JPH10118531A - Bottom material separator - Google Patents

Bottom material separator

Info

Publication number
JPH10118531A
JPH10118531A JP8277839A JP27783996A JPH10118531A JP H10118531 A JPH10118531 A JP H10118531A JP 8277839 A JP8277839 A JP 8277839A JP 27783996 A JP27783996 A JP 27783996A JP H10118531 A JPH10118531 A JP H10118531A
Authority
JP
Japan
Prior art keywords
tower
cylindrical container
water
particles
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8277839A
Other languages
Japanese (ja)
Inventor
總介 ▲吉▼井
Sosuke Yoshii
Akihiro Hamazaki
彰弘 濱▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8277839A priority Critical patent/JPH10118531A/en
Publication of JPH10118531A publication Critical patent/JPH10118531A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cyclones (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently separate bottom materials with decreased driving power without requiring many cyclones by providing a cylindrical vessel with an inflow port for water contg. the sand and soil from a pump and an inflow port for pressurized water contg. a satd. air quantity in the tangent direction of the vessel and providing the top end of the cylindrical vessel with an outflow port and the bottom end of a conical shape of the lower part with an outflow port for grain. SOLUTION: A tower I handles three phases; solid, gas and liquid and is a kind of centrifugal separator. A tower II installed behind the tower I is also a similar centrifugal separator. The excavated sand and soil 6 flowing into the tower I flow into the inflow port 7 via a pump 3. Besides, the pressurized water 4, 5 which dissolves air, oxygen or oxygen-rich air to supersaturation flow into the respectively inflow ports 8, 9. In such a case, the pressurized water 4, 5 are admitted by the pump as well. The water discharged from the tower I is discharged together with the sand and soil of large grain sizes from the discharge port 12 at the bottom end. A mixture composed of micro-air bubbles, fine grain size sand and soil and org. component flows out of an outflow port 10 at the top end.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、上水道の原水に含
まれる浮遊粒子除去の前処理装置、または海域の魚養殖
場の下部底泥の清掃装置や底質改良装置など、水底の土
壌改質等に係る底質分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pretreatment device for removing suspended particles contained in raw water of waterworks, or a device for improving soil quality on a water bottom, such as a device for cleaning lower sediment of a fish farm in a sea area or a device for improving sediment quality. And the like.

【0002】[0002]

【従来の技術】従来、川や海などの水底の土壌改質は行
なわれていないのが現状であり、必要に応じて水底土壌
を浚渫して除去する、埋立などのように水中コンクリー
トで局所的に固める、サンドドレーンにて土中の水を抜
いて締め固める、等の方法が採られていた。土砂からの
微小粒径粒子や有機分を含む粒子の除去に限れば、フィ
ルタを使う方法やサイクロンを多段化したものが存在す
るが、フィルタの場合には目詰まり、摩耗等の問題が無
視できず実用性が低い。
2. Description of the Related Art Conventionally, soil modification of water bottoms such as rivers and seas has not been carried out at present, and underwater concrete such as landfills is used for dredging and removing water bottom soil as necessary. And hardening by draining water from the soil with a sand drain. There are methods using filters and multi-stage cyclones for the removal of fine particle size particles and particles containing organic components from sediment.However, in the case of filters, problems such as clogging and wear can be ignored. Low practicality.

【0003】このため、サイクロンを多段に配置した構
造が着目される。図10はサイクロンの原理とその形状
を例示したものであるが、サイクロンは図10(a)に
示すように内部流動状況としては、原液を円筒部の接線
方向から流入してうずを生じ、下降旋回流が生じて円錐
部下端出口から粗粒及び液体が排出されると共に中心部
の上昇旋回流により上端出口から微粒及び液体が排出さ
れるものであり、標準サイクロンについてはサイクロン
胴体の径DC を基にした寸法基準があり分離性能圧力損
失も定式化されている。
For this reason, attention is paid to a structure in which cyclones are arranged in multiple stages. FIG. 10 illustrates the principle and the shape of the cyclone. As shown in FIG. 10 (a), the cyclone has an internal flow state in which the undiluted solution flows in from the tangential direction of the cylindrical portion to generate an eddy, A swirling flow is generated and coarse particles and liquid are discharged from the lower end outlet of the conical portion, and fine particles and liquid are discharged from the upper end outlet by the upward swirling flow in the center portion. For a standard cyclone, the diameter D C of the cyclone body is used. There is a dimensional standard based on the formula, and the separation performance pressure loss is also formulated.

【0004】一般的に液体サイクロンへの液流入速度
は、圧力損失が流量の2乗に比例し液体ではキャビテー
ションが発生しないという条件下のため、ガス体のよう
に高速にはできないが、この液流入速度を一定とした場
合、粒体分離性能として50%分離粒径D50(サイクロ
ンに入る粒子群を粒径別に分けた時、その50%がサイ
クロン分離される粒子径のこと)は、サイクロン円筒径
c の1/2乗に比例し、圧力損失ΔHはサイクロン円
筒径Dc の4乗に反比例することが知られる。したがっ
て、50%分離粒径を1桁小さくしようとするつまり5
0%分離できる粒子径を1/10まで小さくしようとする
と、サイクロン円筒径は1/100 となりかつ圧力損失は
104 倍となり、実用にならない。
In general, the flow rate of a liquid into a hydrocyclone cannot be made as high as that of a gaseous substance under the condition that the pressure loss is proportional to the square of the flow rate and no cavitation occurs in the liquid. Assuming that the inflow velocity is constant, the particle separation performance is 50% separation particle diameter D 50 (the particle diameter at which 50% of the particles entering the cyclone are separated by cyclone when the group of particles entering the cyclone is classified) is cyclone. in proportion to the square root of the cylindrical diameter D c, the pressure loss ΔH is known to be inversely proportional to the fourth power of the cyclone cylindrical diameter D c. Therefore, it is attempted to reduce the 50% separation particle size by one order of magnitude, that is,
If the particle size that can be separated by 0% is reduced to 1/10, the cyclone cylinder diameter becomes 1/100 and the pressure loss becomes 10 4 times, which is not practical.

【0005】このため、図11に示すようにサイクロン
を多段に構成し、サイクロンにて粒子を分離していくに
際し、第1段サイクロンFにて粗大粒子を分離した後、
圧力損失を小さくするため液流量を分流し、分流した各
々に中粒子径粒子を分離する第2段サイクロンSを設
け、更に細粒子径粒子を分離する第3段サイクロンTを
分流して設けるというサイクロンシステムを用いてい
る。また、この多段のサイクロンシステムにあっても、
圧力損失は、各段毎のサイクロンの圧力損失の総合計と
なるので、全体として大きなものとなり、液を流入させ
るポンプのヘッドを大きくとる必要が生じ、このポンプ
を駆動する動力費は無視できない。
For this reason, as shown in FIG. 11, a cyclone is formed in multiple stages, and when particles are separated in the cyclone, coarse particles are separated in the first stage cyclone F.
In order to reduce the pressure loss, the liquid flow rate is divided, a second-stage cyclone S for separating medium-sized particles is provided for each of the divided liquid flows, and a third-stage cyclone T for separating fine-particles is further divided and provided. A cyclone system is used. Also in this multi-stage cyclone system,
Since the pressure loss is a total sum of the pressure losses of the cyclones in each stage, the pressure loss becomes large as a whole, and it is necessary to increase the head of the pump for flowing the liquid, and the power cost for driving this pump cannot be ignored.

【0006】[0006]

【発明が解決しようとする課題】上述の多段のサイクロ
ンシステムにより、大粒径粒子を除去することは容易で
あるが、粘土質のような微小粒子径土砂や有機分を含む
微小粒子の分離は、微小粒子用の小型サイクロンに順次
落して処理していくことになり、短時間で所望の流量を
流そうとすると数多くのサイクロンが必要になり設備、
費用、処理効率等の問題が生じ、また前述の如く大きな
圧力損失のため多大な動力を要する。更には、大粒径粒
子に付着した微粒径土砂や有機分の分離はできにくいと
いう問題もある。
Although it is easy to remove large-diameter particles by the above-described multi-stage cyclone system, separation of micro-particles such as clayey particles containing fine earth and sand and organic components is difficult. In order to flow the desired flow rate in a short time, a large number of cyclones are required,
Problems such as cost and processing efficiency occur, and a large amount of power is required due to a large pressure loss as described above. Furthermore, there is also a problem that it is difficult to separate fine-grained soil and organic matter attached to the large-grained particles.

【0007】本発明は、上述の問題に鑑み、数多くのサ
イクロンを必要とせず、動力も小なくし完璧な分離に近
づけるようにした底質分離装置の提供を目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a sediment separation apparatus which does not require a large number of cyclones, requires less power, and achieves perfect separation.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成するた
め本発明は、次の発明特定事項を有する。 (1)下部円錐状を有する円筒状容器を備え、この円筒
状容器の接線方向にポンプからの土砂を含む水の流入口
を備え、上記円筒状容器の接線方向に飽和空気量を含む
加圧水の流入口を備え、上記円筒状容器上端に流出口を
備えると共に下部円錐状下端に粒子の排出口を備え、た
ことを特徴とする。 (2)上記(1)において、上記加圧水の流入口は円筒
状容器の上部と下部とに別々に備えたことを特徴とす
る。 (3)上記(1)又は(2)において、上記加圧水の流
入口は円筒状容器の中空軸方向に対して所望角度に可動
できるようにしたことを特徴とする。 (4)上記(1)において、上記円筒状容器の上部にこ
の円筒状容器より径の大きな円筒状容器を備え、この径
の大きな円筒状容器の周囲下部に排出口を備えたことを
特徴とする。 (5)上記(1)において、上記下部円錐状を有する円
筒状容器からなるタワーIに対して、その後段にタワー
Iの流出口からの水が流入する流入口を接線方向に設け
た円筒状容器と下部円錐状とを有するタワーIIを備え、
このタワーIIには下部円錐状下端には排出口を備え上端
には流出口を備えたことを特徴とする。 (6)上記(5)において、上記タワーIIには円筒状容
器上部側壁にバイパス出口を備えたことを特徴とする。 (7)上記(5)において、上記タワーIIは傾斜させて
配置したことを特徴とする。 (8)上記(1)において、円筒状容器の土砂を含む水
の流入口とポンプとの間にエジェクタを備えたことを特
徴とする。 (9)上記(1)において、ポンプによる浚渫土砂上に
拡散防止膜をかぶせたことを特徴とする。 (10)上記(5)において、タワーIIの後段には沈澱
ろ過槽を備えたことを特徴とする。
In order to achieve the above-mentioned object, the present invention has the following matters specifying the invention. (1) A cylindrical container having a lower conical shape is provided, an inlet for water containing earth and sand from a pump is provided tangentially to the cylindrical container, and pressurized water containing a saturated air amount is provided tangentially to the cylindrical container. An inlet is provided, an outlet is provided at the upper end of the cylindrical container, and a discharge port for particles is provided at a lower end of the lower conical shape. (2) In the above (1), the inflow port of the pressurized water is separately provided at an upper portion and a lower portion of the cylindrical container. (3) In the above (1) or (2), the inflow port of the pressurized water is movable at a desired angle with respect to the hollow axis direction of the cylindrical container. (4) In the above (1), a cylindrical container having a larger diameter than the cylindrical container is provided at an upper portion of the cylindrical container, and a discharge port is provided at a lower part around the cylindrical container having a large diameter. I do. (5) In the above (1), a cylindrical shape having a tangentially provided inlet into which water from the outlet of the tower I flows in the subsequent stage with respect to the tower I comprising the cylindrical container having the lower conical shape. Comprising a tower II having a container and a lower cone,
The tower II is characterized in that a lower conical lower end has a discharge port and an upper end has an outlet. (6) In the above (5), the tower II is provided with a bypass outlet in an upper side wall of the cylindrical container. (7) In the above (5), the tower II is arranged to be inclined. (8) In the above (1), an ejector is provided between the pump and the inlet of the water containing earth and sand in the cylindrical container. (9) In the above (1), a diffusion prevention film is provided on the dredged soil by the pump. (10) In the above (5), a sedimentation filtration tank is provided downstream of the tower II.

【0009】[0009]

【発明の実施の形態】ここで、図1〜図9を参照して本
発明の実施の形態の一例を説明する。図1は全体の構成
を示しており、タワーIは、固体、気体、液体の3相を
扱い、従来のサイクロンとは異なる一種の遠心分離器で
あり、このタワーIの後段に備えたタワーIIも同様の遠
心分離器である。タワーIへ流入される掘削された土砂
6は、ポンプ3を介して流入口7へ流れ込み、他方、空
気、酸素、又は酸素リッチの空気を過飽和に溶解した加
圧水4,5がそれぞれの流入口8,9へ流入される。こ
の場合、加圧水4,5もポンプ(図示省略)により流入
されるものである。また、タワーIより排出される水
は、下端の排出口12より大粒径土砂と共に排出される
と共に、上端の流出口10からミクロ気泡と微粒径土砂
や有機分との混合物が流出される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, an example of an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows an overall configuration. A tower I is a kind of centrifugal separator that handles three phases of solid, gas, and liquid and is different from a conventional cyclone. Is a similar centrifuge. Excavated earth and sand 6 flowing into the tower I flows into the inlet 7 via the pump 3, while pressurized water 4, 5 in which air, oxygen, or oxygen-rich air is dissolved in supersaturation is supplied to the respective inlet 8. , 9. In this case, the pressurized waters 4 and 5 are also supplied by a pump (not shown). Further, the water discharged from the tower I is discharged together with the large-sized earth and sand from the outlet 12 at the lower end, and a mixture of micro-bubbles and fine-grained sand and organic components is discharged from the outlet 10 at the upper end. .

【0010】図2にてタワーIの内部流動状況を示す。
図2の如く、タワーIの上部では円筒形接線方向に加圧
水4の流入口8が連通され、タワーIの中部では円筒形
接線方向に土砂・水6の流入口7が連通され、そして、
タワーIの下部にて円筒形接線方向に加圧水5の流入口
9が連通されている。
FIG. 2 shows the internal flow state of the tower I.
As shown in FIG. 2, at the upper part of the tower I, an inflow port 8 of the pressurized water 4 is communicated in a cylindrical tangential direction, and in an inner part of the tower I, an inflow port 7 of the earth and water 6 is communicated in a cylindrical tangential direction.
At the lower part of the tower I, an inlet 9 for the pressurized water 5 communicates in a cylindrical tangential direction.

【0011】タワーIへ流入する土砂・水6は、円筒形
のタワーIの接線方向に流入して旋回流を生じる。同様
に加圧水4,5についてもタワーIの接線方向に流入し
て旋回流を生ずる。この場合、加圧水4はタワーIの中
空軸中心付近の低圧部にて多数のミクロ気泡を放出し、
このミクロ気泡は上昇旋回流の遠心力の働きが小さくて
中央部に集まりやすい微粒径土砂や有機分と混合し、界
面張力により気泡に付着し、この付着により比重低下し
てタワーI内の旋回流中心部に更に集まり、この結果遠
心力によりタワーIの側壁に付着する大粒径粒子から容
易に分離できることとなる。この場合、加圧水4による
ミクロ気泡は、小さい粒子を付着させるためには小さい
程良好であるため、飽和加圧水4により20〜30μm
径の微細気泡を多く発生させることが好ましい。更に、
加圧水4はミクロ気泡の発生と共にタワーI内の旋回流
の強さを調整する機能も有するため流入口8を水平方向
のみならず、図1にφにて示すように水平方向に対して
上下方向に角度をもたせて流入口8より上方の旋回力を
緩和させる必要もある。このことは旋回流が強過ぎる場
合には排出すべき大粒径土砂も上部より流出する事態も
考えられることから旋回を弱めるために必要であり、場
合によってはタワーIの接線方向平面内にて流入口8の
向きを旋回流とは全く逆方向として加圧水4を流入され
る可能性もある。
The sediment / water 6 flowing into the tower I flows in the tangential direction of the cylindrical tower I to generate a swirling flow. Similarly, the pressurized waters 4 and 5 flow in the tangential direction of the tower I to generate a swirling flow. In this case, the pressurized water 4 emits many microbubbles at a low pressure portion near the center of the hollow shaft of the tower I,
These microbubbles are mixed with fine-grained sediment and organic matter that tend to collect in the center due to a small effect of the centrifugal force of the upward swirling flow, and adhere to the bubbles by interfacial tension. The particles further gather at the center of the swirling flow, and as a result, the particles can be easily separated from the large-sized particles adhering to the side wall of the tower I by centrifugal force. In this case, the microbubbles formed by the pressurized water 4 are preferably as small as possible to adhere small particles.
It is preferable to generate many fine bubbles having a diameter. Furthermore,
Since the pressurized water 4 also has a function of adjusting the strength of the swirling flow in the tower I together with the generation of microbubbles, the inlet 8 is not only in the horizontal direction but also in the vertical direction with respect to the horizontal direction as shown by φ in FIG. It is also necessary to reduce the turning force above the inflow port 8 by making an angle. This is necessary to weaken the swirl because the swirl flow may cause large-sized earth and sand to be discharged from the upper part if the swirl flow is too strong. The direction of the inflow port 8 may be completely opposite to the swirling flow, and the pressurized water 4 may be introduced.

【0012】流入口9は円筒形のタワーIの下部に接線
方向に連通され、加圧水5が旋回流を生じるように流入
する。この流入口9への加圧水5は、前述した加圧水4
よりも少し高圧にして流入させ、タワーI流入直後の壁
面付近にて多数のミクロ気泡を放出させ、遠心分離され
た壁面の大粒径土砂と激しい混合を行なわせ、タワーI
の中心部に混合した気泡と微粒径土砂や有機分とが集ま
る。この場合、加圧水5の気泡と土砂中の微粒径粒子や
有機分とを旋回流乱流により強力に混合、付着させると
共に、側壁を重力落下する大粒径粒子の中で加圧水5に
よりキャビテーションを生ぜしめることにより大粒径粒
子の周りに付着する微粒径粒子をはがしキャビテーショ
ンによる微細気泡に付着させるいわゆる洗浄作用も生じ
ている。
The inflow port 9 is tangentially connected to the lower portion of the cylindrical tower I, and the pressurized water 5 flows in so as to generate a swirling flow. The pressurized water 5 to the inflow port 9 is
The tower I was allowed to flow at a slightly higher pressure, and a large number of microbubbles were released near the wall immediately after the tower I inflow, and vigorously mixed with the large-diameter sediment on the centrifuged wall.
Bubble mixed with fine-grained sediment and organic matter collects in the center of the surface. In this case, the bubbles of the pressurized water 5 and the fine particles or the organic components in the earth and sand are strongly mixed and adhered by the swirling turbulent flow, and the cavitation is performed by the pressurized water 5 in the large-diameter particles falling on the side wall by gravity. This causes a so-called washing action in which fine particles adhered around the large particles are peeled off and adhered to fine bubbles by cavitation.

【0013】また、タワーI内での大粒径粒子は、強い
乱れの中にて水、気泡が交互に激しく衝突するため、大
粒径粒子表面の微小径粒子がはじき飛ばされるという効
果もある。タワーIの上端部分にはじゃま板11が配置
され、タワーI内中心部に集まった気泡群が流出口10
へストレートに通り抜けるのを防止するために設置して
いる。このじゃま板11は上昇する気泡群を側壁方向へ
押しやることにより、混合気泡と付着効果とを一段と高
めることができる。ここで、流出口10の位置を図1A
−A矢視の如くタワーIの中央上部に置くとタワーIの
旋回流のエネルギは全てタワーI内にて散逸する。流出
口10をタワーIの周りの接線方向とするとき、旋回流
のエネルギの一部が回収されてタワーIIへの連結管内に
入り全体の圧力損失が減少する効果もあるが、壁面の中
粒径粒子の存在によりこの粒子をもタワーIIへ送り出す
可能性も生じる。したがって、状況に応じて流出口10
をタワーI上端中央に設けたり接線方向に設けることに
なる。
Further, the large-diameter particles in the tower I alternately and violently collide with water and bubbles in a strong turbulence, so that there is also an effect that the fine-diameter particles on the surface of the large-diameter particles are repelled. A baffle plate 11 is disposed at an upper end portion of the tower I, and a group of bubbles collected at a central portion in the tower I is discharged from the outlet 10.
It is installed to prevent it from passing straight through. The baffle plate 11 can further increase the mixed bubbles and the adhesion effect by pushing the rising bubbles toward the side wall. Here, the position of the outlet 10 is shown in FIG.
-When placed at the upper center of the tower I as seen from the arrow A, all the energy of the swirling flow of the tower I is dissipated in the tower I. When the outlet 10 is tangential to the periphery of the tower I, part of the energy of the swirling flow is recovered and enters the connecting pipe to the tower II, which has the effect of reducing the overall pressure loss. Due to the presence of large particles, there is also the possibility that these particles will be sent to Tower II. Therefore, depending on the situation, the outlet 10
Is provided at the center of the upper end of the tower I or in the tangential direction.

【0014】以上タワーIでの大粒径粒子の分離と内部
流動状態をまとめると、次のようになる。タワーIに流
入口7より流入する有機分を含む土砂と水の混合水6は
接線方向より流入する為、タワーI内で強い旋回流を生
じ、遠心分離によって大きい粒径の粒子は側壁にとばさ
れて分離される。他方、タワーIの中心部付近には遠心
分離機能で分離しきれない小さな粒径の粒子が多数浮遊
している。ここへ加圧水4が導入されると中心部付近は
周辺部より圧力が低い為、20〜30μm径の多くのミ
クロ気泡が発生し、浮遊している微粒径粒子や有機分な
どに付着する。タワーIの更に下方にて、加圧水5は加
圧水4より少し高圧にし、流入直後の壁面で気泡を発生
する。この気泡はキャビテーションにより発生するが、
サイクロン等の旋回流の場では壁面が最も圧力が高い
為、この発生した気泡が高圧でつぶれて壁面エロージョ
ンを生じることはない。加圧水5の流入口9は土砂6と
水の流入口7より下部にある為、加圧水5の流入する壁
面には遠心分離された粒径の大きい粒子が壁面をつたっ
て重力落下中である。この中へ加圧水5が流入し、キャ
ビテーション気泡(20〜30μm径)を発生する為、
大粒径粒子の周囲に付着した微粒径粒子や有機分を大粒
径粒子からはじきとばすと共に、気泡そのものが分離さ
れた微粒径粒子や有機分に付着し、遠心分離効果により
中心部へ分離搬送する効果をもつ。微粒径粒子、有機分
に付着したものを含め、加圧水4,5より発生したミク
ロ気泡はタワーIの中心部を通って上部へ上り、流出口
10よりタワーIIへ流出する。同時に、タワーIの下端
排出口12から分離された大粒径土砂が排出される。
The separation of the large-diameter particles and the internal flow state in the tower I are summarized as follows. Since the mixed water 6 containing organic matter and water flowing into the tower I from the inlet 7 flows in the tangential direction, a strong swirling flow is generated in the tower I, and particles having a large particle size are deposited on the side wall by centrifugation. Separated. On the other hand, near the center of the tower I, a large number of particles having a small particle size that cannot be separated by the centrifugal separation function are floating. When the pressurized water 4 is introduced here, the pressure in the vicinity of the central part is lower than that in the peripheral part, so that many microbubbles having a diameter of 20 to 30 μm are generated and adhere to floating fine particles or organic components. Further below the tower I, the pressurized water 5 has a slightly higher pressure than the pressurized water 4 and generates air bubbles on the wall immediately after inflow. This bubble is generated by cavitation,
In a swirling flow field such as a cyclone, since the wall surface has the highest pressure, the generated bubbles are not crushed at high pressure to cause wall erosion. Since the inflow port 9 for the pressurized water 5 is located below the earth and sand 6 and the water inflow port 7, centrifugally separated particles having a large particle diameter are gravitationally falling on the wall surface into which the pressurized water 5 flows. Pressurized water 5 flows into this, generating cavitation bubbles (20 to 30 μm diameter).
The fine particles and organics attached to the periphery of the large particles are repelled from the large particles, and the bubbles themselves adhere to the separated fine particles and organics, and are centrifuged to the center. It has the effect of separating and transporting. Microbubbles generated from the pressurized water 4 and 5, including fine particles and those adhering to organic components, go up through the center of the tower I to the top, and flow out of the outlet 10 to the tower II. At the same time, the separated large-sized earth and sand is discharged from the lower end discharge port 12 of the tower I.

【0015】タワーIの上端流出口10から流出した気
泡、微粒径土砂、有機分、水並びに中小粒径土砂は、タ
ワーIIへ送られタワーIIにて拡巾流入口13を介して流
入する。タワーIIでは拡巾流入口13は接線方向に取付
けられ、流量が低下してゆっくりした旋回流を発生させ
る。ここではタワーIにて分離しきれなかった小粒径粒
子を分離する。すなわち、タワーIIへ接線方向から混合
物を導入すると弱い旋回流を生じ、比重差で粒子を分離
する浮上分離効果により、更には遠心力による分離効果
により小粒径粒子を下部排出口14から排出できる。ま
た、微粒径土砂、有機分、ミクロ気泡を含んだ水は上部
流出口15から流出して分離される。更に、流出口15
から流出する水量を減らすためタワーIIの上部にバイパ
ス出口16を接線方向に備えて水を抜出し、流量調整弁
17を介してポンプ3の吸込側に戻している。このタワ
ーIIの内部流動状況を図3に示している。また、図4
は、タワーIIを傾斜させて設置した構成を示しており、
重力落下による小粒径粒子が容器下端に到達するより早
くタワーIIの壁面に到達しかつ遠心力にて壁面に付くこ
とによって分離効率が良くなり、バイパス出口16から
固体粒子が出にくくなる。
Bubbles, fine-grained sediment, organic matter, water, and medium- and small-grained sediment flowing out from the upper end outlet 10 of the tower I are sent to the tower II and flow into the tower II through the widening inlet 13. . In Tower II, the widening inlet 13 is tangentially mounted to reduce the flow rate and generate a slow swirling flow. Here, the small particle particles that could not be separated by the tower I are separated. That is, when the mixture is introduced into the tower II from the tangential direction, a weak swirling flow is generated, and the small-diameter particles can be discharged from the lower discharge port 14 by the flotation effect of separating the particles by the specific gravity difference, and further by the separation effect by the centrifugal force. . Further, water containing fine-grained soil, organic matter, and microbubbles flows out from the upper outlet 15 and is separated. Furthermore, the outlet 15
In order to reduce the amount of water flowing out of the tower II, a bypass outlet 16 is provided in the upper part of the tower II in a tangential direction, and water is extracted and returned to the suction side of the pump 3 via a flow control valve 17. FIG. 3 shows the internal flow state of the tower II. FIG.
Shows a configuration in which Tower II is installed at an angle,
Separation efficiency is improved by small particles having a small particle diameter due to gravity reaching the wall surface of the tower II earlier than reaching the lower end of the container and being attached to the wall surface by centrifugal force, so that solid particles hardly come out from the bypass outlet 16.

【0016】以上のタワーIIでの働きは次のようにな
る。流入口13よりタワーIIに流入するのは、水、気
泡、微粒径土砂、有機分、及びタワーIで分離しきれな
かった小粒径土砂粒子である。タワーIIへの流入水は接
線方向に小さい速度(1m/s 以下)で入り、タワー内に
ゆっくりした旋回流を生じる。この旋回流により流入し
た小粒径粒子の大半が遠心分離される。また、気泡を含
んだ水は中心部に集まり上昇していく。この過程で重力
の効果により中に含まれた小粒径粒子が気泡を含む水よ
り沈降、分離するいわゆる浮上分離が行なわれる。旋回
がかかっている為に気泡に付着した微粒径粒子、有機分
は他の多くの気泡と共に中心部に集まり流出口15より
流出する。この為、タワーII内の上方の側壁周辺にはき
れいな水が分離されて生じることになり、本例ではこれ
をポンプ3の吸込側へバイパスし再利用している。これ
は流出口より流出する水の中の微粒径粒子や有機分を処
理する為には搬送水量が少ない程、望ましいからであ
る。タワーIIを傾斜させた場合の内部流動現象はタワー
IIが直立している時と殆ど同じであるが、重力沈降する
小粒径粒子がタワーIIの下方の側壁に到達する距離が短
い分だけ、浮上分離の効率が上昇すると共に、粒子群が
片側の側壁に集まる為、バイパス出口16からの流出水
に固体粒子が入りにくくなるメリットがある。流出口1
5から流出する流体には水、気泡、微粒径土砂、有機分
が含まれるが、水をバイパスすることもあり、気泡によ
るエアリフトの効果が期待できる。本例では水中、陸上
いずれにても作動するが、水中に設置する場合、このエ
アリフトの効果はポンプ動力を低減できる。
The operation of the above tower II is as follows. What flows into the tower II from the inlet 13 is water, air bubbles, fine-grained sediment, organic matter, and small-grained sediment particles that cannot be completely separated by the tower I. Inflow to Tower II enters tangentially at a small velocity (less than 1 m / s) and creates a slow swirling flow within the tower. Most of the small-sized particles flowing in by this swirling flow are centrifuged. In addition, water containing bubbles gathers at the center and rises. In this process, so-called floating separation is performed in which small-sized particles contained therein settle and separate from water containing bubbles due to the effect of gravity. Due to the swirling, the fine particles and organic components attached to the bubbles collect together with many other bubbles at the center and flow out from the outlet 15. For this reason, clean water is separated and generated around the upper side wall in the tower II. In this example, this is bypassed to the suction side of the pump 3 and reused. This is because, in order to treat fine particles and organic components in the water flowing out from the outlet, the smaller the amount of transported water, the better. The internal flow phenomenon when the Tower II is tilted
This is almost the same as when the II is upright, but the smaller the particles that settle by gravity reach the lower side wall of the Tower II, the higher the efficiency of flotation separation and the smaller the particles are on one side. Is collected on the side wall of the air outlet, there is an advantage that the solid particles hardly enter the effluent from the bypass outlet 16. Outlet 1
The fluid flowing out of 5 includes water, air bubbles, fine-grained sediment, and organic components, but sometimes bypasses the water, so that an effect of air lift by the air bubbles can be expected. In this example, the pump operates underwater or on land, but when installed underwater, the effect of this air lift can reduce pump power.

【0017】図5はタワーIの変形例であり、図1,図
2に示すタワーIの上部にタワーIより径の大きな円筒
容器18及び土砂流出口19を備えている。この径の大
きな円筒容器18(トップハットディスクと称する)の
上部板20は傘状に形成され、水中の空気泡が効率良く
流出口10へ出るように周辺より中心を高くしてある。
このトップハットディスクの目的は中粒径粒子の回収に
ある。タワーIの下部で旋回流の遠心力で大きな粒径の
粒子は殆どが回収されるが、旋回流が強くて上部まで持
出されるものも存在する。この上部まで持出された中粒
径粒子を回収する為、タワーIの上部にトップハットデ
ィスク18を設けるとタワーIから出た旋回流がトップ
ハットディスク18中で拡がり、その周囲では旋回流の
流速が大きく低下し、遠心力で側壁にはりついた中粒径
粒子が周辺下部へ落下し、土砂排出口19にて回収され
る。尚、トップハットディスク18の中へタワーIが突
出した形となっており、この突出した高さの範囲で土砂
を回収し、土砂排出口19より外部へ抽出することがで
きる。勿論、この土砂排出口19よりの排出土砂は、タ
ワーIの下部排出口12からの土砂と同じく気泡と水で
洗われ、濁りの原因となる微粒径粒子を殆ど含まないも
のとなる。図1,図2に示すタワーIでは旋回流が強い
傾向にあり、このため中粒径粒子の回収が低くなること
も考えられる。したがって、中粒径粒子の回収率向上の
ため、トップハットディスク18にて中粒径粒子を壁面
に集めて回収することができる。この場合、トップハッ
トディスク18の形状によりタワーIIの代りに小粒径粒
子の回収も可能であるが、小粒径、中粒径、大粒径と確
実に分離したいときにはタワーIIが必要になる。
FIG. 5 shows a modification of the tower I. The tower I shown in FIGS. 1 and 2 is provided with a cylindrical container 18 having a diameter larger than that of the tower I and a sediment outlet 19 at the upper part of the tower I. The upper plate 20 of this large-diameter cylindrical container 18 (referred to as a top hat disk) is formed in an umbrella shape, and its center is higher than the periphery so that air bubbles in water can flow out to the outlet 10 efficiently.
The purpose of this top hat disk is to recover medium sized particles. At the lower part of the tower I, most of the particles having a large particle diameter are recovered by the centrifugal force of the swirling flow, but there are some particles which are taken out to the upper part due to the strong swirling flow. If a top hat disk 18 is provided at the top of the tower I in order to collect the medium-sized particles taken out to the upper part, the swirl flow coming out of the tower I spreads in the top hat disk 18 and around the swirl flow, The flow velocity is greatly reduced, and the medium-sized particles adhered to the side wall by centrifugal force fall to the lower part of the periphery and are collected at the sediment discharge port 19. The tower I protrudes into the top hat disk 18, and sediment can be collected within the range of the protruding height and extracted to the outside through the sediment discharge port 19. Needless to say, the sediment discharged from the sediment discharge port 19 is washed with bubbles and water similarly to the sediment from the lower discharge port 12 of the tower I, and contains almost no fine particle particles that cause turbidity. In the tower I shown in FIGS. 1 and 2, the swirling flow tends to be strong, and therefore, it is conceivable that the recovery of the medium-sized particles is reduced. Therefore, the medium-sized particles can be collected and collected on the wall surface by the top hat disk 18 in order to improve the recovery rate of the medium-sized particles. In this case, it is possible to collect small-diameter particles instead of the tower II depending on the shape of the top hat disk 18. However, the tower II is required when it is desired to reliably separate small, medium and large particle diameters. .

【0018】図6は、図1と異なる土砂取り込み方を示
しており、ポンプ3により土砂を取りこむ部分に関し、
図1に示す様に水と土砂の混合物として直接とり込むの
でなく、ポンプの吐出口をエジェクタ21に通し、これ
により浚渫土砂6を吸引する。この方法によればポンプ
の回転羽根を土砂による摩耗等により損傷することがな
い。また、エジェクタ21の吸込ラインをフレキシブル
チューブにすることにより広範囲の土砂等を吸引するこ
とができる。
FIG. 6 shows a method of taking in earth and sand different from that of FIG.
As shown in FIG. 1, instead of directly taking in a mixture of water and earth and sand, the discharge port of the pump is passed through an ejector 21 to thereby suck the dredged earth and sand 6. According to this method, the rotating blades of the pump are not damaged by abrasion due to earth and sand. Further, a wide range of earth and sand can be sucked by forming the suction line of the ejector 21 as a flexible tube.

【0019】図7は水底の土砂を掘削、浚渫する時に、
濁水が周囲に拡散しない様に、拡散防止膜22を図示し
ない掘削装置の上にかぶせると共に、タワーIIからの戻
り水(バイパス水)を拡散防止膜22の上に設置された
リングヘダー23に入れ、拡散防止膜22の周りにウォ
ーターカーテンを発生せしめ、工事により濁水の拡散を
完全に防止する。
FIG. 7 shows that when excavating and dredging earth and sand at the bottom of the water,
In order to prevent the turbid water from spreading to the surroundings, the diffusion prevention film 22 is put on an excavator (not shown), and return water (bypass water) from the tower II is put into a ring header 23 installed on the diffusion prevention film 22, A water curtain is generated around the diffusion prevention film 22 to completely prevent turbid water from being diffused by construction.

【0020】図8は、タワーIIよりの流出する水、気
泡、微粒径土砂、有機分の混合物から微粒径土砂、有機
分を分離する構成の一例であり、24は沈澱ろ過槽で、
詳細を図9に示す。ろ過槽24は通常2基設置し、交互
に使用し、使用しない時はろ過材の再生を行なう。図9
にてタワーIIより流出した水、気泡、微粒径土砂、有機
分の混合物はまず、上流槽25に入り、ここで流速を低
下させた後、傾斜したろ過材設置槽26に流入し、上部
より下部へろ過し、微粒径土砂、有機分はろ過材27の
表面付近に残り、水は下部水路28より下流側へ流出す
る。この水は清澄な水であり、任意の水域へ放流可能で
ある。なお、タワーIIより流出する水の中の微粒径土
砂、有機分の処理については、電気的に粒子を回収し、
バイオ技術により有機分処理を行なう方法も考えられ
る。
FIG. 8 shows an example of a structure for separating fine-grained sediment and organic matter from a mixture of water, air bubbles, fine-grained sediment and organic matter flowing out of the tower II.
Details are shown in FIG. Usually, two filtration tanks 24 are installed and used alternately. When not used, the filter medium is regenerated. FIG.
At first, the mixture of water, bubbles, fine-grained sediment, and organic matter flowing out of the tower II first enters the upstream tank 25, where the flow rate is reduced, and then flows into the inclined filtration material installation tank 26, The water is filtered further down, the fine-grained soil and organic components remain near the surface of the filter medium 27, and the water flows out downstream from the lower waterway 28. This water is clear water and can be discharged to any water area. For the treatment of fine-grained soil and organic matter in the water flowing out of Tower II, the particles were collected electrically,
A method of performing organic treatment by biotechnology is also conceivable.

【0021】以上の説明ではタワーIにて加圧水4,5
を別々の流入口8,9から入れた例を示しているが、加
圧水4,5を分けることなく、流入口8から加圧水4を
入れるだけでも分離機能が発揮される。このため、流入
口9を除いた構造としてタワーIを得ても良い。
In the above description, pressurized water 4,5
Is shown from the separate inlets 8 and 9, but the separation function can be exhibited only by adding the pressurized water 4 from the inlet 8 without separating the pressurized waters 4 and 5. Therefore, the tower I may be obtained as a structure excluding the inflow port 9.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、大
粒径粒子、及び中・小粒径粒子を土砂から効率良く分離
させるに当り、従来のようにサイクロンを多数多段にす
る必要がなく保守も簡単となりまた吸い込みポンプ動力
も従来程必要なく小型で済む。更には、旋回流による遠
心分離効果、加圧飽和水によるキャビテーション洗浄効
果、ミクロ気泡と微粒径粒子、有機分の付着を利用した
浮上分離効果を組合せることにより、掘削した土砂と水
の混合物から土砂中の微粒径粒子と有機分のみを水中に
分離することができ、排出される大きい粒子は水中で攪
拌しても微粒径粒子、有機分を含まない為、全く濁りが
なく、この点従来サイクロンにより分離した粒子のよう
に濁らず、分離性能が格段に向上した。
As described above, according to the present invention, in order to efficiently separate large-size particles and medium- and small-size particles from earth and sand, it is necessary to use a large number of cyclones as in the prior art. Maintenance is simple and the power of the suction pump is smaller than before. Furthermore, a mixture of excavated sediment and water is obtained by combining the effect of centrifugal separation by swirling flow, the effect of cavitation cleaning by pressurized saturated water, and the effect of flotation separation using microbubbles, fine particles, and organic matter. Can separate only fine particles and organic matter in the soil from water, and the large particles discharged do not contain fine particles and organic matter even if stirred in water, so there is no turbidity at all, In this respect, the particles did not become turbid like particles separated by a conventional cyclone, and the separation performance was remarkably improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例の全体構成及び各部
矢視図。
FIG. 1 is a diagram showing an overall configuration of an example of an embodiment of the present invention and a view taken from an arrow of each part.

【図2】図1のタワーIの内部流動模式図。FIG. 2 is an internal flow schematic diagram of the tower I of FIG.

【図3】図1のタワーIIの内部流動模式図。FIG. 3 is a schematic diagram of the internal flow of the tower II of FIG.

【図4】タワーIIを傾斜させた場合の内部流動模式図。FIG. 4 is an internal flow schematic diagram when the tower II is inclined.

【図5】タワーIの他の例を示す構成図。FIG. 5 is a configuration diagram showing another example of the tower I.

【図6】エジェクタを加えた全体構成図。FIG. 6 is an overall configuration diagram including an ejector.

【図7】拡散防止膜を加えた全体構成図。FIG. 7 is an overall configuration diagram including a diffusion prevention film.

【図8】沈澱ろ過槽を加えた全体構成図。FIG. 8 is an overall configuration diagram including a sedimentation filtration tank.

【図9】図8の沈澱ろ過槽の機構図。FIG. 9 is a mechanism diagram of the precipitation filtration tank of FIG.

【図10】従来のサイクロンの形状と流動を示す図。FIG. 10 is a diagram showing the shape and flow of a conventional cyclone.

【図11】従来のサイクロンシステムの概念図。FIG. 11 is a conceptual diagram of a conventional cyclone system.

【符号の説明】[Explanation of symbols]

I,II タワー 3 ポンプ 4,5 加圧水 7,8,9 流入口 10,15 流出口 11 じゃま板 12,14 排出口 13 拡巾流入口 16 バイパス出口 18 円筒容器(トップハットディスク) 19 土砂流出口 20 上部板 21 エジェクタ 22 拡散防止膜 23 リングヘダー 24 沈澱ろ過槽 I, II Tower 3 Pump 4,5 Pressurized water 7,8,9 Inlet 10,15 Outlet 11 Baffle plate 12,14 Outlet 13 Widening inlet 16 Bypass outlet 18 Cylindrical vessel (top hat disk) 19 Sediment outflow outlet Reference Signs List 20 upper plate 21 ejector 22 diffusion prevention film 23 ring header 24 sedimentation filtration tank

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 下部円錐状を有する円筒状容器を備え、 この円筒状容器の接線方向にポンプからの土砂を含む水
の流入口を備え、 上記円筒状容器の接線方向に飽和空気量を含む加圧水の
流入口を備え、 上記円筒状容器上端に流出口を備えると共に下部円錐状
下端に粒子の排出口を備え、 た底質分離装置。
1. A cylindrical container having a lower conical shape, an inlet for water containing earth and sand from a pump in a tangential direction of the cylindrical container, and a saturated air amount in a tangential direction of the cylindrical container. A sediment separation device comprising: an inlet for pressurized water; an outlet at the upper end of the cylindrical container; and an outlet for particles at a lower end of the lower conical shape.
【請求項2】 上記加圧水の流入口は円筒状容器の上部
と下部とに別々に備えた請求項1記載の底質分離装置。
2. The sediment separation apparatus according to claim 1, wherein the inflow port of the pressurized water is separately provided at an upper portion and a lower portion of the cylindrical container.
【請求項3】 上記加圧水の流入口は円筒状容器の中空
軸方向に対して所望角度に可動できるようにした請求項
1又は2記載の底質分離装置。
3. The sediment separation apparatus according to claim 1, wherein the inlet of the pressurized water is movable at a desired angle with respect to the direction of the hollow axis of the cylindrical vessel.
【請求項4】 上記円筒状容器の上部にこの円筒状容器
より径の大きな円筒状容器を備え、この径の大きな円筒
状容器の周囲下部に排出口を備えた請求項1記載の底質
分離装置。
4. The sediment separation according to claim 1, wherein a cylindrical container having a diameter larger than the cylindrical container is provided at an upper part of the cylindrical container, and a discharge port is provided at a lower part around the cylindrical container having the large diameter. apparatus.
【請求項5】 上記下部円錐状を有する円筒状容器から
なるタワーIに対して、その後段にタワーIの流出口か
らの水が流入する流入口を接線方向に設けた円筒状容器
と下部円錐状とを有するタワーIIを備え、このタワーII
には下部円錐状下端には排出口を備え上端には流出口を
備えた請求項1記載の底質分離装置。
5. A cylindrical container having a cylindrical container having a lower conical shape and an inlet in which water from an outlet of the tower I flows tangentially provided in a subsequent stage with respect to the tower I formed of a cylindrical container having a lower conical shape. A tower II having a shape
2. The sediment separation apparatus according to claim 1, wherein the lower conical bottom has a discharge port at the lower end and an outlet at the upper end.
【請求項6】 上記タワーIIには円筒状容器上部側壁に
バイパス出口を備えた請求項5記載の底質分離装置。
6. The sediment separation apparatus according to claim 5, wherein said tower II is provided with a bypass outlet in an upper side wall of said cylindrical vessel.
【請求項7】 上記タワーIIは傾斜させて配置した請求
項5記載の底質分離装置。
7. The sediment separation apparatus according to claim 5, wherein said tower II is disposed at an angle.
【請求項8】 円筒状容器の土砂を含む水の流入口とポ
ンプとの間にエジェクタを備えた請求項1記載の底質分
離装置。
8. The sediment separation apparatus according to claim 1, further comprising an ejector provided between the inlet of the water containing earth and sand in the cylindrical container and the pump.
【請求項9】 ポンプによる浚渫土砂上に拡散防止膜を
かぶせた請求項1記載の底質分離装置。
9. The sediment separation apparatus according to claim 1, wherein a diffusion prevention film is covered on the dredged soil by the pump.
【請求項10】 タワーIIの後段には沈澱ろ過槽を備え
た請求項5記載の底質分離装置。
10. The sediment separation apparatus according to claim 5, further comprising a sedimentation filtration tank at a stage subsequent to the tower II.
JP8277839A 1996-10-21 1996-10-21 Bottom material separator Withdrawn JPH10118531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8277839A JPH10118531A (en) 1996-10-21 1996-10-21 Bottom material separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8277839A JPH10118531A (en) 1996-10-21 1996-10-21 Bottom material separator

Publications (1)

Publication Number Publication Date
JPH10118531A true JPH10118531A (en) 1998-05-12

Family

ID=17588991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8277839A Withdrawn JPH10118531A (en) 1996-10-21 1996-10-21 Bottom material separator

Country Status (1)

Country Link
JP (1) JPH10118531A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005640A (en) * 1998-06-22 2000-01-11 Kiyoyuki Horii Separation and concentration of solid in solid liquid mixed phase fluid
JP2000005641A (en) * 1998-06-22 2000-01-11 Kiyoyuki Horii Method for separation or thickening of solid in solid- liquid mixed phase fluid
WO2001041934A1 (en) * 1999-12-13 2001-06-14 Romualdo Luis Ribera Salcedo Recirculation cyclones for dedusting and dry gas cleaning
JP2004298861A (en) * 2003-03-18 2004-10-28 Bunri:Kk Minute bubble generator and filtration apparatus using the same
JP2011235214A (en) * 2010-05-07 2011-11-24 Showa Senjoki Co Ltd Apparatus for cleaning water under high pressure
WO2018066386A1 (en) * 2016-10-03 2018-04-12 日本プライスマネジメント株式会社 Crusher with stirring function

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005640A (en) * 1998-06-22 2000-01-11 Kiyoyuki Horii Separation and concentration of solid in solid liquid mixed phase fluid
JP2000005641A (en) * 1998-06-22 2000-01-11 Kiyoyuki Horii Method for separation or thickening of solid in solid- liquid mixed phase fluid
WO2001041934A1 (en) * 1999-12-13 2001-06-14 Romualdo Luis Ribera Salcedo Recirculation cyclones for dedusting and dry gas cleaning
US6733554B2 (en) 1999-12-13 2004-05-11 Romualdo Luis Ribera Salcedo Re-circulating system for de-dusting and dry gas cleaning
JP2004298861A (en) * 2003-03-18 2004-10-28 Bunri:Kk Minute bubble generator and filtration apparatus using the same
JP2011235214A (en) * 2010-05-07 2011-11-24 Showa Senjoki Co Ltd Apparatus for cleaning water under high pressure
WO2018066386A1 (en) * 2016-10-03 2018-04-12 日本プライスマネジメント株式会社 Crusher with stirring function

Similar Documents

Publication Publication Date Title
CN208660460U (en) A kind of device of quick separating desilting particle
CN102755768B (en) Sludge treatment device used at pressure type pumping and drainage outlet
CN209537204U (en) Magnetic loads water treatment facilities
JP2001020318A (en) Waters purifying method and waters purifying system and dam soil discharging system
CN101353189A (en) Single cyclone coagulation reactor and oil-contaminated water processing method
CN210698952U (en) Silt whirl deposits device suitable for sewage purification handles
CN104058526A (en) Flushing fluid purification treatment process
CN107445327A (en) A kind of integrated apparatus and method of waterpower collaboration flotation processing sewage
CN106946380A (en) A kind of high-turbidity water purifier and purification method for effluent
JP4009180B2 (en) Suspended water separation treatment system
JPH10118531A (en) Bottom material separator
US10065197B2 (en) Hydraulic particle separation apparatus for placer mining
CN104941266A (en) Combined type centrifugal sediment cyclone separation device
CN210186572U (en) Waste water suspended matter filtering system
CN205999147U (en) A kind of girt-water separation device
JP2005205251A (en) System and apparatus for classifying dredged soil by using pneumatic conveying system
CN107823923A (en) A kind of radical sedimentation basin that can effectively prevent precipitum from being accumulated in bottom of pond
CN208200649U (en) Efficient magnetic force floatation purification device
CN206466998U (en) A kind of gas floatation separation device
CN202700154U (en) Sludge treatment device at pressure type water pumping and drainage outlet
CN110104838A (en) A kind of the AUTOMATIC ZONING separating treatment system and its processing method of oily wastewater
CN103818983A (en) Oil-sludge-water separation device
CN206607098U (en) One kind cleaning HDPE reclaimed materials sewage disposal systems
CN213221092U (en) High-efficient whirl deposits water purifier
CN211799035U (en) Hydraulic sand setting and sewage intercepting device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106