JPH10116774A - Method and apparatus for exposure - Google Patents

Method and apparatus for exposure

Info

Publication number
JPH10116774A
JPH10116774A JP8272075A JP27207596A JPH10116774A JP H10116774 A JPH10116774 A JP H10116774A JP 8272075 A JP8272075 A JP 8272075A JP 27207596 A JP27207596 A JP 27207596A JP H10116774 A JPH10116774 A JP H10116774A
Authority
JP
Japan
Prior art keywords
exposure
mask
substrate
illumination
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8272075A
Other languages
Japanese (ja)
Inventor
Takashi Inoue
隆史 井上
Yoshiji Fujita
佳児 藤田
Satoru Kimura
悟 木村
Hiroyuki Nagano
寛之 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8272075A priority Critical patent/JPH10116774A/en
Publication of JPH10116774A publication Critical patent/JPH10116774A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exposure method in which an exposure operation can be performed uniformly over the whole face of an exposure region in a proximity exposure method in which a local illuminating operation is scanned so as to expose the whole face of a substrate. SOLUTION: In a proximity exposure method, a substrate 9 and a mask 7 are supported so as to be faced, illuminating light is irradiated from the upper part of the mask 7, and a mask pattern is transferred to a photosensitizer which is coated on the substrate 9. In this case, an illuminating operation is set as a scanning-type local illuminating operation, the cross-sectional shape of a beam by the illuminating light is formed to be a hexagonal shape, the interval between two sides at right angles to the scanning direction of the illuminating operation out of its six sides is adjusted, the luminance of the illuminating light during an exposure operation is measured sequentially by an illuminance sensor 17, and the scanning speed of a local illuminating part 12 is changed sequentially on the basis of its measured result so as to perform the exposure operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体や液晶表示
装置の製造において用いられる露光装置に関するもので
ある。
[0001] 1. Field of the Invention [0002] The present invention relates to an exposure apparatus used in the manufacture of semiconductors and liquid crystal display devices.

【0002】[0002]

【従来の技術】プロキシミティ露光方法(近接露光法)
というのは、感光剤を塗布したガラス基板またはウエハ
(以後単に基板と呼ぶ)とマスクを近接させた状態で支
持し、マスク上方より照明光を照射してマスクパターン
を感光剤に転写する露光方法である。この方法は投影露
光方法と比べると、複雑なレンズ系や高精度なステージ
を必要としないので低コスト化しやすく、またコンタク
ト露光法と比べると、マスクと基板が直接接触しないの
で感光剤の剥がれによる不良が発生しにくいという優れ
た特徴を持っている。しかしプロキシミティ露光方法
は、投影露光方法と違い、基板の延び縮みに応じた露光
パターンの倍率調整が困難である。従来この方法とし
て、照明光に走査形の局所照明を用い、その走査に同期
させて、マスクと基板を相対移動させる方法が考えられ
てきた(たとえば特願平6−44051号)。
2. Description of the Related Art Proximity exposure method (proximity exposure method)
That is, an exposure method for supporting a glass substrate or wafer (hereinafter simply referred to as a substrate) coated with a photosensitive agent and a mask in close proximity, and irradiating illumination light from above the mask to transfer a mask pattern to the photosensitive agent. It is. Compared with the projection exposure method, this method does not require a complicated lens system and a high-precision stage, so it is easy to reduce the cost.In comparison with the contact exposure method, the mask and the substrate do not directly contact, so the photosensitive agent peels off It has an excellent feature that defects are unlikely to occur. However, the proximity exposure method is different from the projection exposure method in that it is difficult to adjust the magnification of the exposure pattern according to the extension and contraction of the substrate. Conventionally, as this method, a method of using a scanning type local illumination as illumination light and relatively moving a mask and a substrate in synchronization with the scanning has been considered (for example, Japanese Patent Application No. 6-44051).

【0003】以下、従来のプロキシミティ露光方法およ
びその装置について図7から図11を参照して説明す
る。図7は従来のプロキシミティ露光装置の概略図であ
る。図8は局所照明部の詳細図、図9は走査を示す斜視
図、図10は走査経路の図、図11は積算露光量を示す
図である。図7において、11は架台、18は架台11
に固定されたX軸ガイド、16はX軸ガイド18にX方
向摺動自在に取り付けられ図示しないボールネジを介し
て図示しないX軸モータにより駆動可能なXステージ、
15はXステージ16に固定されたY軸ガイド、19は
Y軸ガイドに固定されたY軸モータ、13はY軸ガイド
15に摺動自在に取り付けられ、ボールネジ14を介し
てY軸モータ19により駆動されるYステージ、12は
Yステージ13に固定された局所照明部、5は第1のレ
ンズ群5aと第2のレンズ群5bとからなる投影レンズ
系、4は投影レンズ系5とともに局所照明部12の中に
固定された光学インテグレータ、1は水銀ランプ、2は
楕円ミラー、3は一端を局所照明部12に固定され他端
を楕円ミラー2の焦点に配置された光ファイバー、6は
局所照明部12の下部に取り付けられたアパーチャ、7
はマスク、8はマスク7を吸着保持するマスクチャッ
ク、9はマスク7に対向保持された基板、25は基板9
を吸着保持する基板チャック、10は架台11上でXY
方向に移動できるXYステージ、23はY軸モータ19
を制御するサーボモータドライバ、22はサーボモータ
ドライバ23に指令値を与える設定器である。
Hereinafter, a conventional proximity exposure method and apparatus will be described with reference to FIGS. FIG. 7 is a schematic view of a conventional proximity exposure apparatus. 8 is a detailed view of the local illumination unit, FIG. 9 is a perspective view showing scanning, FIG. 10 is a view of a scanning path, and FIG. 11 is a view showing an integrated exposure amount. In FIG. 7, reference numeral 11 denotes a gantry, and 18 denotes a gantry 11.
An X stage 16 fixed to the X axis guide 18 is slidably mounted on the X axis guide 18 in the X direction and can be driven by an X axis motor (not shown) through a ball screw (not shown).
Reference numeral 15 denotes a Y-axis guide fixed to the X-stage 16, 19 denotes a Y-axis motor fixed to the Y-axis guide, and 13 denotes a slidably mounted to the Y-axis guide 15, and is provided by a Y-axis motor 19 via a ball screw 14. A driven Y stage, 12 is a local illumination unit fixed to the Y stage 13, 5 is a projection lens system including a first lens group 5a and a second lens group 5b, and 4 is a local illumination together with the projection lens system 5. 1 is a mercury lamp, 2 is an elliptical mirror, 3 is an optical fiber fixed at one end to the local illumination unit 12 and the other end is located at the focal point of the elliptical mirror 2, and 6 is local illumination. Aperture mounted at the bottom of part 12, 7
Is a mask, 8 is a mask chuck for holding the mask 7 by suction, 9 is a substrate held opposite to the mask 7, and 25 is a substrate 9
Chuck 10 for sucking and holding XY on gantry 11
XY stage that can move in the direction
Is a setting device for giving a command value to the servo motor driver 23.

【0004】以上のように構成された従来の露光装置に
ついて以下その動作を説明する。まず局所照明による走
査露光について説明する。この照明は、水銀ランプ1か
ら発した光を楕円ミラー2で集光し、光ファイバー3の
一端ヘ導き他端から出射した光束を、光学インテグレー
タ4へ導き、光学インテグレータ4内で多数回反射させ
た後、光学インテグレータ4の出力端において均一な光
強度分布をもつ光束に整え、その端面の像を投影レンズ
系5によって、マスク7の下面の高さに拡大投影し、そ
れと同時に平行光線に調整する。こうして得られた均一
な光強度分布を持つ平行光束を、局所照明部12の下面
に取り付けたアパーチャ6によって六角形に成形して照
明光38にする。そしてこの局所照明部12を図9に示
すようにマスク7と基板9を対向させた上方を予め設定
器22で設定した定速度で走査させることで基板9全面
にマスク7上のパターンを露光転写できる。図10はこ
の時の照明光38の走査経路を示す図であり、図11は
照明光38の走査の継ぎ目部分における積算露光量を示
す図である。図11(b)に示すように、走査の継ぎ目
においても積算露光量は一定となり、基板全面において
均一な露光ができる。次に倍率調整について説明する。
このように局所照明部12を走査させることで基板全面
を露光する方式にして、局所照明部が基板上をY方向に
1行走査する間に、その走査に同期させて基板9とマス
ク7をY方向に逐次相対移動させることでY方向の誤差
分配を行い、また局所照明部をX方向にステップ移動し
て改行する際に基板9とマスク7の相対位置をステップ
移動させて行単位での誤差分配を行うことで、Y方向に
ついて無段階に、X方向については段階的に倍率を調整
できる。
The operation of the conventional exposure apparatus configured as described above will be described below. First, scanning exposure using local illumination will be described. In this illumination, the light emitted from the mercury lamp 1 is condensed by the elliptical mirror 2, guided to one end of the optical fiber 3, the light beam emitted from the other end is guided to the optical integrator 4, and reflected in the optical integrator 4 many times. Thereafter, a light beam having a uniform light intensity distribution is prepared at the output end of the optical integrator 4, and an image of the end face is enlarged and projected to the height of the lower surface of the mask 7 by the projection lens system 5, and at the same time, is adjusted to parallel rays. . The parallel light beam having a uniform light intensity distribution obtained in this way is shaped into a hexagon by the aperture 6 attached to the lower surface of the local illumination unit 12 to produce illumination light 38. The pattern on the mask 7 is exposed and transferred over the entire surface of the substrate 9 by scanning the local illuminator 12 above the mask 7 and the substrate 9 facing each other at a constant speed set by a presetter 22 as shown in FIG. it can. FIG. 10 is a diagram showing a scanning path of the illumination light 38 at this time, and FIG. 11 is a diagram showing an integrated exposure amount at a seam portion of the scanning of the illumination light 38. As shown in FIG. 11B, the integrated exposure amount is constant even at the seam of scanning, and uniform exposure can be performed on the entire surface of the substrate. Next, the magnification adjustment will be described.
In this manner, the entire surface of the substrate is exposed by scanning the local illuminator 12, and while the local illuminator scans one line in the Y direction on the substrate, the substrate 9 and the mask 7 are synchronized with the scanning. Error distribution in the Y direction is performed by successively moving the local illuminator in the Y direction, and when the local illumination unit is stepped in the X direction to start a line feed, the relative position between the substrate 9 and the mask 7 is stepwise moved so as to be line by line. By performing the error distribution, the magnification can be adjusted steplessly in the Y direction and stepwise in the X direction.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この構
成によるプロキシミティ露光装置は、局所照明部12の
走査速度が一定であるために、露光途中で水銀ランプ1
の輝度が変化すると露光むらを生じることになる。また
使用する感光剤がネガタイプ感光剤の場合、同一の積算
露光量であっても1回で露光した場合と2回に分けて露
光した場合とで、感光度合いが異なり、その結果走査露
光の継ぎ目部分に露光むらが生じるという問題点を有し
ていた。これを図3を使って説明する。図3(a)は、
ネガタイプ感光剤を塗布した基板に一定線幅のマスクパ
ターンを露光転写する際に、積算露光量が同一になるよ
うに種々の分割比率で二重露光した場合の、露光量の分
割比率の違いによる露光線幅の違いを示す図である。横
軸は全露光量に対する1回目の露光量の比率を表してお
り、0と10/10は二重露光をせずに一度で露光した
ことを示している。また図3(b)は一回露光の場合
の、露光量の増減による露光線幅の変化を示す図で、ネ
ガタイプ感光剤の場合、露光量が増加することで比例的
に露光線幅が太くなることを示している。これらの図よ
り、たとえ積算露光量が同一であっても二重露光を行う
と露光線幅が細くなり、結果的に露光不足と同じ状態に
なることが分かる。そしてこの現象のために、従来の方
法では走査露光の継ぎ目部分で露光むらが生じていた。
However, in the proximity exposure apparatus having this configuration, since the scanning speed of the local illumination section 12 is constant, the mercury lamp 1 is not exposed during the exposure.
When the brightness of the image changes, uneven exposure occurs. When the photosensitive agent used is a negative type photosensitive agent, the degree of exposure differs between the case where exposure is performed once and the case where exposure is performed twice, even if the integrated exposure amount is the same. There has been a problem that exposure unevenness occurs in portions. This will be described with reference to FIG. FIG. 3 (a)
When exposing and transferring a mask pattern with a fixed line width on a substrate coated with a negative type photosensitive agent, due to the difference in the division ratio of the exposure amount when performing double exposure at various division ratios so that the integrated exposure amount is the same FIG. 4 is a diagram illustrating a difference in exposure line width. The horizontal axis represents the ratio of the first exposure amount to the total exposure amount, and 0 and 10/10 indicate that exposure was performed at once without performing double exposure. FIG. 3B is a diagram showing a change in the exposure line width due to an increase or decrease in the exposure amount in the case of a single exposure. In the case of a negative type photosensitive agent, the exposure line width increases proportionally as the exposure amount increases. It has become. From these figures, it can be seen that even if the integrated exposure amount is the same, the exposure line width becomes narrower when double exposure is performed, resulting in the same state as underexposure. Due to this phenomenon, in the conventional method, exposure unevenness has occurred at a joint portion of scanning exposure.

【0006】そこで本発明は、これらの問題点を解決
し、倍率調整が可能で、露光中に水銀ランプの輝度が変
化する場合や、ネガタイプ感光剤を使用した場合におい
ても、基板全面において均一な露光転写を可能とする露
光方法およびその装置を提供するものである。
Accordingly, the present invention solves these problems, and enables magnification adjustment. Even when the brightness of a mercury lamp changes during exposure or when a negative type photosensitive agent is used, the uniformity can be obtained over the entire surface of the substrate. It is an object of the present invention to provide an exposure method and an exposure method that enable exposure transfer.

【0007】[0007]

【課題を解決するための手段】本願の第1発明は、上記
課題を解決するために、基板とマスクを対向させて支持
し、マスク上方より照明光を照射してマスクパターンを
基板上に塗布した感光剤に転写するプロキシミティ露光
方法において、照明を走査形の局所照明とし、走査露光
中に前記照明の照度を逐次計測し、その計測値をもとに
前記局所照明の走査速度を逐次調節して、露光領域の全
ての部分について積算露光量が所定の値になるように露
光することを特徴とする露光方法を提供する。
According to a first aspect of the present invention, to solve the above problems, a substrate and a mask are opposed to each other, and a mask pattern is coated on the substrate by irradiating illumination light from above the mask. In the proximity exposure method of transferring to the photosensitive agent, the illumination is a scanning type local illumination, the illuminance of the illumination is sequentially measured during the scanning exposure, and the scanning speed of the local illumination is sequentially adjusted based on the measured value. Then, an exposure method is provided in which the exposure is performed so that the integrated exposure amount becomes a predetermined value for all portions of the exposure area.

【0008】本願の第2発明は、基板とマスクを対向さ
せて支持し、マスク上方より照明光を照射してマスクパ
ターンを基板上に塗布したネガタイプ感光剤に転写する
プロキシミティ露光方法において、照明を走査形の局所
照明とし、局所照明より照射されるビームの断面形状を
六角形にし、その六辺の内、前記局所照明の走査方向に
直行する二辺の間隔を調節することにより露光むらを減
少させることを特徴とする露光方法を提供する。
According to a second aspect of the present invention, there is provided a proximity exposure method for supporting a substrate and a mask so as to face each other, irradiating illumination light from above the mask, and transferring the mask pattern to a negative type photosensitive agent coated on the substrate. Is a scanning-type local illumination, the cross-sectional shape of the beam emitted from the local illumination is hexagonal, of the six sides, by adjusting the interval between two sides perpendicular to the scanning direction of the local illumination, exposure unevenness. An exposure method is provided, characterized in that the exposure is reduced.

【0009】本願の第3発明は、基板とマスクを対向さ
せて支持し、マスク上方より照明光を照射してマスクパ
ターンを基板上に塗布した感光剤に露光焼き付けするプ
ロキシミティ露光装置において、マスク上方を走査する
局所照明部と、局所照明部による照明光の照度を逐次計
測する照度センサーと、照度センサーの出力値と積算露
光量の設定値とに基づいて前記局所照明部の走査速度を
コントロールする制御手段とを備えたことを特徴とする
露光装置を提供する。
According to a third aspect of the present invention, there is provided a proximity exposure apparatus for supporting a substrate and a mask so as to face each other, irradiating illumination light from above the mask, and exposing and printing a mask pattern on a photosensitive agent applied on the substrate. A local illuminator that scans upwards, an illuminance sensor that sequentially measures the illuminance of illumination light from the local illuminator, and a scanning speed of the local illuminator that is controlled based on an output value of the illuminance sensor and a set value of the integrated exposure amount. An exposure apparatus is provided, comprising:

【0010】本願の第4発明は、基板とマスクを対向さ
せて支持し、マスク上方より照明光を照射してマスクパ
ターンを基板上に塗布した感光剤に露光焼き付けするプ
ロキシミティ露光装置において、マスク上方を走査する
局所照明部と、局所照明部によるビームの断面形状を六
角形に成形するアパーチャと、六角形のビームの六辺の
内、前記局所照明部の走査方向と直交する一辺の位置を
走査方向に平行移動させるビーム成形手段とを備えたこ
とを特徴とする露光装置を提供する。
A fourth aspect of the present invention is a proximity exposure apparatus for supporting a substrate and a mask so as to face each other, irradiating illumination light from above the mask, and exposing and printing a mask pattern on a photosensitive agent applied on the substrate. A local illumination unit that scans upward, an aperture that shapes the cross-sectional shape of the beam by the local illumination unit into a hexagon, and the position of one side of the six sides of the hexagonal beam that is orthogonal to the scanning direction of the local illumination unit. An exposure apparatus comprising: a beam shaping unit that translates in a scanning direction.

【0011】[0011]

【作用】本願の第1発明によると、走査形の局所照明を
用い、走査露光中にその照度を逐次計測し、その照度L
と走査速度vが、L/v=一定になるように走査速度v
を調節することで積算露光量S=L×d/vが一定とな
り(dは局所照明の走査方向のビーム幅)、走査露光方
式でありながら露光領域全体において、積算露光量を均
一化できる。
According to the first aspect of the present invention, the illuminance is sequentially measured during the scanning exposure using the scanning type local illumination, and the illuminance L is measured.
And the scanning speed v such that L / v = constant.
Is adjusted, the integrated exposure amount S = L × d / v becomes constant (d is the beam width in the scanning direction of the local illumination), and the integrated exposure amount can be made uniform over the entire exposure area while using the scanning exposure method.

【0012】本願の第2発明によると、局所照明より照
射されるビームの断面形状を六角形にし、その六辺の内
の走査方向に直交する二辺の間隔を調節して、走査露光
の継ぎ目部分における積算露光量を変化させることで、
ネガタイプ感光剤を使った走査露光において継ぎ目部分
での露光むらを減少させることができる。これを図3と
図4により説明する。図3に示すように、ネガタイプ感
光剤で二重露光を行って一回露光と同一の線幅を得るに
は、二重露光の分割の比率に応じて積算露光量を増やさ
なければならない。この結果に基づいて走査露光の継ぎ
目部分で積算露光量に変化がつくようアパーチャを変形
すると図4(a)の形状となり、図4(b)に示す、六
角形の走査方向に直交する二辺の間隔を変えた形状で近
似でき、こうすることで露光むらを減少させることがで
きる。図5、図6は図4の(a)、(b)各々の場合の
継ぎ目部分の積算露光量を示しており、これらの図から
明らかなように、この2回露光された継ぎ目部分の積算
露光量が1回露光された他の部分のそれより大となるこ
とにより、ネガタイプ感光剤に対する露光むらを減少さ
せることができるのである。
According to the second aspect of the present invention, the cross-sectional shape of the beam emitted from the local illumination is made hexagonal, and the distance between two sides of the six sides orthogonal to the scanning direction is adjusted, so that the joint of the scanning exposure is formed. By changing the integrated exposure amount in the part,
In scanning exposure using a negative type photosensitive agent, it is possible to reduce exposure unevenness at a joint portion. This will be described with reference to FIGS. As shown in FIG. 3, in order to obtain the same line width as that of single exposure by performing double exposure with a negative type photosensitive agent, the integrated exposure amount must be increased in accordance with the division ratio of double exposure. When the aperture is deformed so that the integrated exposure amount changes at the seam portion of the scanning exposure based on the result, the shape of FIG. 4A is obtained, and the two sides orthogonal to the hexagonal scanning direction shown in FIG. Can be approximated by changing the distance between the pixels, and thereby, exposure unevenness can be reduced. FIGS. 5 and 6 show the integrated exposure amount of the seam portion in each of FIGS. 4A and 4B. As is apparent from these figures, the integrated light amount of the seam portion exposed twice is shown in FIGS. By making the exposure amount larger than that of the other portion exposed once, it is possible to reduce the unevenness in exposure to the negative type photosensitive agent.

【0013】本願の第3発明によると、上記の構成にす
ることで露光中に照明光の照度を逐次計測し、その照度
に応じて走査速度を調節できるので、露光中に水銀ラン
プの輝度が変化しても均一な露光のできる露光装置を提
供できる。
According to the third aspect of the present invention, by adopting the above configuration, the illuminance of the illumination light can be sequentially measured during the exposure, and the scanning speed can be adjusted according to the illuminance. An exposure apparatus capable of performing uniform exposure even when it changes can be provided.

【0014】本願の第4発明によれば、局所照明の六角
形の照射ビームの六辺の内の走査方向と直交する一辺を
走査方向に平行移動することで、走査露光の継ぎ目部分
で積算露光量を変化させることができ、ネガタイプ感光
剤についても露光領域全体で均一な露光のできる露光装
置を提供できる。
According to the fourth aspect of the present invention, one of the six sides of the hexagonal irradiation beam of the local illumination, which is orthogonal to the scanning direction, is moved in parallel in the scanning direction, so that the integrated exposure is performed at the joint portion of the scanning exposure. It is possible to provide an exposure apparatus capable of changing the amount, and capable of uniformly exposing a negative type photosensitive agent over the entire exposure area.

【0015】[0015]

【発明の実施の形態】以下本発明の実施形態について、
図面を参照しながら説明する。図1は本発明の一実施形
態を示す図である。図2は本実施形態における局所照明
部の詳細図で、図2(c)は図2(b)の側面図、図2
(d)は図2(a)の底面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
This will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of the present invention. FIG. 2 is a detailed view of the local illumination unit in the present embodiment. FIG. 2C is a side view of FIG.
FIG. 2D is a bottom view of FIG.

【0016】図1において、11は架台、18は架台1
1に固定されたX軸ガイド、16はX軸ガイド18にX
方向摺動自在に取り付けられ図示しないボールネジを介
して図示しないX軸モータにより駆動可能なXステー
ジ、15はXステージ16に固定されたY軸ガイド、1
9はY軸ガイドに固定されたY軸モータ、13はY軸ガ
イド15に摺動自在に取り付けられ、ボールネジ14を
介してY軸モータ19により駆動されるYステージ、1
2はYステージ13に固定された局所照明部、5は第1
のレンズ群5aおよび第2のレンズ群5bからなる投影
レンズ系、4は投影レンズ系5とともに局所照明部12
の中に固定された光学インテグレータ、1は水銀ラン
プ、2は楕円ミラー、3は一端を局所照明部12に固定
され他端を楕円ミラー2の焦点に配置された光ファイバ
ー、6は局所照明部12の下部に取り付けられたアパー
チャ、7はマスク、8はマスク7を吸着保持するマスク
チャック、9はマスク7に対向保持された基板、25は
基板9を吸着保持する基板チャック、10は架台11上
でXY方向に移動できるXYステージ、17は局所照明
部12に取り付けられた照度センサ、24は照度センサ
アンプ20、コントローラ21、設定器22、およびサ
ーボモータドライバ23で構成され、一端が照度センサ
17に他端がY軸モータ19に電気的に接続された制御
手段である。また図2において、30は第1のレンズ群
5aと第2のレンズ群5bとの間に配置された平面ミラ
ー、31は局所照明部12に取り付けられた遮光板ベー
ス、33は遮光板ベースに取り付けられたモータ、34
は光学インテグレータ4の端面に配置されz方向に摺動
可能な遮光板、32は一端を遮光板34に他端をモータ
33に取り付けられたボールネジ、35は光学インテグ
レータ4の出射端39が投影された投影光、37は光学
インテグレータ出射端面39の中の遮光エリア、36は
遮光エリア37の遮光エリア投影像、38は照明光であ
る。
In FIG. 1, reference numeral 11 denotes a gantry, and 18 denotes a gantry 1.
The X-axis guide fixed to 1, and the X-axis guide 18
An X stage, which is slidably mounted in the direction and can be driven by an X axis motor (not shown) through a ball screw (not shown), 15 is a Y axis guide fixed to an X stage 16, 1
Reference numeral 9 denotes a Y-axis motor fixed to the Y-axis guide. Reference numeral 13 denotes a Y stage, which is slidably mounted on the Y-axis guide 15 and is driven by a Y-axis motor 19 via a ball screw 14.
2 is a local illumination unit fixed to the Y stage 13 and 5 is a first
The projection lens system 4 including the lens group 5a and the second lens group 5b
1 is a mercury lamp, 2 is an elliptical mirror, 3 is an optical fiber fixed at one end to the local illumination unit 12 and the other end is located at the focal point of the elliptical mirror 2, 6 is the local illumination unit 12 , A mask, 8 is a mask chuck for sucking and holding the mask 7, 9 is a substrate held opposite to the mask 7, 25 is a substrate chuck for sucking and holding the substrate 9, 10 is on the gantry 11 Is an XY stage that can move in the XY directions, 17 is an illuminance sensor attached to the local illumination unit 12, 24 is an illuminance sensor amplifier 20, a controller 21, a setting unit 22, and a servo motor driver 23, and one end is an illuminance sensor 17 The other end is control means electrically connected to the Y-axis motor 19. In FIG. 2, reference numeral 30 denotes a plane mirror disposed between the first lens group 5a and the second lens group 5b, 31 denotes a light-shielding plate base attached to the local illumination unit 12, and 33 denotes a light-shielding plate base. Mounted motor, 34
Is a light-shielding plate disposed on the end face of the optical integrator 4 and slidable in the z direction, 32 is a ball screw having one end mounted on the light-shielding plate 34 and the other end mounted on the motor 33, and 35 is the projection end 39 of the optical integrator 4 projected thereon. Projection light 37, a light-shielding area in the optical integrator emission end face 39, 36 is a light-shielded area projection image of the light-shielding area 37, and 38 is illumination light.

【0017】以上のように構成された露光装置について
以下その動作を説明する。まず局所照明部について説明
する。この照明は、水銀ランプ1から発した光を楕円ミ
ラー2で集光し、光ファイバー3の一端へ導き他端から
出射した光束を、光学インテグレータ4へ導き、光学イ
ンテグレータ4内で多数回反射させた後、光学インテグ
レータ4の出射端39において均一な光強度分布をもつ
光束に整え、その端面の像を投影レンズ系5によって、
マスク7の下面の高さに拡大投影し、それと同時に平行
光線に調整されて投影光35となる。そして遮光板34
をボールネジ32を介してモータ33により遮光板ベー
ス31上をz方向に移動して光学インテグレータ4の出
射端面39に遮光エリア37を設けると、その遮光エリ
ア37も投影レンズ系5によって拡大投影されて遮光エ
リア投影像36となる。こうして投影光35の一部が切
り取られ、残った光線は、さらにその後のアパーチャ6
によって五辺を切り取られて六角形の照明光38とな
り、図4(b)に示した、六角形の六辺の内の走査方向
Yと直交する一辺を平行移動した形状の照明光が形成で
きる。そしてこの局所照明部12を支持しているYステ
ージ13をボールネジ14を介してY軸モータ19によ
り駆動し、Y軸ガイド15に沿って移動させて走査露光
を行うことで走査露光の継ぎ目部分において積算露光量
を増加させ、ネガタイプ感光剤を用いた場合について
も、露光むらを減少でき露光領域全体で均一な露光が行
える。さらに露光中に照明光の照度を照度計17により
逐次計測し、その計測値を基に制御手段24によって、
照度とYステージ速度の比が常に一定になるようY軸モ
ータ19を逐次制御することで、露光中に水銀ランプ1
の輝度が変化しても、露光領域全体で均一な露光を実現
できる。
The operation of the exposure apparatus configured as described above will be described below. First, the local illumination unit will be described. In this illumination, the light emitted from the mercury lamp 1 was condensed by the elliptical mirror 2, guided to one end of the optical fiber 3, the light flux emitted from the other end was guided to the optical integrator 4, and reflected many times in the optical integrator 4. Thereafter, a light beam having a uniform light intensity distribution is formed at the exit end 39 of the optical integrator 4, and an image of the end surface is projected by the projection lens system 5.
The projection is enlarged to the height of the lower surface of the mask 7 and, at the same time, is adjusted to parallel rays to become projection light 35. And the shading plate 34
Is moved in the z-direction on the light-shielding plate base 31 by the motor 33 via the ball screw 32 to provide a light-shielding area 37 on the emission end face 39 of the optical integrator 4. The light-shielding area 37 is also enlarged and projected by the projection lens system 5. The light-shielded area projected image 36 is obtained. Thus, a part of the projection light 35 is cut off, and the remaining light beam is further transmitted to the aperture 6.
The five sides are cut off to form hexagonal illumination light 38, and illumination light having a shape in which one side of the six sides of the hexagon orthogonal to the scanning direction Y is moved in parallel as shown in FIG. 4B can be formed. . Then, the Y stage 13 supporting the local illumination unit 12 is driven by a Y-axis motor 19 via a ball screw 14 and moved along a Y-axis guide 15 to perform scanning exposure. Even when the integrated exposure amount is increased and a negative type photosensitive agent is used, uneven exposure can be reduced and uniform exposure can be performed over the entire exposure area. Further, during the exposure, the illuminance of the illumination light is sequentially measured by the illuminometer 17, and based on the measured value,
By sequentially controlling the Y-axis motor 19 so that the ratio between the illuminance and the Y-stage speed is always constant, the mercury lamp 1 is exposed during the exposure.
Even if the brightness of the image changes, uniform exposure can be realized over the entire exposure area.

【0018】[0018]

【発明の効果】本願の第1、第3発明によれば、照明を
走査形の局所照明とし、露光中に照度を逐次計測し、そ
の計測結果に基づいて走査速度を逐次変化させることに
より、露光中に水銀ランプの輝度が変化しても、露光領
域全面において均一な露光ができる。
According to the first and third aspects of the present invention, the illumination is a scan-type local illumination, the illuminance is sequentially measured during exposure, and the scanning speed is sequentially changed based on the measurement result. Even if the brightness of the mercury lamp changes during exposure, uniform exposure can be performed over the entire exposure area.

【0019】本願の第2、第4発明によれば、照明を走
査形局所照明とし、照明光のビームの断面形状を六角形
にして、その六辺の内、局所照明の走査方向に直交する
二辺の間隔を変えることにより、ネガタイプ感光剤を露
光する場合においても露光領域全体で均一な露光ができ
る。
According to the second and fourth aspects of the present invention, the illumination is scanning local illumination, the cross-sectional shape of the illumination light beam is hexagonal, and the six sides are orthogonal to the scanning direction of the local illumination. By changing the distance between the two sides, even when exposing a negative type photosensitive agent, uniform exposure can be performed over the entire exposure area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における露光装置の原理
図。
FIG. 1 is a principle diagram of an exposure apparatus according to an embodiment of the present invention.

【図2】本発明の一実施形態における露光装置の局所照
明部の詳細図。
FIG. 2 is a detailed view of a local illumination unit of the exposure apparatus according to the embodiment of the present invention.

【図3】ネガタイプ感光剤の露光量および二重露光によ
る線幅の変化を示す図。
FIG. 3 is a diagram showing the exposure amount of a negative type photosensitive agent and the change in line width due to double exposure.

【図4】本発明の一実施形態におけるアパーチャの図。FIG. 4 is a diagram of an aperture according to an embodiment of the present invention.

【図5】走査露光の継ぎ目部分での積算露光量を示す
図。
FIG. 5 is a diagram showing an integrated exposure amount at a seam portion of scanning exposure.

【図6】本発明の一実施例における走査露光の継ぎ目部
分での積算露光量を示す図。
FIG. 6 is a diagram showing an integrated exposure amount at a seam portion of scanning exposure according to an embodiment of the present invention.

【図7】従来の露光装置の原理図。FIG. 7 is a principle diagram of a conventional exposure apparatus.

【図8】従来の露光装置の局所照明部の詳細図。FIG. 8 is a detailed view of a local illumination unit of a conventional exposure apparatus.

【図9】走査露光を示す斜視図。FIG. 9 is a perspective view showing scanning exposure.

【図10】走査露光の走査経路を示す図。FIG. 10 is a diagram showing a scanning path of scanning exposure.

【図11】従来の露光装置の走査露光の継ぎ目部分での
積算露光量を示す図。
FIG. 11 is a diagram showing an integrated exposure amount at a seam portion of scanning exposure of a conventional exposure apparatus.

【符号の説明】[Explanation of symbols]

1 水銀ランプ 2 楕円ミラー 3 光ファイバー 4 光学インテグレータ 5 投影レンズ系 6 アパーチャ 7 マスク 8 マスクチャック 9 基板 10 XYステージ 11 架台 12 局所照明部 13 Yステージ 14 ボールネジ 15 Y軸ガイド 16 Xステージ 17 照度センサ 18 X軸ガイド 19 Y軸モータ 20 照度センサアンプ 21 コントローラ 22 設定器 23 サーボドライバ 24 制御手段 25 基板チャック 30 平面ミラー 31 遮光板ベース 32 ボールネジ 33 モータ 34 遮光板 35 投影光 36 遮光エリア投影像 37 遮光エリア 38 照明光 39 光学インテグレータ出射端面 DESCRIPTION OF SYMBOLS 1 Mercury lamp 2 Elliptical mirror 3 Optical fiber 4 Optical integrator 5 Projection lens system 6 Aperture 7 Mask 8 Mask chuck 9 Substrate 10 XY stage 11 Mount 12 Local illumination part 13 Y stage 14 Ball screw 15 Y axis guide 16 X stage 17 Illuminance sensor 18 X Axis guide 19 Y-axis motor 20 Illuminance sensor amplifier 21 Controller 22 Setting device 23 Servo driver 24 Control means 25 Substrate chuck 30 Flat mirror 31 Light shielding plate base 32 Ball screw 33 Motor 34 Light shielding plate 35 Projection light 36 Light shielding area projected image 37 Light shielding area 38 Illumination light 39 Optical integrator emission end face

フロントページの続き (72)発明者 長野 寛之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continued on the front page (72) Inventor Hiroyuki Nagano 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板とマスクを対向させて支持し、マス
ク上方より照明光を照射してマスクパターンを基板上に
塗布した感光剤に転写するプロキシミティ露光方法にお
いて、照明を走査形の局所照明とし、走査露光中に前記
照明の照度を逐次計測し、その計測値をもとに前記局所
照明の走査速度を逐次調節して、露光領域の全ての部分
について積算露光量が所定の値になるように露光するこ
とを特徴とする露光方法。
1. A proximity exposure method in which a substrate and a mask are opposed to each other, and illumination light is irradiated from above the mask to transfer a mask pattern to a photosensitive agent applied on the substrate. During scanning exposure, the illuminance of the illumination is sequentially measured, and the scanning speed of the local illumination is sequentially adjusted based on the measured value, so that the integrated exposure amount becomes a predetermined value for all portions of the exposure region. Exposure method characterized by exposing as follows.
【請求項2】 基板とマスクを対向させて支持し、マス
ク上方より照明光を照射してマスクパターンを基板上に
塗布したネガタイプ感光剤に転写するプロキシミティ露
光方法において、照明を走査形の局所照明とし、局所照
明より照射されるビームの断面形状を六角形にし、その
六辺の内、前記局所照明の走査方向に直交する二辺の間
隔を調節することにより露光むらを減少させることを特
徴とする露光方法。
2. A proximity exposure method for supporting a substrate and a mask so as to face each other, irradiating illumination light from above the mask, and transferring a mask pattern to a negative type photosensitive agent applied on the substrate, wherein the illumination is performed in a scanning local area. As illumination, the cross-sectional shape of the beam emitted from the local illumination is hexagonal, and among the six sides, uneven exposure is reduced by adjusting the interval between two sides orthogonal to the scanning direction of the local illumination. Exposure method.
【請求項3】 基板とマスクを対向させて支持し、マス
ク上方より照明光を照射してマスクパターンを基板上に
塗布した感光剤に露光焼き付けするプロキシミティ露光
装置において、マスク上方を走査する局所照明部と、局
所照明部による照明光の照度を逐次計測する照度センサ
ーと、照度センサーの出力値と積算露光量の設定値とに
基づいて前記局所照明部の走査速度をコントロールする
制御手段とを備えたことを特徴とする露光装置。
3. In a proximity exposure apparatus for supporting a substrate and a mask so as to face each other and irradiating illumination light from above the mask to expose and print a mask pattern on a photosensitive agent applied on the substrate, a local area above the mask is scanned. An illuminating unit, an illuminance sensor for sequentially measuring the illuminance of illumination light from the local illuminating unit, and a control unit for controlling a scanning speed of the local illuminating unit based on an output value of the illuminance sensor and a set value of the integrated exposure amount. An exposure apparatus, comprising:
【請求項4】 基板とマスクを対向させて支持し、マス
ク上方より照明光を照射してマスクパターンを基板上に
塗布した感光剤に露光焼き付けするプロキシミティ露光
装置において、マスク上方を走査する局所照明部と、局
所照明部によるビームの断面形状を六角形に成形するア
パーチャと、六角形のビームの六辺の内、前記局所照明
部の走査方向と直交する一辺の位置を走査方向に平行移
動させるビーム成形手段とを備えたことを特徴とする露
光装置。
4. In a proximity exposure apparatus for supporting a substrate and a mask so as to face each other and irradiating illumination light from above the mask to expose and print a mask pattern on a photosensitive agent applied to the substrate, a local area above the mask is scanned. An illumination unit, an aperture for shaping the cross-sectional shape of the beam by the local illumination unit into a hexagon, and, among the six sides of the hexagonal beam, the position of one side orthogonal to the scanning direction of the local illumination unit is translated in the scanning direction. An exposure apparatus, comprising: a beam shaping unit for causing the beam to be formed.
JP8272075A 1996-10-15 1996-10-15 Method and apparatus for exposure Pending JPH10116774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8272075A JPH10116774A (en) 1996-10-15 1996-10-15 Method and apparatus for exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8272075A JPH10116774A (en) 1996-10-15 1996-10-15 Method and apparatus for exposure

Publications (1)

Publication Number Publication Date
JPH10116774A true JPH10116774A (en) 1998-05-06

Family

ID=17508751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8272075A Pending JPH10116774A (en) 1996-10-15 1996-10-15 Method and apparatus for exposure

Country Status (1)

Country Link
JP (1) JPH10116774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103152A1 (en) * 2012-01-06 2013-07-11 株式会社ブイ・テクノロジー Light exposure device and method for manufacturing exposed material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013103152A1 (en) * 2012-01-06 2013-07-11 株式会社ブイ・テクノロジー Light exposure device and method for manufacturing exposed material
JP2013142719A (en) * 2012-01-06 2013-07-22 V Technology Co Ltd Exposure device and exposed material manufacturing method
KR20140119697A (en) * 2012-01-06 2014-10-10 브이 테크놀로지 씨오. 엘티디 Light exposure device and method for manufacturing exposed material
TWI578110B (en) * 2012-01-06 2017-04-11 V Technology Co Ltd Exposure device and method of manufacturing an exposed material

Similar Documents

Publication Publication Date Title
KR0157279B1 (en) Exposure apparatus for transferring a mask pattern onto a substrate
KR0139309B1 (en) Exposure apparatus and manufacuring method for device using the same
JP3316704B2 (en) Projection exposure apparatus, scanning exposure method, and element manufacturing method
JPH03211813A (en) Exposure aligner
JP2001345245A (en) Method and device for exposure and method of manufacturing device
KR20130052520A (en) Exposure apparatus and exposure method
JP2506616B2 (en) Exposure apparatus and circuit manufacturing method using the same
US5668624A (en) Scan type exposure apparatus
KR100281208B1 (en) Scanning exposure apparatus and element manufacturing method using the apparatus
JP2000343257A (en) Method and device for return beam removal
TW200403544A (en) Scanning exposure apparatus and method
JP2644741B2 (en) Proximity exposure method and apparatus
JPH01187817A (en) Aligning method
JP4144059B2 (en) Scanning exposure equipment
JP3376688B2 (en) Exposure apparatus and exposure method using the same
JPH10116774A (en) Method and apparatus for exposure
JP2000294480A (en) Method for controlling exposure, exposure system, and manufacture of device
JP3376219B2 (en) Surface position detecting device and method
JPH09106939A (en) Exposure and its device
JP2859809B2 (en) Exposure method and apparatus
KR100589055B1 (en) Exposure method and exposure apparatus for performing the same
JP2009104110A (en) Exposure device and control method therefor
JPH11204394A (en) Proximity exposure method and apparatus
JPH10256150A (en) Method and device for scanning exposure
KR960006825B1 (en) Apparatus of focus adjuster on stepper