JPH10116623A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPH10116623A
JPH10116623A JP8289264A JP28926496A JPH10116623A JP H10116623 A JPH10116623 A JP H10116623A JP 8289264 A JP8289264 A JP 8289264A JP 28926496 A JP28926496 A JP 28926496A JP H10116623 A JPH10116623 A JP H10116623A
Authority
JP
Japan
Prior art keywords
positive electrode
stainless steel
carbonate
ethylene carbonate
lithium battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8289264A
Other languages
Japanese (ja)
Other versions
JP3349368B2 (en
Inventor
Yoshihiro Shoji
良浩 小路
Yasuyuki Kusumoto
靖幸 樟本
Atsushi Yanai
敦志 柳井
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP28926496A priority Critical patent/JP3349368B2/en
Publication of JPH10116623A publication Critical patent/JPH10116623A/en
Application granted granted Critical
Publication of JP3349368B2 publication Critical patent/JP3349368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium battery in which a positive electrode member hardly corrodes, and reliability is high. SOLUTION: A lithium battery uses ethylene carbonate or mixed solvent containing ethylene carbonate of 10% by volume or more as the solvent of electrolyte, LiCF3 SO3 , LiPF6 , or LiBF4 as the solute of the electrolyte, and stainless steel containing molybdenum for at least one among a positive electrode can, positive electrode collector, and a positive electrode tab respectively. Thereby since the positive electrode member hardly corrodes, the battery has high reliability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、リチウム電池に係
わり、詳しくは正極缶などに腐食が起こりにくい、信頼
性の高いリチウム電池を提供することを目的とした、正
極缶などの正極部材及び電解液の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery, and more particularly, to a positive electrode member such as a positive electrode can and the like, which aims to provide a highly reliable lithium battery in which a positive electrode can is hardly corroded. Liquid improvement.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】リチウ
ム電池では、電解液の溶媒として有機溶媒が使用される
ので、正極活物質を適宜選択することにより、高電圧且
つ高容量な電池を得ることが可能である。電池設計の際
に水の分解電圧を考慮する必要がないからである。
2. Description of the Related Art In a lithium battery, an organic solvent is used as a solvent for an electrolytic solution, so that a high voltage and high capacity battery can be obtained by appropriately selecting a positive electrode active material. Is possible. This is because it is not necessary to consider the decomposition voltage of water when designing the battery.

【0003】ところで、リチウム電池の正極缶、正極集
電体及び正極タブ(本明細書においては、これらを正極
部材と称することがある)には、安価なため、ステンレ
ス鋼が汎用されている。実用されているステンレス鋼と
しては、SUS304及びSUS430が挙げられる。
By the way, stainless steel is widely used for the positive electrode can, the positive electrode current collector, and the positive electrode tab (these may be referred to as a positive electrode member in this specification) of a lithium battery because they are inexpensive. Stainless steels in practical use include SUS304 and SUS430.

【0004】しかしながら、正極の開回路電圧が通常3
V(vs.Li/Li+ )以上になるリチウム電池の正
極部材にSUS304などをそのまま使用すると、それ
が電解液と反応して腐食し、洩液や電池特性の低下を招
く。
However, the open circuit voltage of the positive electrode is usually 3
If SUS304 or the like is used as it is for a positive electrode member of a lithium battery having a voltage of V (vs. Li / Li + ) or more, it reacts with an electrolytic solution to corrode, resulting in a leakage solution and a decrease in battery characteristics.

【0005】このため、ステンレス鋼をリチウム電池の
正極部材として使用する場合は、電解液に対する耐食性
を高める目的で、アニール処理が施される。
[0005] Therefore, when stainless steel is used as a positive electrode member of a lithium battery, an annealing treatment is performed for the purpose of improving corrosion resistance to an electrolytic solution.

【0006】しかしながら、この処理によっても、腐食
を充分に抑制できないのが実情である。したがって、正
極部材の電解液に対する耐食性の改善は、この種の電池
の実用電池としての信頼性を高める上で急務と考えられ
ている。
However, the fact is that corrosion cannot be sufficiently suppressed even by this treatment. Therefore, improvement of the corrosion resistance of the positive electrode member to the electrolytic solution is considered to be an urgent need for improving the reliability of this type of battery as a practical battery.

【0007】本発明は、このような事情を考慮してなさ
れたものであって、正極部材が腐食しにくい、信頼性の
高いリチウム電池を提供することを目的とする。
The present invention has been made in view of such circumstances, and has as its object to provide a highly reliable lithium battery in which a positive electrode member is hardly corroded.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム電池(本発明電池)において
は、電解液の溶媒として、エチレンカーボネート又はエ
チレンカーボネートを10体積%以上含む混合溶媒が、
電解液の溶質としてLiCF3 SO3 、LiPF6 又は
LiBF4 が、また正極缶、正極集電体及び正極タブの
少なくとも1つに、モリブデンを含有するステンレス鋼
が、それぞれ使用される。
In order to achieve the above object, in the lithium battery according to the present invention (battery of the present invention), as a solvent for the electrolytic solution, ethylene carbonate or a mixed solvent containing 10 vol% or more of ethylene carbonate is used. ,
LiCF 3 SO 3 , LiPF 6 or LiBF 4 is used as a solute of the electrolytic solution, and stainless steel containing molybdenum is used for at least one of the positive electrode can, the positive electrode current collector and the positive electrode tab.

【0009】電解液の溶媒としてエチレンカーボネート
と他の溶媒との混合溶媒を使用する場合の好適な混合溶
媒としては、エチレンカーボネート(EC)と、プロピ
レンカーボネート(PC)、ブチレンカーボネート(B
C)、ジメチルカーボネート(DMC)、ジエチルカー
ボネート(DEC)、メチルエチルカーボネート(ME
C)、γ−ブチロラクトン(γ−BL)、1,2−ジメ
トキシエタン(DME)、1,2−ジエトキシエタン
(DEE)、1,2−エトキシメトキシエタン(EM
E)、テトラヒドロフラン(THF)、スルホラン(S
L)及び1,3−ジオキソラン(DOXL)から選ばれ
た少なくとも1種の有機溶媒とからなる混合溶媒が挙げ
られる。
When a mixed solvent of ethylene carbonate and another solvent is used as a solvent for the electrolytic solution, preferred mixed solvents are ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (B
C), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (ME
C), γ-butyrolactone (γ-BL), 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), 1,2-ethoxymethoxyethane (EM
E), tetrahydrofuran (THF), sulfolane (S
L) and a mixed solvent comprising at least one organic solvent selected from 1,3-dioxolane (DOXL).

【0010】本発明は、一次電池、二次電池を問わず適
用可能である。本発明はリチウム電池の正極部材及び電
解液の改良に関するものゆえ、これら以外の部材には、
次に示す如き従来公知の材料を特に制限無く用いること
ができる。
[0010] The present invention is applicable to both primary batteries and secondary batteries. The present invention relates to the improvement of the positive electrode member and the electrolyte of the lithium battery.
Conventionally known materials as shown below can be used without particular limitation.

【0011】正極活物質の具体例としては、二酸化マン
ガン、LiCoO2 、LiNiO2、LiMn2 4
LiVO2 及びLiNbO2 が挙げられる。
Specific examples of the positive electrode active material include manganese dioxide, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 ,
LiVO 2 and LiNbO 2 are mentioned.

【0012】負極材料としては、リチウムイオンを電気
化学的に吸蔵及び放出することが可能な物質及び金属リ
チウムが挙げられる。リチウムイオンを電気化学的に吸
蔵及び放出することが可能な物質の具体例としては、黒
鉛、コークス等の炭素材料;リチウム−アルミニウム合
金、リチウム−鉛合金、リチウム−錫合金等のリチウム
合金;SnO2 、SnO、TiO2 、Nb2 3 等の電
位が正極活物質に比べて卑な金属酸化物が挙げられる。
Examples of the negative electrode material include a substance capable of electrochemically inserting and extracting lithium ions and lithium metal. Specific examples of substances capable of electrochemically storing and releasing lithium ions include carbon materials such as graphite and coke; lithium alloys such as lithium-aluminum alloy, lithium-lead alloy, and lithium-tin alloy; SnO. 2 , metal oxides such as SnO, TiO 2 , and Nb 2 O 3 which have a lower potential than the positive electrode active material.

【0013】本発明によれば、正極部材が腐食しにくい
リチウム電池が提供される。正極部材の耐食性が改善さ
れる理由は、本発明者らにおいても現在のところ定かで
ないが、モリブデンを含有しないステンレス鋼(従来実
用されているSUS304及びSUS430はこれに該
当する)を正極部材に使用したり、エチレンカーボネー
トを含まない溶媒を使用したり、或いはLiAsF6
どのLiCF3 SO3、LiPF6 及びLiBF4 以外
の溶質を使用したりした場合に比べて正極部材の耐食性
が大きく改善されることから、モリブデンを含有するス
テンレス鋼とエチレンカーボネートとLiCF3
3 、LiPF6 又はLiBF4 との反応生成物が正極
部材の表面に被膜となって析出し、これが腐食の進行を
抑制するためではないかと考えている。
According to the present invention, there is provided a lithium battery in which the positive electrode member is hardly corroded. The reason why the corrosion resistance of the positive electrode member is improved is not clear at present even by the present inventors, but stainless steel containing no molybdenum (the conventionally used SUS304 and SUS430 correspond to this) is used for the positive electrode member. corrosion resistance of the positive electrode member is greatly improved as compared with the case or, or use a solvent which does not contain ethylene carbonate, or with or use LiCF 3 SO 3, LiPF 6 and LiBF 4 other solutes, such as LiAsF 6 Therefore, molybdenum-containing stainless steel, ethylene carbonate and LiCF 3 S
It is considered that the reaction product with O 3 , LiPF 6 or LiBF 4 is deposited as a film on the surface of the positive electrode member, and this is for suppressing the progress of corrosion.

【0014】[0014]

【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明は下記実施例に何ら限定されるものでは
なく、その要旨を変更しない範囲で適宜変更して実施す
ることが可能なものである。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples and can be carried out by appropriately changing the scope of the invention without changing its gist. It is something.

【0015】(実験1)この実験では、使用するステン
レス鋼と腐食の関係を調べた。電解液として、エチレン
カーボネートにLiPF6 を1モル/リットル溶かした
有機溶液を使用して、3極式の試験セルA1〜A7,B
1〜B15を組み立て、腐食電流を室温(25°C)下
にて測定して、各試験セルに使用したステンレス鋼の耐
食性を調べた。試験セルの符号にAを付したものは本発
明で規定するステンレス鋼及び電解液を使用した試験セ
ルであり、Bを付したものは比較試験セルである。腐食
電流は、作用極の参照極に対する電位を4Vに設定した
ときの作用極と対極との間に流れる電流(μA/c
2 )として求めた。表1に、各試験セルに使用したス
テンレス鋼、モリブデン含有率、電解液(溶媒及び溶
質)及び腐食電流の測定値を示す。なお、表1中、SU
Sコードの後に(A)を付したステンレス鋼は、全て3
00°Cで2時間加熱処理することによりアニール処理
したものである。
(Experiment 1) In this experiment, the relationship between the stainless steel used and the corrosion was examined. As an electrolytic solution, an organic solution obtained by dissolving LiPF 6 in ethylene carbonate at 1 mol / liter was used, and three-electrode test cells A1 to A7 and B were used.
1 to B15 were assembled, and the corrosion current was measured at room temperature (25 ° C.) to examine the corrosion resistance of the stainless steel used in each test cell. The test cell with the symbol A attached to the test cell is a test cell using the stainless steel and the electrolytic solution specified in the present invention, and the one with the symbol B is a comparative test cell. The corrosion current was determined by the current flowing between the working electrode and the counter electrode when the potential of the working electrode with respect to the reference electrode was set to 4 V (μA / c
m 2 ). Table 1 shows the measured values of stainless steel, molybdenum content, electrolyte solution (solvent and solute), and corrosion current used for each test cell. In Table 1, SU
All stainless steels with (A) after S code are 3
Annealed by heating at 00 ° C. for 2 hours.

【0016】図1は、この実験のために組み立てた試験
セルの断面模式図であり、図示の試験セルCは、作用極
(ステンレス電極;電極面積1cm2 )1、作用極1に
比べて充分に大きな電気化学的容量を有する対極(リチ
ウム電極;電極面積10cm2 )2、参照極(リチウム
電極;電極面積0.3cm2 )3、ルギン管4、絶縁性
の密閉容器5及び電解液6からなる。
FIG. 1 is a schematic cross-sectional view of a test cell assembled for this experiment. The test cell C shown in the drawing has a working electrode (stainless steel electrode; electrode area 1 cm 2 ) 1 which is sufficiently larger than the working electrode 1. Electrode (lithium electrode; electrode area 10 cm 2 ) 2, reference electrode (lithium electrode; electrode area 0.3 cm 2 ) 3, luggin tube 4, insulating closed container 5 and electrolyte 6 Become.

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示すように、作用極にモリブデンを
含有するステンレス鋼を使用した試験セルA1〜A7
は、作用極にモリブデンを含有しないステンレス鋼を使
用した試験セルB1〜B15に比べて、腐食電流が遙に
小さい。この事実から、正極部材が腐食しにくいリチウ
ム電池を得るためには、正極部材に使用するステンレス
鋼としてモリブデンを含有するステンレス鋼(SUS3
16、SUS316L、SUS317、SUS434、
SUS444など)を使用する必要があることが分か
る。
As shown in Table 1, test cells A1 to A7 using a stainless steel containing molybdenum for the working electrode.
Has a much smaller corrosion current than test cells B1 to B15 using stainless steel containing no molybdenum for the working electrode. From this fact, in order to obtain a lithium battery in which the positive electrode member is hardly corroded, it is necessary to use a stainless steel (SUS3) containing molybdenum as the stainless steel used for the positive electrode member.
16, SUS316L, SUS317, SUS434,
SUS444).

【0019】(実験2)この実験では、使用する溶質と
ステンレス鋼の腐食の関係を調べた。電解液として、エ
チレンカーボネートに種々の溶質を1モル/リットル溶
かした有機溶液を使用して、3極式の試験セルA8〜A
13,B16〜B44を組み立て、実験1と同じ方法で
腐食電流を測定した。表2及び表3に、各試験セルに使
用したステンレス鋼、ステンレス鋼のモリブデン含有
率、電解液(溶媒及び溶質)及び腐食電流の測定値を示
す。
(Experiment 2) In this experiment, the relationship between the solute used and the corrosion of stainless steel was examined. As an electrolytic solution, a three-electrode type test cell A8-A was used by using an organic solution in which various solutes were dissolved in ethylene carbonate at 1 mol / liter.
13, B16 to B44 were assembled, and the corrosion current was measured in the same manner as in Experiment 1. Tables 2 and 3 show the measured values of the stainless steel used in each test cell, the molybdenum content of the stainless steel, the electrolyte solution (solvent and solute), and the corrosion current.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】表2及び表3に示すように、作用極にモリ
ブデンを含有するステンレス鋼を使用し、電解液の溶媒
としてエチレンカーボネート又はエチレンカーボネート
を含有する混合溶媒を使用し、且つ電解液の溶質として
LiCF3 SO3 、LiPF6 又はLiBF4 を使用し
た試験セルA8〜A13は、モリブデンを含有しないス
テンレス鋼を作用極に使用したり、LiCF3 SO3
LiPF6 及びLiBF4 以外の電解液の溶質を使用し
たりした試験セルB16〜B44に比べて、腐食電流が
遙に小さい。この事実から、正極部材が腐食しにくいリ
チウム電池を得るためには、正極部材に使用するステン
レス鋼としてモリブデンを含有するステンレス鋼を使用
するのみならず、電解液の溶質としてLiCF3
3 、LiPF6 又はLiBF4 を使用する必要がある
ことが分かる。
As shown in Tables 2 and 3, stainless steel containing molybdenum was used for the working electrode, ethylene carbonate or a mixed solvent containing ethylene carbonate was used as the solvent for the electrolytic solution, and the solute of the electrolytic solution was used. The test cells A8 to A13 using LiCF 3 SO 3 , LiPF 6 or LiBF 4 as the working electrodes use molybdenum-free stainless steel for the working electrode, or use LiCF 3 SO 3 ,
Compared to LiPF 6 and LiBF 4 other electrolyte solute test cell was or use of B16~B44, corrosion current is small far. From this fact, in order to obtain a lithium battery in which the positive electrode member does not easily corrode, not only the stainless steel containing molybdenum is used as the stainless steel used for the positive electrode member, but also LiCF 3 S
It can be seen that it is necessary to use O 3 , LiPF 6 or LiBF 4 .

【0023】(実験3)この実験では、使用する溶媒と
ステンレス鋼の腐食の関係を調べた。すなわち電解液と
して、種々の溶媒に溶質を1モル/リットル溶かした有
機溶液を使用して、3極式の試験セルA14〜A27,
B45〜B60を組み立て、実験1と同じ方法で腐食電
流を測定した。表4及び表5に、各試験セルに使用した
ステンレス鋼、ステンレス鋼のモリブデン含有率、電解
液(溶媒及び溶質)及び腐食電流の測定値を示す。表5
中の混合溶媒は、全て体積比1:1の混合溶媒である。
(Experiment 3) In this experiment, the relationship between the solvent used and the corrosion of stainless steel was examined. That is, as an electrolytic solution, an organic solution in which a solute is dissolved at 1 mol / liter in various solvents is used, and three-electrode type test cells A14 to A27,
B45 to B60 were assembled, and the corrosion current was measured in the same manner as in Experiment 1. Tables 4 and 5 show the measured values of the stainless steel used for each test cell, the molybdenum content of the stainless steel, the electrolytic solution (solvent and solute), and the corrosion current. Table 5
The mixed solvents in the above are all mixed solvents having a volume ratio of 1: 1.

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【表5】 [Table 5]

【0026】表4及び表5に示すように、作用極にモリ
ブデンを含有するステンレス鋼を使用し、電解液の溶媒
としてエチレンカーボネート又はエチレンカーボネート
を含有する混合溶媒を使用し、且つ電解液の溶質として
LiCF3 SO3 、LiPF6 又はLiBF4 を使用し
た試験セルA14〜A27は、電解液の溶媒としてエチ
ンレンカーボネートを含まない溶媒を使用した試験セル
B45〜B60に比べて、腐食電流が遙に小さい。この
事実から、正極部材が腐食しにくいリチウム電池を得る
ためには、正極部材に使用するステンレス鋼としてモリ
ブデンを含有するステンレス鋼を使用し、電解液の溶質
としてLiCF3 SO3 、LiPF6 又はLiBF4
使用するのみならず、電解液の溶媒としてエチレンカー
ボネート又はエチレンカーボネートを含有する混合溶媒
を使用する必要があることが分かる。
As shown in Tables 4 and 5, stainless steel containing molybdenum was used for the working electrode, ethylene carbonate or a mixed solvent containing ethylene carbonate was used as the solvent for the electrolytic solution, and the solute of the electrolytic solution was used. The test cells A14 to A27 using LiCF 3 SO 3 , LiPF 6 or LiBF 4 as those have a much higher corrosion current than the test cells B45 to B60 using a solvent containing no ethynylene carbonate as the solvent for the electrolytic solution. small. From this fact, in order to obtain a lithium battery in which the positive electrode member is hardly corroded, a stainless steel containing molybdenum is used as the stainless steel used for the positive electrode member, and LiCF 3 SO 3 , LiPF 6 or LiBF is used as the solute of the electrolytic solution. It is understood that it is necessary to use not only 4 but also ethylene carbonate or a mixed solvent containing ethylene carbonate as a solvent for the electrolytic solution.

【0027】(実験4)この実験では、電解液の溶媒と
してエチンレカーボネートを含む混合溶媒を使用する場
合のエチンレカーボネートと他の溶媒との混合体積比と
ステンレス鋼の腐食の関係を調べた。すなわち、電解液
として、エチレンカーボネートとプロピレンカーボネー
トとの種々の混合体積比の混合溶媒にLiPF6 を1モ
ル/リットル溶かした有機溶液を使用して、3極式の試
験セルA28〜A31,B61を組み立て、実験1と同
じ方法で腐食電流を測定した。表6に、各試験セルに使
用したステンレス鋼、ステンレス鋼のモリブデン含有
率、電解液(溶媒及び溶質)及び腐食電流の測定値を示
す。
(Experiment 4) In this experiment, the relationship between the mixing volume ratio of ethyne recarbonate and other solvents and the corrosion of stainless steel when a mixed solvent containing ethyne recarbonate was used as the solvent for the electrolytic solution was examined. . That is, the three-electrode type test cells A28 to A31 and B61 were prepared by using an organic solution obtained by dissolving LiPF 6 at 1 mol / liter in a mixed solvent of ethylene carbonate and propylene carbonate at various mixing volume ratios as the electrolytic solution. Assembling and the corrosion current were measured in the same manner as in Experiment 1. Table 6 shows the measured values of the stainless steel used for each test cell, the molybdenum content of the stainless steel, the electrolytic solution (solvent and solute), and the corrosion current.

【0028】[0028]

【表6】 [Table 6]

【0029】表6に示すように、試験セルA28〜A3
1は腐食電流が極めて小さいのに比べて、試験セルB6
1は腐食電流が大きい。この事実から、正極部材が腐食
しにくいリチウム電池を得るためには、電解液の溶媒と
してエチレンカーボネートを含む混合溶媒を使用する場
合は、エチレンカーボネートを10体積%以上含む混合
溶媒を使用する必要があることが分かる。
As shown in Table 6, test cells A28 to A3
No. 1 shows that the test cell B6 has a very small corrosion current.
No. 1 has a large corrosion current. From this fact, in order to obtain a lithium battery in which the positive electrode member is hardly corroded, when using a mixed solvent containing ethylene carbonate as a solvent for the electrolytic solution, it is necessary to use a mixed solvent containing 10% by volume or more of ethylene carbonate. You can see that there is.

【0030】[0030]

【発明の効果】正極部材が腐食しにくいので、本発明電
池は信頼性が高い。
The battery of the present invention has high reliability because the positive electrode member is hardly corroded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で組み立てた試験セルの断面模式図であ
る。
FIG. 1 is a schematic cross-sectional view of a test cell assembled in an example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 in Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電解液の溶媒が、エチレンカーボネート又
はエチレンカーボネートを10体積%以上含む混合溶媒
であり、電解液の溶質がLiCF3 SO3 、LiPF6
又はLiBF4 であり、且つ正極缶、正極集電体及び正
極タブの少なくとも1つが、モリブデンを含有するステ
ンレス鋼からなるリチウム電池。
The solvent of the electrolyte is ethylene carbonate or a mixed solvent containing 10% by volume or more of ethylene carbonate, and the solute of the electrolyte is LiCF 3 SO 3 , LiPF 6
Alternatively, a lithium battery that is LiBF 4 and at least one of the positive electrode can, the positive electrode current collector, and the positive electrode tab is made of stainless steel containing molybdenum.
【請求項2】前記エチレンカーボネートを10体積%以
上含む混合溶媒が、エチレンカーボネートと、プロピレ
ンカーボネート、ブチレンカーボネート、ジメチルカー
ボネート、ジエチルカーボネート、メチルエチルカーボ
ネート、γ−ブチロラクトン、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、1,2−エトキシメト
キシエタン、テトラヒドロフラン、スルホラン及び1,
3−ジオキソランから選ばれた少なくとも1種の有機溶
媒とからなる混合溶媒である請求項1記載のリチウム電
池。
2. A mixed solvent containing 10% by volume or more of ethylene carbonate, comprising ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, , 2-diethoxyethane, 1,2-ethoxymethoxyethane, tetrahydrofuran, sulfolane and 1,
The lithium battery according to claim 1, which is a mixed solvent comprising at least one organic solvent selected from 3-dioxolane.
JP28926496A 1996-10-11 1996-10-11 Lithium battery Expired - Fee Related JP3349368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28926496A JP3349368B2 (en) 1996-10-11 1996-10-11 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28926496A JP3349368B2 (en) 1996-10-11 1996-10-11 Lithium battery

Publications (2)

Publication Number Publication Date
JPH10116623A true JPH10116623A (en) 1998-05-06
JP3349368B2 JP3349368B2 (en) 2002-11-25

Family

ID=17740915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28926496A Expired - Fee Related JP3349368B2 (en) 1996-10-11 1996-10-11 Lithium battery

Country Status (1)

Country Link
JP (1) JP3349368B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164527A (en) * 2004-12-02 2006-06-22 Matsushita Electric Ind Co Ltd Flat type nonaqueous electrolytic solution battery
JP2006339046A (en) * 2005-06-02 2006-12-14 Matsushita Electric Ind Co Ltd Lithium primary battery
JP2007328978A (en) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2011521406A (en) * 2008-04-29 2011-07-21 エバレデイ バツテリ カンパニー インコーポレーテツド Nonaqueous electrolytes containing linear asymmetric ethers for use in lithium primary batteries
JP2013519213A (en) * 2010-02-10 2013-05-23 力佳電源科技(深▲せん▼)有限公司 Soft package lithium battery tab material and electroplating method and application thereof
JP2014241304A (en) * 2009-01-30 2014-12-25 株式会社エクォス・リサーチ Current collector for secondary battery
JP2015008154A (en) * 2009-03-31 2015-01-15 株式会社エクォス・リサーチ Battery case

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164527A (en) * 2004-12-02 2006-06-22 Matsushita Electric Ind Co Ltd Flat type nonaqueous electrolytic solution battery
JP2006339046A (en) * 2005-06-02 2006-12-14 Matsushita Electric Ind Co Ltd Lithium primary battery
JP2007328978A (en) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2011521406A (en) * 2008-04-29 2011-07-21 エバレデイ バツテリ カンパニー インコーポレーテツド Nonaqueous electrolytes containing linear asymmetric ethers for use in lithium primary batteries
JP2014241304A (en) * 2009-01-30 2014-12-25 株式会社エクォス・リサーチ Current collector for secondary battery
JP2015008154A (en) * 2009-03-31 2015-01-15 株式会社エクォス・リサーチ Battery case
JP2013519213A (en) * 2010-02-10 2013-05-23 力佳電源科技(深▲せん▼)有限公司 Soft package lithium battery tab material and electroplating method and application thereof

Also Published As

Publication number Publication date
JP3349368B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
CN101164186B (en) New system of lithium ion battery containing material with high irreversible capacity
EP1771913B1 (en) Non-aqueous electrochemical cells
US7749288B2 (en) Method of making non-aqueous electrochemical cell
JPWO2007086289A1 (en) Non-aqueous electrolyte secondary battery, manufacturing method and mounting method thereof
JP3311611B2 (en) Lithium secondary battery
JP2008537632A (en) Non-aqueous electrochemical cell
JP3349368B2 (en) Lithium battery
JP2003249263A (en) Lithium secondary battery for substrate mounting
JPH08138735A (en) Lithium secondary battery
JP3291528B2 (en) Non-aqueous electrolyte battery
JP2734978B2 (en) Non-aqueous electrolyte battery
JPH0864246A (en) Sealed type nonaqueous electrolyte secondary battery
JP2003257384A (en) Ferritic stainless steel for button type lithium secondary battery case and battery case
KR20040096771A (en) Lithium Secondary Battery
JP2000021448A (en) High polymer electrolyte secondary battery
JPH0562690A (en) Nonaqueous electrolyte cell
JP2004363015A (en) Non-aqueous electrolyte secondary battery
JP3094397B2 (en) Organic electrolyte secondary battery
JPH08279366A (en) Lithium secondary battery
JP2004095325A (en) Lithium secondary battery
JP2007173150A (en) Nonaqueous electrolyte battery
JPH11317242A (en) Manufacture of nonaqueous electrolyte battery
US7585579B1 (en) Electrolyte for metal-oxygen battery and method for its preparation
EP1406336A1 (en) Electrolyte composition having improved aluminium anticorrosive properties
JP2002245978A (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees