JPH10121176A - Aluminum alloy plate excellent in flange formability for di can drum and manufacture therefor - Google Patents

Aluminum alloy plate excellent in flange formability for di can drum and manufacture therefor

Info

Publication number
JPH10121176A
JPH10121176A JP27796296A JP27796296A JPH10121176A JP H10121176 A JPH10121176 A JP H10121176A JP 27796296 A JP27796296 A JP 27796296A JP 27796296 A JP27796296 A JP 27796296A JP H10121176 A JPH10121176 A JP H10121176A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
flange formability
alloy plate
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27796296A
Other languages
Japanese (ja)
Inventor
Satoru Shoji
了 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP27796296A priority Critical patent/JPH10121176A/en
Publication of JPH10121176A publication Critical patent/JPH10121176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide aluminum alloy plate for DI can drum capable of maintaining excellent flange formability even when the contents of Si and Zn in the scrap get higher owing to an increased blending rate. SOLUTION: The alloy contains 0.7-1.3wt.% Mg, 0.8-1.3wt.% Mn, 0.3-0.7wt.% Fe, 0.1-0.5wt.% Si, <=0.5wt.% Zn, 0.005-0.1wt.% Ti alone or in combination of 0.0001-0.1wt.% B, and, as necessary, <=0.3wt.% of each of one or two kinds of Cu or Cr, alkali metals as impurities controlled not to exceed 1ppm and the balance Al with other inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フランジ成形性に
優れ、スクラップの配合比率を高めることができるDI
缶胴用アルミニウム合金板およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DI having excellent flange formability and capable of increasing the mixing ratio of scrap.
The present invention relates to an aluminum alloy sheet for a can body and a method for producing the same.

【0002】[0002]

【従来の技術】アルミニウム合金板に深絞り成形としご
き成形を順次施して缶胴とする2ピースアルミニウムD
I缶胴はビールや炭酸飲料などの容器として従来から広
く用いられている。このような用途の缶胴材としては、
JIS−3004アルミニウム合金硬質板が良好な成形
性と強度を有するため専ら使用されている。アルミニウ
ムDI缶胴の成形工程は、0.28〜0.37mm程度
の厚さの前記JIS−3004アルミニウム合金硬質板
をDI成形(カッピング成形⇒リドロー成形⇒3段連続
のしごき成形)してストレート缶(このストレート缶の
側壁部の厚さは約100〜110μm、後にネッキング
及びフランジ成形を受ける側壁先端部分の板厚は約15
0〜180μmとやや厚く設定されている)を得、その
後トリミング(縁切り)、脱脂洗浄、化成処理、内外面
塗装、焼き付け加熱を順次施した後、ネッキング成形し
て開口部の径を縮小し、最後に缶蓋との巻き締めをし易
くするためのフランジ成形(口拡げ成形)を行う。その
後、飲料などの内容物を充填した後、エンド(蓋)を二
重巻き締め加工して密閉する。このJIS−3004ア
ルミニウム合金板は、鋳造、面削、均質化処理、熱間圧
延、冷間圧延という一連の工程で製造される。更に必要
に応じ、冷間圧延の後で仕上げ焼鈍、脱脂洗浄、カッピ
ング用潤滑油塗布が施される。また強度調整のため、冷
間圧延に先立ちまたは冷間圧延の途中に、中間焼鈍が施
されるのが通例である。
2. Description of the Related Art Two-piece aluminum D which is formed by deep drawing and ironing sequentially on an aluminum alloy plate to form a can body
The I can body has been widely used as a container for beer and carbonated drinks. As can body materials for such applications,
JIS-3004 aluminum alloy hard plate is used exclusively because it has good formability and strength. The forming process of the aluminum DI can body is as follows. The JIS-3004 aluminum alloy hard plate having a thickness of about 0.28 to 0.37 mm is formed by DI forming (cupping forming ⇒ redraw forming ⇒ three-step continuous ironing) to form a straight can. (The thickness of the side wall portion of this straight can is about 100 to 110 μm, and the thickness of the side wall tip portion to be subsequently necked and flanged is about 15 μm.
0-180 μm is set slightly thicker), then trimming (edge cutting), degreasing cleaning, chemical conversion treatment, inner and outer surface coating, baking heating are sequentially performed, and necking is performed to reduce the diameter of the opening. Lastly, flange forming (mouth opening forming) for facilitating tightening with the can lid is performed. Then, after filling contents such as beverages, the end (lid) is double-wrapped and sealed. This JIS-3004 aluminum alloy plate is manufactured by a series of steps of casting, facing, homogenization, hot rolling, and cold rolling. Further, if necessary, after the cold rolling, finish annealing, degreasing and washing, and application of a lubricating oil for cupping are performed. In order to adjust the strength, it is customary to carry out intermediate annealing before or during the cold rolling.

【0003】ところで、近年、アルミニウム缶の経済性
をより向上させるために使用材料の薄肉化と使用済缶ス
クラップ(UBC、Used Beverage Ca
n)の缶胴用材料への再生利用を更に徹底しようとする
機運が高まりつつある。缶胴用材料の薄肉化は、缶種に
よって異なるが、最も多く使用されている 350ml缶を
例に挙げれば、当初の0.4mmから0.28mmへと
推移し、更なる薄肉化への開発が精力的に進められてい
る。このような薄肉化に伴って、缶成形上の問題にも変
化が起きてきている。即ち、従来の課題であったDI成
形工程での耳率の低減と破胴の防止は、最近の成形技術
の進歩と缶用材料の改善とによりほぼ解決されている。
しかし、更なる薄肉化の進行によりDI成形後のネッキ
ングと、これに続くフランジ加工と缶蓋の巻き締め工程
での缶端開口部の微小割れが新たな課題として浮上して
きた。中でも缶端開口部の微小割れ防止については、そ
の解決が強く望まれている。また、使用済缶スクラップ
(UBC)の再生使用率(再生率)は数年前は高々数%
であったが、最近は、社会的機運の高まりもあって、2
0〜40%にもなってきている。またUBC以外の他用
途に使用された種々の低純度スクラップも缶材に再生使
用してコスト低減を図りたいとする要望が高まってきて
いる。
[0003] In recent years, in order to further improve the economic efficiency of aluminum cans, the thickness of used materials and the use of scraps (UBC, Used Beverage Ca) have been reduced.
There is an increasing momentum to further thoroughly recycle n) into materials for can bodies. The thickness of the can body material varies depending on the type of can, but taking the most commonly used 350 ml can as an example, the initial 0.4 mm has changed to 0.28 mm, and the development of further thinning Is being actively pursued. Along with such thinning, problems in can molding have been changing. That is, the reduction of the ear ratio and the prevention of the breakage in the DI molding process, which were the conventional problems, have been almost solved by recent advances in molding techniques and improvements in can materials.
However, with the progress of further thinning, necking after DI molding, and microcracking at the can end opening in the subsequent flange forming and can lid winding processes have emerged as new problems. Above all, with respect to the prevention of minute cracks at the opening of the can end, a solution is strongly desired. Also, the recycling rate (recycling rate) of used can scrap (UBC) was at most a few years ago.
However, recently, due to growing social momentum,
It has become 0-40%. In addition, there is an increasing demand to reduce costs by recycling various low-purity scraps used for other purposes than UBC as can materials.

【0004】[0004]

【発明が解決しようとする課題】しかし、このようにス
クラップ使用率が高まるにつれて缶胴材の純度が低下
し、成形性が低下するという問題が生じた。具体的には
スクラップに由来するSiとZnが増加し、缶胴のフラ
ンジ割れ発生比率が増加するという問題である。Siは
従来は0.1〜0.2wt%であったものが現在は0.
22〜0.30wt%に、Znは従来0.02wt%程
度であったものが現在は0.05〜0.1wt%にそれ
ぞれ増加し、今後も更に増加する傾向にある。これに伴
い、フランジ成形(口拡げ成形)や、その後のエンド
(蓋)との二重巻き締め加工時に割れが発生し、内容物
が漏れるという不具合を生じることが判明した。
However, as the usage rate of the scrap increases, the purity of the can body material decreases, and a problem arises that the moldability decreases. Specifically, there is a problem in that Si and Zn derived from scrap increase, and the rate of occurrence of flange cracks in the can body increases. Conventionally, the content of Si was 0.1-0.2 wt%, but is now 0.1-0.2 wt%.
22 to 0.30 wt%, and Zn, which was about 0.02 wt% in the past, has now increased to 0.05 to 0.1 wt%, and tends to further increase in the future. Along with this, it has been found that cracks occur during flange forming (mouth expansion forming) and subsequent double-tightening with the end (lid), resulting in a problem that the contents leak.

【0005】このようなことから、本発明者らは鋭意研
究を行い、アルミニウム合金板中の不純物のアルカリ金
属元素がフランジ成形性に甚だ悪い影響を及ぼすことを
知見し、このアルカリ金属元素を厳密に規制することに
よりSiとZnの含有量が高くなっても良好なフランジ
成形性を維持できることを見出した。従来より、Na等
のアルカリ金属元素は、缶用材料の主要成分であるMg
地金から混入し易く、これら元素が微量でも含まれると
鋳造や熱間圧延などの熱間加工で割れが生じ易くなるこ
とが知られており、その含有量は通常数十ppm、更に
は10ppm以下に規制されている。しかし、アルカリ
金属元素が、過酷な冷間・温間成形性に及ぼす影響につ
いては、未だ確かな知見が得られていない。例えば、特
開平6−271968号公報および特開平6−2719
69号公報には、NaやKは10ppm以下であれば、
DI成形性に支障のないことが示唆されているが具体的
な例証は挙げられていない。またフランジ成形性への影
響については些かも触れられていない。本発明者等は、
材料の再生利用で含有元素が微量変化したときの成形
性、特にフランジ成形性に及ぼすアルカリ金属元素の影
響について研究を行う中で新たな知見を得て、本発明を
完成させるに至った。本発明の目的は、スクラップの配
合比率を高めてSiとZnの含有量が高くなっても良好
なフランジ成形性が維持できるDI缶胴用アルミニウム
合金板およびその製造方法を提供することにある。
[0005] From the above, the present inventors have conducted intensive studies and found that the alkali metal element as an impurity in the aluminum alloy plate has a very bad effect on flange formability. It has been found that by restricting the content to, good flange formability can be maintained even when the contents of Si and Zn are increased. Conventionally, an alkali metal element such as Na has been used as a main component of a material for cans.
It is known that it is easy to mix from the ingot, and if these elements are contained even in trace amounts, cracks are likely to occur in hot working such as casting or hot rolling, and the content is usually several tens ppm, and furthermore, 10 ppm. It is regulated as follows. However, no clear knowledge has yet been obtained on the effect of the alkali metal element on severe cold / warm formability. For example, JP-A-6-271968 and JP-A-6-2719
No. 69 discloses that if Na or K is 10 ppm or less,
It is suggested that there is no problem with DI moldability, but no specific example is given. No mention is made of the effect on flange formability. The present inventors,
The present inventor has obtained new findings while studying the effects of alkali metal elements on the formability, particularly the flange formability, when the contained elements are slightly changed by recycling of the material, and has completed the present invention. An object of the present invention is to provide an aluminum alloy sheet for a DI can body capable of maintaining good flange formability even when the content of Si and Zn is increased by increasing the mixing ratio of scrap, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
Mg0.7〜1.3wt%、Mn0.8〜1.3wt
%、Fe0.3〜0.7wt%、Si0.1〜0.5w
t%、Zn0.5wt%以下、Ti0.005〜0.1
wt%を単独で、もしくはB0.0001〜0.1wt
%と組み合わせて含有し、必要に応じCu、Crのうち
1〜2種をそれぞれ0.3wt%以下含有し、不純物と
してのアルカリ金属元素が1ppm以下に規制され、残
部がAlとその他の不可避不純物からなることを特徴と
するフランジ成形性の優れたDI缶胴用アルミニウム合
金板である。
According to the first aspect of the present invention,
0.7-1.3 wt% of Mg, 0.8-1.3 wt% of Mn
%, Fe 0.3 to 0.7 wt%, Si 0.1 to 0.5 w
t%, Zn 0.5 wt% or less, Ti 0.005 to 0.1
wt% alone or B 0.0001-0.1wt
%, And if necessary, one or two of Cu and Cr are contained in an amount of 0.3 wt% or less, and an alkali metal element as an impurity is regulated to 1 ppm or less, and the balance is Al and other unavoidable impurities. An aluminum alloy plate for a DI can body having excellent flange formability, comprising:

【0007】請求項2記載の発明は、Mg0.7〜1.
3wt%、Mn0.8〜1.3wt%、Fe0.3〜
0.7wt%、Si0.1〜0.5wt%、Zn0.5
wt%以下、Ti0.005〜0.1wt%を単独で、
もしくはB0.0001〜0.1wt%と組み合わせて
含有し、必要に応じCu、Crのうち1〜2種をそれぞ
れ0.3wt%以下含有し、不純物としてのアルカリ金
属元素が1ppm以下に規制され、残部がAlとその他
の不可避不純物からなるアルミニウム合金鋳塊に均質化
処理、熱間圧延を施し、必要に応じて熱間圧延の後また
は熱間圧延の後の冷間圧延の途中に再結晶化焼鈍を施
し、60〜90%の最終冷間圧延を施し、必要に応じて
仕上げ焼鈍を施すことを特徴とするフランジ成形性の優
れたDI缶胴用アルミニウム合金の製造方法である。
According to a second aspect of the present invention, there is provided a method for controlling the concentration of Mg in the range of 0.7 to 1.0.
3 wt%, Mn 0.8-1.3 wt%, Fe 0.3-
0.7 wt%, Si 0.1-0.5 wt%, Zn0.5
wt% or less, 0.005 to 0.1 wt% of Ti alone,
Alternatively, B is contained in combination with 0.0001 to 0.1 wt%, and if necessary, one or two of Cu and Cr are contained at 0.3 wt% or less, and an alkali metal element as an impurity is regulated to 1 ppm or less, The remaining part of the aluminum alloy ingot consisting of Al and other unavoidable impurities is subjected to homogenization treatment and hot rolling, and is recrystallized as necessary after hot rolling or during cold rolling after hot rolling. This is a method for producing an aluminum alloy for a DI can body having excellent flange formability, which comprises annealing, performing final cold rolling of 60 to 90%, and performing finish annealing as necessary.

【0008】[0008]

【発明の実施の形態】以下に本発明の合金元素について
詳細に説明する。Mgはアルミニウム合金板に缶胴とし
て必要な耐圧強度を付与する。添加量が0.7wt%未
満では強度が不十分で、缶胴として必要な耐圧強度が不
足する。また添加量が1.3wt%を超えるとアルミニ
ウム合金板の強度が高すぎるためとDI成形時に加工硬
化し易くなるために、破胴(しごき割れ)の発生頻度が
増加する。Mgの最適添加量は、他元素の添加量や製造
条件によりやや変化するが、耐圧強度としごき成形性の
バランスの良好な範囲は0.8〜1.2wt%、更に望
ましくは0.85〜1.15wt%の範囲である。
BEST MODE FOR CARRYING OUT THE INVENTION The alloy elements of the present invention will be described below in detail. Mg gives the aluminum alloy plate the necessary pressure resistance as a can body. If the addition amount is less than 0.7 wt%, the strength is insufficient, and the pressure resistance required for the can body is insufficient. On the other hand, if the addition amount exceeds 1.3% by weight, the strength of the aluminum alloy sheet is too high, and the work hardens easily during DI molding, so that the frequency of occurrence of fractured bodies (iron cracks) increases. The optimum addition amount of Mg slightly varies depending on the addition amount of other elements and the manufacturing conditions, but a good range of the balance between the pressure resistance and the iron formability is 0.8 to 1.2 wt%, more preferably 0.85 to 1.2 wt%. The range is 1.15 wt%.

【0009】Mnは耐圧強度を向上させるとともに、し
ごき成形性を向上させる。DI成形においては、通常エ
マルジョン型またはソルブル型の潤滑材が使用される
が、Mn添加量が少ない場合はこれだけでは潤滑性が不
十分であり、アルミニウム合金板と金型との凝着による
ビルトアップが発生してゴーリングまたはスコアリング
と呼ばれる擦り傷や焼き付きが発生する。Mnはα-Al
12(Fe,Mn)4Si, Al6Mn, Al6(FeMn)などの金属間化合物
(晶出化合物)を形成し、この晶出化合物が固体潤滑作
用を有しビルトアップの発生を抑制するため、前記ゴー
リング等の発生を防ぐ効果がある。またMnはα-Al
12(Fe,Mn)4Si を形成し、高速しごき成形での破胴を抑
制する効果を有する。Mn添加量が0.8wt%未満で
はしごき成形性が不十分であるとともに耐圧強度も不足
する。Mn添加量が1.3wt%を超えるとしごき成形
性および耐圧強度向上効果が飽和する上、後述のFeと
結合してAl−Mn−Fe系の巨大な初晶化合物が溶解
鋳造時に発生し易くなり、これが圧延後も残存するため
成形時に割れやピンホールが発生する危険が増大する。
Mnの最適添加量の範囲は0.9〜1.1wt%の範囲
である。
Mn improves the pressure resistance and the iron formability. In DI molding, emulsion-type or solve-type lubricants are usually used, but when the amount of Mn is small, lubricating properties alone are insufficient, and build-up by adhesion between an aluminum alloy plate and a mold is performed. And scuffs or burn-in called galling or scoring occur. Mn is α-Al
Form intermetallic compounds (crystallized compounds) such as 12 (Fe, Mn) 4 Si, Al 6 Mn, and Al 6 (FeMn), and the crystallized compounds have a solid lubricating action and suppress build-up. Therefore, there is an effect of preventing the occurrence of the galling or the like. Mn is α-Al
It forms 12 (Fe, Mn) 4 Si and has the effect of suppressing the fracture in high-speed ironing. If the amount of Mn is less than 0.8 wt%, the ironing formability is insufficient and the pressure resistance is also insufficient. When the amount of Mn added exceeds 1.3 wt%, the iron moldability and the effect of improving pressure resistance are saturated, and a giant primary crystal compound of the Al-Mn-Fe system is likely to be generated at the time of melting and casting in combination with Fe described later. Since this remains even after rolling, the risk of cracks and pinholes occurring during molding increases.
The range of the optimum addition amount of Mn is in the range of 0.9 to 1.1 wt%.

【0010】Feは前記Mnの晶出化合物の生成を促進
するとともにその分布状態を均一化し、DI成形中のゴ
ーリング等の発生を防止する。Fe添加量が0.3wt
%未満では効果が不十分であり、0.7wt%を超える
と前記Al−Mn−Fe系の巨大初晶化合物が発生し易
くなりピンホールやフランジ・巻き締め割れ等の原因に
なるとともに耳率が増加する。Feの最適添加量の範囲
は0.35〜0.45wt%である。
[0010] Fe promotes the generation of the crystallized compound of Mn and makes its distribution uniform, thereby preventing the occurrence of galling or the like during DI molding. Fe added amount is 0.3wt
%, The effect is insufficient. If it exceeds 0.7% by weight, the Al-Mn-Fe-based giant primary crystal compound is liable to be generated, which causes pinholes, flanges, cracks in tightening, etc. Increase. The range of the optimum amount of Fe to be added is 0.35 to 0.45 wt%.

【0011】SiはMnと結合し固体潤滑作用を有する
α-Al12(Fe,Mn)4Si 金属間化合物を形成して、DI成形
時のビルトアップの発生を抑制し、ゴーリング等の発生
を防ぐ効果があるとともに高速しごき成形における破胴
の発生を抑制する効果を有する。Si含有量が0.1w
t%未満ではゴーリング防止効果が不足するが、含有量
が多いと脆いMg−Si系金属間化合物や単体Siが多
くなり、フランジ成形時に割れの発生頻度が増加する。
スクラップの配合比率を高めるために本発明によりアル
カリ金属元素を1ppm以下に規制したとしても、Si
の許容範囲の上限は0.5wt%、より望ましくは0.
4wt%である。
Si combines with Mn to form an α-Al 12 (Fe, Mn) 4 Si intermetallic compound having a solid lubricating effect, thereby suppressing build-up during DI molding and preventing galling and the like. It has the effect of preventing and preventing the occurrence of a broken body in high-speed ironing. 0.1w Si content
If the content is less than t%, the effect of preventing galling is insufficient, but if the content is large, the number of brittle Mg-Si based intermetallic compounds and simple Si increases, and the frequency of occurrence of cracks during flange forming increases.
Even if the alkali metal element is regulated to 1 ppm or less according to the present invention in order to increase the mixing ratio of scrap, Si
Has an upper limit of 0.5 wt%, more preferably 0.1 wt%.
4 wt%.

【0012】Znは0.1wt%程度までの含有であれ
ば特に害は及ぼさないが、0.1wt%を超えるとMg
と結合し脆いMg−Zn金属間化合物を形成するように
なり、フランジ成形時に割れの発生頻度が増加する。本
発明によりアルカリ金属元素を1ppm以下に規制した
としてもその許容範囲は0.5wt%以下、より望まし
くは0.4wt%以下である。
If Zn is contained up to about 0.1% by weight, no harm is caused.
And a brittle Mg-Zn intermetallic compound is formed, and the frequency of occurrence of cracks during flange forming increases. Even if the alkali metal element is regulated to 1 ppm or less according to the present invention, the allowable range is 0.5 wt% or less, more preferably 0.4 wt% or less.

【0013】Ti、またはTiおよびBを鋳塊組織の均
一微細化のために添加する。Tiが0.005wt%未
満では鋳塊組織の均一微細化効果が得られず、また0.
1wt%を超えるとAl−Ti系の巨大初晶化合物が溶
解鋳造時に発生し易くなり、これが圧延後も残存するた
め成形時に割れやピンホールが発生する危険性が増大す
る。BはTiと共存させるとTiの鋳塊結晶粒の均一微
細化効果を助長する効果がある。Bが0.0001wt
%未満ではその効果が十分に得られず、0.1wt%を
超えるとTi−B系の巨大初晶化合物が溶解鋳造時に発
生し易くなり、これが圧延後も残存するため成形時に割
れやピンホールが発生する危険が増大する。Tiは0.
01〜0.03wt%、Bは0.0002〜0.001
wt%の範囲で同時に含有させるのが望ましい。
[0013] Ti, or Ti and B, are added for uniform refinement of the ingot structure. If the content of Ti is less than 0.005 wt%, the effect of uniformly reducing the ingot structure cannot be obtained.
When the content exceeds 1 wt%, a giant primary crystal compound of Al-Ti system is liable to be generated at the time of melting and casting, and remains after rolling, so that the risk of generating cracks and pinholes at the time of molding increases. When B coexists with Ti, it has the effect of promoting the effect of making the ingot crystal grains of Ti uniform and fine. B is 0.0001wt
%, The effect cannot be sufficiently obtained, and if it exceeds 0.1% by weight, a Ti-B-based giant primary crystal compound is liable to be generated at the time of melting and casting. The risk of occurrence increases. Ti is 0.
01-0.03wt%, B is 0.0002-0.001
It is desirable that they be contained simultaneously in the range of wt%.

【0014】CuまたはCrは耐圧強度を向上させるの
で必要に応じて(例えばサイダーなどの高圧炭酸飲料缶
用とする場合など)各々0.3wt%までは添加しても
良い。添加量が0.3wt%を超えるとアルミニウム合
金板の強度が高くなりすぎ、破胴率が増加する。
Since Cu or Cr improves the pressure resistance, it may be added up to 0.3 wt% as necessary (for example, for a high-pressure carbonated beverage can such as cider). When the addition amount exceeds 0.3 wt%, the strength of the aluminum alloy plate becomes too high, and the fracture rate increases.

【0015】アルカリ金属元素はフランジ成形性に甚だ
悪い影響を及ぼす。ここでアルカリ金属元素とは、N
a、Li、K、Rb、Cs、Frなどである。アルカリ
金属元素がフランジ成形性に悪影響を及ぼす機構の詳細
はまだ良く判っていないが、アルカリ金属元素はMg−
Si系あるいはMg−Zn系の金属間化合物とAlマト
リクスの界面に単原子層として存在し、これらの金属間
化合物の割れや剥離に伴う亀裂の伝播を容易にし、フラ
ンジ成形性を悪化させるのではないかと推定される。従
来の缶胴用アルミニウム合金板はいずれもアルカリ金属
元素量は3〜10ppmの範囲であり、上記のようにS
i、Zn量が少ない場合には問題が顕在化しなかった
が、Si量を0.3wt%以上、Zn量を0.1wt%
以上とした場合にはアルカリ金属元素量は1ppm以下
に規制しなければフランジ成形性は確保できない。アル
カリ金属元素量を低減する手段としては、鋳造前の溶湯
処理の段階で塩素を含有したアルゴンガスを十分な時間
吹き込み塩化物としてアルミ溶湯表面に浮かせてノロと
して除去するなどの手段を取ればよい。
Alkali metal elements have a very bad effect on flange formability. Here, the alkali metal element is N
a, Li, K, Rb, Cs, and Fr. Although the details of the mechanism by which the alkali metal element has an adverse effect on the flange formability are not well understood, the alkali metal element is Mg-
It is present as a monoatomic layer at the interface between the Si-based or Mg-Zn-based intermetallic compound and the Al matrix, facilitating the propagation of cracks due to cracking or peeling of these intermetallic compounds and deteriorating flange formability. It is estimated that there is not. The conventional aluminum alloy sheet for a can body has an alkali metal element content in the range of 3 to 10 ppm.
When the amount of i and Zn was small, the problem did not appear, but the amount of Si was 0.3 wt% or more, and the amount of Zn was 0.1 wt%.
In this case, the flange formability cannot be ensured unless the amount of the alkali metal element is restricted to 1 ppm or less. As a means for reducing the amount of the alkali metal element, it is sufficient to take a means such as blowing an argon gas containing chlorine at a stage of the molten metal treatment before casting for a sufficient time to float it on the surface of the aluminum molten metal as chloride and remove it as slag. .

【0016】アルカリ金属元素以外の不純物について
は、JIS−3004の範囲内であれば特に問題はな
い。
There is no particular problem for impurities other than the alkali metal element as long as they are within the range of JIS-3004.

【0017】次に本発明における製造条件について説明
する。前記組成のアルミニウム合金鋳塊に対し面削後必
要に応じ均質化処理を施し、Mnなどの添加元素のミク
ロ的偏析を拡散・消滅させ固溶原子の分布を均一化し耳
率と破胴率を低下させる。この均質化処理は560〜6
30℃で3時間以上施すのか望ましい。また前記均質化
処理後、400〜530℃で1時間以上の2段目の均質
化処理を施すと耳率が低下するので更に望ましい。
Next, the manufacturing conditions in the present invention will be described. The aluminum alloy ingot of the above composition is subjected to homogenization treatment as necessary after face milling to diffuse and eliminate micro segregation of added elements such as Mn, uniformize the distribution of solid solution atoms, and reduce the ear ratio and the fracture ratio. Lower. This homogenization process is 560-6.
It is desirable to apply at 30 ° C. for 3 hours or more. Further, after the homogenization treatment, it is more preferable to perform a second-stage homogenization treatment at 400 to 530 ° C. for 1 hour or more, since the ear ratio decreases.

【0018】次いで常法により熱間圧延を施し、必要に
応じて熱間圧延後、または熱間圧延後の冷間圧延の途中
に再結晶化のための焼鈍を施す。この焼鈍は定置式のバ
ッチ炉ならば300〜400℃で1時間以上、連続焼鈍
炉なら350〜600℃で10分以内施せばよい。
Next, hot rolling is performed by a conventional method, and if necessary, annealing for recrystallization is performed after hot rolling or during cold rolling after hot rolling. This annealing may be performed at 300 to 400 ° C. for 1 hour or more in a stationary batch furnace, or at 350 to 600 ° C. for 10 minutes or more in a continuous annealing furnace.

【0019】次いで最終冷間圧延を施すが、その圧延率
は60〜90%の範囲とする。最終冷間圧延率が60%
未満では製缶時の塗装焼き付け加熱での回復が十分では
なくフランジ成形性が低下する。また最終冷間圧延率が
90%を超えると強度が高すぎ、DI成形時にカッピン
グ割れやしごき割れ(破胴)が発生し易くなる。
Next, final cold rolling is performed, and the rolling reduction is in the range of 60 to 90%. Final cold rolling rate is 60%
If it is less than 3, the recovery by baking heating during can-making is not sufficient, and the flange formability decreases. On the other hand, if the final cold rolling ratio exceeds 90%, the strength is too high, and cupping cracks and ironing cracks (fractures) easily occur during DI molding.

【0020】更に最終冷間圧延後に必要に応じ仕上げ焼
鈍を施す。この仕上げ焼鈍を施す目的は、最終冷間圧延
した素板の伸びが小さい場合に素板に適度な延性を付与
し缶底のしわやカップ割れの発生を防止するためであ
る。仕上げ焼鈍を施す場合の望ましい条件は100〜1
50℃で1〜5時間である。
Further, after the final cold rolling, finish annealing is performed if necessary. The purpose of the finish annealing is to impart appropriate ductility to the final cold-rolled base plate when the elongation of the base plate is small, and to prevent the occurrence of wrinkles and cup cracks at the bottom of the can. Desirable conditions for finish annealing are 100 to 1
1 hour to 5 hours at 50 ° C.

【0021】更に、必要に応じ、上記の最終冷間圧延合
金板または最終冷間圧延後に仕上げ焼鈍を施した合金板
に対し常法により洗浄、矯正、カッピング用潤滑油塗布
を施す。これは当業者においては通常実施している仕上
げ処理である。
Further, if necessary, the final cold-rolled alloy sheet or the alloy sheet subjected to finish annealing after the final cold rolling is subjected to washing, straightening, and applying a lubricating oil for cupping by a conventional method. This is a finishing process commonly performed by those skilled in the art.

【0022】以上説明した製造方法によるアルミニウム
合金板は高速しごき成形性が優れるため、特に高速製缶
用のDI缶胴用材料として非常に好適である。
The aluminum alloy sheet produced by the above-described production method is excellent in high-speed ironing formability, and is thus very suitable as a material for DI can bodies for high-speed can-making.

【0023】[0023]

【実施例1】以下に、本発明を実施例により更に詳細に
説明する。 (実施例1)表1に示す No.A〜Sの組成の各種アルミ
ニウム合金を常法により溶解鋳造し、面削後、610℃
で8時間の第1段均質化処理を施した後、490℃で2
時間の第2段均質化処理を施した。次いでリバース式の
熱間粗圧延機により開始温度440℃で厚さ490mm
から25mmまで熱間粗圧延した。続いて4タンデム式
の熱間仕上げ圧延機により開始温度350℃、終了板厚
2.2mm、コイル巻き取り温度315℃で熱間仕上げ
圧延した。次いで連続焼鈍炉を使用し、380℃で0分
の焼鈍を施し、ただちに冷却した。その後、最終冷延を
0.30mmまで施し(最終冷延率86%、冷延パス数
は3回)、最後に常法により洗浄、矯正、カッピング用
潤滑油の塗布を施しDI缶胴用アルミニウム合金板とし
た。このようにして得られたアルミニウム合金板に対
し、引張り試験によりベーク相当処理(205℃×20
分)前後の強度を測定した。また製缶ラインにて350
ml容量のDI缶胴(側壁板厚105μm、最終第3し
ごき率40%)に各1万缶成形(製缶)した。このとき
の割れ発生缶数を調べた。次に、トリミング(縁切
り)、脱脂洗浄、化成処理、内外面塗装、焼き付け加熱
(200℃で20分)を順次施した後、ネッキング成形
して開口部の径を縮小し、フランジ成形(口拡げ成形)
を行い、その後、炭酸飲料を充填した後、エンドと巻き
締め加工を行った。また焼き付け加熱後の缶胴に円錐形
(開角90度)の押し込み治具により口拡げ成形を行
い、割れが発生するまでの口径の拡がり率を測定して拡
管率を評価した。また製缶した缶の焼き付け加熱(20
0℃で20分)後の耐圧強度を水圧負荷法により測定し
た。またDI缶胴成形時、フランジ成形時、巻き締め加
工時のそれぞれの割れ発生缶数を調べた。結果を表2に
示す。
Embodiment 1 Hereinafter, the present invention will be described in more detail with reference to embodiments. (Example 1) Various aluminum alloys having compositions of Nos. A to S shown in Table 1 were melt-cast by a conventional method, and after face milling, 610 ° C.
, At 490 ° C for 2 hours.
The second stage of time homogenization was performed. Then, using a reverse hot rough rolling mill, the starting temperature is 440 ° C. and the thickness is 490 mm.
To 25 mm. Subsequently, hot finish rolling was performed at a starting temperature of 350 ° C., an end plate thickness of 2.2 mm, and a coil winding temperature of 315 ° C. using a 4-tandem hot finishing rolling mill. Next, using a continuous annealing furnace, annealing was performed at 380 ° C. for 0 minutes, and immediately cooled. After that, the final cold rolling was performed to 0.30 mm (final cold rolling rate: 86%, the number of cold rolling passes was three), and finally, lubricating oil for cleaning, straightening, and cupping was applied by a conventional method, and the aluminum for DI can body was formed. An alloy plate was used. The aluminum alloy plate thus obtained was subjected to a bake equivalent treatment (205 ° C. × 20) by a tensile test.
Min) The strength before and after was measured. 350 at the canning line
Each 10,000 cans were formed (made into cans) on a DI can body (side wall thickness: 105 μm, final third ironing rate: 40%) having a capacity of ml. The number of cracking cans at this time was examined. Next, after successively performing trimming (edge cutting), degreasing and cleaning, chemical conversion treatment, inner and outer surface coating, baking heating (at 200 ° C. for 20 minutes), necking is performed to reduce the diameter of the opening, and flange forming (mouth opening). Molding)
Then, after filling the carbonated beverage, an end and a winding process were performed. Further, the can body after baking was subjected to mouth expansion molding by a conical (90-degree open angle) jig, and the expansion rate of the diameter until cracks were generated was measured to evaluate the expansion rate. In addition, baking heating of cans (20
After 20 minutes at 0 ° C.), the pressure resistance was measured by a hydraulic load method. In addition, the number of cracking cans at the time of forming the DI can body, at the time of forming the flange, and at the time of crimping were examined. Table 2 shows the results.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表2より明らかなように、本発明組成の N
o.A〜Fはアルカリ金属元素(主にNa)が1ppm以
下のため、Si、Zn量を増やしても拡管率が14%以
上と良好で、フランジ成形、巻き締めでの割れ発生率が
ゼロであり良好なフランジ成形性を示し製缶上の他の不
具合も発生していない。これに対し、Mg、Mnの少な
い No.Gはベーク相当処理後の強度、つまり缶胴として
の耐圧強度が低い。Fe、Si量の少ない No.Iはゴー
リングが発生した。Ti、Bが無添加の No.Jは鋳塊組
織が粗く、缶にした時に肌荒れ状の外観不良が生じた。
Mg、Mn量の多い No.Jはカッピング割れが発生し
た。Fe、Si量の多い No.Kはフランジ・巻き締め割
れが発生した。Ti、Bの多い No.Lはピンホールと破
胴が発生し、フランジ割れ・巻き締め割れも発生した。
Cu、Crの多い No.M、Nは破胴が発生した。Si、
Znが本発明範囲内でもNaの多い No.O、P、Qはフ
ランジ割れ・巻き締め割れが発生した。Naが本発明内
でもSi、Znが多すぎる No.R、Sはやはりフランジ
割れ・巻き締め割れが発生した。
As is evident from Table 2, the composition of the present invention
o. A to F have an alkali metal element (mainly Na) of 1 ppm or less, so that even if the amount of Si and Zn is increased, the pipe expansion ratio is as good as 14% or more, and the rate of occurrence of cracks in flange forming and crimping is zero. It shows good flange formability and no other problems on the can-making. On the other hand, No. G containing less Mg and Mn has low strength after baking-equivalent treatment, that is, low pressure resistance as a can body. No. I, in which the amounts of Fe and Si were small, caused galling. No. J, to which Ti and B were not added, had a rough ingot structure, and when it was made into a can, a rough appearance-like poor appearance occurred.
No.J having a large amount of Mg and Mn had cupping cracks. No. K, which has a large amount of Fe and Si, had a flange / rolling crack. In No. L, which has a large amount of Ti and B, pinholes and fractures occurred, and flange cracks and crimping cracks also occurred.
Nos. M and N, which are rich in Cu and Cr, were broken. Si,
No. O, P, and Q, which contain a large amount of Na even when Zn is within the range of the present invention, had flange cracks and crimping cracks. Even in the case of Na in the present invention, too much Si and Zn resulted in No. R and S, which also had flange cracks and crimp cracks.

【0027】(実施例2)実施例1の No.Fのアルミニ
ウム合金鋳塊を615℃で7時間の初段均質化処理後5
00℃で3時間の第2段均質化処理を施し、熱間圧延し
た。続いて冷間圧延、焼鈍、最終冷間圧延、仕上げ焼鈍
を施した。その詳細な条件を表3に示す。このようにし
て得たアルミニウム合金板を実施例1と同様に評価し
た。結果を表4に示す。
(Example 2) The No. F aluminum alloy ingot of Example 1 was subjected to the first-stage homogenization treatment at 615 ° C for 7 hours.
A second-stage homogenization treatment was performed at 00 ° C. for 3 hours and hot-rolled. Subsequently, cold rolling, annealing, final cold rolling, and finish annealing were performed. Table 3 shows the detailed conditions. The aluminum alloy plate thus obtained was evaluated in the same manner as in Example 1. Table 4 shows the results.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】表4より明らかなように、本発明工程によ
るNo.1〜4 はフランジ成形性が良好で製缶上問題となる
点もない。これに対し最終冷間圧延率の低いNo.5はフラ
ンジ成形性が劣り、最終冷間圧延率の高すぎるNo.6,7は
カッピング割れや破胴が発生した。
As is clear from Table 4, Nos. 1 to 4 according to the process of the present invention have good flange formability and have no problem in can making. On the other hand, No. 5 having a low final cold rolling reduction had poor flange formability, and Nos. 6 and 7 having too high a final cold rolling reduction caused cupping cracks and fractures.

【0031】[0031]

【発明の効果】以上に述べたように、本発明によれば、
フランジ成形性に優れ、スクラップの配合比率を高める
ことができるDI缶胴用アルミニウム合金板が得られ、
資源のリサイクルに寄与し、工業上顕著な効果を奏す
る。
As described above, according to the present invention,
An aluminum alloy plate for a DI can body that is excellent in flange formability and can increase the compounding ratio of scrap is obtained,
It contributes to resource recycling and has a remarkable industrial effect.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Mg0.7〜1.3wt%、Mn0.8
〜1.3wt%、Fe0.3〜0.7wt%、Si0.
1〜0.5wt%、Zn0.5wt%以下、Ti0.0
05〜0.1wt%を単独で、もしくはB0.0001
〜0.1wt%と組み合わせて含有し、必要に応じC
u、Crのうち1種又は2種をそれぞれ0.3wt%以
下含有し、不純物としてのアルカリ金属元素が1ppm
以下に規制され、残部がAlとその他の不可避不純物か
らなることを特徴とするフランジ成形性の優れたDI缶
胴用アルミニウム合金板。
1. Mg 0.7-1.3 wt%, Mn 0.8
To 1.3 wt%, Fe 0.3 to 0.7 wt%, Si0.
1 to 0.5 wt%, Zn 0.5 wt% or less, Ti0.0
0.05 to 0.1 wt% alone or B0.0001
-0.1 wt% in combination with C
one or two of each of u and Cr are contained in an amount of 0.3 wt% or less, and an alkali metal element as an impurity is 1 ppm.
An aluminum alloy plate for a DI can body having excellent flange formability, characterized by the following restrictions, with the balance being Al and other unavoidable impurities.
【請求項2】 Mg0.7〜1.3wt%、Mn0.8
〜1.3wt%、Fe0.3〜0.7wt%、Si0.
1〜0.5wt%、Zn0.5wt%以下、Ti0.0
05〜0.1wt%を単独で、もしくはB0.0001
〜0.1wt%と組み合わせて含有し、必要に応じC
u、Crのうち1種又は2種をそれぞれ0.3wt%以
下含有し、不純物としてのアルカリ金属元素が1ppm
以下に規制され、残部がAlとその他の不可避不純物か
らなるアルミニウム合金鋳塊に均質化処理、熱間圧延を
施し、必要に応じて熱間圧延の後または熱間圧延の後の
冷間圧延の途中に再結晶化焼鈍を施し、圧延率60〜9
0%の最終冷間圧延を施し、必要に応じて仕上げ焼鈍を
施すことを特徴とするフランジ成形性の優れたDI缶胴
用アルミニウム合金の製造方法。
2. Mg 0.7 to 1.3 wt%, Mn 0.8
To 1.3 wt%, Fe 0.3 to 0.7 wt%, Si0.
1 to 0.5 wt%, Zn 0.5 wt% or less, Ti0.0
0.05 to 0.1 wt% alone or B0.0001
-0.1 wt% in combination with C
one or two of each of u and Cr are contained in an amount of 0.3 wt% or less, and an alkali metal element as an impurity is 1 ppm.
Regulated below, the balance is aluminum alloy ingot consisting of Al and other unavoidable impurities, homogenization treatment, subjected to hot rolling, cold rolling after hot rolling or hot rolling as necessary Recrystallization annealing is performed on the way, and the rolling rate is 60 to 9
A method for producing an aluminum alloy for a DI can body having excellent flange formability, wherein a final cold rolling of 0% is performed and finish annealing is performed as necessary.
JP27796296A 1996-10-21 1996-10-21 Aluminum alloy plate excellent in flange formability for di can drum and manufacture therefor Pending JPH10121176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27796296A JPH10121176A (en) 1996-10-21 1996-10-21 Aluminum alloy plate excellent in flange formability for di can drum and manufacture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27796296A JPH10121176A (en) 1996-10-21 1996-10-21 Aluminum alloy plate excellent in flange formability for di can drum and manufacture therefor

Publications (1)

Publication Number Publication Date
JPH10121176A true JPH10121176A (en) 1998-05-12

Family

ID=17590709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27796296A Pending JPH10121176A (en) 1996-10-21 1996-10-21 Aluminum alloy plate excellent in flange formability for di can drum and manufacture therefor

Country Status (1)

Country Link
JP (1) JPH10121176A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104762A (en) * 2016-12-26 2018-07-05 日新製鋼株式会社 PRODUCTION METHOD OF MOLTEN Al-BASED PLATED SHEET STEEL, AND MOLTEN Al-BASED PLATED SHEET STEEL
JP2019206757A (en) * 2014-12-19 2019-12-05 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy suitable for high speed production of aluminum bottle, and process of manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206757A (en) * 2014-12-19 2019-12-05 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy suitable for high speed production of aluminum bottle, and process of manufacture thereof
JP2018104762A (en) * 2016-12-26 2018-07-05 日新製鋼株式会社 PRODUCTION METHOD OF MOLTEN Al-BASED PLATED SHEET STEEL, AND MOLTEN Al-BASED PLATED SHEET STEEL

Similar Documents

Publication Publication Date Title
WO2010113333A1 (en) Steel sheet for high‑strength container and manufacturing method thereof
JP2008169417A (en) Aluminum alloy sheet for aerosol container, and its manufacturing method
JP3550259B2 (en) Aluminum alloy plate for DI can body excellent in high-speed ironing formability and method for producing the same
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP4257135B2 (en) Aluminum alloy hard plate for can body
JPH08325664A (en) High-strength heat treatment type aluminum alloy sheet for drawing and its production
JP2000008133A (en) Aluminum alloy sheet for can cover excellent in shatter strength and its production
JPH10121176A (en) Aluminum alloy plate excellent in flange formability for di can drum and manufacture therefor
JPS62149857A (en) Production of aluminum alloy foil having excellent formability
JP3981505B2 (en) Manufacturing method of aluminum alloy soft plate for deep drawing
JPH09268341A (en) Baking-coated al alloy sheet for can lid material, excellent in stress corrosion cracking resistance in score part, and its production
JP2862198B2 (en) Aluminum alloy plate for DI can body
JP2525017B2 (en) Aluminum alloy material for can ends
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP2000234158A (en) Production of aluminum alloy sheet for can barrel
JPH11256291A (en) Manufacture of aluminum alloy sheet for can body
JP3708616B2 (en) Manufacturing method of Ai alloy plate for DI can body excellent in formability
JP3713614B2 (en) Method for producing aluminum alloy plate for can body
JPH08127850A (en) Production of aluminum alloy sheet for forming low in edge ratio
JPH03260040A (en) Manufacture of high strength al-mn series alloy sheet
JPH05222497A (en) Production of hard aluminum alloy sheet reduced in edge rate
JPH0651901B2 (en) Method for producing aluminum alloy for drawing having high strength and low directionality
JP2005042195A (en) Aluminum alloy sheet with excellent barrel cutting resistance for bottle can
JP3069003B2 (en) Aluminum alloy DI can body
JPH0293049A (en) Production of aluminum alloy sheet