JPH10121363A - Production of prepreg for printed circuit board - Google Patents

Production of prepreg for printed circuit board

Info

Publication number
JPH10121363A
JPH10121363A JP8270637A JP27063796A JPH10121363A JP H10121363 A JPH10121363 A JP H10121363A JP 8270637 A JP8270637 A JP 8270637A JP 27063796 A JP27063796 A JP 27063796A JP H10121363 A JPH10121363 A JP H10121363A
Authority
JP
Japan
Prior art keywords
prepreg
silicone oligomer
printed wiring
wiring board
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8270637A
Other languages
Japanese (ja)
Other versions
JP3731264B2 (en
Inventor
Mare Takano
希 高野
Tomio Fukuda
富男 福田
Michitoshi Arata
道俊 荒田
Masahisa Ose
昌久 尾瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP27063796A priority Critical patent/JP3731264B2/en
Publication of JPH10121363A publication Critical patent/JPH10121363A/en
Application granted granted Critical
Publication of JP3731264B2 publication Critical patent/JP3731264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)
  • Reinforced Plastic Materials (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve processability of drilling and insulating characteristics such as resistance to electrolytic corrosion by treating a substrate with a silicone oligomer and a coupling agent and impregnating a resin or varnish into the treated substance. SOLUTION: A substrate of glass cloth, etc., is treated with a silicone oligomer having one or more functional groups such as alkoxyl group and silanol group reacting with hydroxyl group of substrate surface and one or more organic functional groups such as one or more epoxy groups or amino groups and amino group-containing hydrochloric acid reacting with a resin for impregnation such as epoxy resin, containing one or more kinds of bifunctional, trifunctional or tetrafunctional siloxane units in the molecule and obtained by three-dimensional condensation reaction and a silane-based coupling agent in a same bath or at two stages using different bath. Then, the treated substrate is impregnated with a resin or varnish such as epoxy resin and subjected to drying treatment after drying to prepare the objective prepreg for printed circuit boards.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、印刷配線板等の金
属箔張り積層板や多層印刷配線板に用いられるプリプレ
グの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a prepreg used for a metal foil-clad laminate such as a printed wiring board or a multilayer printed wiring board.

【0002】[0002]

【従来の技術】プリプレグは、これを所定枚数積層して
片側又は両側に金属箔を配置して平行熱盤で加熱加圧
し、金属張り積層板を成形したり、あるいはこれを両側
が金属箔である積層板に回路加工を施した内層用印刷配
線板の両側に積層しその外側に金属箔を配置して平行熱
盤で加熱加圧し、多層印刷配線板を形成する際に用いら
れる。
2. Description of the Related Art A prepreg is prepared by laminating a predetermined number of sheets, placing a metal foil on one or both sides and heating and pressing with a parallel hot plate to form a metal-clad laminate, or forming a metal-laminated laminate on both sides with a metal foil. It is used when forming a multilayer printed wiring board by laminating on both sides of an inner layer printed wiring board which has been subjected to circuit processing on a certain laminated board, arranging metal foil on the outside thereof, and heating and pressing with a parallel hot plate.

【0003】プリプレグは、通常シランカップリング剤
等の表面処理剤で表面処理された基材に樹脂ワニスを含
浸させた後、樹脂が半硬化するように乾燥させてつくら
れる。この乾燥工程で、基材表面の処理剤と樹脂の反応
はある程度進行し、更に積層板や多層印刷配線板を成形
する際の加熱時にも進行して基材と樹脂間の接着性を高
めている。この基材と樹脂界面の接着性は、積層板とし
た場合の吸湿特性をはじめ耐熱性やドリル加工性、絶縁
特性等の特性に大きな影響を与える。
[0003] A prepreg is usually produced by impregnating a resin varnish on a substrate surface-treated with a surface treatment agent such as a silane coupling agent, and then drying the resin so that the resin is semi-cured. In this drying step, the reaction between the treatment agent and the resin on the surface of the base material progresses to a certain extent, and also proceeds during heating when forming a laminate or a multilayer printed wiring board, thereby increasing the adhesiveness between the base material and the resin. I have. The adhesiveness between the base material and the resin interface has a great effect on properties such as heat absorption, drill workability, insulation properties, etc., as well as moisture absorption properties in the case of a laminate.

【0004】一方、電子機器の小型化・高性能化に伴っ
て、印刷配線板に用いられる積層板は、これまで以上に
優れた耐熱性やドリル加工性、絶縁特性等が要求されて
いる。このため、これら特性に影響する基材と樹脂界面
の接着性についても、更なる向上が必要となってきた。
On the other hand, with the miniaturization and high performance of electronic devices, laminated boards used for printed wiring boards are required to have better heat resistance, drilling workability, insulation properties, etc. than ever before. For this reason, it is necessary to further improve the adhesiveness between the base material and the resin interface, which affects these properties.

【0005】[0005]

【発明が解決しようとする課題】図1に一般的なシラン
カップリング剤処理された基材表面の理想的なモデル形
態を示す。化学的に吸着したシランカップリング剤があ
る程度の層を形成し、樹脂層との接着性を発現するもの
である。しかしながら、工業的に行われる無機材料への
処理は、非常に短時間で完結させるため、図2に示すよ
うに多くの欠陥を含んだ処理形態になっていると言われ
ている。化学的に吸着したシランカップリング剤も均一
に表面を被っておらず、樹脂層へ溶け出しやすい物理的
に吸着したシランカップリング剤も多く存在する。この
ような欠陥の多い化学的吸着層では本来の接着性は期待
できず、逆に物理的吸着層によって界面近傍の樹脂硬化
物の不均一化や低強度化による更なる接着性の低下を引
き起こす可能性が高い。
FIG. 1 shows an ideal model of the surface of a substrate treated with a general silane coupling agent. The chemically adsorbed silane coupling agent forms a certain layer, and exhibits adhesiveness with the resin layer. However, it is said that industrial processing of inorganic materials is completed in a very short time, and is thus in a processing form containing many defects as shown in FIG. The chemically adsorbed silane coupling agent does not evenly cover the surface, and there are many physically adsorbed silane coupling agents that are easily dissolved in the resin layer. The original adhesiveness cannot be expected in such a chemically adsorbed layer having many defects, and conversely, the physical adsorbed layer causes unevenness of the cured resin near the interface and further lowers the adhesiveness due to lower strength. Probability is high.

【0006】基材と樹脂界面の接着性を向上させる手法
としては、通常の表面処理剤が有する有機官能基の種類
や数を調整し樹脂との反応性を高める方法(特開昭63
−230729号公報、特公昭62−40368号公
報)があるが、樹脂との反応性を高くするだけではリジ
ッドな層ができるだけで、界面に生じる残留応力等の低
減は困難であり接着性の顕著な向上は期待できない。界
面の残留応力の低減も含めた改良手法としては、表面処
理剤に加えて低応力化のために長鎖のポリシロキサンを
併用するもの(特開平3−62845号公報、特開平3
−287869号公報)があるが、通常の処理条件では
表面処理剤と長鎖ポリシロキサンの反応性が非常に低い
こと、また一般的な長鎖ポリシロキサンは基材と反応す
るアルコキシル基を有していないこと、長鎖ポリシロキ
サンが有するメチル基等の疎水性の影響によるプリプレ
グの含浸性の低下等により界面の高接着性を発現するこ
とは非常に困難である。
As a technique for improving the adhesiveness between the substrate and the resin interface, a method of increasing the reactivity with the resin by adjusting the type and number of the organic functional groups possessed by the ordinary surface treatment agent (Japanese Patent Laid-Open No. Sho 63)
JP-A-230729 and JP-B-62-40368), however, only by increasing the reactivity with the resin, a rigid layer can be formed, and it is difficult to reduce residual stress or the like generated at the interface. No significant improvement can be expected. As an improvement method including a reduction in residual stress at the interface, a method using a long-chain polysiloxane in combination with a surface treatment agent to reduce stress (Japanese Unexamined Patent Application Publication No. 3-62845, Japanese Unexamined Patent Application Publication No.
However, the reactivity between the surface treating agent and the long-chain polysiloxane is very low under ordinary processing conditions, and a general long-chain polysiloxane has an alkoxyl group that reacts with the base material. It is very difficult to exhibit high adhesiveness at the interface due to the fact that the prepreg is not impregnated due to the influence of hydrophobicity such as the methyl group of the long-chain polysiloxane.

【0007】これに対して、特開平1−204953号
公報は、無機充填剤と反応するアルコキシル基及び樹脂
と反応する有機官能基を併せ持つ鎖状ポリシロキサンを
用いることを特徴としている。しかしながら、図3に示
すようにポリシロキサンの鎖を長くした場合、メチル基
等の疎水性基の配向等により基材表面に横向きとなる可
能性が高く、樹脂中への鎖の入り込みは難しくかつ数箇
所で基材に吸着するためリジッドな層を形成しやすい。
樹脂内に侵入しても、鎖の回りを樹脂が取り囲むため、
鎖の長さに見合った界面の低応力化を実現するのは困難
である。また、物理的に吸着した層は大環状になりやす
いため、樹脂硬化物の物性低下を引き起こしやすい。
On the other hand, Japanese Patent Application Laid-Open No. Hei 1-24953 is characterized in that a chain polysiloxane having both an alkoxyl group which reacts with an inorganic filler and an organic functional group which reacts with a resin is used. However, when the polysiloxane chain is lengthened as shown in FIG. 3, it is highly likely that the chain becomes horizontal on the surface of the base material due to the orientation of a hydrophobic group such as a methyl group, and it is difficult for the chain to enter the resin. It is easy to form a rigid layer because it is adsorbed to the substrate at several places.
Even if it enters the resin, the resin surrounds the chain,
It is difficult to reduce the interface stress according to the chain length. In addition, the layer that is physically adsorbed tends to form a large ring, which tends to cause deterioration in the physical properties of the cured resin.

【0008】本発明は、上記従来技術の問題点を解消
し、積層板や多層印刷配線板を成形した際に優れたドリ
ル加工性及び絶縁特性を発現するプリプレグの製造方法
を提供するものである。
The present invention solves the above-mentioned problems of the prior art and provides a method for producing a prepreg which exhibits excellent drilling workability and insulating properties when a laminated board or a multilayer printed wiring board is formed. .

【0009】[0009]

【課題を解決するための手段】本発明は、基材に樹脂ま
たはワニスを含浸あるいは含浸後乾燥させて得られるプ
リプレグにおいて、図4に示すような基材表面の水酸基
と反応する官能基及び樹脂と反応する有機官能基を各々
1個以上有する予め3次元縮合反応させたシリコーンオ
リゴマで処理した基材を用いることを特徴とする印刷配
線板用プリプレグの製造方法である。以下、本発明につ
いて説明する。
SUMMARY OF THE INVENTION The present invention relates to a prepreg obtained by impregnating a base material with a resin or varnish or drying after impregnation with a functional group reactive with hydroxyl groups on the base material surface as shown in FIG. A method for producing a prepreg for a printed wiring board, comprising using a substrate treated with a silicone oligomer which has been subjected to a three-dimensional condensation reaction and has one or more organic functional groups each reacting with the prepreg. Hereinafter, the present invention will be described.

【0010】[0010]

【発明の実施の形態】本発明で用いられる基材は、金属
箔張り積層板や多層印刷配線板を製造する際に用いられ
るものであれば特に制限されないが、通常織布や不織布
等の繊維基材が用いられる。繊維基材としては、たとえ
ばガラス、アルミナ、アスベスト、ボロン、シリカアル
ミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化
ケイ素、ジルコニア、カーボン等の無機繊維やアラミ
ド、ポリエーテルエーテルケトン、ポリエーテルイミ
ド、ポリエーテルサルフォン、セルロース等の有機繊維
等及びこれらの混抄系があり、特にガラス繊維の織布が
好ましく用いられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The substrate used in the present invention is not particularly limited as long as it is used for producing a metal foil-clad laminate or a multilayer printed wiring board. A substrate is used. Examples of the fiber base material include inorganic fibers such as glass, alumina, asbestos, boron, silica-alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, zirconia, and carbon, and aramid, polyetheretherketone, polyetherimide, and polyetherimide. There are organic fibers such as ethersulfone, cellulose and the like, and a blending system thereof, and a woven fabric of glass fiber is particularly preferably used.

【0011】これらシリコーンオリゴマで処理される基
材の表面処理状態は特に制限はなく、通常のシランカッ
プリング剤等を含んだ表面処理剤で処理されたものでも
かまわないが、基材表面にシリコーンオリゴマと反応で
きる水酸基が存在する処理前の基材が好ましい。
The surface treatment state of the substrate treated with these silicone oligomers is not particularly limited, and may be a substrate treated with an ordinary surface treatment agent containing a silane coupling agent or the like. A pre-treated substrate having a hydroxyl group capable of reacting with the oligomer is preferred.

【0012】これら基材に処理されるシリコーンオリゴ
マは、予め3次元縮合反応しており基材表面の水酸基と
反応する官能基及び樹脂と反応する有機官能基を各々1
個以上有していればその分子量や骨格等に特に制限はな
いが、重合体の中でシロキサン単位の重合度が2〜70
程度が好ましい。この重合度は、GPC(ゲルパーミエ
ーションクロマトグラフ)により数平均分子量或いは重
量平均分子量から換算して得られる。重合度が低いとプ
リプレグ作製の乾燥時等に揮発しやすく、70を越える
と耐熱性が低下してくる。2官能性、3官能性、4官能
性シロキサン単位のR2Si02/2、RSi03/2、Si
4/2は、それぞれ次のような構造を意味する。
The silicone oligomer to be treated on the substrate has been subjected to a three-dimensional condensation reaction in advance, and has a functional group that reacts with a hydroxyl group on the surface of the substrate and an organic functional group that reacts with the resin.
There are no particular restrictions on the molecular weight, skeleton, etc., as long as it has at least one siloxane unit, but the degree of polymerization of the siloxane unit is 2 to 70 in the polymer.
The degree is preferred. This degree of polymerization is obtained by conversion from a number average molecular weight or a weight average molecular weight by GPC (gel permeation chromatography). If the degree of polymerization is low, it tends to volatilize during drying of prepreg production, etc., and if it exceeds 70, the heat resistance decreases. Bifunctional, trifunctional, tetrafunctional siloxane units of R 2 Si02 / 2 , RSi03 / 2 , Si
04/2 means the following structures, respectively.

【0013】 [0013]

【0014】ここで、Rは同じか又は別な有機基であ
り、具体的にメチル基、エチル基、フェニル基、ビニル
基、エポキシ基、メルカプト基、アクリル基、アミノ
基、アミノ基含有塩酸塩、アミノ基含有無機酸塩等を例
示することができる。有機基としては、1個以上樹脂と
反応する有機官能基を含んでいることが好ましく、エポ
キシ基やアミノ基及びアミノ基含有塩酸塩等が一般的で
ある。基材表面の水酸基と反応する官能基は特に制限は
ないが、アルコキシル基やシラノール基等が一般的であ
り好ましい。また、シリコーンオリゴマは分子内に2官
能性や3官能性あるいは4官能性シロキサン単位を1種
類以上含有していることが好ましく、更には4官能性シ
ロキサン単位がシリコーンオリゴマ全体の5mol%以
上であるとより好ましい。シリコーンオリゴマは、予め
3次元縮合反応しているものであるが、配合前にゲル状
態とならない程度に反応させたものを用いる。このため
には、反応温度、反応時間、オリゴマ組成比、触媒の種
類や量を変えて調整する。触媒としては、酢酸、塩酸、
マレイン酸、リン酸等の酸性溶液で合成することが好ま
しい。
Here, R is the same or another organic group, specifically, methyl group, ethyl group, phenyl group, vinyl group, epoxy group, mercapto group, acrylic group, amino group, amino group-containing hydrochloride. And amino group-containing inorganic acid salts. The organic group preferably contains one or more organic functional groups that react with the resin, and an epoxy group, an amino group, and an amino group-containing hydrochloride are generally used. The functional group that reacts with the hydroxyl group on the substrate surface is not particularly limited, but an alkoxyl group or a silanol group is generally preferable. Further, the silicone oligomer preferably contains at least one kind of bifunctional, trifunctional or tetrafunctional siloxane unit in the molecule, and the tetrafunctional siloxane unit accounts for 5 mol% or more of the entire silicone oligomer. And more preferred. The silicone oligomer has been subjected to a three-dimensional condensation reaction in advance, but the one that has been reacted to such an extent that it does not become a gel before blending is used. For this purpose, the reaction temperature, the reaction time, the oligomer composition ratio, and the type and amount of the catalyst are changed and adjusted. Acetic acid, hydrochloric acid,
It is preferable to synthesize with an acidic solution such as maleic acid or phosphoric acid.

【0015】シリコーンオリゴマの処理液や処理条件等
の基材への処理方法は特に制限されないが、基材に対す
る付着量は0.01重量%〜5重量%の範囲が好まし
い。0.01重量%以下では界面接着性向上の効果は得
にくく、5重量%以上では耐熱性等が低下する。また、
基材に処理する際の処理液は、シリコーンオリゴマに加
えて各種溶剤や各種カップリング剤等を含めた添加剤を
配合してもよい。カップリング剤としてはシラン系カッ
プリング剤やチタネート系カップリング剤等があり、シ
ランカップリング剤としては、一般にエポキシシラン
系、アミノシラン系、カチオニックシラン系、ビニルシ
ラン系、アクリルシラン系、メルカプトシラン系及びこ
れらの複合系等が任意の付着量で多々用いられる。更
に、上記処理液で処理した基材の表面にカップリング剤
を処理してもよく、その際のカップリング剤の種類や処
理条件は特に限定しないが、カップリング剤の付着量は
5重量%以下が好ましい。
There is no particular limitation on the method of treating the silicone oligomer with respect to the substrate such as the treatment solution and the treatment conditions, but the amount of adhesion to the substrate is preferably in the range of 0.01% by weight to 5% by weight. When the content is 0.01% by weight or less, the effect of improving the interfacial adhesion is difficult to obtain, and when the content is 5% by weight or more, heat resistance and the like deteriorate. Also,
The treatment liquid for treating the base material may contain additives including various solvents and various coupling agents in addition to the silicone oligomer. Coupling agents include silane-based coupling agents and titanate-based coupling agents, and generally, epoxy silane-based, aminosilane-based, cationic silane-based, vinylsilane-based, acrylic silane-based, and mercaptosilane-based silane coupling agents. And their composite systems are often used in an arbitrary amount. Further, a coupling agent may be treated on the surface of the substrate treated with the treatment liquid. The type of the coupling agent and the treatment conditions are not particularly limited, but the amount of the coupling agent attached is 5% by weight. The following is preferred.

【0016】本発明で用いるプリプレグ用の樹脂は特に
限定されず、例えばエポキシ樹脂系、ポリイミド樹脂
系、トリアジン樹脂系、フェノール樹脂系、メラミン樹
脂系、ポリエステル樹脂系、これら樹脂の変性系等が用
いられる。また、これらの樹脂は2種類以上を併用して
もよく、必要に応じて各種溶剤溶液としてもかまわな
い。溶剤としては、アルコール系、工ーテル系、ケトン
系、アミド系、芳香族炭化水素系、エステル系、ニトリ
ル系等どのようなものでもよく、数種類を併用した混合
溶剤を用いることもできる。
The resin for the prepreg used in the present invention is not particularly limited, and examples thereof include epoxy resin, polyimide resin, triazine resin, phenol resin, melamine resin, polyester resin, and modified resins of these resins. Can be Further, these resins may be used in combination of two or more kinds, and may be various solvent solutions as needed. As the solvent, any solvent such as an alcohol, a polyester, a ketone, an amide, an aromatic hydrocarbon, an ester, and a nitrile may be used, and a mixed solvent of several kinds may be used.

【0017】硬化剤としては、従来公知の種々のものを
使用することができ、例えば樹脂としてエポキシ樹脂を
用いる場合には、ジシアンジアミド、ジアミノジフェニ
ルメタン、ジアミノジフェニルスルフォン、無水フタル
酸、無水ピロメリット酸、フェノールノボラックやクレ
ゾールノボラック等の多官能性フェノール等をあげるこ
とができる。しばしば、樹脂と硬化剤との反応等を促進
させる目的で促進剤が用いられる。促進剤の種類や配合
量は特に限定するものではなく、例えばイミダゾール系
化合物、有機リン系化合物、第3級アミン、第4級アン
モニウム塩等が用いられ、2種類以上を併用してもよ
い。
As the curing agent, various conventionally known curing agents can be used. For example, when an epoxy resin is used as the resin, dicyandiamide, diaminodiphenylmethane, diaminodiphenylsulfone, phthalic anhydride, pyromellitic anhydride, Examples include polyfunctional phenols such as phenol novolak and cresol novolak. Often, accelerators are used to accelerate the reaction between the resin and the curing agent. The type and amount of the accelerator are not particularly limited. For example, an imidazole compound, an organic phosphorus compound, a tertiary amine, a quaternary ammonium salt, or the like is used, and two or more kinds may be used in combination.

【0018】本発明で用いるプリプレグの塗工条件は特
に制約はないが、溶剤溶液を用いる場合には、溶剤が揮
発可能な温度以上での乾燥が好ましい。
The conditions for coating the prepreg used in the present invention are not particularly limited, but when a solvent solution is used, drying at a temperature at which the solvent can be volatilized or higher is preferable.

【0019】以上で述べた本発明によれば、基材に基材
表面の水酸基と反応する官能基及び樹脂と反応する有機
官能基を各々1個以上有する予め3次元縮合反応したシ
リコーンオリゴマで処理しているため、積層板や多層印
刷配線板にした場合に、従来のシランカップリング剤等
による薄くてリジッドな処理剤層に対してシリコーンオ
リゴマが基材と樹脂の界面でクッション的な役割をはた
し、界面に発生する歪みを緩和させ、樹脂が本来有して
いる優れた接着性を引き出すことができる。
According to the present invention described above, the substrate is treated with a three-dimensionally condensation-reacted silicone oligomer having at least one functional group that reacts with a hydroxyl group on the surface of the substrate and one or more organic functional groups that react with the resin. Therefore, when a laminated board or multilayer printed wiring board is used, the silicone oligomer has a cushion-like role at the interface between the base material and the resin with respect to the thin and rigid processing agent layer using the conventional silane coupling agent. However, the strain generated at the interface can be reduced, and the excellent adhesiveness inherent to the resin can be brought out.

【0020】[0020]

【実施例】以下、本発明の実施例について具体的に説明
する。
Embodiments of the present invention will be specifically described below.

【0021】(実施例1)撹拌装置、コンデンサ及び温
度計を備えたガラスフラスコに、テトラメトキシシラン
を40g、ジメトキシジメチルシランを14g、メタノ
ールを126g配合した溶液に、酢酸を0.5g、蒸留
水を22g配合して50℃で1時間撹拌した後、アリル
グリシジルエーテルを15gと塩化白金酸塩(2重量%
イソプロピルアルコール溶液)を0.04g添加し、更
に7時間撹拌してエポキシ変性のシリコーンオリゴマを
合成した。得られたシリコーンオリゴマのシロキサン単
位の重合度は13であった(GPCによる数平均分子量
から換算、以下同じ)。このシリコーンオリゴマ溶液に
メタノールを加えて、固形分1重量%の処理液を作製し
た。
(Example 1) A solution prepared by mixing 40 g of tetramethoxysilane, 14 g of dimethoxydimethylsilane and 126 g of methanol in a glass flask equipped with a stirrer, a condenser and a thermometer was mixed with 0.5 g of acetic acid and distilled water. After stirring at 50 ° C. for 1 hour, 15 g of allyl glycidyl ether was added to chloroplatinate (2% by weight).
(Isopropyl alcohol solution) was added, and the mixture was further stirred for 7 hours to synthesize an epoxy-modified silicone oligomer. The polymerization degree of the siloxane unit of the obtained silicone oligomer was 13 (converted from the number average molecular weight by GPC, the same applies hereinafter). Methanol was added to this silicone oligomer solution to prepare a treatment liquid having a solid content of 1% by weight.

【0022】(実施例2)実施例1と同様に、トリメト
キシメチルシランを40g、ジメトキシジメチルシラン
を15.6g、メタノールを130g配合した溶液に、
酢酸を0.5g、蒸留水を13.2g配合して50℃で
1時間撹拌した後、アリルグリシジルエーテルを17g
と塩化白金酸塩(2重量%イソプロピルアルコール溶
液)を0.04g添加し、更に7時間撹拌してエポキシ
変性のシリコーンオリゴマを合成した。得られたシリコ
ーンオリゴマのシロキサン単位の重合度は11であっ
た。このシリコーンオリゴマ溶液にメタノールを加え
て、固形分1重量%の処理液を作製した。
Example 2 In the same manner as in Example 1, a solution containing 40 g of trimethoxymethylsilane, 15.6 g of dimethoxydimethylsilane, and 130 g of methanol was prepared.
After 0.5 g of acetic acid and 13.2 g of distilled water were mixed and stirred at 50 ° C. for 1 hour, 17 g of allyl glycidyl ether was added.
And 0.04 g of chloroplatinate (2% by weight isopropyl alcohol solution) were added, and the mixture was further stirred for 7 hours to synthesize an epoxy-modified silicone oligomer. The degree of polymerization of the siloxane unit of the obtained silicone oligomer was 11. Methanol was added to this silicone oligomer solution to prepare a treatment liquid having a solid content of 1% by weight.

【0023】(実施例3)実施例1と同様に、ジメトキ
シジメチルシランを32g、テトラメトキシシランを8
g、ジメトキシメチルシランを17g、メタノールを9
8g配合した溶液に、酢酸を0.5g、蒸留水を16.
2g配合して50℃で1時間撹拌した後、アリルグリシ
ジルエーテルを18.2gと塩化白金酸塩(2重量%イ
ソプロピルアルコール溶液)を0.04g添加し、更に
7時間撹拌してエポキシ変性のシリコーンオリゴマを合
成した。得られたシリコーンオリゴマのシロキサン単位
の重合度は18であった。このシリコーンオリゴマ溶液
にメタノールを加えて、固形分1重量%の処理液を作製
した。
Example 3 As in Example 1, 32 g of dimethoxydimethylsilane and 8 g of tetramethoxysilane were used.
g, 17 g of dimethoxymethylsilane and 9 g of methanol
To a solution prepared by mixing 8 g, 0.5 g of acetic acid and 16.
After mixing 2 g and stirring at 50 ° C. for 1 hour, 18.2 g of allyl glycidyl ether and 0.04 g of chloroplatinate (2% by weight isopropyl alcohol solution) were added, and the mixture was further stirred for 7 hours to obtain an epoxy-modified silicone. Oligomers were synthesized. The polymerization degree of the siloxane unit of the obtained silicone oligomer was 18. Methanol was added to this silicone oligomer solution to prepare a treatment liquid having a solid content of 1% by weight.

【0024】(実施例4)実施例1と同様に、ジメトキ
シジメチルシランを9g、テトラメトキシシランを20
g、ジメトキシメチルシランを11g、メタノールを9
3g配合した溶液に、酢酸を0.5g、蒸留水を14g
配合して50℃で1時間撹拌した後、アリルグリシジル
エーテルを11.8gと塩化白金酸塩(2重量%イソプ
ロピルアルコール溶液)を0.03g添加し、更に7時
間撹拌してエポキシ変性のシリコーンオリゴマを合成し
た。得られたシリコーンオリゴマのシロキサン単位の重
合度は20であった。このシリコーンオリゴマ溶液にメ
タノールを加えて、固形分1重量%の処理液を作製し
た。
(Example 4) As in Example 1, 9 g of dimethoxydimethylsilane and 20 g of tetramethoxysilane were used.
g, dimethoxymethylsilane 11 g, methanol 9
0.5 g acetic acid and 14 g distilled water
After mixing and stirring at 50 ° C. for 1 hour, 11.8 g of allyl glycidyl ether and 0.03 g of chloroplatinate (2% by weight isopropyl alcohol solution) were added, and the mixture was further stirred for 7 hours to obtain an epoxy-modified silicone oligomer. Was synthesized. The degree of polymerization of the siloxane unit of the obtained silicone oligomer was 20. Methanol was added to this silicone oligomer solution to prepare a treatment liquid having a solid content of 1% by weight.

【0025】(実施例5)実施例1と同様に、トリメト
キシメチルシランを9g、テトラメトキシシランを20
g、ジメトキシメチルシランを11g、メタノールを9
2g配合した溶液に、酢酸を0.5g、蒸留水を13.
2g配合して50℃で1時間撹拌した後、アリルグリシ
ジルエーテルを11.2gと塩化白金酸塩(2重量%イ
ソプロピルアルコール溶液)を0.03g添加し、更に
7時間撹拌してエポキシ変性のシリコーンオリゴマを合
成した。得られたシリコーンオリゴマのシロキサン単位
の重合度は16であった。このシリコーンオリゴマ溶液
にメタノールを加えて、固形分1重量%の処理液を作製
した。
Example 5 As in Example 1, 9 g of trimethoxymethylsilane and 20 g of tetramethoxysilane were used.
g, dimethoxymethylsilane 11 g, methanol 9
0.5 g of acetic acid and 13 parts of distilled water were added to the solution containing 2 g of the mixture.
After mixing 2 g and stirring at 50 ° C. for 1 hour, 11.2 g of allyl glycidyl ether and 0.03 g of chloroplatinate (2% by weight isopropyl alcohol solution) were added, and the mixture was further stirred for 7 hours to obtain an epoxy-modified silicone. Oligomers were synthesized. The polymerization degree of the siloxane unit of the obtained silicone oligomer was 16. Methanol was added to this silicone oligomer solution to prepare a treatment liquid having a solid content of 1% by weight.

【0026】(実施例6)実施例1と同様に、ジメトキ
シジメチルシランを9g、テトラメトキシシランを20
g、ジメトキシメチルシランを11g、メタノールを9
3g配合した溶液に、酢酸を0.5g、蒸留水を14g
配合して50℃で1時間撹拌した後、アリルアミンを
5.9gと塩化白金酸塩(2重量%イソプロピルアルコ
ール溶液)を0.02g添加し、更に7時間撹拌してア
ミン変性のシリコーンオリゴマを合成した。得られたシ
リコーンオリゴマのシロキサン単位の重合度は18であ
った。このシリコーンオリゴマ溶液にメタノールを加え
て、固形分1重量%の処理液を作製した。
(Example 6) As in Example 1, 9 g of dimethoxydimethylsilane and 20 g of tetramethoxysilane were used.
g, dimethoxymethylsilane 11 g, methanol 9
0.5 g acetic acid and 14 g distilled water
After mixing and stirring at 50 ° C. for 1 hour, 5.9 g of allylamine and 0.02 g of chloroplatinate (2% by weight isopropyl alcohol solution) were added, and the mixture was further stirred for 7 hours to synthesize an amine-modified silicone oligomer. did. The polymerization degree of the siloxane unit of the obtained silicone oligomer was 18. Methanol was added to this silicone oligomer solution to prepare a treatment liquid having a solid content of 1% by weight.

【0027】(実施例7)実施例1と同様に、ジメトキ
シジメチルシランを9g、テトラメトキシシランを20
g、ジメトキシメチルシランを11g、メタノールを9
3g配合した溶液に、酢酸を0.5g、蒸留水を14g
配合して50℃で1時間撹拌した後、塩酸アリルアミン
を9.7gと塩化白金酸塩(2重量%イソプロピルアル
コール溶液)を0.03g添加し、更に7時間撹拌して
カチオニック変性のシリコーンオリゴマを合成した。得
られたシリコーンオリゴマのシロキサン単位の重合度は
17であった。このシリコーンオリゴマ溶液にメタノー
ルを加えて、固形分1重量%の処理液を作製した。
Example 7 As in Example 1, 9 g of dimethoxydimethylsilane and 20 g of tetramethoxysilane were used.
g, dimethoxymethylsilane 11 g, methanol 9
0.5 g acetic acid and 14 g distilled water
After mixing and stirring at 50 ° C. for 1 hour, 9.7 g of allylamine hydrochloride and 0.03 g of chloroplatinate (2% by weight isopropyl alcohol solution) were added, and the mixture was further stirred for 7 hours to obtain a cationically modified silicone oligomer. Synthesized. The polymerization degree of the siloxane unit of the obtained silicone oligomer was 17. Methanol was added to this silicone oligomer solution to prepare a treatment liquid having a solid content of 1% by weight.

【0028】(実施例8)実施例4で得られたシリコー
ンオリゴマ溶液に、シランカップリング剤としてγ−グ
リシドキシプロピルトリメトキシシラン(商品名:A−
187、日本ユニカー株式会社製)20gを加え、さら
にメタノールを加えて、固形分1重量%の処理液を作製
した。
Example 8 γ-glycidoxypropyltrimethoxysilane (trade name: A-) was added to the silicone oligomer solution obtained in Example 4 as a silane coupling agent.
187, manufactured by Nippon Unicar Co., Ltd.), and methanol was further added to prepare a treatment liquid having a solid content of 1% by weight.

【0029】(実施例9)実施例4で得られたシリコー
ンオリゴマ溶液に、シランカップリング剤としてN−β
−(N−ビニルベンジルアミノエチル)−γ−アミノプ
ロピルトリメトキシシラン・塩酸塩(商品名:SZ−6
032、東レ・ダウコーニング・シリコーン株式会社
製)20gを加え、さらにメタノールを加えて、固形分
1重量%の処理液を作製した。
Example 9 N-β was added to the silicone oligomer solution obtained in Example 4 as a silane coupling agent.
-(N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride (trade name: SZ-6)
032, manufactured by Dow Corning Toray Silicone Co., Ltd.), and methanol was further added to prepare a treatment liquid having a solid content of 1% by weight.

【0030】次に、実施例1〜9で作製した処理液に、
ガラス繊維基材として熱処理脱脂した厚さ0.2mmの
ガラス布を浸漬後、120℃で加熱乾燥してシリコーン
オリゴマを表面に付着させたガラス布を得た。シリコー
ンオリゴマの付着量は0.07〜0.12重量%であっ
た。
Next, the processing solutions prepared in Examples 1 to 9
A glass cloth having a thickness of 0.2 mm, which had been heat-treated and degreased, was immersed as a glass fiber base material, and then dried by heating at 120 ° C. to obtain a glass cloth having a silicone oligomer adhered to the surface. The adhesion amount of the silicone oligomer was 0.07 to 0.12% by weight.

【0031】(実施例10)実施例4で処理したガラス
布に、シランカップリング剤としてγ−グリシドキシプ
ロピルトリメトキシシラン(商品名:A−187、日本
ユニカー株式会社製)を固形分で0.5重量%、酢酸を
0.5重量%含有する水溶液で更に処理し、120℃で
加熱乾燥したガラス布を得た。シランカプリング剤の付
着量は0.04重量%であった。
(Example 10) On the glass cloth treated in Example 4, γ-glycidoxypropyltrimethoxysilane (trade name: A-187, manufactured by Nippon Unicar Co., Ltd.) was used as a silane coupling agent in solid content. The glass cloth was further treated with an aqueous solution containing 0.5% by weight and 0.5% by weight of acetic acid, and dried by heating at 120 ° C. The attached amount of the silane coupling agent was 0.04% by weight.

【0032】(実施例11)実施例4で処理したガラス
布に、シランカップリング剤としてN−β−(N−ビニ
ルベンジルアミノエチル)−γ−アミノプロピルトリメ
トキシシラン・塩酸塩(商品名:SZ−6032、東レ
・ダウコーニング・シリコーン株式会社製)を固形分で
0.5重量%、酢酸を0.5重量%含有する水溶液で更
に処理し、120℃で加熱乾燥したガラス布を得た。シ
ランカップリング剤の付着量は0.05重量%であっ
た。
Example 11 N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride (trade name) was added to the glass cloth treated in Example 4 as a silane coupling agent. SZ-6032, manufactured by Dow Corning Toray Silicone Co., Ltd.) was further treated with an aqueous solution containing 0.5% by weight of solid content and 0.5% by weight of acetic acid to obtain a glass cloth which was heated and dried at 120 ° C. . The attached amount of the silane coupling agent was 0.05% by weight.

【0033】(実施例12)実施例4で作製した処理液
に、ガラス繊維基材としてγ−グリシドキシプロピルト
リメトキシシラン(商品名:A−187、日本ユニカー
株式会社製)が0.1重量%付着した厚さ0.2mmの
ガラス布を浸漬後、120℃で加熱乾燥してシリコーン
オリゴマを表面に付着させたガラス布を得た。シリコー
ンオリゴマの付着量は0.05重量%であった。
Example 12 In the treatment solution prepared in Example 4, 0.1% of γ-glycidoxypropyltrimethoxysilane (trade name: A-187, manufactured by Nippon Unicar Co., Ltd.) was used as a glass fiber base material. After immersing the glass cloth having a thickness of 0.2 mm to which weight% was adhered, it was dried by heating at 120 ° C. to obtain a glass cloth having a silicone oligomer adhered to the surface. The adhesion amount of the silicone oligomer was 0.05% by weight.

【0034】(実施例13)実施例4で作製した処理液
に、ガラス繊維基材としてN−β−(N−ビニルベンジ
ルアミノエチル)−γ−アミノプロピルトリメトキシシ
ラン・塩酸塩(商品名:SZ一6032、東レ・ダウコ
ーニング・シリコーン株式会社製)が0.1重量%付着
した厚さ0.2mmのガラス布を浸漬後、120℃で加
熱乾燥してシリコーンオリゴマを表面に付着させたガラ
ス布を得た。シリコーンオリゴマの付着量は0.04重
量%であった。
Example 13 N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane.hydrochloride (trade name) was added to the treatment solution prepared in Example 4 as a glass fiber base material. SZ-16032, manufactured by Dow Corning Toray Silicone Co., Ltd.) was immersed in a glass cloth having a thickness of 0.2 mm to which 0.1% by weight was adhered, and then heated and dried at 120 ° C. to adhere a silicone oligomer to the surface. Got the cloth. The adhesion amount of the silicone oligomer was 0.04% by weight.

【0035】(比較例1)ガラス繊維基材として、実施
例12で使用したγ−グリシドキシプロピルトリメトキ
シシラン(商品名:A−187、日本ユニカー株式会社
製)が0.1重量%付着した厚さ0.2mmのガラス布
を用いた。
(Comparative Example 1) As a glass fiber substrate, 0.1% by weight of γ-glycidoxypropyltrimethoxysilane (trade name: A-187, manufactured by Nippon Unicar Co., Ltd.) used in Example 12 was adhered. A 0.2 mm thick glass cloth was used.

【0036】(比較例2)ガラス繊維基材として、実施
例13で使用したN−β−(N−ビニルベンジルアミノ
エチル)−γ−アミノプロピルトリメトキシシラン・塩
酸塩(商品名:SZ−6032、東レ・ダウコーニング
・シリコーン株式会社製)が0.1重量%付着した厚さ
0.2mmのガラス布を用いた。
Comparative Example 2 N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride (trade name: SZ-6032) used in Example 13 as a glass fiber base material Toray Dow Corning Silicone Co., Ltd.) having a thickness of 0.2 mm was used.

【0037】(比較例3)シリコーンオリゴマ処理液の
かわりに、エポキシ変性シリコーンオイル(商品名:K
F101、信越化学工業株式会社製)を固形分で1.0
重量%含有する溶液を作製し、この処理液にガラス繊維
基材として熱処理脱脂した厚さ0.2mmのガラス布を
浸漬後、120℃で加熱乾燥してシリコーンオイルを表
面に付着させたガラス布を得た。シリコーンオイルの付
着量は0.12重量%であった。
(Comparative Example 3) Instead of the silicone oligomer treatment liquid, an epoxy-modified silicone oil (trade name: K
F101, manufactured by Shin-Etsu Chemical Co., Ltd.)
A 0.2% by weight heat-degreased glass cloth as a glass fiber substrate is immersed in a solution containing the same by weight as a glass fiber substrate, and then heated and dried at 120 ° C. to attach a silicone oil to the surface of the glass cloth. I got The attached amount of silicone oil was 0.12% by weight.

【0038】実施例1〜13、比較例1〜3で得られた
ガラス布に以下に示すエポキシ樹脂ワニスを含浸後、1
40℃で5〜10分加熱乾燥して樹脂分41重量%のプ
リプレグを得た。このプリプレグ4枚を重ね、その両側
に厚みが35μmの銅箔を重ね、170℃、90分、
4.0MPaのプレス条件で両面銅張積層板を作製した 。 臭素化ビスフェノールA型エポキシ樹脂 100重量部 (エポキシ当量:530) ジシアンジアミド 4重量部 2−エチル−4−メチルイミダゾール 0.5重量部 上記化合物をメチルエチルケトン及びエチレングリコー
ルモノメチルエーテル(50:50重量%)に溶解し、
不揮発分70重量%のワニスを作製した。
After impregnating the glass cloths obtained in Examples 1 to 13 and Comparative Examples 1 to 3 with the following epoxy resin varnish,
The resultant was dried by heating at 40 ° C. for 5 to 10 minutes to obtain a prepreg having a resin content of 41% by weight. Four prepregs are stacked, and copper foil having a thickness of 35 μm is stacked on both sides thereof at 170 ° C. for 90 minutes.
A double-sided copper-clad laminate was produced under a pressing condition of 4.0 MPa. 100 parts by weight of brominated bisphenol A epoxy resin (epoxy equivalent: 530) 4 parts by weight of dicyandiamide 0.5 part by weight of 2-ethyl-4-methylimidazole 0.5 parts by weight of the above compound was added to methyl ethyl ketone and ethylene glycol monomethyl ether (50: 50% by weight). Dissolve,
A varnish having a nonvolatile content of 70% by weight was produced.

【0039】得られた両面銅張積層板について、ドリル
加工性、吸水率、はんだ耐熱性及び絶縁抵抗を評価し
た。その結果を表1に示す。
The resulting double-sided copper-clad laminate was evaluated for drill workability, water absorption, solder heat resistance and insulation resistance. Table 1 shows the results.

【0040】[0040]

【表1】 [Table 1]

【0041】試験方法は以下の通りである。 ドリル加工性:Φ0.4mmのドリルを用いて、回転
数:80,000rpm、送り速度:3,200mm/
minで穴あけを行い、基材と樹脂界面の剥離等による
穴壁クラックを評価した。穴壁クラックは、穴あけした
試験片をレッドチェック液で1時間煮沸後、顕微鏡によ
る表面観察より穴面積に対する穴回りに染み込んだ面積
の割合を画像処理装置で測定した(20穴の平均)。単
位:% 吸水率:常態及びプレッシャークッカーテスター中に2
時間保持した後の重量差より算出した。単位:重量% はんだ耐熱性:プレッシャークッカーテスター中に2時
間保持した後、260℃のはんだに20秒間浸潰して、
外観を目視で調べた。表中OKは、ミーズリング、ふく
れがないことを意味する。 耐電食性:ドリル加工性で評価した穴壁間隔300μm
のスルーホールを使用し、85℃/85%RH、100
V印加での導通破壊までの時間を測定した。また、導通
破壊は全てスルーホール間のCAF(Conductive Anodi
c Filaments)であることを確認した。
The test method is as follows. Drill workability: Using a drill of φ0.4 mm, rotation speed: 80,000 rpm, feed rate: 3,200 mm /
Mining was performed, and a hole wall crack due to peeling of the interface between the base material and the resin was evaluated. The hole wall cracks were obtained by boiling a drilled test piece with a red check solution for 1 hour, and then measuring the ratio of the area permeated around the hole to the hole area by an image processing device based on surface observation with a microscope (average of 20 holes). Unit:% Water absorption: 2 in normal and pressure cooker testers
It was calculated from the weight difference after holding for a time. Unit:% by weight Solder heat resistance: After being held in a pressure cooker tester for 2 hours, immersed in solder at 260 ° C. for 20 seconds,
The appearance was visually inspected. “OK” in the table means that there is no measling or blistering. Electrolytic corrosion resistance: 300 μm between hole walls evaluated by drilling workability
85 ° C / 85% RH, 100
The time until conduction breakdown when V was applied was measured. In addition, all conduction breakdowns are caused by CAF (Conductive Anodi
c Filaments).

【0042】以上の結果から、実施例1〜13は、従来
行われていた比較例1、2に較べ、従来技術と同様はん
だ耐熱性等の低下がなく良好であり、熱衝撃にも強く、
またドリル加工時の内壁クラックが顕著に小さく、ドリ
ル加工時の衝撃を緩和するのに優れている。吸湿率は、
ほぼ同等であるが、耐電食性が著しく向上し優れている
ことが分かる。
From the above results, Examples 1 to 13 are excellent as compared with Comparative Examples 1 and 2, which have been conventionally performed, without deterioration in solder heat resistance and the like, and are resistant to thermal shock.
Also, the inner wall cracks during drilling are remarkably small, and are excellent in reducing the impact during drilling. The moisture absorption rate is
Although almost the same, it can be seen that the electrolytic corrosion resistance is significantly improved and excellent.

【0043】[0043]

【発明の効果】本発明の印刷配線板用プリプレグは積層
板とした場合に、これまでの積層板が有する特性を下げ
ることなく、ドリル加工性や耐電食性等の絶縁特性を向
上させることができる。
According to the prepreg for a printed wiring board of the present invention, when it is used as a laminated board, the insulating properties such as drilling workability and electric corrosion resistance can be improved without lowering the properties of the conventional laminated board. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 基材表面にシランカップリング剤を処理した
ときの理想状態を示す基材断面のモデル。
FIG. 1 is a model of a cross section of a substrate showing an ideal state when a silane coupling agent is treated on the surface of the substrate.

【図2】 基材表面にシランカップリング剤を処理した
ときの実際の状態を示す基材断面のモデル。
FIG. 2 is a model of a cross section of a substrate showing an actual state when a silane coupling agent is treated on the surface of the substrate.

【図3】 基材表面を長鎖ポリシロキサンで処理したと
きの基材断面モデル。
FIG. 3 is a cross-sectional model of a substrate when the substrate surface is treated with a long-chain polysiloxane.

【図4】 本発明のシリコーンオリゴマーで処理したと
きのモデル。
FIG. 4 is a model when treated with the silicone oligomer of the present invention.

【符号の説明】[Explanation of symbols]

1:化学的に吸着されたシリコーン鎖(基材との化学的
結合があり) 2:物理的に吸着されたシリコーン鎖(基材との化学的
結合がない) 3:樹脂 4:シリコーン鎖内の結合による環状鎖
1: chemically adsorbed silicone chain (having a chemical bond with the substrate) 2: physically adsorbed silicone chain (having no chemical bond with the substrate) 3: resin 4: inside the silicone chain Chain by bonding

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 1/03 610 H05K 1/03 610T // D06M 15/643 D06M 15/643 (72)発明者 尾瀬 昌久 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館工場内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI H05K 1/03 610 H05K 1/03 610T // D06M 15/643 D06M 15/643 (72) Inventor Masahisa Oze Shimodate, Ibaraki 1500 Ogawa Inside the Shimodate Plant of Hitachi Chemical Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】基材に樹脂またはワニスを含浸あるいは含
浸後乾燥させて得られるプリプレグにおいて、基材表面
の水酸基と反応する官能基及び樹脂と反応する有機官能
基を各々1個以上有する予め3次元縮合反応させたシリ
コーンオリゴマで処理した基材を用いることを特徴とす
る印刷配線板用プリプレグの製造方法。
1. A prepreg obtained by impregnating a base material with a resin or varnish or drying after impregnation, wherein a prepreg having at least one functional group reacting with a hydroxyl group on the surface of the base material and one or more organic functional groups reacting with the resin are provided. A method for producing a prepreg for a printed wiring board, comprising using a substrate treated with a silicone oligomer subjected to a three-dimensional condensation reaction.
【請求項2】シリコーンオリゴマが分子内に3官能性
(RSi03/2)または4官能性(Si04/2)シロキサ
ン単位を1種類以上含有する請求項1に記載の印刷配線
板用プリプレグの製造方法(式中、R基は同じか又は別
異な有機基である。)。
2. The prepreg for a printed wiring board according to claim 1, wherein the silicone oligomer contains at least one kind of trifunctional (RSo3 / 2 ) or tetrafunctional (Si04 / 2 ) siloxane unit in the molecule. Production method (wherein, R groups are the same or different organic groups).
【請求項3】シリコーンオリゴマが分子内に含有するシ
ロキサン単位として2官能性(R2Si02/2)と4官能
性(Si04/2)からなる請求項1に記載の印刷配線板
用プリプレグの製造方法(式中、R基は同じか又は別異
な有機基である。)。
3. The prepreg for a printed wiring board according to claim 1, wherein the silicone oligomer has bifunctional (R 2 Si02 / 2 ) and tetrafunctional (Si04 / 2 ) as siloxane units contained in the molecule. Wherein R groups are the same or different organic groups.
【請求項4】シリコーンオリゴマが分子内に含有するシ
ロキサン単位として3官能性(RSi03/2)と4官能
性(Si04/2)からなる請求項1に記載の印刷配線板
用プリプレグの製造方法(式中、R基は同じか又は別異
な有機基である。)。
4. The manufacture of the silicone oligomer is a trifunctional a siloxane unit containing in the molecule (RSi0 3/2) and tetrafunctional (Si0 4/2) for printed wiring board prepreg according to claim 1 consisting of A method wherein the R groups are the same or different organic groups.
【請求項5】シリコーンオリゴマが分子内に含有するシ
ロキサン単位として2官能性(R2Si02/2)と3官能
性(RSi03/2)からなる請求項1に記載の印刷配線
板用プリプレグの製造方法(式中、R基は同じか又は別
異な有機基である。)。
5. The prepreg for a printed wiring board according to claim 1, wherein the silicone oligomer comprises difunctional (R 2 SiO 2/2 ) and trifunctional (RSiO 3/2 ) siloxane units in the molecule. Wherein R groups are the same or different organic groups.
【請求項6】シリコーンオリゴマが分子内に含有するシ
ロキサン単位として2官能性(R2Si02/2)と3官能
性(RSi03/2)及び4官能性(Si04/2)からなる
請求項1に記載の印刷配線板用プリプレグの製造方法
(式中、R基は同じか又は別異な有機基である。)。
6. The silicone oligomer according to claim 1, wherein the siloxane units contained in the molecule are difunctional (R 2 SiO 2/2 ), trifunctional (RSiO 3/2 ), and tetrafunctional (Si04 / 2 ). Item 1. The method for producing a prepreg for a printed wiring board according to Item 1, wherein the R groups are the same or different organic groups.
【請求項7】シリコーンオリゴマが分子内に含有する4
官能性(Si04/2)シロキサン単位が全体の5mol
%以上である請求項3、4、6のいずれかに記載の印刷
配線板用プリプレグの製造方法(式中、R基は同じか又
は別異な有機基である。)。
7. The method according to claim 4, wherein the silicone oligomer contains 4
5 mol of functional (Si04 / 2 ) siloxane units in total
The method for producing a prepreg for a printed wiring board according to any one of claims 3, 4 and 6, wherein the R groups are the same or different organic groups.
【請求項8】シリコーンオリゴマで処理する際に、カッ
プリング剤を併用することを特徴とする請求項1ないし
請求項7のいずれかに記載の印刷配線板用プリプレグの
製造方法。
8. The method for producing a prepreg for a printed wiring board according to claim 1, wherein a coupling agent is used in combination with the treatment with the silicone oligomer.
【請求項9】シリコーンオリゴマで処理した後、カップ
リング剤で処理することを特徴とする請求項1ないし請
求項7のいずれかに記載の印刷配線板用プリプレグの製
造方法。
9. The method for producing a prepreg for a printed wiring board according to claim 1, wherein the prepreg is treated with a coupling agent after being treated with a silicone oligomer.
【請求項10】シリコーンオリゴマが有する有機官能基
がエポキシ基であることを特徴とする請求項1ないし請
求項9のいずれかに記載の印刷配線板用プリプレグの製
造方法。
10. The method for producing a prepreg for a printed wiring board according to claim 1, wherein the organic functional group of the silicone oligomer is an epoxy group.
【請求項11】シリコーンオリゴマが有する有機官能基
がアミノ基であることを特徴とする請求項1ないし請求
項9のいずれかに記載の印刷配線板用プリプレグの製造
方法。
11. The method for producing a prepreg for a printed wiring board according to claim 1, wherein the organic functional group of the silicone oligomer is an amino group.
【請求項12】シリコーンオリゴマが有する有機官能基
がアミノ基含有有機酸塩または無機酸塩であることを特
徴とする請求項1ないし請求項9のいずれかに記載の印
刷配線板用プリプレグの製造方法。
12. The production of a prepreg for a printed wiring board according to claim 1, wherein the organic functional group of the silicone oligomer is an amino group-containing organic acid salt or an inorganic acid salt. Method.
JP27063796A 1996-10-14 1996-10-14 Method for producing prepreg for printed wiring board Expired - Lifetime JP3731264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27063796A JP3731264B2 (en) 1996-10-14 1996-10-14 Method for producing prepreg for printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27063796A JP3731264B2 (en) 1996-10-14 1996-10-14 Method for producing prepreg for printed wiring board

Publications (2)

Publication Number Publication Date
JPH10121363A true JPH10121363A (en) 1998-05-12
JP3731264B2 JP3731264B2 (en) 2006-01-05

Family

ID=17488871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27063796A Expired - Lifetime JP3731264B2 (en) 1996-10-14 1996-10-14 Method for producing prepreg for printed wiring board

Country Status (1)

Country Link
JP (1) JP3731264B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047416A (en) * 2000-05-25 2002-02-12 Wacker Asahikasei Silicone Co Ltd Silane compound for treating glass fiber
US7166361B2 (en) 2000-03-31 2007-01-23 Hitachi Chemical Co., Ltd. Thermosetting resin composition, resin film, metallic foil provided with an insulation material, insulation film provided with a metallic foil on each side, metal-clad laminate, multi-layered metal-clad laminate and multi-layered printed wiring board
JP2009079222A (en) * 1999-01-04 2009-04-16 Isola Usa Corp Cured resin impregnated substrate and manufacturing method thereof
US9902649B2 (en) 2014-05-02 2018-02-27 Shin-Etsu Chemical Co., Ltd. Method for producing surface-treated glass fiber film and flexible fiber substrate
US10669197B2 (en) 2014-01-14 2020-06-02 Shin-Etsu Chemical Co., Ltd. Surface-modified glass fiber film
JP2021088488A (en) * 2019-12-05 2021-06-10 信越化学工業株式会社 Glass cloth for low dielectric material, prepreg, and printed wiring board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079222A (en) * 1999-01-04 2009-04-16 Isola Usa Corp Cured resin impregnated substrate and manufacturing method thereof
US7166361B2 (en) 2000-03-31 2007-01-23 Hitachi Chemical Co., Ltd. Thermosetting resin composition, resin film, metallic foil provided with an insulation material, insulation film provided with a metallic foil on each side, metal-clad laminate, multi-layered metal-clad laminate and multi-layered printed wiring board
US7736749B2 (en) 2000-03-31 2010-06-15 Hitachi Chemichal Co., Ltd. Thermosetting resin composition, resin film, metallic foil provided with an insulation material, insulation film provided with a metallic foil on each side, metal-clad laminate, multi-layered metal-clad laminate, and multi-layered printed wiring board
JP2002047416A (en) * 2000-05-25 2002-02-12 Wacker Asahikasei Silicone Co Ltd Silane compound for treating glass fiber
US10669197B2 (en) 2014-01-14 2020-06-02 Shin-Etsu Chemical Co., Ltd. Surface-modified glass fiber film
US9902649B2 (en) 2014-05-02 2018-02-27 Shin-Etsu Chemical Co., Ltd. Method for producing surface-treated glass fiber film and flexible fiber substrate
JP2021088488A (en) * 2019-12-05 2021-06-10 信越化学工業株式会社 Glass cloth for low dielectric material, prepreg, and printed wiring board

Also Published As

Publication number Publication date
JP3731264B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
US6696155B1 (en) Prepreg for printed wiring boards, resin varnish, resin composition and laminate for printed wiring boards produced by using these substances
JP5186221B2 (en) Flame retardant resin composition, prepreg, laminate, metal-clad laminate, printed wiring board and multilayer printed wiring board using the same
JP2001151991A (en) Epoxy resin composition, prepreg, and multi-layer printed wiring board
JP2007308640A (en) Resin composition for laminate, organic substrate prepreg, metal foil-clad laminate and printed circuit board
JP2007051267A (en) Resin composition, prepreg using the same, flame-retardant laminate and printed wiring board
JP2002293933A (en) Alkoxy group-containing silane modified polyamic acid resin composition and polyimide-silica hybrid cured material
US6524717B1 (en) Prepreg, metal-clad laminate, and printed circuit board obtained from these
JP4164883B2 (en) Resin composition for printed wiring board, prepreg using the same, and metal-clad laminate
JP4572423B2 (en) Method for producing copper-clad laminate, printed wiring board using the same, and multilayer printed wiring board
JPH10121363A (en) Production of prepreg for printed circuit board
JPH05163373A (en) Production of laminate board
JP2000301534A (en) Prepreg, metal-clad laminated board, and printed wiring board using prepreg and laminated board
JP4245197B2 (en) Manufacturing method of prepreg for printed wiring board and metal-clad laminate using the same
JP2904311B2 (en) Prepreg for printed wiring board, resin varnish, resin composition, and laminated board for printed wiring board manufactured using them
JP4619084B2 (en) Flame retardant resin composition, prepreg, laminate, metal-clad laminate, printed wiring board and multilayer printed wiring board using the same
JP2003012892A (en) Resin composition and flame-retardant laminate board and printed wiring board using the composition
JPH0959346A (en) Epoxy resin composition for laminate
JPH11209456A (en) Flame-retardant epoxy resin composition for printed circuit board, and prepreg and metal-clad laminate prepared therefrom
JP4899280B2 (en) Composite material for wiring board and manufacturing method thereof
JP3089947B2 (en) Manufacturing method of metal foil clad laminate
JPH1171475A (en) Preparation of printed circuit board prepreg and metal clad laminate using the same
WO1992022422A1 (en) Shape retaining flexible electrical circuit
JP2000212309A (en) Prepreg and metal foil-clad laminate
JP2008111188A (en) Copper foil for printed circuit board
JPH05309789A (en) Production of composite copper clad laminated sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term