JPH10116761A - Formation of resist pattern - Google Patents

Formation of resist pattern

Info

Publication number
JPH10116761A
JPH10116761A JP8267440A JP26744096A JPH10116761A JP H10116761 A JPH10116761 A JP H10116761A JP 8267440 A JP8267440 A JP 8267440A JP 26744096 A JP26744096 A JP 26744096A JP H10116761 A JPH10116761 A JP H10116761A
Authority
JP
Japan
Prior art keywords
film
antireflection film
resist
glass transition
resist pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8267440A
Other languages
Japanese (ja)
Other versions
JP2867975B2 (en
Inventor
Hiroshi Yoshino
宏 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8267440A priority Critical patent/JP2867975B2/en
Publication of JPH10116761A publication Critical patent/JPH10116761A/en
Application granted granted Critical
Publication of JP2867975B2 publication Critical patent/JP2867975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a resist pattern while suppressing fluctuation of film thickness by curing an antireflection film at a temperature causing no fluidization and then hard baking it at a temperature lower than an elevated glass transition point. SOLUTION: A conductive film 2A of polysilicon or polycide is formed covering an insulation film 1A having level difference on a silicon substrate and then an antireflection film 3A is formed by applying polyimide. The antireflection film 3A is crosslinked by curing to produce an antireflection film 3Ab having an elevated glass transition point. Subsequently, UV cure is performed sufficiently on a hot plate to elevate the glass transition point of the antireflection film 3Ab above about 180 deg.C in order to prevent variation in the shape due to fluidization of the antireflection film. A resist film 4B is then formed on the antireflection film 3Ac, irradiated with an exposing light 5A passed through a mask, baked and developed after exposure and the exposed part 6B is removed to obtain a resist pattern where dimensional fluctuation is suppressed at the level difference part and the vicinity thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レジストパターン
の形成方法に関し、特に、半導体ウェーハのような被加
工物を表面に有する下地基板上にエッチングマスク、イ
オン注入マスク等として用いられる、フォトレジスト膜
からなるパターンの形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a resist pattern, and more particularly to a photoresist film used as an etching mask or an ion implantation mask on a base substrate having a workpiece such as a semiconductor wafer on the surface. And a method for forming a pattern comprising:

【0002】[0002]

【従来の技術】従来のレジストパターン形成方法では、
下地基板上にレジスト膜を塗布法で形成し、g線(波長
436nm)、i線(波長365nm)あるいはKrF
エキシマレーザ(波長248nm)を用いて露光を行
い、アルカリ水溶液にて現像を行う方法が用いられてき
た。このような従来の方法では、ハレーションと呼ばれ
る、下地基板からの反射光によるレジスト形状の劣化が
大きな問題となっている。また、下地基板の段差により
レジスト膜厚が変化すると、定在波効果によりパターン
寸法が変動するといった問題があった。これらの問題
は、半導体素子を作製する上で、トランジスタ特性のば
らつき、あるいは断線、短絡といった問題を引き起こ
す。
2. Description of the Related Art In a conventional resist pattern forming method,
A resist film is formed on a base substrate by a coating method, and the g-line (wavelength 436 nm), the i-line (wavelength 365 nm) or KrF
A method has been used in which exposure is performed using an excimer laser (wavelength: 248 nm) and development is performed using an alkaline aqueous solution. In such a conventional method, deterioration of a resist shape due to light reflected from a base substrate, which is called halation, is a serious problem. Further, when the resist film thickness changes due to the step of the underlying substrate, there is a problem that the pattern size changes due to the standing wave effect. These problems cause problems such as variation in transistor characteristics, disconnection, and short-circuit when manufacturing a semiconductor element.

【0003】このような問題を解決する方法として、特
開昭62−63427号公報に記載されているようなレ
ジスト膜の下に反射防止膜を用いる方法が挙げられる。
この方法は、下地基板上に反射防止膜を塗布し、約18
0度以上の高温でハードベークを行った後、レジストを
塗布し、露光し、そして現像する方法(従来例)であ
る。
As a method for solving such a problem, there is a method using an antireflection film under a resist film as described in Japanese Patent Application Laid-Open No. 62-63427.
In this method, an anti-reflection film is applied on an underlying substrate, and is applied for about 18 hours.
This is a method in which a hard bake is performed at a high temperature of 0 ° C. or more, a resist is applied, exposed, and developed (conventional example).

【0004】すなわち、図4(a)に示すように、シリ
コン基板上の絶縁膜1を被覆して、ポリシリコン膜やA
l−Si−Cu合金膜のような導電膜2を形成する。こ
の下地基板に例えばARC(Brewer Scien
ce社の商品名。ポリイミドを主体。)を塗布し、90
℃,90秒程度で乾燥させて反射防止膜3を形成し、約
180℃でハードベークを行なって硬化させる。次に、
図4(b)に示すように、硬化した反射防止膜3a上に
レジスト膜4を形成する。次に、図4(c)に示すよう
に、図示しないマスクを透過した露光光5をレジスト膜
に照射して露光部6を形成する。次に、現像をして、図
4(d)に示すように、レジスト膜4aのパターンを形
成する。前述のハードベークは、この現像時に反射防止
膜3aが除去されないように、180℃以上の高温で行
なうのである。次にレジスト膜4aをマスクにして異方
性エッチングにより反射防止膜3a及び導電膜2をエッ
チングしてゲート電極や配線などを形成し、最後に酸素
プラズマなどによりレジスト膜と反射防止膜を除去す
る。
That is, as shown in FIG. 4A, an insulating film 1 on a silicon substrate is covered to form a polysilicon film or an A film.
A conductive film 2 such as an l-Si-Cu alloy film is formed. For example, an ARC (Brewer Science) is provided on the base substrate.
Product name of ce company. Mainly polyimide. ) And apply 90
The antireflection film 3 is formed by drying at about 90 ° C. for about 90 seconds, and is hardened by hard baking at about 180 ° C. next,
As shown in FIG. 4B, a resist film 4 is formed on the cured anti-reflection film 3a. Next, as shown in FIG. 4C, the exposure film 6 is formed by irradiating the resist film with exposure light 5 transmitted through a mask (not shown). Next, development is performed to form a pattern of the resist film 4a as shown in FIG. The hard baking is performed at a high temperature of 180 ° C. or more so that the antireflection film 3a is not removed during the development. Next, using the resist film 4a as a mask, the antireflection film 3a and the conductive film 2 are etched by anisotropic etching to form a gate electrode, a wiring, and the like. Finally, the resist film and the antireflection film are removed by oxygen plasma or the like. .

【0005】[0005]

【発明が解決しようとする課題】この従来技術を段差の
ある下地基板を使用する場合について説明すると、図5
(a)に示すように、シリコン基板上の絶縁膜1Aの表
面に段差がある場合、導電膜2Aを均一に形成できたと
して、塗布した反射防止膜3Aは段差上部では薄く、段
差下部では厚くなるといったように、膜厚が変動する。
塗布の段階で生じる膜厚変動は、反射防止膜用材料の粘
性に依存し、粘性が高い方が変動が少なくなるものの、
完全になくすことはできない。また、ハードベークの段
階では、ハードベーク温度が、反射防止膜のガラス転移
温度よりも高いため、反射防止膜が段差上部から段差下
部へと流動するので、図5(b)に示すように、ハード
ベーク後の反射防止膜3Aaの膜厚の不均一は大きくな
る。次に、図5(c)に示すように、レジスト膜4Aを
形成し、図5(d)に示すように、図示しないマスクと
透過した露光光5Aを照射し、現像により露光部6Aを
除去することにより、図5(e)に示すように、レジス
ト膜4Aa−1,4Aa−2を形成する。
This prior art will be described with reference to the case where a base substrate having a step is used.
As shown in (a), when there is a step on the surface of the insulating film 1A on the silicon substrate, it is determined that the conductive film 2A can be formed uniformly, and the applied antireflection film 3A is thin above the step and thicker below the step. The film thickness fluctuates as follows.
The variation in film thickness that occurs at the coating stage depends on the viscosity of the material for the anti-reflection film.
It cannot be completely eliminated. In the hard baking stage, the hard bake temperature is higher than the glass transition temperature of the anti-reflection film, so that the anti-reflection film flows from the upper part of the step to the lower part of the step, and as shown in FIG. The unevenness of the film thickness of the antireflection film 3Aa after hard baking becomes large. Next, as shown in FIG. 5C, a resist film 4A is formed, and as shown in FIG. 5D, a mask (not shown) and a transmitted exposure light 5A are irradiated, and the exposed portion 6A is removed by development. As a result, as shown in FIG. 5E, resist films 4Aa-1 and 4Aa-2 are formed.

【0006】図6に、レジスト寸法の反射防止膜膜厚依
存性の一例を示す。ただし、i線による露光を行なっ
た。反射防止膜の膜厚が変動した場合、レジスト寸法は
図6のように変動する。この寸法変動は、反射防止膜内
で入射光と反射光とが干渉するために起こる。寸法変動
は、反射防止膜の膜厚が約0.2μm以上と厚い場合に
は無視できるが、それよりも薄い場合には問題となる。
反射防止膜は、レジストパターンの形成後、レジスト膜
をマスクとしてエッチングされるが、反射防止膜とレジ
スト膜はどちらも有機膜であり、組成が類似しているた
め、エッチングの選択性を得ることが難しい。そのた
め、反射防止膜の膜厚を約0.2μm以上に厚くするこ
とは困難である。従って、図5(e)に示すように、段
差上部近傍のレジスト膜4Aa−2の寸法は、段差下部
近傍のレジスト膜4Aa−1より小さくなってしまう。
FIG. 6 shows an example of the dependency of the resist size on the thickness of the antireflection film. However, i-line exposure was performed. When the film thickness of the antireflection film changes, the resist dimensions change as shown in FIG. This dimensional variation occurs because the incident light and the reflected light interfere within the anti-reflection film. The dimensional fluctuation can be ignored when the film thickness of the antireflection film is as large as about 0.2 μm or more, but becomes a problem when the film thickness is smaller than about 0.2 μm.
The anti-reflection film is etched using the resist film as a mask after the formation of the resist pattern.Both the anti-reflection film and the resist film are organic films and have similar compositions, so it is necessary to obtain etching selectivity. Is difficult. Therefore, it is difficult to increase the thickness of the antireflection film to about 0.2 μm or more. Therefore, as shown in FIG. 5E, the dimension of the resist film 4Aa-2 near the upper portion of the step is smaller than the size of the resist film 4Aa-1 near the lower portion of the step.

【0007】以上述べてきたように、反射防止膜はハレ
ーションや、定在波効果を抑えることができるが、段差
のある下地基板上に塗布し、ハードベークした場合、反
射防止膜の膜厚が変動し、そのためにレジスト寸法が変
動してしまう。
As described above, the antireflection film can suppress the halation and the standing wave effect. However, when the antireflection film is applied on a base substrate having a step and hard baked, the thickness of the antireflection film becomes small. Fluctuates, which results in fluctuations in the resist dimensions.

【0008】本発明は、反射防止膜の膜厚変動を抑えて
精度よくレジストパターンを形成する技術を提供するこ
とを目的とする。
It is an object of the present invention to provide a technique for forming a resist pattern with high precision while suppressing a variation in the thickness of an antireflection film.

【0009】[0009]

【課題を解決するための手段】本発明のレジストパター
ンの形成方法は、被加工物上に高分子を主体とする有機
物を塗布し乾燥して反射防止膜を形成する工程と、前記
反射防止膜が流動化しない温度でキュアしてガラス転移
温度を上げた後に、前記上昇したガラス転移温度以下の
温度でハードベークする工程と、前記ハードベークされ
た反射防止膜上にレジスト膜を形成し、紫外線または遠
紫外線を選択的に照射して露光し、現像する工程とを有
するというものである。
According to the present invention, there is provided a method for forming a resist pattern, comprising the steps of applying an organic substance mainly composed of a polymer on a workpiece and drying it to form an antireflection film; Curing at a temperature that does not cause fluidization and raising the glass transition temperature, followed by hard baking at a temperature equal to or lower than the increased glass transition temperature, and forming a resist film on the hard baked antireflection film, Or a step of selectively irradiating far ultraviolet rays for exposure and development.

【0010】ここで、紫外線を照射してキュアを行なっ
てもよいし、電子ビームを照射してキュアを行なっても
よい。
Here, curing may be performed by irradiating ultraviolet rays, or may be performed by irradiating an electron beam.

【0011】更に、ポリイミドを主体とする有機物を塗
布することができる。
Further, an organic substance mainly composed of polyimide can be applied.

【0012】反射防止膜を高温でハードベークする前
に、キュアすることによって、反射防止膜は架橋し、ガ
ラス転移温度が上がる。そのため、その後ハードベーク
する際に反射防止膜の流動が起こらなくなる。
By curing before hard-baking the anti-reflection film at a high temperature, the anti-reflection film is cross-linked and the glass transition temperature is increased. Therefore, the flow of the antireflection film does not occur when hard baking is performed thereafter.

【0013】[0013]

【発明の実施の形態】図1,図2を参照して本発明の第
1の実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS.

【0014】図1(a)に示すように、シリコン基板上
の段差のある絶縁膜1A(フィールド酸化膜及びゲート
酸化膜)を被覆してポリシリコン膜やポリサイド膜でな
る導電膜2Aを形成し、例えばARCを塗布し、90
℃,90秒の乾燥を行ない、反射防止膜3Aを形成す
る。次に、少なくとも近紫外線を放射する水銀ランプを
用いてUV照射を行ないつつ120℃、3分間の加熱を
した。このUVキュアにより、反射防止膜3Aは架橋
し、ガラス転移温度が上がった反射防止膜3Ab(図1
(b))となる。
As shown in FIG. 1A, a conductive film 2A made of a polysilicon film or a polycide film is formed by covering a stepped insulating film 1A (field oxide film and gate oxide film) on a silicon substrate. ARC, for example, and 90
Drying is performed at 90 ° C. for 90 seconds to form the antireflection film 3A. Next, heating was performed at 120 ° C. for 3 minutes while performing UV irradiation using a mercury lamp that emits at least near ultraviolet light. Due to this UV curing, the antireflection film 3A is cross-linked, and the antireflection film 3Ab whose glass transition temperature has risen (FIG. 1)
(B)).

【0015】次に、180℃で4分間、ホットプレート
上でハードベークを行なうと、硬化した反射防止膜3A
c(図1(c))が得られる。UVキュアを十分に行な
って反射防止膜3Abのガラス転移温度を180℃より
高くしておけばハードベークによって反射防止膜が流動
することによる形状変化は防止できる。
Next, when hard baking is performed on a hot plate at 180 ° C. for 4 minutes, the cured anti-reflection film 3A is formed.
c (FIG. 1 (c)) is obtained. By sufficiently performing UV curing and setting the glass transition temperature of the antireflection film 3Ab to be higher than 180 ° C., the shape change due to the flow of the antireflection film by hard baking can be prevented.

【0016】次に、反射防止膜3Ac上にKrFエキシ
マレーザ用化学増幅系レジストを塗布し、プリベークを
行なって、図1(d)に示すように、レジスト膜4Bを
形成する。次に、KrFエキシマレーザステッパーを使
用して、図1(e)に示すように、図示しないマスクを
透過した露光光5A(KrFエキシマレーザビーム)を
照射し、露光後ベークを行ない、現像を行なって露光部
6Bを除去することによってレジストパターンの形成を
終る。
Next, a chemically amplified resist for KrF excimer laser is applied on the antireflection film 3Ac, and prebaked to form a resist film 4B as shown in FIG. 1D. Next, using a KrF excimer laser stepper, as shown in FIG. 1E, exposure light 5A (KrF excimer laser beam) transmitted through a mask (not shown) is applied, and after exposure, baking is performed and development is performed. By removing the exposed portion 6B, the formation of the resist pattern is completed.

【0017】以上の方法によって得られたレジストパタ
ーンを電子顕微鏡にて観察した結果、段差部とその近傍
においてもレジスト寸法変動の少ない、良好なパターン
が形成された。すなわち、図1(f)に示すように、段
差上部近傍のレジスト膜4Ba−1と段差下部近傍のレ
ジスト幅4Ba−2の寸法差はほとんどなかった。次
に、反応性イオンエッチングにより、レジスト膜4Ba
−1,4Ba−2をマスクにして、反射防止膜3Ac,
導電膜2Aをエッチングして図2(a)に示すように、
ゲート電極(DRAMではワード線を兼ねている)2A
a−1,2Aa−2を形成し、酸素プラズマなどによ
り、残ったレジスト膜4Bb−1,4Bb−2、反射防
止膜3Ac−1,3Ac−2を除去して、図2(b)に
示すように、ゲート電極2Aa−1,2Aa−2の形成
を終る。
As a result of observing the resist pattern obtained by the above-mentioned method with an electron microscope, a good pattern with little resist dimensional fluctuation was formed even at the step portion and its vicinity. That is, as shown in FIG. 1F, there was almost no dimensional difference between the resist film 4Ba-1 near the upper part of the step and the resist width 4Ba-2 near the lower part of the step. Next, the resist film 4Ba is formed by reactive ion etching.
-1, 4Ba-2 as a mask, the antireflection film 3Ac,
After etching the conductive film 2A, as shown in FIG.
Gate electrode (DRAM also serves as word line) 2A
a-1 and 2Aa-2 are formed, and the remaining resist films 4Bb-1 and 4Bb-2 and the antireflection films 3Ac-1 and 3Ac-2 are removed by oxygen plasma or the like, and shown in FIG. Thus, the formation of the gate electrodes 2Aa-1 and 2Aa-2 is completed.

【0018】反射防止膜3AをUVキュアしてガラス転
移温度を上昇させた後、上昇したガラス転移温度より低
い温度でハードベークするので、その際に反射防止膜の
流動が起らず、段差部での膜厚変動が抑えられ、従って
レジスト寸法の変動が抑えられ、幅が均一のゲート電極
が得られた。
After raising the glass transition temperature by UV-curing the antireflection film 3A, hard baking is performed at a temperature lower than the raised glass transition temperature. In this case, the variation in the film thickness was suppressed, and thus the variation in the resist dimensions was suppressed, and a gate electrode having a uniform width was obtained.

【0019】次に、本発明の第2の実施の形態について
説明する。
Next, a second embodiment of the present invention will be described.

【0020】図3(a)に示すように、シリコン基板上
の段差のある絶縁膜1Aを被覆してポリシリコン膜等の
導電膜2Bを形成し、ARCを塗布し、90℃、90秒
の乾燥を行ない反射防止膜3Bを形成する。次に、室
温、真空中において、10kVで加速された電子ビーム
を全面に照射した。この時の露光量は500μC/cm
2 とした。こうして得られたガラス転移温度の上昇した
反射防止膜3Ba(図3(b))を180℃、4分間、
ホットプレート上でハードベークを行なって得られた反
射防止膜3Bb(図3(c))上に、図3(d)に示す
ように、i線用のレジスト膜4Cを形成し、i線ステッ
パーを用いて、図3(e)に示すように、露光光5Bを
照射し、露光後ベークを行ない、現像をして露光部6C
を除去する。以下の工程は第1の実施の形態と同様であ
る。
As shown in FIG. 3A, a conductive film 2B such as a polysilicon film is formed by covering an insulating film 1A having a step on a silicon substrate, and ARC is applied thereto at 90 ° C. for 90 seconds. Drying is performed to form the antireflection film 3B. Next, the entire surface was irradiated with an electron beam accelerated at 10 kV in a vacuum at room temperature. The exposure amount at this time is 500 μC / cm
And 2 . The antireflection film 3Ba (FIG. 3 (b)) having an increased glass transition temperature obtained in this manner was heated at 180 ° C. for 4 minutes.
As shown in FIG. 3D, an i-line resist film 4C is formed on the antireflection film 3Bb (FIG. 3C) obtained by hard baking on a hot plate, and an i-line stepper is formed. As shown in FIG. 3 (e), an exposure light 5B is applied, baking is performed after exposure, development is performed, and
Is removed. The following steps are the same as in the first embodiment.

【0021】電子ビーム照射によって反射防止膜のガラ
ス転移温度を上げることができ、第1の実施の形態と同
様に段差部とその近傍における寸法変動の少ないレジス
トパターンの形成が可能であった。
The glass transition temperature of the anti-reflection film can be raised by electron beam irradiation, and a resist pattern with small dimensional fluctuations in the step portion and its vicinity can be formed as in the first embodiment.

【0022】以上、ゲート電極を形成する場合について
説明したが、本発明はAl−Si−Cu合金膜等を用い
て配線を形成する場合や、層間絶縁膜にスルーホールを
形成する場合等、半導体装置等におけるフォトリソグラ
フィー工程に適用しうることは改めて詳細に説明するま
でもなく明らかなことである。
Although the case where the gate electrode is formed has been described above, the present invention relates to the case where a wiring is formed by using an Al-Si-Cu alloy film or the like or a case where a through hole is formed in an interlayer insulating film. It is obvious that the present invention can be applied to a photolithography process in an apparatus or the like without detailed description again.

【0023】又、KrFエキシマレーザや水銀ランプの
i線で露光を行なう場合について説明したが、水銀ラン
プのg線あるいはArFエキシマレーザで露光しても同
様の効果が得られる。また、第1の実施の形態ではUV
キュアの温度を120度に設定したが、架橋反応が進む
温度であり、かつキュア中に反射防止膜が流動化しない
温度であれば、何度で行ってもかまわない。
Further, the case where the exposure is performed by using a KrF excimer laser or an i-line of a mercury lamp has been described. However, the same effect can be obtained by performing the exposure by using a g-line of a mercury lamp or an ArF excimer laser. In the first embodiment, UV
Although the curing temperature is set to 120 degrees, the curing may be performed any number of times as long as the temperature is such that the crosslinking reaction proceeds and the antireflection film does not fluidize during the curing.

【0024】[0024]

【発明の効果】以上説明したように、本発明は、反射防
止膜をキュアしてガラス転移温度を上げてからハードベ
ークを行なうので段差部とその近傍での反射防止膜の膜
厚変動を抑えることができるため、寸法変動の少ない良
好なレジストパターンを形成することができる。このた
め、微細なレジストパターンを寸法精度よく形成でき、
半導体装置の高密度化に寄与できる等の効果がある。
As described above, according to the present invention, the antireflection film is cured to raise the glass transition temperature and then hard bake is performed, so that the variation in the thickness of the antireflection film in and around the step is suppressed. Therefore, a good resist pattern with small dimensional fluctuation can be formed. For this reason, a fine resist pattern can be formed with high dimensional accuracy,
There are effects such as being able to contribute to higher density of the semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態について説明するた
めの(a)〜(f)に分図して示す工程順断面図。
FIGS. 1A to 1F are cross-sectional views illustrating a first embodiment of the present invention in the order of steps separately illustrated in FIGS.

【図2】図1に続いて(a),(b)に分図して示す工
程順断面図。
FIG. 2 is a cross-sectional view in the order of steps, which is separated from (a) and (b) following FIG. 1;

【図3】本発明の第2の実施の形態について説明するた
めの(a)〜(e)に分図して示す工程順断面図。
FIGS. 3A to 3E are cross-sectional views in the order of steps, for illustrating a second embodiment of the present invention; FIGS.

【図4】従来例について説明するための(a)〜(d)
に分図して示す工程順断面図。
FIGS. 4A to 4D for explaining a conventional example.
FIG.

【図5】従来例の問題点について説明するための(a)
〜(e)に分図して示す工程順断面図。
FIG. 5A is a diagram for explaining a problem of a conventional example.
FIGS. 6A to 6E are sectional views in the order of steps, which are shown separately.

【図6】レジスト寸法の反射防止膜膜厚依存性を示すグ
ラフ。
FIG. 6 is a graph showing the dependence of resist dimensions on the thickness of an antireflection film.

【符号の説明】[Explanation of symbols]

1,1A 絶縁膜 2,2A,2B 導電膜 2Aa−1,2Aa−2 ゲート電極 3,3A,3Aa,3Ab,3Ac,3B,3Ba,3
Bb 反射防止膜 4,4A,4Aa−1,4Aa−2,4B,4Ba−
1,4Ba−2,4Cレジスト膜 5,5A,5B 露光光 6,6A,6B,6C 露光部
1,1A insulating film 2,2A, 2B conductive film 2Aa-1,2Aa-2 gate electrode 3,3A, 3Aa, 3Ab, 3Ac, 3B, 3Ba, 3
Bb Antireflection film 4,4A, 4Aa-1,4Aa-2,4B, 4Ba-
1,4Ba-2,4C resist film 5,5A, 5B Exposure light 6,6A, 6B, 6C Exposure part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被加工物上に高分子を主体とする有機物
を塗布し乾燥して反射防止膜を形成する工程と、前記反
射防止膜が流動化しない温度でキュアしてガラス転移温
度を上げた後に、前記上昇したガラス転移温度以下の温
度でハードベークする工程と、前記ハードベークされた
反射防止膜上にレジスト膜を形成し、紫外線または遠紫
外線を選択的に照射して露光し、現像する工程とを有す
ることを特徴とするレジストパターンの形成方法。
1. A step of applying an organic substance mainly composed of a polymer on a workpiece and drying it to form an antireflection film, and curing the antireflection film at a temperature at which the antireflection film does not fluidize to raise the glass transition temperature. After, a step of hard baking at a temperature equal to or lower than the elevated glass transition temperature, forming a resist film on the hard baked antireflection film, selectively irradiating ultraviolet rays or far ultraviolet rays, exposing and developing And a step of forming a resist pattern.
【請求項2】 紫外線を照射してキュアを行なう請求項
1記載のレジストパターンの形成方法。
2. The method for forming a resist pattern according to claim 1, wherein the curing is performed by irradiating ultraviolet rays.
【請求項3】 電子ビームを照射してキュアを行なう請
求項1記載のレジストパターンの形成方法。
3. The method according to claim 1, wherein curing is performed by irradiating an electron beam.
【請求項4】 ポリイミドを主体とする有機物を塗布す
る請求項1,2又は3記載のレジストパターンの形成方
法。
4. The method for forming a resist pattern according to claim 1, wherein an organic substance mainly composed of polyimide is applied.
JP8267440A 1996-10-08 1996-10-08 Method of forming resist pattern Expired - Fee Related JP2867975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8267440A JP2867975B2 (en) 1996-10-08 1996-10-08 Method of forming resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8267440A JP2867975B2 (en) 1996-10-08 1996-10-08 Method of forming resist pattern

Publications (2)

Publication Number Publication Date
JPH10116761A true JPH10116761A (en) 1998-05-06
JP2867975B2 JP2867975B2 (en) 1999-03-10

Family

ID=17444879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8267440A Expired - Fee Related JP2867975B2 (en) 1996-10-08 1996-10-08 Method of forming resist pattern

Country Status (1)

Country Link
JP (1) JP2867975B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255225B1 (en) * 1999-02-09 2001-07-03 Mitsubishi Denki Kabushiki Kaisha Method of forming a resist pattern, a method of manufacturing semiconductor device by the same method, and a device and a hot plate for forming a resist pattern
JP2010245160A (en) * 2009-04-02 2010-10-28 Renesas Electronics Corp Method of manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255225B1 (en) * 1999-02-09 2001-07-03 Mitsubishi Denki Kabushiki Kaisha Method of forming a resist pattern, a method of manufacturing semiconductor device by the same method, and a device and a hot plate for forming a resist pattern
JP2010245160A (en) * 2009-04-02 2010-10-28 Renesas Electronics Corp Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2867975B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
JP2004134553A (en) Process for forming resist pattern and process for fabricating semiconductor device
JPS6357941B2 (en)
JPS6323657B2 (en)
US4510173A (en) Method for forming flattened film
JP4389242B2 (en) Etching method using photoresist pattern as mask
JP2994501B2 (en) Pattern formation method
JP2867975B2 (en) Method of forming resist pattern
JP3694504B2 (en) Method for forming gate electrode and method for manufacturing semiconductor device using the same
JP2733410B2 (en) Forming connection holes
JP2001326153A (en) Method of forming resist pattern
KR100555474B1 (en) Fine pattern forming method using acid treatment of photoresist
JP3509761B2 (en) Resist pattern forming method and fine pattern forming method
KR100192932B1 (en) Methof for forming semiconductor device
KR20010005154A (en) Fine pattern forming method using resist flow process
JPH10261571A (en) Pattern formation method
JPS6142914A (en) Manufacture of semiconductor device
KR100510448B1 (en) Manufacturing method of small photoresist pattern using thermal flow process for semiconductor device
JP2604573B2 (en) Fine pattern forming method
US6156480A (en) Low defect thin resist processing for deep submicron lithography
JP2001265011A (en) Method for producing semiconductor device
KR20020001195A (en) Method for forming photoresist patern in semiconductor device
KR0179339B1 (en) Method of forming photoresist pattern
JPS6040184B2 (en) Manufacturing method of semiconductor device
KR100192931B1 (en) Method for forming resist pattern
KR920002025B1 (en) Photo-resister hardening method using ultraviolet rays

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981124

LAPS Cancellation because of no payment of annual fees