By this repetition, the control piston 22 finally reaches the set predetermined lift position. The pressure in the pressure control chamber 62 during the valve opening stroke of the control piston 22 is substantially constant. Further, the valve opening pressure, which is the pressure of the pressure control chamber 62 at which the control piston 22 starts to move, depends on the flow characteristics of the first throttle hole 66 and the second throttle hole 67, and the injection hole opening direction and the injection hole closing direction. Valve 20 and control piston 2 acting on
2 and the urging force of the spring 23 for urging the needle valve 20 in the nozzle hole closing direction. Since the time during which the constant pressure continues is the time until the control piston 22 reaches the full lift point, the first
The structure changes when the flow characteristics of the throttle hole 66 and the second throttle hole 67 change.

【0039】制御ピストン22がフルリフト点まで到達
すると、圧力制御室62の圧力はニードル弁20の開弁
圧より低下し、第1の絞り孔66および第2の絞り孔6
7の流量特性の差のみで決まる圧力まで低下し、その圧
力値が持続される。これは、燃料噴射率がほぼ一定とな
る領域であり、ニードル弁20の先端での圧力が一定で
あればその大きさに変化は生じない。
When the control piston 22 reaches the full lift point, the pressure in the pressure control chamber 62 falls below the valve opening pressure of the needle valve 20, and the first throttle hole 66 and the second throttle hole 6
The pressure drops to a pressure determined only by the difference in the flow characteristics of No. 7, and the pressure value is maintained. This is a region where the fuel injection rate is substantially constant, and the magnitude does not change if the pressure at the tip of the needle valve 20 is constant.

【0040】上記状態が続き、所定の噴射終了時期がく
るとコイル32への通電を遮断する。この時、アーマチ
ャ34を吸引するための電磁力60Nが0になるため、
可動部材40を閉弁方向に付勢するスプリング47の付
勢力によって電磁弁30は閉弁する。すると、高圧燃料
通路64から第1の絞り孔66を介して圧力制御室62
に流入する高圧燃料により圧力制御室62の圧力が上昇
する。
When the above state continues and a predetermined injection end time comes, the power supply to the coil 32 is cut off. At this time, the electromagnetic force 60N for sucking the armature 34 becomes 0,
The solenoid valve 30 is closed by the urging force of the spring 47 that urges the movable member 40 in the valve closing direction. Then, from the high-pressure fuel passage 64 through the first throttle hole 66, the pressure control chamber 62
The pressure in the pressure control chamber 62 rises due to the high-pressure fuel flowing into the tank.

【0041】開弁時と同様に噴孔開放方向と噴孔閉塞方
向にそれぞれ作用するニードル弁20と制御ピストン2
2との受圧面積の差とニードル弁20を噴孔閉塞方向に
付勢するスプリング23の付勢力とから一義的に決まる
閉弁圧に達するまで圧力制御室62の圧力が上昇する
と、圧力制御室62の燃料圧力から制御ピストン22が
噴孔閉塞方向に受ける力とスプリング23の付勢力との
和が、燃料溜まり24の燃料圧力からニードル弁20が
リフト方向に受ける力よりも大きくなるので、制御ピス
トン22が噴孔閉塞側に移動する。厳密には、コイル3
2への通電がオフされスプリング47の付勢力により可
動部材40が燃料空間68の閉塞方向に移動するにした
がい燃料空間68から流出する燃料流量が減少するの
で、電磁弁30の閉弁前に制御ピストン22は噴孔閉塞
側に移動する。
The needle valve 20 and the control piston 2 which act in the opening direction of the injection hole and the closing direction of the injection hole, respectively, in the same manner as when the valve is opened.
When the pressure in the pressure control chamber 62 increases until the valve closing pressure reaches a valve closing pressure that is uniquely determined from the difference between the pressure receiving area of the pressure control chamber 2 and the urging force of the spring 23 that urges the needle valve 20 in the nozzle hole closing direction, Since the sum of the force that the control piston 22 receives in the injection hole closing direction from the fuel pressure of 62 and the urging force of the spring 23 becomes larger than the force that the needle valve 20 receives in the lift direction from the fuel pressure of the fuel reservoir 24, the control is performed. The piston 22 moves to the injection hole closing side. Strictly speaking, coil 3
2 is turned off, and the amount of fuel flowing out of the fuel space 68 decreases as the movable member 40 moves in the closing direction of the fuel space 68 due to the urging force of the spring 47, so that control is performed before the solenoid valve 30 is closed. The piston 22 moves to the injection hole closing side.

【0042】制御ピストン22の閉弁圧は、開弁圧と同
様に、第1の絞り孔66および第2の絞り孔67の流量
特性によらず同じ値になるが、電磁弁30が閉弁を開始
してから制御ピストン22の閉弁圧まで圧力制御室62
の圧力が上昇するまでの時間は、第1の絞り孔66およ
び第2の絞り孔67の流量特性が変わり電磁弁30の開
弁時点での圧力制御室62の圧力に差があれば当然のこ
とながら変化する。さらに、制御ピストン22の閉弁行
程では、開弁行程と同様に第1の絞り孔66および第2
の絞り孔67の燃料流量の差により噴孔閉塞に要する時
間が変化する構造となっている。
Although the valve closing pressure of the control piston 22 is the same as the valve opening pressure regardless of the flow characteristics of the first throttle hole 66 and the second throttle hole 67, the solenoid valve 30 is closed. From the start to the closing pressure of the control piston 22 until the pressure control chamber 62
The time required for the pressure to rise increases when the flow characteristics of the first throttle hole 66 and the second throttle hole 67 change and there is a difference in the pressure in the pressure control chamber 62 when the solenoid valve 30 is opened. Change. Further, in the valve closing process of the control piston 22, the first throttle hole 66 and the second
The time required for closing the injection hole changes according to the difference in the fuel flow rate of the throttle hole 67.

【0043】以上のごとく、噴射開始時期、噴射終了時
期、燃焼噴射率の初期上昇速度は、第1の絞り孔66お
よび第2の絞り孔67の流量特性によって決定され、噴
射終了時の燃焼噴射率の降下速度は第1の絞り孔66の
流量特性によって決定される。以上説明した本発明の第
1実施例では、第2の絞り孔67の燃料流出側に第2の
絞り孔67と連通し、第2の絞り孔67よりも径の大き
い、つまり第2の絞り孔67よりも通路抵抗の小さい燃
料空間68を設けたことにより、可動部材40のリフト
量を小さく設定しても平面部43aと環状弁座53aと
の間に形成される燃料通路の通路抵抗を第2の絞り孔6
7の通路抵抗よりも小さくすることができる。したがっ
て、可動部材40のリフト量を小さくしても電磁弁30
の開弁時に第2の絞り孔67の通路抵抗によって決定さ
れる流量の燃料を低圧燃料室45aに流出させることが
できる。
As described above, the injection start timing, the injection end timing, and the initial rise rate of the combustion injection rate are determined by the flow characteristics of the first throttle hole 66 and the second throttle hole 67. The rate of decrease of the rate is determined by the flow characteristics of the first throttle hole 66. In the first embodiment of the present invention described above, the second throttle hole 67 communicates with the second throttle hole 67 on the fuel outflow side, and has a larger diameter than the second throttle hole 67, that is, the second throttle hole. By providing the fuel space 68 having a smaller passage resistance than the hole 67, the passage resistance of the fuel passage formed between the flat portion 43a and the annular valve seat 53a can be reduced even if the lift amount of the movable member 40 is set small. Second throttle hole 6
7 can be made smaller than the passage resistance. Therefore, even if the lift amount of the movable member 40 is reduced, the solenoid valve 30
When the valve is opened, the fuel at the flow rate determined by the passage resistance of the second throttle hole 67 can flow out to the low-pressure fuel chamber 45a.

【0044】電磁弁30が開弁した時に流出させるべき
流量は、本来第2の絞り孔67を通過する流量を流出さ
せればよいので、第2の絞り孔67よりも通路抵抗の小
さい燃料通路68を開閉した方が可動部材40のリフト
量を小さくできる。可動部材40のリフト量を小さくす
ることにより、応答性向上・作動音低減・耐摩耗性向上
・開閉弁バウンス低減が実現できるので、摩耗等により
生じる可動部材40のリフト量のばらつきが電磁弁開弁
時に低圧燃料室45aに流出する燃料流量のばらつきを
招くことがない。
The flow to be discharged when the solenoid valve 30 is opened should be the flow that originally passes through the second throttle hole 67, so that the fuel passage having a smaller passage resistance than the second throttle hole 67. By opening and closing 68, the lift amount of the movable member 40 can be reduced. By reducing the lift amount of the movable member 40, it is possible to improve the responsiveness, reduce the operation noise, improve the wear resistance, and reduce the bounce of the on-off valve. There is no variation in the flow rate of the fuel flowing into the low-pressure fuel chamber 45a when the valve is opened.

【0045】さらには、環状通路54aおよび連通路5
4bからなる燃料逃がし通路54を平面弁座53内に形
成したことにより、電磁弁30の閉弁時に開弁方向に働
く油圧荷重を低減できる。したがって、コイル32への
通電オフ時に可動部材40を平面弁座53に向けて付勢
するスプリング47の付勢力を小さくすることができ、
さらに、通電オン時に可動部材40を開弁方向に吸引す
る電磁力を小さくすることができる。これにより、電磁
弁30の体格を小型化し、インジェクタ1全体の体格を
小型化できる。
Further, the annular passage 54a and the communication passage 5
By forming the fuel release passage 54 composed of 4b in the flat valve seat 53, the hydraulic load acting in the valve opening direction when the solenoid valve 30 is closed can be reduced. Therefore, the urging force of the spring 47 for urging the movable member 40 toward the flat valve seat 53 when the power supply to the coil 32 is turned off can be reduced,
Further, the electromagnetic force for attracting the movable member 40 in the valve opening direction when the power is turned on can be reduced. Thus, the size of the solenoid valve 30 can be reduced, and the size of the entire injector 1 can be reduced.

【0046】また燃料空間68と同心円上に環状通路5
4aを形成しているので、開弁方向に働く油圧荷重の分
布が対象形をなすことにより球状部材43に加わる荷重
分布に偏りが発生しない。したがって、球状部材43の
傾きや偏心が抑制されるので、安定した電磁弁30の開
閉弁制御が可能であり、噴射ノズルから均一な燃料量を
噴射できる。特に、微少量噴射を高精度に制御できる。
The annular passage 5 is formed concentrically with the fuel space 68.
4a, the distribution of the hydraulic load acting in the valve opening direction is symmetrical, so that the distribution of the load applied to the spherical member 43 is not biased. Therefore, since the inclination and eccentricity of the spherical member 43 are suppressed, stable opening / closing control of the electromagnetic valve 30 is possible, and a uniform fuel amount can be injected from the injection nozzle. In particular, it is possible to control the minute amount injection with high accuracy.

【0047】また、燃料空間68をドリル加工してか
ら、燃料空間68の加工先端部のドリル跡に案内されて
第2の絞り孔67をドリル加工できるので、第2の絞り
孔67の加工長が短縮される。したがって、燃料空間6
8に比べ径の小さい第2の絞り孔67の加工が容易にな
り、加工工数が低減する。また、第2の絞り孔67は圧
力制御室62と燃料空間68とを連通すればよいので、
第2の絞り孔67と電磁弁30との軸ズレが発生しても
性能上なんら問題が起きることはない。
After drilling the fuel space 68, the second throttle hole 67 can be drilled by being guided by the drill mark at the processing tip of the fuel space 68. Is shortened. Therefore, the fuel space 6
The processing of the second drawing hole 67 having a smaller diameter than that of No. 8 is facilitated, and the number of processing steps is reduced. Further, since the second throttle hole 67 only has to communicate the pressure control chamber 62 and the fuel space 68,
Even if an axis misalignment between the second throttle hole 67 and the solenoid valve 30 occurs, no problem occurs in performance.

【0048】(第2実施例)本発明の第2実施例を図5
に示す。第1実施例と実質的に同一構成部分には同一符
号を付す。第2実施例では、第2の絞り板52にではな
く平面部43a側に燃料空間としての円筒状の凹状空間
43bを形成している。凹状空間43bの開口径kは第
2の絞り孔67の径bよりも大きく、k=φ0.4mm、
径b=φ0.29mmである。図5に示したa、b、d、
e、g、hの寸法は第1実施例と同じである。また、凹
状空間43bの開口面積は平面部43aの面積よりも小
さい。
(Second Embodiment) FIG. 5 shows a second embodiment of the present invention.
Shown in Components substantially the same as those in the first embodiment are denoted by the same reference numerals. In the second embodiment, a cylindrical concave space 43b as a fuel space is formed not on the second throttle plate 52 but on the plane portion 43a side. The opening diameter k of the concave space 43b is larger than the diameter b of the second throttle hole 67, k = φ0.4 mm,
The diameter b is 0.29 mm. A, b, d, shown in FIG.
The dimensions of e, g and h are the same as in the first embodiment. The opening area of the concave space 43b is smaller than the area of the plane portion 43a.

【0049】第2実施例では、第2の絞り孔67が直接
平面弁座53に開口しているので、環状弁座53cの内
径は第2の絞り孔67の径bと等しくなっており、環状
弁座53cの幅が第1実施例の環状弁座53aよりも大
きくなっている。第2実施例では、凹状空間43bの開
口径を第2の絞り孔67の径よりも大きく設定している
ので、電磁弁30の開弁時に環状弁座53cと平面部4
3aとの間に形成される円環状の燃料通路の最内周にお
ける流路面積は、凹状空間43bを設けない場合に環状
弁座53cと平面部43aとの間に形成される燃料通路
の最内周における流路面積よりも大きくなる。したがっ
て、凹状空間43bを設けないものよりも環状弁座53
cと平面部43aとの間に形成される燃料通路の通路抵
抗が小さくなる。第2実施例では、この燃料通路の通路
抵抗を第2の絞り孔67の通路抵抗よりも小さくなるよ
うに設定している。したがって、環状弁座53cと平面
部43aとの間に形成される燃料通路を通過する燃料流
量は第2の絞り孔67を通過する燃料流量よりも減少す
ることはない。したがって、第1実施例と同様に可動部
材40のリフト量を小さくできるので、応答性向上・作
動音低減・耐摩耗性向上・開閉弁バウンス低減を実現で
きる。
In the second embodiment, since the second throttle hole 67 opens directly into the flat valve seat 53, the inner diameter of the annular valve seat 53c is equal to the diameter b of the second throttle hole 67. The width of the annular valve seat 53c is larger than that of the annular valve seat 53a of the first embodiment. In the second embodiment, since the opening diameter of the concave space 43b is set to be larger than the diameter of the second throttle hole 67, when the solenoid valve 30 is opened, the annular valve seat 53c and the flat portion 4c are opened.
The flow path area at the innermost periphery of the annular fuel passage formed between the annular valve seat 53c and the flat portion 43a when the concave space 43b is not provided. It becomes larger than the flow path area on the inner circumference. Therefore, the annular valve seat 53 is provided more than the one without the concave space 43b.
The passage resistance of the fuel passage formed between c and the plane portion 43a is reduced. In the second embodiment, the passage resistance of the fuel passage is set to be smaller than the passage resistance of the second throttle hole 67. Therefore, the flow rate of the fuel passing through the fuel passage formed between the annular valve seat 53c and the plane portion 43a does not decrease less than the flow rate of the fuel passing through the second throttle hole 67. Therefore, as in the first embodiment, the lift amount of the movable member 40 can be reduced, so that it is possible to realize improved responsiveness, reduced operation noise, improved wear resistance, and reduced bounce of the on-off valve.

【0050】また、第1実施例と同様に平面弁座53内
に燃料逃がし通路54を設けているので電磁弁30の開
弁圧が低下し、電磁弁30を小型化できる。以上説明し
た本発明の実施の形態を示す複数の実施例では、燃料空
間を筒状に形成したが、燃料空間の開口径が第2の絞り
孔の径よりも大きく、開口面積が可動部材の平面部より
も小さければよいので、開口側に向かって径の大きくな
るテーパ状に燃料空間を形成することも可能である。ま
た、平面部および平面弁座の両方に燃料空間を設けても
よい。
Since the fuel release passage 54 is provided in the flat valve seat 53 as in the first embodiment, the valve opening pressure of the solenoid valve 30 is reduced, and the solenoid valve 30 can be downsized. In a plurality of examples showing the embodiment of the present invention described above, the fuel space is formed in a cylindrical shape, but the opening diameter of the fuel space is larger than the diameter of the second throttle hole, and the opening area of the movable member is Since it is sufficient that the fuel space is smaller than the plane portion, the fuel space can be formed in a tapered shape whose diameter increases toward the opening side. Further, a fuel space may be provided in both the flat portion and the flat valve seat.

【0051】また、上記各実施例では燃料逃がし通路を
平面弁座側に設けたが、平面部と平面弁座との当接面内
に位置するのであれば、可動部材の平面部側に燃料逃が
し通路を設けることも可能である。また、平面部および
平面弁座の両方に燃料逃がし通路を設けてもよい。
In each of the above embodiments, the fuel escape passage is provided on the flat valve seat side. However, if the fuel escape passage is located within the contact surface between the flat portion and the flat valve seat, the fuel escape passage is provided on the flat portion side of the movable member. It is also possible to provide an escape passage. Further, a fuel release passage may be provided in both the flat portion and the flat valve seat.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例によるインジェクタの主要
部を示す断面図である。
FIG. 1 is a sectional view showing a main part of an injector according to a first embodiment of the present invention.

【図2】第1実施例によるインジェクタを示す断面図で
ある。
FIG. 2 is a sectional view showing the injector according to the first embodiment.

【図3】(A)は第1実施例の第2の絞り板を示す平面
図であり、(B)は(A)のB−B線断面図である。
FIG. 3A is a plan view showing a second diaphragm plate of the first embodiment, and FIG. 3B is a sectional view taken along line BB of FIG. 3A.

【図4】第1実施例における電磁弁のシート部分を示す
斜視図である。
FIG. 4 is a perspective view showing a seat portion of the solenoid valve in the first embodiment.

【図5】第2実施例における電磁弁のシート部分を示す
斜視図である。
FIG. 5 is a perspective view showing a seat portion of a solenoid valve according to a second embodiment.

【符号の説明】[Explanation of symbols]

1 インジェクタ(蓄圧式燃料噴射装置) 10 噴射ノズル 11a 噴孔 20 ニードル弁(弁部材) 21 プレッシャピン(弁部材) 22 制御ピストン(弁部材) 30 電磁弁 40 可動部材 41 弁軸(可動部材) 42 押圧部材(可動部材) 43 球状部材(可動部材) 43a 低圧燃料室 43b 凹状空間(燃料空間) 44 支持部材(可動部材) 51 第1の絞り板 52 第2の絞り板 53 平面弁座 53a、53c 環状弁座(平面弁座) 53b 扇状弁座(平面弁座) 54 燃料逃がし通路 54a 環状通路(燃料逃がし通路) 54b 連通路(燃料逃がし通路) 63、64 高圧燃料通路 65 低圧燃料通路 66 第1の絞り孔 67 第2の絞り孔 68 燃料空間 Reference Signs List 1 injector (accumulation type fuel injection device) 10 injection nozzle 11a injection hole 20 needle valve (valve member) 21 pressure pin (valve member) 22 control piston (valve member) 30 solenoid valve 40 movable member 41 valve shaft (movable member) 42 Pressing member (movable member) 43 Spherical member (movable member) 43a Low-pressure fuel chamber 43b Concave space (fuel space) 44 Support member (movable member) 51 First throttle plate 52 Second throttle plate 53 Planar valve seat 53a, 53c Annular valve seat (flat valve seat) 53b Fan-shaped valve seat (flat valve seat) 54 Fuel release passage 54a Annular passage (fuel release passage) 54b Communication passage (fuel release passage) 63, 64 High pressure fuel passage 65 Low pressure fuel passage 66 First Throttle hole 67 second throttle hole 68 fuel space

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コモンレールで蓄圧された高圧燃料を内
燃機関に噴射する蓄圧式燃料噴射装置であって、 蓄圧された高圧燃料を噴孔に供給可能な高圧燃料通路と
前記噴孔とを断続する弁部材と、 可動部材および前記可動部材の平面部と平面同士で当接
可能な平面弁座を有し、前記弁部材の反噴孔側に設けら
れ前記高圧燃料通路から供給される燃料圧力により前記
噴孔遮断方向に前記弁部材を付勢する圧力制御室と低圧
側空間との連通を前記平面部と前記平面弁座とが当接す
ることにより遮断する電磁弁とを備え、 前記高圧燃料通路から前記圧力制御室に流入する燃料流
量を制限する第1の絞り孔と、前記圧力制御室と前記平
面弁座との間に形成され、前記第1の絞り孔よりも通路
抵抗が小さく前記電磁弁の開弁時に前記圧力制御室から
前記低圧側空間に流出する燃料流量を制限する第2の絞
り孔と、少なくとも前記平面部および前記平面弁座のい
ずれか一方に形成される燃料空間であって、前記電磁弁
の閉弁時に前記第2の絞り孔の燃料流出側と連通してお
り、前記平面部と前記平面弁座との離隔および当接によ
り開閉され、前記第2の絞り孔の径よりも開口径が大き
く前記平面部の面積よりも開口面積が小さく、前記平面
弁座に形成される場合は前記第2の絞り孔よりも通路抵
抗の小さい燃料空間とを有することを特徴とする蓄圧式
燃料噴射装置。
1. An accumulator type fuel injection device for injecting high pressure fuel accumulated in a common rail into an internal combustion engine, wherein a high pressure fuel passage capable of supplying accumulated high pressure fuel to an injection hole is intermittently connected to the injection hole. A valve member, a movable member and a flat valve seat that can contact the plane portion of the movable member in a plane-by-plane manner, and provided on a side opposite to the injection hole of the valve member by a fuel pressure supplied from the high-pressure fuel passage. An electromagnetic valve that shuts off communication between a pressure control chamber that urges the valve member in the injection hole shutoff direction and the low-pressure side space by contact between the flat portion and the flat valve seat; A first throttle hole that restricts a flow rate of fuel flowing into the pressure control chamber from the pressure control chamber; and a passage resistance smaller than the first throttle hole and formed between the pressure control chamber and the flat valve seat. When the valve is opened, the low pressure is released from the pressure control chamber. A second throttle hole for restricting a flow rate of fuel flowing into the compression side space, and a fuel space formed in at least one of the flat portion and the flat valve seat, wherein the second throttle hole is provided when the electromagnetic valve is closed. The opening of the flat portion is larger than the diameter of the second throttle hole, and is opened and closed by separation and contact between the flat portion and the flat valve seat. A fuel space having a smaller opening area than the second throttle hole and having a smaller passage resistance than the second throttle hole when formed in the flat valve seat.
【請求項2】 前記平面部および前記平面弁座のいずれ
か一方の当接面内に前記低圧側空間と連通する燃料逃が
し通路を形成することを特徴とする請求項1記載の蓄圧
式燃料噴射装置。
2. A pressure-accumulating fuel injection system according to claim 1, wherein a fuel release passage communicating with the low-pressure side space is formed in one of the contact surfaces of the flat portion and the flat valve seat. apparatus.
【請求項3】 前記燃料逃がし通路は、前記平面部と前
記平面弁座とが当接した状態において前記燃料空間と連
通せず前記燃料空間の開口に対して略同心円上に形成さ
れた環状通路を有することを特徴とする請求項2記載の
蓄圧式燃料噴射装置。
3. An annular passage formed in a substantially concentric circle with respect to an opening of the fuel space without communicating with the fuel space when the flat portion and the flat valve seat are in contact with each other. 3. The accumulator-type fuel injection device according to claim 2, comprising:
【請求項4】 前記燃料空間は前記平面弁座側に形成さ
れ、前記燃料空間を形成した後に前記第2の絞り孔を形
成することを特徴とする請求項1、2または3記載の蓄
圧式燃料噴射装置。
4. The accumulator according to claim 1, wherein the fuel space is formed on the flat valve seat side, and the second throttle hole is formed after the fuel space is formed. Fuel injection device.
JP31332896A 1995-12-05 1996-11-25 Accumulated fuel injection system Expired - Fee Related JP3719461B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP31332896A JP3719461B2 (en) 1996-11-25 1996-11-25 Accumulated fuel injection system
US08/975,397 US6027037A (en) 1995-12-05 1997-11-20 Accumulator fuel injection apparatus for internal combustion engine
DE1997619461 DE69719461T2 (en) 1996-11-21 1997-11-21 Storage fuel injector for internal combustion engines
EP19970120502 EP0844385B1 (en) 1996-11-21 1997-11-21 Accumulator fuel injection apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31332896A JP3719461B2 (en) 1996-11-25 1996-11-25 Accumulated fuel injection system

Publications (2)

Publication Number Publication Date
JPH10153155A true JPH10153155A (en) 1998-06-09
JP3719461B2 JP3719461B2 (en) 2005-11-24

Family

ID=18039920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31332896A Expired - Fee Related JP3719461B2 (en) 1995-12-05 1996-11-25 Accumulated fuel injection system

Country Status (1)

Country Link
JP (1) JP3719461B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507622A (en) * 1999-08-17 2003-02-25 ロラーンジェ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Injection valve for internal combustion engine
US6550699B2 (en) 2000-04-11 2003-04-22 Denso Corporation Solenoid valve and fuel injector using same
JP2003262295A (en) * 2002-03-08 2003-09-19 Denso Corp Orifice forming member and manufacturing method therefor
JP2007064364A (en) * 2005-08-31 2007-03-15 Denso Corp Solenoid valve
JP2007245994A (en) * 2006-03-17 2007-09-27 Advics:Kk Fluid unit
JP2008138650A (en) * 2006-12-05 2008-06-19 Denso Corp Solenoid valve, and fuel injection device using it
DE10137890B4 (en) * 2000-08-03 2016-12-01 Denso Corporation Fuel injector
DE102016110537A1 (en) 2015-07-02 2017-01-05 Denso Corporation Fuel injection valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010043092A1 (en) * 2010-10-29 2012-05-03 Robert Bosch Gmbh Pressure control valve

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507622A (en) * 1999-08-17 2003-02-25 ロラーンジェ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Injection valve for internal combustion engine
US6550699B2 (en) 2000-04-11 2003-04-22 Denso Corporation Solenoid valve and fuel injector using same
DE10137890B4 (en) * 2000-08-03 2016-12-01 Denso Corporation Fuel injector
DE10165131A1 (en) 2000-08-03 2016-12-08 Denso Corporation Fuel injector
JP2003262295A (en) * 2002-03-08 2003-09-19 Denso Corp Orifice forming member and manufacturing method therefor
JP2007064364A (en) * 2005-08-31 2007-03-15 Denso Corp Solenoid valve
JP2007245994A (en) * 2006-03-17 2007-09-27 Advics:Kk Fluid unit
JP2008138650A (en) * 2006-12-05 2008-06-19 Denso Corp Solenoid valve, and fuel injection device using it
DE102016110537A1 (en) 2015-07-02 2017-01-05 Denso Corporation Fuel injection valve

Also Published As

Publication number Publication date
JP3719461B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
EP0174083B1 (en) Electromagnetic unit fuel injector
JP3584554B2 (en) Accumulation type fuel injection device
US8371516B2 (en) Fuel injector with a pressure-compensated control valve
WO2000047888A1 (en) High-pressure fuel feed pump of internal combustion engine
US7635098B2 (en) Fuel injection device inhibiting abrasion
JPH07332193A (en) Fuel injection valve for internal combustion engine
WO1992018766A1 (en) Fuel injector valve having a collared sphere valve element
JP3502456B2 (en) Fuel injection device for internal combustion engine
JPH07189851A (en) Fuel injector for internal combustion engine
EP1674715A1 (en) Injector
JP2002529654A (en) Fuel injection valve for internal combustion engine
JP2004515689A (en) Fuel injection device for internal combustion engine
US6092737A (en) Direct acting fuel injector
JP3719461B2 (en) Accumulated fuel injection system
KR102178299B1 (en) Fuel pump and inlet valve assembly thereof
US6938839B2 (en) Needle alignment fuel injector
JP3755143B2 (en) Accumulated fuel injection system
US20090116987A1 (en) Pump
JP2000018119A (en) Fuel injection system
JP4099738B2 (en) Fuel injection device
JP3700800B2 (en) Accumulated fuel injection system
JP3589323B2 (en) Accumulation type fuel injection device
JPH07233884A (en) Solenoid valve device
JP2000002356A (en) Solenoid valve and fuel injection valve using it
JPH0960565A (en) Fuel injection device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees