JPH10115788A - Hard mirror optical system - Google Patents

Hard mirror optical system

Info

Publication number
JPH10115788A
JPH10115788A JP8285869A JP28586996A JPH10115788A JP H10115788 A JPH10115788 A JP H10115788A JP 8285869 A JP8285869 A JP 8285869A JP 28586996 A JP28586996 A JP 28586996A JP H10115788 A JPH10115788 A JP H10115788A
Authority
JP
Japan
Prior art keywords
optical system
relay optical
partial
relay
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8285869A
Other languages
Japanese (ja)
Inventor
Tsutomu Igarashi
勉 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP8285869A priority Critical patent/JPH10115788A/en
Publication of JPH10115788A publication Critical patent/JPH10115788A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a hard mirror optical system having image quality coping with an HDTV camera by providing a relay optical system constituted of an objective optical system and single or plural partial relay optical systems and satisfying a specified condition. SOLUTION: This hard mirror optical system is a system where a part arranged in an insertion part out of an observation optical system includes an objective optical system and a relay optical system in order from an object side and a part positioned in the insertion part out of the relay optical system has at least one partial relay optical system. Then, the objective optical system and the partial relay optical system in the insertion part satisfy the conditions (1) 0.4mm<=Dr <2> /Lr <=0.8mm (2) Do <2> /Lo >=Dr <2> /Lr . Provided that Do is the maximum lens outside diameter of the objective optical system, Lo is the entire length of the objective optical system, Dr is the maximum lens outside diameter of the partial relay optical system, and Lr is the entire length of the partial relay optical system. The number of the partial relay optical systems positioned in the insertion part is set to <=2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は硬性鏡の観察光学系
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an observation optical system for a rigid endoscope.

【0002】[0002]

【従来の技術】硬性鏡は、通常図12に示すような構成
であって、生体内等の空洞内に挿入するための細長い硬
性の挿入部1と、使用時に空洞外に位置していて術者の
手や硬性鏡保持具で支えられる把持部2とからなってい
る。又空洞内の物体の像を観察、撮影するための観察光
学系は、挿入部内から把持部内にかけて配置されてい
る。この観察光学系のうち、挿入部内に配置されている
部分は、その先端側に配置されていて物体の実像を形成
する対物光学系3と、この対物光学系3により形成され
た像を把持部内に伝送するためのリレー光学系4とより
なっている。これら対物光学系3およびリレー光学系4
は挿入部1内にある光学系保持チューブ5内に同軸に配
置されている。又観察光学系のうち把持部2内に配置さ
れている部分は、リレー光学系4により伝送された物体
像を眼視可能にする接眼光学系6よりなっている。
2. Description of the Related Art A rigid endoscope generally has a configuration as shown in FIG. 12, and has an elongated rigid insertion portion 1 for insertion into a cavity such as a living body, and is located outside the cavity when used. And a gripper 2 supported by a hand of a person or a rigid mirror holder. Further, an observation optical system for observing and photographing an image of an object in the cavity is disposed from the inside of the insertion portion to the inside of the grip portion. In the observation optical system, a portion disposed in the insertion portion is provided with an objective optical system 3 which is disposed on the distal end side and forms a real image of the object, and an image formed by the objective optical system 3 is provided in the grip portion. And a relay optical system 4 for transmitting the signal. These objective optical system 3 and relay optical system 4
Are coaxially arranged in an optical system holding tube 5 in the insertion section 1. The portion of the observation optical system disposed in the holding unit 2 is formed of an eyepiece optical system 6 that allows the object image transmitted by the relay optical system 4 to be viewed.

【0003】内視鏡下外科手術において硬性鏡を用いる
場合には、ビデオ観察が必要になるために、把持部2の
接眼マウントに硬性鏡用テレビカメラを取り付けてテレ
ビモニターでの観察が行なわれ、特に、腹腔鏡分野にお
いては、テレビ観察は必須になっている。そのために図
12に示すように、撮像光学系7と固体撮像素子8を備
えた硬性鏡用テレビカメラ9が取付けられる。尚図中1
0はカメラコントロールユニット、11はテレビモニタ
ーである。
[0003] When a rigid scope is used in an endoscopic surgical operation, video observation is required. Therefore, a television camera for the rigid scope is attached to the eyepiece mount of the grip portion 2 and observation is performed on a television monitor. In the laparoscopic field, in particular, television observation has become indispensable. For this purpose, as shown in FIG. 12, a television camera 9 for a rigid mirror having an imaging optical system 7 and a solid-state imaging device 8 is attached. 1 in the figure
0 is a camera control unit, and 11 is a television monitor.

【0004】[0004]

【発明が解決しようとする課題】近年、内視鏡下外科手
術に用いるテレビカメラの画質の向上がめざましく、
R、G、Bの各色毎に40万画素程度の3枚のCCD
(電荷結合素子)を用いて一つのカラー画像を撮像する
3板テレビカメラや、40万画素以上の単板テレビカメ
ラが普及しつつある。これらのテレビシステムは、40
0〜700TV本の水平解像度を有している。更にHD
TV(高精細テレビ)の技術にもとづく1000TV本
を超える解像力のテレビカメラが医療現場でも用いられ
るようになって来ている。それは、例えば内視鏡下外科
手術においては、手術の手技の拡張や普及手技の安全性
を高めるためにHDTVの技術が有用だからである。又
当然内視鏡や硬性鏡を含めた観察システムは画質向上が
必要であり、この性能の面から硬性鏡用HDTVカメラ
が将来普及することは確実である。尚このHDTVにC
CD等の固体撮像素子を用いる場合、200万程度の画
素数が必要である。
In recent years, the image quality of television cameras used for endoscopic surgery has been remarkably improved.
Three CCDs of about 400,000 pixels for each color of R, G, B
A three-panel television camera that captures one color image using a (charge-coupled device) and a single-panel television camera with 400,000 pixels or more are becoming widespread. These television systems have 40
It has a horizontal resolution of 0 to 700 TV lines. HD
Television cameras based on the technology of TV (high-definition television) and having a resolution of more than 1000 TVs have come to be used in medical sites. This is because, for example, in an endoscopic surgical operation, HDTV technology is useful for extending the operation procedure and improving the safety of a spread procedure. Obviously, observation systems including endoscopes and rigid endoscopes need to improve image quality, and in view of this performance, HDTV cameras for rigid endoscopes will surely spread in the future. This HDTV has C
When a solid-state imaging device such as a CD is used, about 2 million pixels are required.

【0005】硬性鏡は、挿入部の外径が太いもの程画質
が良くなる傾向にあり、硬性腹腔鏡では、挿入部の外径
が10mmの太いものが主流である。しかし、現状の硬性
腹腔鏡の解像力は、外径が10mmの太いものを用いても
40万画素程度の3板テレビカメラに対応するのが限界
である。そのため、それ以上の解像力を有するHDTV
カメラと硬性鏡の組み合わせの場合、硬性鏡の解像力が
HDTVカメラの能力に及ばないために、HDTVカメ
ラの能力を発揮できない。
[0005] The rigid endoscope tends to have a higher image quality as the outer diameter of the insertion portion is larger, and the mainstream of rigid laparoscopes has the outer diameter of the insertion portion as large as 10 mm. However, the current resolution of a rigid laparoscope is limited to being compatible with a three-panel television camera of about 400,000 pixels, even if a thick one with an outer diameter of 10 mm is used. Therefore, HDTV with higher resolution
In the case of a combination of a camera and a rigid scope, the resolution of the rigid scope does not reach the capability of the HDTV camera, so that the capability of the HDTV camera cannot be exhibited.

【0006】硬性鏡光学系とテレビカメラの解像力との
相関について述べている従来例として特開平7−537
7号公報が知られている。この公報においては変倍光学
系を有する硬性鏡光学系におけるレイリーの分解能によ
る限界解像力の解折が行なわれている。しかし、この従
来例の硬性鏡光学系の実施例は、HDTV用としては解
像力が不足しており、HDTVの有する画質を生かすこ
とが出来ない。
Japanese Patent Laid-Open No. 7-537 discloses a conventional example which describes the correlation between the optical system of a rigid endoscope and the resolution of a television camera.
No. 7 is known. In this gazette, the resolution of the critical resolution is determined by the Rayleigh resolution in a rigid mirror optical system having a variable power optical system. However, this conventional example of the rigid mirror optical system has insufficient resolution for HDTV, and cannot utilize the image quality of HDTV.

【0007】上記実施例を含めて、固体撮像素子の画素
数で200万画素程度のHDTVカメラと硬性鏡との組
合わせに関する検討は行なわれておらず、どのような構
成の光学系にすれば、HDTVカメラの情報量を十分に
生かすことの出来る硬性鏡光学系が得られるかについて
は明らかでない。
[0007] Including the above-mentioned embodiment, no study has been made on the combination of an HDTV camera having a number of pixels of about 2 million pixels of a solid-state imaging device and a rigid mirror. It is not clear whether a rigid mirror optical system capable of fully utilizing the information amount of the HDTV camera can be obtained.

【0008】本発明の目的は、HDTVカメラに対応し
得る画質を有する硬性鏡光学系を提供することにある。
An object of the present invention is to provide a rigid mirror optical system having an image quality compatible with an HDTV camera.

【0009】[0009]

【課題を解決するための手段】本発明の硬性鏡光学系
は、観察光学系のうちの挿入部内に配置された部分が物
体側より順に、対物光学系とリレー光学系とを含むもの
で、リレー光学系中の挿入部内に位置するものが少なく
とも一つの部分リレー光学系を有し、対物光学系および
挿入部内の部分リレー光学系が下記条件(1)、(2)
を満足することを特徴とするものである。
According to the present invention, there is provided a rigid endoscope optical system in which a portion of an observation optical system arranged in an insertion portion includes an objective optical system and a relay optical system in order from the object side. The one located in the insertion section in the relay optical system has at least one partial relay optical system, and the objective optical system and the partial relay optical system in the insertion section satisfy the following conditions (1) and (2).
Is satisfied.

【0010】 (1) 0.4mm≦Dr 2/Lr ≦0.8mm (2) Do 2/Lo ≧Dr 2/Lr ただし、Do は対物光学系の最大レンズ外径、Lo は対
物光学系の全長、Dr は部分リレー光学系の最大レンズ
外径、Lr は部分リレー光学系の全長である。
[0010] (1) 0.4mm ≦ D r 2 / L r ≦ 0.8mm (2) D o 2 / L o ≧ D r 2 / L r However, D o is the maximum lens diameter of the objective optical system, L o is the overall length of the objective optical system, the D r maximum lens diameter portion relay optical system, the L r is the total length of the portion relay optical system.

【0011】以下、前記基本構成を有し、条件(1)、
(2)を満足する本発明の硬性鏡光学系について述べ
る。
In the following, the above-mentioned basic structure is provided, and a condition (1),
The rigid mirror optical system of the present invention that satisfies (2) will be described.

【0012】まず、収差を含まない理想状態の硬性鏡光
学系の情報量について述べる。
First, the amount of information of an ideal state of a rigid mirror optical system which does not include aberration will be described.

【0013】よく知られているレイリーの分解能εは、
下記の式(a)にて表わされる。
The well-known Rayleigh resolution ε is
It is represented by the following equation (a).

【0014】 ε=0.61λ/NA’ (a) ただし、λは波長、NA’は像側開口数である。Ε = 0.61λ / NA ′ (a) where λ is the wavelength and NA ′ is the image-side numerical aperture.

【0015】この式(a)において、εはエアリーディ
スクの半径に相当し、εだけ離れた2点による像の強度
分布は、最大値を1とした時に、中心の極小値が0.7
4になる時に2点を分離して判別出来、通常はこのεの
逆数を限界解像力として定義している。しかし、硬性鏡
のような画像観察光学系の解像力の上限値として前記ε
の逆数を用いるとコントラストが低すぎて問題である。
つまり硬性鏡のような画像観察光学系の場合、2点を分
離できるだけでは十分ではなく、この光学系に組合わせ
るテレビカメラのサンプリングによる解像限界において
も十分なコントラストが得られることが要求される。
In the equation (a), ε corresponds to the radius of the Airy disk, and the intensity distribution of the image at two points separated by ε is such that when the maximum value is 1, the minimum value at the center is 0.7.
When it becomes 4, two points can be separated and distinguished, and usually the reciprocal of ε is defined as the limit resolution. However, as the upper limit of the resolving power of an image observation optical system such as a rigid endoscope,
If the reciprocal of is used, the contrast is too low, which is problematic.
In other words, in the case of an image observation optical system such as a rigid endoscope, it is not sufficient to be able to separate two points, and it is required that a sufficient contrast can be obtained even at the resolution limit by sampling of a television camera combined with this optical system. .

【0016】このために、硬性鏡の実用限界解像力を算
出するために用いる分解能εr は、下記式(b)にて定
義する必要がある。
For this reason, the resolution ε r used for calculating the practical limit resolution of the rigid endoscope must be defined by the following equation (b).

【0017】 εr =2ε=1.22λ/NA’ (b) このεr は、エアリーディスクの直径に相当し、εr
け離れた2点による像の強度分布は、極大値を1とした
時中心の極小値は0になり、2点を分離できるだけでな
く、コントラストの劣化がほとんどない。
Ε r = 2ε = 1.22λ / NA ′ (b) This ε r corresponds to the diameter of an Airy disk, and the intensity distribution of an image at two points separated by ε r has a maximum value of 1. The minimum value at the time center becomes 0, and not only can two points be separated, but also there is almost no deterioration in contrast.

【0018】このため、本発明においては、硬性鏡光学
系の実用限界解像力としてεr の逆数を用いる。
Therefore, in the present invention, the reciprocal of ε r is used as the practical limit resolution of the rigid mirror optical system.

【0019】硬性鏡観察光学系の実用限界解像力は、リ
レー光学系に依存する部分が大きい。このリレー光学系
の実用限界解像力は、リレー光学系の開口数(NAr
により決まる。また、実用限界解像力に像の大きさを掛
けあわせたものを一次元情報量Qと定義すると、リレー
光学系の一次元情報量Qは、下記の式(c)にて表わさ
れる。
The practical limit resolution of the rigid endoscope observation optical system largely depends on the relay optical system. The practical limit resolution of this relay optical system is the numerical aperture (NA r ) of the relay optical system.
Is determined by Further, when the one obtained by multiplying the practical limit resolution by the size of the image is defined as the one-dimensional information amount Q, the one-dimensional information amount Q of the relay optical system is expressed by the following equation (c).

【0020】 Q=0.82NAr ・Ir /λ (c) ここでIr はリレー光学系の像の直径で、Qの単位は本
である。
[0020] Q = 0.82NA r · I r / λ (c) where I r is a diameter of the image of the relay optical system, the unit of Q is present.

【0021】上記の式で計算例としてNAr =0.0
5、Ir =2mm、λ=0.65μmとするとQ=126
(本)である。
In the above equation, NA r = 0.0
5, when I r = 2 mm and λ = 0.65 μm, Q = 126
(Book).

【0022】この場合、リレー光学系の視野いっぱいに
126本以下の黒白格子を投影すれば、十分なコントラ
ストをもって解像できる。しかし、それ以上の本数の黒
白格子では十分なコントラストが得られない。尚波長λ
は分解能の悪い長波長側を用いている。
In this case, by projecting 126 or less black-and-white gratings over the entire field of view of the relay optical system, resolution can be achieved with sufficient contrast. However, sufficient contrast cannot be obtained with more black and white gratings. Wavelength λ
Uses the long wavelength side with poor resolution.

【0023】HDTVカメラは、200万画素程度の固
体撮像素子を用いる場合には、通常水平方向で約200
0画素を有する。
When an HDTV camera uses a solid-state imaging device having about 2 million pixels, it usually has about 200 pixels in the horizontal direction.
It has 0 pixels.

【0024】又、画素毎にカラーフイルターを有する単
板カラーCCDは、通常3画素で黒白1ペアーの格子を
解像できる。そのためHDTVカメラの一次元情報量は
水平方向で667本程度である。
A single-chip color CCD having a color filter for each pixel can usually resolve a black-and-white one-pair lattice with three pixels. Therefore, the one-dimensional information amount of the HDTV camera is about 667 in the horizontal direction.

【0025】前述の計算例のリレー光学系の視野を、上
記のHDTVカメラの視野枠いっぱいに投影しても、H
DTVカメラの解像限界未満の周波数で、硬性鏡のコン
トラストの低下が生じ、HDTVカメラの画質を十分生
かせない。
Even if the field of view of the relay optical system in the above calculation example is projected to fill the field of view of the HDTV camera, H
At a frequency lower than the resolution limit of the DTV camera, the contrast of the rigid endoscope is reduced, and the image quality of the HDTV camera cannot be sufficiently utilized.

【0026】したがってHDTVカメラと組合わせる硬
性鏡のリレー光学系は、次の条件を満足する必要があ
る。
Therefore, the relay optical system of the rigid endoscope combined with the HDTV camera needs to satisfy the following conditions.

【0027】 Q=0.82NAr ・Ir /λ≧667 (d) ここで、λ=0.65nmとすると、上記(d)式は、下
記のようになる。
Q = 0.82NA r · I r / λ ≧ 667 (d) Here, if λ = 0.65 nm, the above equation (d) becomes as follows.

【0028】 NAr ・Ir ≧0.529mm (e) 前記従来例の特開平7−5377号公報に記載されてい
る硬性鏡光学系の場合、Fナンバーが6.483で、像
の大きさが6.08mm(像高3.04mm)である。これ
らの値はリレー光学系ではないが、光学系の開口数と像
の大きさの積は、光学系中で保存される。したがって、
上記値をもとに前記従来例の実施例のNAr ・Ir の値
をもとめると下記の通りである。
NA r · I r ≧ 0.529 mm (e) In the case of the rigid mirror optical system described in JP-A-7-5377, the F-number is 6.483, and the image size is Is 6.08 mm (image height 3.04 mm). These values are not the relay optics, but the product of the numerical aperture of the optics and the image size is preserved in the optics. Therefore,
Based on the above values, the values of NA r · I r of the embodiment of the conventional example are as follows.

【0029】 NAr ・Ir =6.08mm/(2×6.483) =0.469mm このように、前記実施例は、条件(e)を満足せず、H
DTVカメラの解像限界付近ではコントラストが劣化す
る。
NA r · I r = 6.08 mm / (2 × 6.483) = 0.469 mm As described above, the embodiment does not satisfy the condition (e).
The contrast deteriorates near the resolution limit of the DTV camera.

【0030】本発明の硬性鏡のリレー光学系は、単数又
は複数の部分リレー光学系よりなる。ここで部分リレー
光学系は、挿入部内のリレー光学系で、1回だけ像伝送
を行なう光学系をいう。
The relay optical system of the rigid scope according to the present invention comprises one or a plurality of partial relay optical systems. Here, the partial relay optical system refers to an optical system that performs image transmission only once in the relay optical system in the insertion unit.

【0031】この部分リレー光学系による像の大きさI
r は、下記式(f)、又開口数NAr は下記式(g)に
て夫々近似される。
The image size I of this partial relay optical system
r is approximated by the following equation (f), and the numerical aperture NA r is approximated by the following equation (g).

【0032】 Ir =0.75Dr /Lr (f) NAr =1.75Dr /Lr (g) ただし、Dr は部分リレー光学系の最大レンズ外径(m
m)、Lr は部分リレー光学系の全長(像から像までの
距離)(mm)である。
[0032] I r = 0.75D r / L r (f) NA r = 1.75D r / L r (g) However, D r is the maximum outer diameter of the lens portion relay optical system (m
m) and L r are the total length (distance from image to image) of the partial relay optical system (mm).

【0033】前記式(f)から、部分リレー光学系にて
得られる像の大きさIr は、レンズの外径Dr に比例す
ることがわかる。ここで0.75という比例定数は、部
分リレー光学系の視野周辺での口径蝕を避けつつできる
だけ大きな像が出来るように設定した。
The size I r of the image from the formula (f), obtained by the partial relay optical system is found to be proportional to the outside diameter D r of the lens. Here, the proportionality constant of 0.75 was set so that an image as large as possible could be formed while avoiding vignetting around the field of view of the partial relay optical system.

【0034】又、式(g)におけるDr /Lr は、開口
数の定義から容易に導かれる。また1.75という比例
定数は、部分リレー光学系の平均的な屈折率にもとづい
て設定したものである。
Further, D r / L r in equation (g) is easily derived from the definition of the numerical aperture. The proportional constant of 1.75 is set based on the average refractive index of the partial relay optical system.

【0035】部分リレー光学系は、通常そのほとんどの
空間がガラスにて占められており、空気で満たす場合に
比べて開口数が屈折率の比例分だけ増大する。そのた
め、前記の比例定数を掛け合わせた。
In the partial relay optical system, most of the space is usually occupied by glass, and the numerical aperture is increased by a proportion of the refractive index as compared with the case where the partial relay optical system is filled with air. Therefore, the above-mentioned proportionality constant was multiplied.

【0036】式(e)に式(f),(g)を代入すると
下記式(h)が求まる。
By substituting equations (f) and (g) into equation (e), the following equation (h) is obtained.

【0037】 Dr 2/Lr ≧0.4mm (h) この式(h)のDr 2/Lr が、部分リレー光学系で伝達
し得る一次元情報量を反映するパラメーターである。こ
のパラメーターDr 2/Lr の値が全ての部分リレー光学
系において式(h)に示す範囲内であれば、リレー光学
系としてHDTVに対応可能な十分な一次元情報量を得
ることが出来る。しかしこのパラメーターDr 2/Lr
値が必要以上に大になるとリレー光学系の開口数もしく
は像が大きくなりすぎてレンズ設計時の収差補正が難し
くなる。そのためDr 2/Lr は下記の範囲内であること
が好ましい。
[0037] D r 2 / L r ≧ 0.4mm (h) D r 2 / L r of the equation (h) is a parameter reflecting the one-dimensional amount of information that can be transmitted in the portion relay optical system. Within the range shown in the formula (h) at a value all parts the relay optical system of this parameter D r 2 / L r, it is possible to obtain a sufficient one-dimensional information amount capable of handling HDTV as a relay optical system . However this parameter D r 2 / L value of r is larger than necessary when the aberration correction when too large numerical aperture or the image of the relay optical system lens design becomes difficult. Therefore D r 2 / L r is preferably within the following range.

【0038】Dr 2/Lr ≦0.8mm 以上の理由から、本発明の硬性鏡光学系では、リレー光
学系を構成する部分リレー光学系を下記条件(1)を満
足するようにした。
[0038] From the above reasons D r 2 / L r ≦ 0.8mm , the rigid endoscope optical system of the present invention, was the partial relay optical system constituting the relay optical system so as to satisfy the following condition (1).

【0039】 (1) 0.4mm≦Dr 2/Lr ≦0.8mm この条件(1)の下限値の0.4mmを超えるとHDTV
等に対応し得るに十分な解像度、コントラストが得られ
ない。又上限値の0.8mmは、下限値の2倍の値に相当
するが、このようにDr 2/Lr の値が下限値の2倍を超
える値になり部分リレー光学系の開口数と像の大きさの
積が2倍になると収差が悪化し好ましくない。つまり、
3次収差で考えると開口数が2倍になると球面収差の横
収差は8倍になり、又像の大きさが2倍になると非点収
差の縦収差が4倍になる。そして部分リレー光学系での
これら収差は、レンズ枚数を増やしても又非球面を採用
しても良好に補正できなくなる。
(1) 0.4 mm ≦ D r 2 / L r ≦ 0.8 mm If the lower limit of 0.4 mm of the condition (1) is exceeded, the HDTV
The resolution and contrast are not sufficient to cope with the above. The 0.8mm of the upper limit is equal to two times the value of the lower limit value, the numerical aperture of the thus partially relay optical system becomes a value more than twice the lower limit value of D r 2 / L r If the product of と and the image size is doubled, aberrations will worsen, which is not preferable. That is,
Considering the tertiary aberration, when the numerical aperture is doubled, the lateral aberration of spherical aberration becomes eight times, and when the image size is doubled, the longitudinal aberration of astigmatism becomes four times. These aberrations in the partial relay optical system cannot be corrected well even if the number of lenses is increased or an aspherical surface is employed.

【0040】以上、本発明の硬性鏡光学系を構成するリ
レー光学系について述べたが本発明の光学系を構成する
対物光学系についても十分な一次元情報量をもたない
と、リレー光学系の一次元情報量を生かすことができな
い。そのため対物光学系も、リレー光学系と同等の又は
それ以上の一次情報量を持たせる必要がある。
The relay optical system constituting the rigid mirror optical system according to the present invention has been described above. However, if the objective optical system constituting the optical system according to the present invention does not have a sufficient one-dimensional information amount, the relay optical system is required. Cannot utilize the amount of one-dimensional information. Therefore, the objective optical system also needs to have a primary information amount equal to or greater than that of the relay optical system.

【0041】対物光学系の最大外径をDo (mm)、対物
光学系の全長をLo (mm)とすると、Do 2/Lo が対物
光学系の一次元情報量を表わすパラメーターである。
Assuming that the maximum outer diameter of the objective optical system is D o (mm) and the total length of the objective optical system is L o (mm), Do 2 / L o is a parameter representing one-dimensional information amount of the objective optical system. is there.

【0042】本発明の対物光学系において、前記一次元
情報量を表わすパラメーターが、すべての部分リレー光
学系に対し(すべての部分リレー光学系の一次元情報量
を表わすパラメーターに対して)下記条件(2)にて示
す関係を満足するようにすることが望ましい。
In the objective optical system according to the present invention, the parameter representing the one-dimensional information amount is the following condition for all the partial relay optical systems (for the parameter representing the one-dimensional information amount for all the partial relay optical systems): It is desirable to satisfy the relationship shown in (2).

【0043】(2) Do 2/Lo ≧Dr 2/Lr 上記条件(2)を満足しないと、対物光学系のもつ一次
元情報量がリレー光学系のもつ一次元情報量よりも小に
なり、リレー光学系の持つ一次元情報量が無駄になり、
HDTV等に対応出来る解像度、コントラストを有する
光学系になし得なくなる。
[0043] (2) D When o 2 / L o ≧ D r 2 / L r the condition (2) is not satisfied, than the one-dimensional amount of information one-dimensional information amount has a relay optical system having the objective optical system And the one-dimensional information amount of the relay optical system is wasted,
An optical system having resolution and contrast that can support HDTV and the like cannot be obtained.

【0044】以上述べたように、本発明の硬性鏡光学系
は、前述のような構成の観察光学系を有するもので、観
察光学系のうちの対物光学系およびすべての部分リレー
光学系が前記条件(1)、(2)を満足することを特徴
とするものである。
As described above, the rigid endoscope optical system of the present invention has the observation optical system having the above-described configuration, and the objective optical system and all the partial relay optical systems of the observation optical system are the same as those described above. It is characterized by satisfying the conditions (1) and (2).

【0045】このような本発明の硬性鏡光学系におい
て、リレー光学系全体の収差の発生量を少なくするため
には、挿入部内に配置する部分リレー光学系が二つ以下
であることが好ましい。
In such a rigid mirror optical system of the present invention, it is preferable that the number of partial relay optical systems disposed in the insertion portion is two or less in order to reduce the amount of aberration generated in the entire relay optical system.

【0046】硬性鏡光学系の収差は、そのほとんどが挿
入部内の狭い空間に配置する対物光学系とリレー光学系
に依存する。この挿入部内の狭い空間的制約の中で中間
像を多数形成するように構成した光学系では、収差補正
が容易ではない。これに対して空間的制約の少ない把持
部内に配置する光学系では、収差補正が比較的容易であ
る。
Most of the aberration of the rigid mirror optical system depends on the objective optical system and the relay optical system arranged in a narrow space in the insertion section. In an optical system configured to form a large number of intermediate images under the narrow spatial constraints in the insertion section, aberration correction is not easy. On the other hand, in an optical system arranged in a holding unit with less spatial restriction, aberration correction is relatively easy.

【0047】対物光学系とリレー光学系とを比較した場
合、通常複数回の像伝送を行なうリレー光学系の方が、
光学系全体の収差に対する影響が大きい。更に、前述の
ようにHDTVの仕様を満足する情報量を有するリレー
光学系は、収差補正に対して厳しい仕様の光学系であ
る。
When the objective optical system and the relay optical system are compared, the relay optical system that performs image transmission a plurality of times is usually
The influence on the aberration of the entire optical system is large. Further, as described above, a relay optical system having an information amount satisfying the HDTV specification is an optical system with strict specifications for aberration correction.

【0048】このリレー光学系の収差は、部分リレー光
学系の収差と、部分リレー光学系の個数とに依存する。
そして前述のように空間的制約の大きい挿入部内の部分
リレー光学系の収差を完全に補正することは不可能であ
り、特に像面湾曲の補正が困難である。又この像面湾曲
は、部分リレー光学系の個数でほとんど決まってしま
う。
The aberration of the relay optical system depends on the aberration of the partial relay optical system and the number of the partial relay optical systems.
As described above, it is impossible to completely correct the aberration of the partial relay optical system in the insertion portion having a large space constraint, and it is particularly difficult to correct the field curvature. This field curvature is almost determined by the number of partial relay optical systems.

【0049】以上の理由から、リレー光学系の残存収
差、特に像面湾曲を少しでも減らすためには、部分リレ
ー光学系の個数が少ないことが望ましい。そのために挿
入部内の部分リレー光学系が二つ以下であることが望ま
しい。
For the above reasons, it is desirable that the number of partial relay optical systems be small in order to reduce residual aberration of the relay optical system, particularly field curvature, as much as possible. Therefore, it is desirable that the number of partial relay optical systems in the insertion portion is two or less.

【0050】もし、部分リレー光学系の個数が3以上で
あると、リレー光学系の収差、特に像面湾曲が大になり
すぎて視野周辺での画質が劣化し、HDTVカメラの画
質が生かせず好ましくない。
If the number of partial relay optical systems is three or more, the aberration of the relay optical system, particularly the curvature of field becomes so large that the image quality around the visual field deteriorates, and the image quality of the HDTV camera cannot be utilized. Not preferred.

【0051】本発明の硬性鏡光学系の他の構成は、前記
の基本構成において、更に接眼光学系を付加して正立像
での観察を行なうもので、更に収差補正を容易にするた
めとレンズ枚数削減のためにリレー光学系の部分リレー
光学系を一つに限定したものである。即ち、挿入部と把
持部とよりなる硬性鏡の光学系で、図9に示すように観
察光学系が、対物光学系3とリレー光学系4と接眼光学
系6よりなり、又リレー光学系が一つの部分リレー光学
系よりなり、挿入部1内には対物光学系3と一つの部分
リレー光学系が配置され、把持部内には少なくとも接眼
光学系が配置されていて、前記条件(1)、(2)を満
足することを特徴とする。
Another configuration of the rigid endoscope optical system according to the present invention is to perform observation with an erect image by adding an eyepiece optical system to the above basic configuration. In order to reduce the number, the number of partial relay optical systems in the relay optical system is limited to one. That is, in the optical system of the rigid endoscope including the insertion portion and the grip portion, as shown in FIG. 9, the observation optical system includes the objective optical system 3, the relay optical system 4, and the eyepiece optical system 6, and the relay optical system includes The objective optical system 3 and one partial relay optical system are arranged in the insertion portion 1 and at least the eyepiece optical system is arranged in the grip portion. (2) is satisfied.

【0052】又、上記構成の硬性鏡光学系において、前
記挿入部に配置される部分リレー光学系が条件(1)の
代りに下記条件(1−1)を満足すれば一層望ましい。
Further, in the rigid mirror optical system having the above configuration, it is more preferable that the partial relay optical system arranged in the insertion portion satisfies the following condition (1-1) instead of the condition (1).

【0053】 (1−1) 0.4mm≦Dr 2/Lr ≦0.6mm この条件(1−1)は、条件(1)において上限値を
0.8mmの代りに0.6mmとしたものである。挿入部内
の外径が定まっている場合はDr の自由度がないため、
部分リレー光学系が一つの場合、Dr 2/Lr を大にする
ためにはLr を小にしなければならない。しかしLr
小さくして条件(1−1)の上限値の0.6mmを超える
と内視鏡下外科手術に必要な挿入部の有効長を確保でき
なくなる。
(1-1) 0.4 mm ≦ D r 2 / L r ≦ 0.6 mm In the condition (1-1), the upper limit in the condition (1) is set to 0.6 mm instead of 0.8 mm. Things. Since there is no freedom of D r If the outer diameter of the insertion portion is determined,
When the partial relay optical system is one, to the D r 2 / L r to large must the L r to small. However, if Lr is reduced to exceed the upper limit of 0.6 mm of the condition (1-1), the effective length of the insertion portion required for the endoscopic surgery cannot be secured.

【0054】本発明の硬性鏡光学系の更に他の構成は、
図10に示すように前記基本構成の観察光学系を接眼光
学系を付加した構成にし、より明るい光学系にするため
にリレー光学系4の部分リレー光学系(4−1、4−
2)の個数を2とすると共に、リレー光学系4と接眼光
学系6との間に像反転リレー光学系12を配置して、明
るい正立像観察を可能にしたものである。又挿入部1内
には、対物光学系とリレー光学系(二つの部分リレー光
学系)を配置し、把持部内には接眼光学系と像反転リレ
ー光学系を配置している。
Still another configuration of the rigid mirror optical system of the present invention is as follows.
As shown in FIG. 10, the observation optical system of the basic configuration is configured by adding an eyepiece optical system, and a partial relay optical system (4-1, 4-
The number of 2) is set to 2, and the image inversion relay optical system 12 is arranged between the relay optical system 4 and the eyepiece optical system 6 to enable bright upright image observation. Further, an objective optical system and a relay optical system (two partial relay optical systems) are arranged in the insertion section 1, and an eyepiece optical system and an image inverting relay optical system are arranged in the holding section.

【0055】HDTVカメラの明るさは様々であり、使
用するテレビカメラによっては、明るさが問題になるこ
とがある。そのため、リレー光学系を一つの部分光学系
のみにて構成した場合、十分良好な画質が得られても明
るさの点で不十分なことがあり、リレー回数を増やす必
要性が生ずる。しかし、挿入部内に三つの部分リレー光
学系を配置して正立像を形成させると共に明るくしよう
とすると、収差を良好に補正することが困難になる。
The brightness of the HDTV camera varies, and depending on the TV camera used, the brightness may be a problem. Therefore, when the relay optical system is composed of only one partial optical system, even if a sufficiently good image quality is obtained, the brightness may be insufficient in some cases, and it is necessary to increase the number of relays. However, if three partial relay optical systems are arranged in the insertion section to form an erect image and to make the image brighter, it becomes difficult to satisfactorily correct aberrations.

【0056】そのために、挿入部内に配置する部分リレ
ー光学系を二つにし、把持部内で一回像伝送を行なって
正立像にするために、把持部内に像反転リレー光学系を
配置して明るい正立像にて観察し得るようにした。この
ように像反転リレー光学系を把持部内に配置したことに
より収差補正が比較的容易になり、ほぼ無収差に設計す
ることが可能になる。
For this purpose, two partial relay optical systems are arranged in the insertion portion, and an image inverting relay optical system is arranged in the grip portion to make the image upright by performing image transmission once in the grip portion. It was made to be able to observe with an erect image. By arranging the image reversing relay optical system in the holding section in this manner, aberration correction becomes relatively easy, and it is possible to design the optical system almost without aberration.

【0057】前記の像を反転させるための手段として像
反転リレー光学系の代りにポロプリズム等のプリズムを
用いた光学系を配置することも考えられる。この場合、
リレー光学系と接眼光学系の間にプリズムを配置する必
要があり、ポロプリズム等のプリズムは、硝路が長いた
めに接眼光学系の前側焦点距離を非常に長くする必要が
あり、接眼光学系の設計が事実上困難になる。そのた
め、像反転光学系としてプリズム光学系を用いることは
現実的には好ましくない。
As means for inverting the image, an optical system using a prism such as a Porro prism may be arranged instead of the image inversion relay optical system. in this case,
It is necessary to arrange a prism between the relay optical system and the eyepiece optical system, and a prism such as a Porro prism needs a very long front focal length of the eyepiece optical system due to a long glass path. Design becomes practically difficult. Therefore, it is not practically preferable to use a prism optical system as the image inversion optical system.

【0058】前記の像反転リレー光学系を配置した構成
の本発明硬性鏡光学系も、条件(1)、(2)を満足す
る必要があるが、条件(1)に代えて下記条件(1−
2)を満足すればより好ましい。
The rigid mirror optical system of the present invention having the arrangement of the image inversion relay optical system also needs to satisfy the conditions (1) and (2). However, the following condition (1) is used instead of the condition (1). −
It is more preferable to satisfy 2).

【0059】 (1−2) 0.5mm≦Dr 2/Lr ≦0.7mm この条件(1−2)は、条件(1)の上限値、下限値を
変更してその範囲を狭くしたものである。
(1-2) 0.5 mm ≦ D r 2 / L r ≦ 0.7 mm In the condition (1-2), the upper limit and the lower limit of the condition (1) were changed to narrow the range. Things.

【0060】上記構成の硬性鏡光学系は、光学系の明る
さを明るくしたものであるが、条件(1−2)の下限値
の0.5mmを下回ると臨床の条件によっては、明るさが
不十分になる。また上限値の0.7mmを上回ると収差補
正が難しくなり、歪曲収差以外の収差を良好に補正する
ためには、リレー光学系もしくは対物光学系に非球面を
用いる等の特別な工夫が必要になる。
In the rigid endoscope optical system having the above configuration, the brightness of the optical system is increased. However, if the value falls below the lower limit of 0.5 mm of the condition (1-2), the brightness may be reduced depending on clinical conditions. Becomes insufficient. If the value exceeds the upper limit of 0.7 mm, it becomes difficult to correct aberrations. To satisfactorily correct aberrations other than distortion, special measures such as using an aspherical surface in the relay optical system or objective optical system are required. Become.

【0061】次に、本発明の硬性鏡光学系において、リ
レー光学系の部分リレー光学系を、物体側より順に第
1、第2、第3の三つのレンズ成分にて構成し、第1レ
ンズ成分を外径よりも中心肉厚が大である両凸形状で、
このレンズ成分の最も中肉厚の大であるレンズの屈折率
を1.65以上とし、第2レンズ成分を両凸形状とし、
第3レンズ成分を第1レンズ成分と同一形状とし、これ
らレンズ成分にて構成された部分リレー光学系全体で対
称な配置にすることが望ましい。
Next, in the rigid mirror optical system of the present invention, the partial relay optical system of the relay optical system is composed of first, second, and third lens components in order from the object side, and the first lens The component has a biconvex shape with a center thickness greater than the outer diameter,
The lens having the largest medium thickness of the lens component has a refractive index of 1.65 or more, the second lens component has a biconvex shape,
It is desirable that the third lens component has the same shape as the first lens component, and that the third lens component has a symmetrical arrangement in the entire partial relay optical system constituted by these lens components.

【0062】部分リレー光学系を前記のような構成にす
ることにより、開口数を大にしつつ収差を小さく抑え、
更に空気に接する面の数を比較的少なく出来る。
By configuring the partial relay optical system as described above, aberration can be reduced while increasing the numerical aperture.
Further, the number of surfaces in contact with air can be relatively reduced.

【0063】本発明の光学系の仕様を満たすために必要
な収差補正を行なうためには、例えば後に示す実施例1
(図1)のように部分リレー光学系が正のパワーを有
し、空気に接する面が少なくとも6面なければならな
い。この6面のうち、2面は部分リレー光学系の両側の
像位置近傍にあり瞳の伝送に寄与する面である。又残り
の4面は、部分リレー光学系の中間部で像の伝送に寄与
する面である。この中間部で像の伝送に寄与する正のパ
ワーの空気に接する面が4面以上ないと、球面収差が収
差図上で湾曲し、視野中心でも十分なコントラストが得
られなくなる。一方、レンズの表面反射によるフレアー
の発生を低減するためには、空気に接する面の数は、出
来る限り少ない方が好ましい。
In order to perform the aberration correction necessary to satisfy the specifications of the optical system of the present invention, for example, the following first embodiment will be described.
As in FIG. 1, the partial relay optics must have positive power and have at least six surfaces in contact with air. Of these six surfaces, two surfaces are near image positions on both sides of the partial relay optical system and contribute to pupil transmission. The remaining four surfaces are intermediate surfaces of the partial relay optical system and contribute to image transmission. If there are no more than four surfaces in contact with air of positive power that contribute to image transmission in the intermediate portion, spherical aberration will be curved on the aberration diagram, and sufficient contrast cannot be obtained even at the center of the field of view. On the other hand, in order to reduce the occurrence of flare due to the surface reflection of the lens, the number of surfaces in contact with air is preferably as small as possible.

【0064】以上の理由から、本発明の光学系の部分リ
レー光学系は、前記の第1、第2、第3レンズ成分より
なる三つのレンズ成分にて構成することが望ましい。こ
のような構成であれば、球面収差を補正する上で必要な
6面の空気に接する面以外に空気に接する面が存在せ
ず、収差を良好に保ちしかもリレー光学系内での表面反
射によるフレアー光の増大を防ぐことができる。
For the above reasons, it is desirable that the partial relay optical system of the optical system according to the present invention is constituted by three lens components including the first, second, and third lens components. With such a configuration, there is no surface in contact with air other than the six surfaces in contact with air, which are necessary for correcting spherical aberration. An increase in flare light can be prevented.

【0065】更に、コマ収差と倍率の色収差の補正を考
慮すると、部分リレー光学系は、等倍でかつ左右対称な
構成にすることが望ましい。部分リレー光学系を左右対
称にすれば、像側に位置する二つのレンズユニットは、
同一形状で向きが異なることになる。
Further, in consideration of correction of coma and chromatic aberration of magnification, it is desirable that the partial relay optical system has an equal magnification and a symmetrical configuration. If the partial relay optical system is made symmetrical, the two lens units located on the image side
The directions are different with the same shape.

【0066】又像側に位置する第1レンズ成分および第
3レンズ成分は、開口数を大にするために中肉厚が大で
あり、かつ高屈折率の媒質にて構成することが好まし
い。そのためこれら像側にある第1、第3レンズ成分
は、外径よりも中肉厚が大である棒状にし、更にレンズ
成分を構成するレンズのうちの最も中肉の厚いレンズの
屈折率を前記のように1.65以上にすれば必要な開口
数が得られる。この最も中肉厚の厚いレンズの屈折率が
1.65未満になると必要とする開口数が得られなくな
る。
The first lens component and the third lens component located on the image side are preferably formed of a medium having a large medium thickness and a high refractive index in order to increase the numerical aperture. Therefore, the first and third lens components on the image side are formed in a rod shape having a medium thickness larger than the outer diameter, and the refractive index of the thickest lens among the lenses constituting the lens component is set to the above-mentioned value. If it is 1.65 or more, a required numerical aperture can be obtained. If the refractive index of this thickest lens is less than 1.65, the required numerical aperture cannot be obtained.

【0067】次に、本発明の硬性鏡光学系において、そ
の対物光学系の先端部に視野方向変換プリズムを配置す
ることにより、斜視用等の光学系の光軸方向とは異なる
方向を観察、撮像するための光学系になし得る。
Next, in the hard mirror optical system of the present invention, a direction different from the optical axis direction of the optical system, such as for oblique viewing, can be observed by disposing a viewing direction conversion prism at the tip of the objective optical system. An optical system for imaging can be provided.

【0068】例えば図11に示すように、対物光学系の
物体側から順に、負のパワーを有する第1レンズ群と、
視野方向変換プリズムと、正のパワーを有する第2レン
ズ群とよりなる構成である。そしてこの構成の対物光学
系において、下記条件(3)を満足することが望まし
い。
For example, as shown in FIG. 11, a first lens unit having negative power is arranged in order from the object side of the objective optical system.
This is a configuration including a viewing direction conversion prism and a second lens group having a positive power. It is desirable that the objective optical system having this configuration satisfies the following condition (3).

【0069】(3) 0.2≦Tp /Lo ≦0.4 内視鏡下外科手術に用いる硬性鏡は、各種視野方向を有
し、前記のような視野方向変換プリズムを備えていて各
種視野方向の観察、撮影可能な光学系が要求される。特
に25°から45°の視野方向を有する硬性鏡の要望が
強い。
(3) 0.2 ≦ T p / L o ≦ 0.4 Rigid endoscopes used in endoscopic surgery have various viewing directions and are provided with the viewing direction changing prism as described above. An optical system capable of observing and photographing in various viewing directions is required. In particular, there is a strong demand for a rigid endoscope having a viewing direction of 25 ° to 45 °.

【0070】前記基本構成を有する本発明の光学系は、
開口数と像の大きさの積が非常に大であるため、対物光
学系内の瞳が非常に大になる。そのため斜視用硬性鏡に
用いる視野方向変換プリズムは、大きな径の光束を通す
ことのできるものが必要である。前記の25°から45
°の視野方向変換角を持ち、大きな径の光束を通過させ
得る視野方向変換プリズムは、非常に長い硝路を必要と
する。このような視野方向変換プリズムを配置する空間
を確保するためには、対物光学系を前記のような構成つ
まり、物体側から順に、負の第1レンズ群と、視野方向
変換プリズムと、正の第2レンズ群とにて構成すること
が望ましい。更に視野方向変換プリズムは、その硝路T
p の対物光学系の全長に対する比率を大きくしなければ
ならない。そのため前記条件(3)を満足することが望
ましい。
The optical system according to the present invention having the above-mentioned basic structure is
Since the product of the numerical aperture and the size of the image is very large, the pupil in the objective optical system becomes very large. For this reason, a viewing direction changing prism used in the rigid hard mirror for perspective needs to be able to pass a light beam having a large diameter. 25 ° to 45 °
A viewing direction conversion prism having a viewing direction conversion angle of ° and capable of passing a light beam having a large diameter requires an extremely long glass path. In order to secure such a space for disposing the viewing direction conversion prism, the objective optical system is configured as described above, that is, in order from the object side, the negative first lens group, the viewing direction conversion prism, and the positive It is desirable that the second lens group be constituted. Further, the viewing direction changing prism is provided with the glass path T
The ratio of p to the total length of the objective optical system must be increased. Therefore, it is desirable that the condition (3) is satisfied.

【0071】前記条件(3)において、Tp /Lo が下
限値の0.2を超えるとプリズムの硝路が不足し、非常
に大きな径の光束を通すことの出来る視野方向変換プリ
ズムを構成し得なくなる。又Tp /Lo が上限値の0.
4を超えると、第1レンズ群からの距離が離れすぎて第
2レンズ群中での光束の径が大きくなり、第2レンズ群
で有効光束がけられる。
In the above condition (3), when T p / L o exceeds the lower limit of 0.2, the viscous path of the prism becomes insufficient, and a viewing direction changing prism capable of passing a light beam having a very large diameter is constructed. I cannot do it. In addition, T p / Lo is the upper limit of 0.
If it exceeds 4, the distance from the first lens group is too large, the diameter of the light beam in the second lens group becomes large, and the effective light beam is emitted by the second lens group.

【0072】以上述べたように、本発明の光学系の基本
構成として、硬性鏡の挿入部内に対物光学系と一つ又は
複数の部分リレー光学系よりなるリレー光学系とにて構
成するもので、条件(1)、(2)を満足することを特
徴とするものである。
As described above, the basic configuration of the optical system according to the present invention is configured by the objective optical system and the relay optical system including one or a plurality of partial relay optical systems in the insertion portion of the rigid endoscope. , Conditions (1) and (2) are satisfied.

【0073】この本発明において、リレー光学系が複数
の部分リレー光学系よりなる場合、部分リレー光学系の
一部を把持部内に配置することが考えられる。この場
合、把持部内の部分リレー光学系も前記条件(1)、
(2)を満足することが望ましい。
In the present invention, when the relay optical system is composed of a plurality of partial relay optical systems, it is conceivable that a part of the partial relay optical system is arranged in the holding portion. In this case, the partial relay optical system in the gripping part also satisfies the condition (1),
It is desirable to satisfy (2).

【0074】[0074]

【発明の実施の形態】次に本発明の硬性鏡光学系の実施
の形態を各実施例の光学系をもとに説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the rigid mirror optical system according to the present invention will be described based on the optical systems of the respective embodiments.

【0075】本発明の光学系の各実施例は、下記のデー
ターを有する。 実施例1 物体距離=60.0000 ,像高=3.500 ,焦点距離=4.368 ,Fナンバー=3.766 全長(第1面〜最終面)=353.800 ,画角=80°,射出瞳位置=∞ r1 =∞ d1 =0.7000 n1 =1.76820 ν1 =71.79 r2 =∞ d2 =0.3500 r3 =∞ d3 =0.5000 n2 =1.78472 ν2 =25.76 r4 =3.2719(非球面) d4 =1.6000 r5 =∞ d5 =19.2388 n3 =1.88300 ν3 =40.78 r6 =∞(絞り) d6 =2.3312 n4 =1.88300 ν4 =40.78 r7 =∞ d7 =2.0000 n5 =1.48749 ν5 =70.21 r8 =10.4840 d8 =1.2900 r9 =21.0720 d9 =5.9300 n6 =1.80440 ν6 =39.58 r10=-23.7790 d10=0.5000 r11=28.9610 d11=7.4500 n7 =1.72916 ν7 =54.68 r12=-22.5740 d12=0.5000 r13=16.9530 d13=4.2300 n8 =1.77250 ν8 =49.60 r14=79.4570 d14=1.5000 n9 =1.84666 ν9 =23.78 r15=8.1920 d15=4.3100 r16=11.0310 d16=2.9100 n10=1.77250 ν10=49.60 r17=79.4570 d17=1.5000 n11=1.84666 ν11=23.78 r18=6.4000 d18=1.9900 r19=12.3610 d19=8.5200 n12=1.81600 ν12=46.62 r20=-5.2300 d20=1.5000 n13=1.84666 ν13=23.78 r21=-24.0550 d21=4.9900 r22=∞(像) d22=5.0300 r23=27.9810 d23=3.9600 n14=1.69680 ν14=55.53 r24=∞ d24=42.0400 n15=1.72916 ν15=54.68 r25=∞ d25=6.6600 n16=1.58313 ν16=59.38 r26=-10.5000 d26=1.5000 n17=1.88300 ν17=40.78 r27=-25.5920 d27=0.8000 r28=27.6560 d28=10.0000 n18=1.51742 ν18=52.42 r29=∞ d29=10.0000 n19=1.51742 ν19=52.42 r30=-27.6560 d30=0.8000 r31=25.5920 d31=1.5000 n20=1.88300 ν20=40.78 r32=10.5000 d32=6.6600 n21=1.58313 ν21=59.38 r33=∞ d33=42.0400 n22=1.72916 ν22=54.68 r34=∞ d34=3.9600 n23=1.69680 ν23=55.53 r35=-27.9810 d35=5.0300 r36=∞(像) d36=5.0300 r37=27.9810 d37=3.9600 n24=1.69680 ν24=55.53 r38=∞ d38=42.0400 n25=1.72916 ν25=54.68 r39=∞ d39=6.6600 n26=1.58313 ν26=59.38 r40=-10.5000 d40=1.5000 n27=1.88300 ν27=40.78 r41=-25.5920 d41=0.8000 r42=27.6560 d42=10.0000 n28=1.51742 ν28=52.42 r43=∞ d43=10.0000 n29=1.51742 ν29=52.42 r44=-27.6560 d44=0.8000 r45=25.5920 d45=1.5000 n30=1.88300 ν30=40.78 r46=10.5000 d46=6.6600 n31=1.58313 ν31=59.38 r47=∞ d47=42.0400 n32=1.72916 ν32=54.68 r48=∞ d48=3.9600 n33=1.69680 ν33=55.53 r49=-27.9810 d49=5.0300 r50=∞(像) 非球面係数 K=-1.0677 ,E=2.4683×10-4,F=-6.3235 ×10-5,G=3.2907×10-6 (対物光学系) Lo =73.84 mm,Do =9.5mm ,Do 2/Lo =1.22mm,Tp =21.57mm Tp /Lo =0.292 第1レンズ群の焦点距離f1 =-4.170mm 第2レンズ群の焦点距離f2 =18.056mm (リレー光学系) 第1の部分リレー光学系 Lr =139.98mm,Dr =9.5mm ,Dr 2/Lr =0.65mm 第2の部分リレー光学系 Lr =139.98mm,Dr =9.5mm ,Dr 2/Lr =0.65mm
Each embodiment of the optical system of the present invention has the following data. Example 1 Object distance = 60.0000, Image height = 3.500, Focal length = 4.368, F-number = 3.766 Full length (first surface to last surface) = 353.800, Angle of view = 80 °, Exit pupil position = ∞ r 1 = ∞ d 1 = 0.7000 n 1 = 1.76820 ν 1 = 71.79 r 2 = d d 2 = 0.3500 r 3 = ∞ d 3 = 0.5000 n 2 = 1.84772 ν 2 = 25.76 r 4 = 3.2719 (aspherical surface) d 4 = 1.6000 r 5 = ∞ d 5 = 19.2388 n 3 = 1.88300 ν 3 = 40.78 r 6 = ∞ ( stop) d 6 = 2.3312 n 4 = 1.88300 ν 4 = 40.78 r 7 = ∞ d 7 = 2.0000 n 5 = 1.48749 ν 5 = 70.21 r 8 = 10.4840 d 8 = 1.2900 r 9 = 21.0720 d 9 = 5.9300 n 6 = 1.80440 ν 6 = 39.58 r 10 = -23.7790 d 10 = 0.5000 r 11 = 28.9610 d 11 = 7.4500 n 7 = 1.72916 ν 7 = 54.68 r 12 = -22.5740 d 12 = 0.5000 r 13 = 16.9530 d 13 = 4.2300 n 8 = 1.77250 ν 8 = 49.60 r 14 = 79.4570 d 14 = 1.5000 n 9 = 1.84666 ν 9 = 23.78 r 15 = 8.1920 d 15 = 4.3100 r 16 = 11.0310 16 = 2.9100 n 10 = 1.77250 ν 10 = 49.60 r 17 = 79.4570 d 17 = 1.5000 n 11 = 1.84666 ν 11 = 23.78 r 18 = 6.4000 d 18 = 1.9900 r 19 = 12.3610 d 19 = 8.5200 n 12 = 1.81600 ν 12 = 46.62 r 20 = -5.2300 d 20 = 1.5000 n 13 = 1.84666 ν 13 = 23.78 r 21 = -24.0550 d 21 = 4.9900 r 22 = ∞ ( image) d 22 = 5.0300 r 23 = 27.9810 d 23 = 3.9600 n 14 = 1.69680 ν 14 = 55.53 r 24 = ∞ d 24 = 42.0400 n 15 = 1.72916 ν 15 = 54.68 r 25 = ∞ d 25 = 6.6600 n 16 = 1.58313 ν 16 = 59.38 r 26 = -10.5000 d 26 = 1.5000 n 17 = 1.88300 ν 17 = 40.78 r 27 = -25.5920 d 27 = 0.8000 r 28 = 27.6560 d 28 = 10.0000 n 18 = 1.51742 ν 18 = 52.42 r 29 = d d 29 = 10.0000 n 19 = 1.51742 ν 19 = 52.42 r 30 = -27.6560 d 30 = 0.8000 r 31 = 25.5920 d 31 = 1.5000 n 20 = 1.88300 ν 20 = 40.78 r 32 = 10.5000 d 32 = 6.6600 n 21 = 1.58313 ν 21 = 59.38 r 33 = ∞ d 33 = 42.040 0 n 22 = 1.72916 v 22 = 54.68 r 34 = ∞ d 34 = 3.9600 n 23 = 1.69680 v 23 = 55.53 r 35 = -27.9810 d 35 = 5.0300 r 36 = ∞ (image) d 36 = 5.0300 r 37 = 27.9810 d 37 = 3.9600 n 24 = 1.69680 v 24 = 55.53 r 38 = ∞ d 38 = 42.0400 n 25 = 1.72916 v 25 = 54.68 r 39 = ∞ d 39 = 6.6600 n 26 = 1.58313 v 26 = 59.38 r 40 = -10.5000 d 40 = 1.5000 n 27 = 1.88300 ν 27 = 40.78 r 41 = -25.5920 d 41 = 0.8000 r 42 = 27.6560 d 42 = 10.0000 n 28 = 1.51742 ν 28 = 52.42 r 43 = ∞ d 43 = 10.0000 n 29 = 1.51742 ν 29 = 52.42 r 44 = -27.6560 d 44 = 0.8000 r 45 = 25.5920 d 45 = 1.5000 n 30 = 1.88300 ν 30 = 40.78 r 46 = 10.5000 d 46 = 6.6600 n 31 = 1.58313 ν 31 = 59.38 r 47 = ∞ d 47 = 42.0400 n 32 = 1.72916 v 32 = 54.68 r 48 = ∞ d 48 = 3.9600 n 33 = 1.69680 v 33 = 55.53 r 49 = -27.9810 d 49 = 5.0300 r 50 = ∞ (image) Aspheric coefficient K = -1.0677 , E = 2.4683 × 10 -4, F = -6.3235 × 10 -5, G = 3.2907 × 10 -6 ( objective optical system) L o = 73.84 mm, D o = 9.5mm, D o 2 / L o = 1.22 mm, T p = 21.57 mm T p / L o = 0.292 Focal length f 1 of the first lens group = 4.170 mm Focal length f 2 of the second lens group = 18.056 mm (relay optical system) First partial relay optics system L r = 139.98mm, D r = 9.5mm, D r 2 / L r = 0.65mm second portion relay optical system L r = 139.98mm, D r = 9.5mm, D r 2 / L r = 0.65mm

【0076】実施例2 物体距離=70.0000 ,像高=3.500 ,焦点距離=6.022 ,Fナンバー=4.163 全長(第1面〜最終面)=353.800 ,画角=70°,射出瞳位置=∞ r1 =∞ d1 =0.7000 n1 =1.76820 ν1 =71.70 r2 =∞ d2 =0.3500 r3 =∞ d3 =0.5000 n2 =1.88300 ν2 =40.78 r4 =5.1680 d4 =1.6000 r5 =∞ d5 =20.6621 n3 =1.88300 ν3 =40.78 r6 =∞ d6 =0.9079 n4 =1.88300 ν4 =40.78 r7 =∞ d7 =2.0000 n5 =1.84666 ν5 =23.78 r8 =13.4680 d8 =2.3000 r9 =-21.0720 d9 =2.0000 n6 =1.59270 ν6 =35.30 r10=26.2580 d10=3.0000 n7 =1.77250 ν7 =49.60 r11=-13.4990 d11=0.3000 r12=61.8010 d12=4.0000 n8 =1.81600 ν8 =46.62 r13=-21.4790 d13=0.3000 r14=11.8860 d14=4.9000 n9 =1.81600 ν9 =46.62 r15=-143.9420 d15=2.3300 r16=-22.7570 d16=2.0000 n10=1.84666 ν10=23.78 r17=5.4960 d17=3.1500 r18=-58.6910 d18=3.5000 n11=1.88300 ν11=40.78 r19=-5.4520 d19=2.0000 n12=1.54814 ν12=45.78 r20=13.1870 d20=4.3800 r21=31.7660 d21=5.9700 n13=1.88300 ν13=40.78 r22=-5.6040 d22=2.0000 n14=1.84666 ν14=23.78 r23=-49.9910 d23=4.9900 r24=∞(像) d24=5.0300 r25=27.9810 d25=3.9600 n15=1.69680 ν15=55.53 r26=∞ d26=42.0400 n16=1.72916 ν16=54.68 r27=∞ d27=6.6600 n17=1.58313 ν17=59.38 r28=-10.5000 d28=1.5000 n18=1.88300 ν18=40.78 r29=-25.5920 d29=0.8000 r30=27.6560 d30=10.0000 n19=1.51742 ν19=52.42 r31=∞ d31=10.0000 n20=1.51742 ν20=52.42 r32=-27.6560 d32=0.8000 r33=25.5920 d33=1.5000 n21=1.88300 ν21=40.78 r34=10.5000 d34=6.6600 n22=1.58313 ν22=59.38 r35=∞ d35=42.0400 n23=1.72916 ν23=54.68 r36=∞ d36=3.9600 n24=1.69680 ν24=55.53 r37=-27.9810 d37=5.0300 r38=∞(像) d38=5.0300 r39=27.9810 d39=3.9600 n25=1.69680 ν25=55.53 r40=∞ d40=42.0400 n26=1.72916 ν26=54.68 r41=∞ d41=6.6600 n27=1.58313 ν27=59.38 r42=-10.5000 d42=1.5000 n28=1.88300 ν28=40.78 r43=-25.5920 d43=0.8000 r44=27.6560 d44=10.0000 n29=1.51742 ν29=52.42 r45=∞ d45=10.0000 n30=1.51742 ν30=52.42 r46=-27.6560 d46=0.8000 r47=25.5920 d47=1.5000 n31=1.88300 ν31=40.78 r48=10.5000 d48=6.6600 n32=1.58313 ν32=59.38 r49=∞ d49=42.0400 n33=1.72916 ν33=54.68 r50=∞ d50=3.9600 n34=1.69680 ν34=55.53 r51=-27.9810 d51=5.0300 r52=∞(像) (対物光学系) Lo =73.84 mm,Do =9.5mm ,Do 2/Lo =1.22mm,Tp =21.57mm Tp /Lo =0.292 第1レンズ群の焦点距離f1 =-5.853mm 第2レンズ群の焦点距離f2 =18.784mm (リレー光学系) 第1の部分リレー光学系 Lr =139.98mm,Dr =9.5mm ,Dr 2/Lr =0.65mm 第2の部分リレー光学系 Lr =139.98mm,Dr =9.5mm ,Dr 2/Lr =0.65mmEmbodiment 2 Object distance = 70.0000, Image height = 3.500, Focal length = 6.022, F number = 4.163 Full length (first surface to last surface) = 353.800, Field angle = 70 °, Exit pupil position = 位置 r 1 = ∞ d 1 = 0.7000 n 1 = 1.76820 v 1 = 71.70 r 2 = ∞ d 2 = 0.3500 r 3 = ∞ d 3 = 0.5000 n 2 = 1.88300 v 2 = 40.78 r 4 = 5.1680 d 4 = 1.6000 r 5 = ∞ d 5 = 20.6621 n 3 = 1.88300 ν 3 = 40.78 r 6 = ∞ d 6 = 0.9079 n 4 = 1.88300 ν 4 = 40.78 r 7 = ∞ d 7 = 2.0000 n 5 = 1.84666 ν 5 = 23.78 r 8 = 13.4680 d 8 = 2.3000 r 9 = -21.0720 d 9 = 2.0000 n 6 = 1.59270 v 6 = 35.30 r 10 = 26.2580 d 10 = 3.0000 n 7 = 1.77250 v 7 = 49.60 r 11 = -13.4990 d 11 = 0.3000 r 12 = 61.8010 d 12 = 4.0000 n 8 = 1.81600 v 8 = 46.62 r 13 = -21.4790 d 13 = 0.3000 r 14 = 11.8860 d 14 = 4.9000 n 9 = 1.81600 v 9 = 46.62 r 15 = -143.9420 d 15 = 2.3300 r 16 = -22.7570 d 16 = 2.0000 n 10 = 1.84666 v 10 = 23.78 r 17 = 5.4960 d 17 = 3.1500 r 18 = -58.6910 d 18 = 3.5000 n 11 = 1.88 300 v 11 = 40.78 r 19 = -5.4520 d 19 = 2.0000 n 12 = 1.54814 v 12 = 45.78 r 20 = 13.1870 d 20 = 4.3800 r 21 = 31.7660 d 21 = 5.9700 n 13 = 1.88300 ν 13 = 40.78 r 22 = -5.6040 d 22 = 2.0000 n 14 = 1.84666 ν 14 = 23.78 r 23 = -49.9910 d 23 = 4.9900 r 24 = ∞ (image) d 24 = 5.0300 r 25 = 27.9810 d 25 = 3.9600 n 15 = 1.69680 v 15 = 55.53 r 26 = ∞ d 26 = 42.0400 n 16 = 1.72916 v 16 = 54.68 r 27 = 27 d 27 = 6.6600 n 17 = 1.58313 ν 17 = 59.38 r 28 = -10.5000 d 28 = 1.5000 n 18 = 1.88 300 ν 18 = 40.78 r 29 = -25.5920 d 29 = 0.8000 r 30 = 27.6560 d 30 = 10.0000 n 19 = 1.51742 ν 19 = 52.42 r 31 = ∞ d 31 = 10.0000 n 20 = 1.51742 ν 20 = 52.42 r 32 = -27.6560 d 32 = 0.8000 r 33 = 25.5920 d 33 = 1.5000 n 21 = 1.88300 ν 21 = 40.7 8 r 34 = 10.5000 d 34 = 6.6600 n 22 = 1.58313 ν 22 = 59.38 r 35 = d d 35 = 42.0400 n 23 = 1.72916 ν 23 = 54.68 r 36 = d d 36 = 3.9600 n 24 = 1.96880 ν 24 = 55.53 r 37 = -27.9810 d 37 = 5.0300 r 38 = ∞ (image) d 38 = 5.0300 r 39 = 27.9810 d 39 = 3.9600 n 25 = 1.69680 ν 25 = 55.53 r 40 = ∞ d 40 = 42.0400 n 26 = 1.72916 ν 26 = 54.68 r 41 = ∞ d 41 = 6.6600 n 27 = 1.58313 v 27 = 59.38 r 42 = -10.5000 d 42 = 1.5000 n 28 = 1.88 300 v 28 = 40.78 r 43 = -25.5920 d 43 = 0.8000 r 44 = 27.6560 d 44 = 10.0000 n 29 = 1.51742 v 29 = 52.42 r 45 = ∞ d 45 = 10.0000 n 30 = 1.51742 v 30 = 52.42 r 46 = -27.6560 d 46 = 0.8000 r 47 = 25.5920 d 47 = 1.5000 n 31 = 1.88 300 v 31 = 40.78 r 48 = 10.5000 d 48 = 6.6600 n 32 = 1.58313 ν 32 = 59.38 r 49 = ∞ d 49 = 42.0400 n 33 = 1.72916 ν 33 = 54.68 r 50 = d d 50 = 3.9600 n 34 = 1.96880 ν 34 = 55.53 r 51 = -27.9810 d 51 = 5.0300 r 52 = ∞ ( image) (objective optical system) L o = 73.84 mm, D o = 9.5mm, D o 2 / L o = 1.22mm, T p = 21.57 mm T p / L o = 0.292 Focal length f 1 of the first lens group f − = 5.853 mm Focal length f 2 of the second lens group = 18.784 mm (relay optical system) First partial relay optical system L r = 139.98 mm , D r = 9.5mm, D r 2 / L r = 0.65mm second portion relay optical system L r = 139.98mm, D r = 9.5mm, D r 2 / L r = 0.65mm

【0077】実施例3 物体距離=60.0000 ,像高=3.500 ,焦点距離=-4.357,Fナンバー=5.657 全長(第1面〜最終面)=282.774 ,画角=80°,射出瞳位置=∞ r1 =∞ d1 =0.7000 n1 =1.76820 ν1 =71.79 r2 =∞ d2 =0.3500 r3 =∞ d3 =0.5000 n2 =1.78472 ν2 =25.76 r4 =3.2000(非球面) d4 =1.6000 r5 =∞ d5 =20.5700 n3 =1.88300 ν3 =40.78 r6 =∞ d6 =1.0000 n4 =1.88300 ν4 =40.78 r7 =∞ d7 =4.0000 n5 =1.69895 ν5 =30.12 r8 =-19.4047 d8 =0.5000 r9 =7.9827 d9 =5.5000 n6 =1.58913 ν6 =61.18 r10=-6.5645 d10=2.0000 n7 =1.80610 ν7 =40.95 r11=-33.2181 d11=0.5000 r12=11.8166 d12=2.5000 n8 =1.72916 ν8 =54.68 r13=5.5779 d13=3.0538 r14=22.5895 d14=5.0000 n9 =1.51633 ν9 =64.15 r15=-5.2217 d15=1.5000 n10=1.84666 ν10=23.78 r16=-15.8267 d16=1.0000 r17=17.0907 d17=6.0000 n11=1.77250 ν11=49.60 r18=-5.3000 d18=1.5000 n12=1.78472 ν12=25.68 r19=-50.0000 d19=5.0000 r20=∞(像) d20=5.0000 r21=33.6801 d21=4.0000 n13=1.51633 ν13=64.15 r22=∞ d22=74.8419 n14=1.77250 ν14=49.60 r23=∞ d23=5.0000 n15=1.51633 ν15=64.15 r24=-16.7975 d24=1.5000 n16=1.88300 ν16=40.78 r25=-32.6303 d25=1.0000 r26=44.2288 d26=37.3163 n17=1.53172 ν17=48.91 r27=-44.2288 d27=1.0000 r28=32.6303 d28=1.5000 n18=1.88300 ν18=40.78 r29=16.7975 d29=5.0000 n19=1.51633 ν19=64.15 r30=∞ d30=74.8419 n20=1.77250 ν20=49.60 r31=∞ d31=4.0000 n21=1.51633 ν21=64.15 r32=-33.6801 d32=5.0000 r33=∞(像) 非球面係数 K=-1.1736 ,E=0 ,F=0 ,G=0 (対物光学系) Lo =62.77 mm,Do =9.5mm ,Do 2/Lo =1.44mm,Tp =21.57mm Tp /Lo =0.344 第1レンズ群の焦点距離f1 =-4.078mm 第2レンズ群の焦点距離f2 =17.301mm (リレー光学系) 部分リレー光学系 Lr =220.00mm,Dr =9.5mm ,Dr 2/Lr =0.41mm Embodiment 3 Object distance = 60.0000, Image height = 3.500, Focal length = -4.357, F number = 5.657 Full length (first surface to final surface) = 282.774, Field angle = 80 °, Exit pupil position = ∞ r 1 = ∞ d 1 = 0.7000 n 1 = 1.76820 v 1 = 71.79 r 2 = ∞ d 2 = 0.3500 r 3 = ∞ d 3 = 0.5000 n 2 = 1.78472 v 2 = 25.76 r 4 = 3.2000 (aspherical surface) d 4 = 1.6000 r 5 = ∞ d 5 = 20.5700 n 3 = 1.88300 ν 3 = 40.78 r 6 = ∞ d 6 = 1.0000 n 4 = 1.88300 ν 4 = 40.78 r 7 = ∞ d 7 = 4.0000 n 5 = 1.69895 ν 5 = 30.12 r 8 = -19.4047 d 8 = 0.5000 r 9 = 7.9827 d 9 = 5.5000 n 6 = 1.58913 ν 6 = 61.18 r 10 = -6.5645 d 10 = 2.0000 n 7 = 1.80610 ν 7 = 40.95 r 11 = -33.2181 d 11 = 0.5000 r 12 = 11.8166 d 12 = 2.5000 n 8 = 1.72916 ν 8 = 54.68 r 13 = 5.5779 d 13 = 3.0538 r 14 = 22.5895 d 14 = 5.0000 n 9 = 1.51633 ν 9 = 64.15 r 15 = -5.2217 d 15 = 1.5000 n 10 = 1.846 66 ν 10 = 23.78 r 16 = -15.8267 d 16 = 1.0000 r 17 = 17.0907 d 17 = 6.0000 n 11 = 1.77250 ν 11 = 49.60 r 18 = -5.3000 d 18 = 1.5000 n 12 = 1.78472 ν 12 = 25.68 r 19 = -50.0000 d 19 = 5.0000 r 20 = ∞ ( image) d 20 = 5.0000 r 21 = 33.6801 d 21 = 4.0000 n 13 = 1.51633 ν 13 = 64.15 r 22 = ∞ d 22 = 74.8419 n 14 = 1.77250 ν 14 = 49.60 r 23 = ∞ d 23 = 5.0000 n 15 = 1.51633 ν 15 = 64.15 r 24 = -16.7975 d 24 = 1.5000 n 16 = 1.88300 ν 16 = 40.78 r 25 = -32.6303 d 25 = 1.0000 r 26 = 44.2288 d 26 = 37.3163 n 17 = 1.53172 ν 17 = 48.91 r 27 = -44.2288 d 27 = 1.0000 r 28 = 32.6303 d 28 = 1.5000 n 18 = 1.88300 ν 18 = 40.78 r 29 = 16.7975 d 29 = 5.0000 n 19 = 1.51633 ν 19 = 64.15 r 30 = ∞ d 30 = 74.8419 n 20 = 1.77250 ν 20 = 49.60 r 31 = ∞ d 31 = 4.0000 n 21 = 1.51633 ν 21 = 64.15 r 32 = -33.6801 d 32 = 5.0000 r 33 = ∞ (image) Surface coefficient K = -1.1736, E = 0, F = 0, G = 0 ( objective optical system) L o = 62.77 mm, D o = 9.5mm, D o 2 / L o = 1.44mm, T p = 21.57mm T p / L o = 0.344 focal distance f 2 = 17.301mm (relay optical system) of the focal length f 1 = -4.078mm second lens group of the first lens group moiety relay optical system L r = 220.00mm, D r = 9.5mm, D r 2 / L r = 0.41mm

【0078】 実施例4 物体距離=0 ,物体高=3.500 ,焦点距離=28.478,物体側NA=-0.1405 全長(第1面〜最終面)=44.790,入射瞳位置=∞ r1 =∞(像) d1 =8.4000 r2 =∞ d2 =4.0000 n1 =1.72916 ν1 =54.68 r3 =-21.2750 d3 =0.3000 r4 =20.5810 d4 =4.7100 n2 =1.72916 ν2 =54.68 r5 =∞ d5 =2.5000 n3 =1.51633 ν3 =64.15 r6 =11.8670 d6 =3.8800 r7 =-7.0240 d7 =2.5000 n4 =1.76182 ν4 =26.52 r8 =∞ d8 =5.7000 n5 =1.72916 ν5 =54.68 r9 =-11.8860 d9 =0.3000 r10=∞ d10=3.5000 n6 =1.77250 ν6 =49.60 r11=-28.7500 d11=6.0000 r12=∞ d12=3.0000 n7 =1.76820 ν7 =71.70 r13=∞Example 4 Object Distance = 0, Object Height = 3,500, Focal Length = 28.478, Object-side NA = −0.1405 Overall Length (First Surface to Last Surface) = 44.790, Entrance Pupil Position = ∞ r 1 = ∞ (Image D 1 = 8.4000 r 2 = ∞ d 2 = 4.0000 n 1 = 1.72916 v 1 = 54.68 r 3 = -21.2750 d 3 = 0.3000 r 4 = 20.5810 d 4 = 4.7100 n 2 = 1.72916 v 2 = 54.68 r 5 = 5 d 5 = 2.5000 n 3 = 1.51633 ν 3 = 64.15 r 6 = 11.8670 d 6 = 3.8800 r 7 = −7.0240 d 7 = 2.5000 n 4 = 1.76182 v 4 = 26.52 r 8 = ∞ d 8 = 5.7000 n 5 = 1.72916 ν 5 = 54.68 r 9 = -11.8860 d 9 = 0.3000 r 10 = ∞ d 10 = 3.5000 n 6 = 1.77250 ν 6 = 49.60 r 11 = -28.7500 d 11 = 6.0000 r 12 = ∞ d 12 = 3.0000 n 7 = 1.76820 ν 7 = 71.70 r 13 = ∞

【0079】実施例5 物体距離=0.0000,像高=3.500 ,焦点距離=92.152,Fナンバー=3.539 物体側NA=0.1413,像側NA=-0.1413 全長(第1面〜最終面)=70.000,入射瞳位置=∞,射出瞳位置=∞ r1 =∞(像) d1 =5.0000 r2 =55.6570 d2 =4.5000 n1 =1.83481 ν1 =42.72 r3 =-16.5080 d3 =3.1800 r4 =18.9300 d4 =3.0000 n2 =1.58144 ν2 =40.77 r5 =7.2040 d5 =7.8300 r6 =-7.2040 d6 =2.5000 n3 =1.72825 ν3 =28.46 r7 =∞ d7 =4.7900 n4 =1.72916 ν4 =54.68 r8 =-11.9640 d8 =0.5000 r9 =∞ d9 =3.2000 n5 =1.72916 ν5 =54.68 r10=-22.7570 d10=0.5000 r11=∞(絞り) d11=0.5000 r12=22.7570 d12=3.2000 n6 =1.72916 ν6 =54.68 r13=∞ d13=0.5000 r14=11.9640 d14=4.7900 n7 =1.72916 ν7 =54.68 r15=∞ d15=2.5000 n8 =1.72825 ν8 =28.46 r16=7.2040 d16=7.8300 r17=-7.2040 d17=3.0000 n9 =1.58144 ν9 =40.77 r18=-18.9300 d18=3.1800 r19=16.5080 d19=4.5000 n10=1.83481 ν10=42.72 r20=-55.6570 d20=5.0000 r21=∞(像) ただしr1 ,r2 ,・・・ はレンズ各面の曲率半径、d
1 ,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n
1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・
は各レンズのアッベ数である。
Example 5 Object distance = 0.000, image height = 3.500, focal length = 92.152, F number = 3.539 Object side NA = 0.1413, image side NA = -0.1413 Total length (first surface to final surface) = 70.000, incidence Pupil position = ∞, exit pupil position = ∞ r 1 = ∞ (image) d 1 = 5.0000 r 2 = 55.6570 d 2 = 4.5000 n 1 = 1.83481 ν 1 = 42.72 r 3 = -16.5080 d 3 = 3.1800 r 4 = 18.9300 d 4 = 3.0000 n 2 = 1.58144 ν 2 = 40.77 r 5 = 7.2040 d 5 = 7.8300 r 6 = -7.2040 d 6 = 2.5000 n 3 = 1.72825 v 3 = 28.46 r 7 = ∞ d 7 = 4.7900 n 4 = 1.72916 ν 4 = 54.68 r 8 = -11.9640 d 8 = 0.5000 r 9 = ∞ d 9 = 3.2000 n 5 = 1.72916 ν 5 = 54.68 r 10 = -22.7570 d 10 = 0.5000 r 11 = ∞ ( stop) d 11 = 0.5000 r 12 = 22.7570 d 12 = 3.2000 n 6 = 1.72916 ν 6 = 54.68 r 13 = ∞ d 13 = 0.5000 r 14 = 11.9640 d 14 = 4.7900 n 7 = 1.72916 ν 7 = 54.68 r 15 = ∞ d 15 = 2.5000 n 8 = 1.7282 5 ν 8 = 28.46 r 16 = 7.2040 d 16 = 7.8300 r 17 = −7.2040 d 17 = 3.0000 n 9 = 1.58144 ν 9 = 40.77 r 18 = -18.9300 d 18 = 3.1800 r 19 = 16.5080 d 19 = 4.5000 n 10 = 1.83481 ν 10 = 42.72 r 20 = -55.6570 d 20 = 5.0000 r 21 = ∞ (image) where r 1 , r 2 ,... Are the radii of curvature of the respective surfaces of the lens, d
.. , D 2 ,...
1 , n 2 ,... Are the refractive indices of each lens, ν 1 , ν 2 ,.
Is the Abbe number of each lens.

【0080】実施例1は、図1に示す通りの構成で、
(A)が対物光学系、(B)がリレー光学系の部分リレ
ー光学系である。
The first embodiment has a configuration as shown in FIG.
(A) is an objective optical system, and (B) is a partial relay optical system of a relay optical system.

【0081】データー中のr1 〜r22が対物光学系でr
1 〜r4 が第1レンズ群r7 〜r22が第2レンズ群、r
22〜r50がリレー光学系で、このリレー光学系のうちの
22〜r36が第1の部分リレー光学系、r36〜r50が第
2の部分リレー光学系であり、r22,r36,r50が像位
置であり、リレー光学系の最終像は倒立像である。
In the data, r 1 to r 22 correspond to r by the objective optical system.
1 to r 4 are the first lens groups r 7 to r 22 are the second lens groups, r
22 ~r 50 is a relay optical system, r 22 ~r 36 of the relay optical system is first partial relay optical system, the r 36 ~r 50 is a second partial relay optical system, r 22, r 36 and r 50 are image positions, and the final image of the relay optical system is an inverted image.

【0082】又、r6 は仮想絞り位置を示し、したがっ
てr5 〜r7 はブロック状の光学要素で、n3 ,ν3
よびn4 ,ν4 はこの一つの光学要素の材質を示し、デ
ーターの記載上二つに分けて示してある。
Also, r 6 indicates a virtual stop position, and therefore r 5 to r 7 are block-shaped optical elements, and n 3 and v 3 and n 4 and v 4 indicate the material of this one optical element. It is divided into two for the description of the data.

【0083】尚図1の(B)には第1の部分光学系のみ
が描かれているが、第2の部分光学系も第1の部分光学
系と同様の構成である。
Although FIG. 1B shows only the first partial optical system, the second partial optical system has the same configuration as the first partial optical system.

【0084】この実施例1の光学系は条件(1)、
(2)を満足する。又対物光学系は歪曲収差を補正する
ために平凹非球面レンズ(r3 〜r4 )を設けている。
又第5面r5 から第7面r7 までの間隔は大であって、
ここの厚いブロック状部分を視野方向変換プリズムにし
て斜視用硬性鏡を構成することもできる。
The optical system of the first embodiment satisfies the condition (1),
Satisfies (2). The objective optical system is provided with a flat凹非spherical lens (r 3 ~r 4) in order to correct distortion.
The distance from the fifth surface r 5 to seventh surface r 7 is a large,
The thick block-shaped portion here may be used as a viewing direction changing prism to constitute a rigid microscope for perspective use.

【0085】又リレー光学系は、部分リレー光学系が中
心肉厚の大きい両凸形状の第1レンズ成分と、両凸形状
の第2レンズ成分と、第1レンズ成分と同じ構成の第3
レンズ成分とからなっており、全体が対称に配置されて
いる。
In the relay optical system, the partial relay optical system has a biconvex first lens component having a large center thickness, a biconvex second lens component, and a third lens component having the same configuration as the first lens component.
It consists of a lens component and is arranged symmetrically as a whole.

【0086】この実施例の収差状況は、図6に示す通り
である。
The state of aberration in this embodiment is as shown in FIG.

【0087】実施例2は、対物光学系が図2に示す通り
であり、又、リレー光学系は実施例1と同じ光学系が用
いられている。つまりデーターにおいてr1 〜r24が対
物光学系でr1 〜r4 が第1レンズ群、r7 〜r24が第
2レンズ群であり、r24〜r52がリレー光学系でr24
38が第1の部分リレー光学系、r38〜r52が第2の部
分リレー光学系であり、実施例1のリレー光学系と同じ
である。又r24、r38、r52が像位置であり、最終像は
倒立像である。
In the second embodiment, the objective optical system is as shown in FIG. 2, and the relay optical system uses the same optical system as in the first embodiment. That r 1 ~r 4 is the first lens group in r 1 ~r 24 is the objective optical system in data, r 7 ~r 24 is a second lens group, r 24 ~r 52 is r 24 ~ in the relay optical system
r 38 is the first portion relay optical system, r 38 ~r 52 is a second partial relay optical system is the same as the relay optical system of Example 1. Also, r 24 , r 38 and r 52 are image positions, and the final image is an inverted image.

【0088】又、r6 は仮想絞り位置を示し、したがっ
てr5 〜r7 はブロック状の光学要素で、n3 ,ν3
よびn4 ,ν4 はこの一つの光学要素の材質を示し、デ
ーターの記載上二つに分けて示してある。
Further, r 6 indicates a virtual stop position, and therefore r 5 to r 7 are block-shaped optical elements, and n 3 and v 3 and n 4 and v 4 indicate the material of this one optical element. It is divided into two for the description of the data.

【0089】この実施例2の光学系も条件(1),
(2)満足する。又対物光学系は球面レンズのみからな
り、第5面r5 から第7面r7 の間隔は大であって、視
野方向変換プリズムにすることも出来、斜視用硬性鏡と
することが出来る。
The optical system according to the second embodiment also has the conditions (1) and (2).
(2) I am satisfied. The objective optical system consists of only spherical lenses, the fifth surface r 5 the spacing seventh surface r 7 A large, can also be in the visual field direction changing prism can be a perspective for rigid endoscope.

【0090】この実施例2の収差状況は、図7に示す通
りである。
The state of aberration in the second embodiment is as shown in FIG.

【0091】実施例3は、図3に示す通りで、図におい
て(A)が対物光学系、(B)がリレー光学系の部分リ
レー光学系であり、一つの部分リレー光学系よりなる。
Embodiment 3 is as shown in FIG. 3, in which (A) is an objective optical system, (B) is a partial relay optical system of a relay optical system, and is composed of one partial relay optical system.

【0092】この実施例のリレー光学系の最終像は正立
像である。又、rは仮想絞り位置を示し、したがって
〜rはブロック状の光学要素で、n,νおよ
びn,νはこの一つの光学要素の材質を示し、デー
ターの記載上二つに分けて示してある。
The final image of the relay optical system of this embodiment is an erect image. Also, r 6 indicates a virtual stop position, and therefore r 5 to r 7 are block-like optical elements, n 3 and ν 3 and n 4 and ν 4 indicate the material of this one optical element, and the data is described. The upper two are shown separately.

【0093】この実施例の光学系は、条件(1)、
(2)を満足する。対物光学系は、歪曲収差補正のため
平凹非球面レンズを用いている。リレー光学系(部分リ
レー光学系)は、中心肉厚が大である両凸形状の第1レ
ンズ成分と、両凸形状の第2レンズ成分と第1レンズ成
分と同じ第3レンズ成分からなり全体で対称に配置され
ている。又第5面r5〜第7面r7の間隔が大であり、視
野方向変換プリズムとすることができる。
The optical system according to this embodiment has the following conditions (1)
Satisfies (2). The objective optical system uses a plano-concave aspheric lens for correcting distortion. The relay optical system (partial relay optical system) includes a biconvex first lens component having a large center thickness, a biconvex second lens component, and a third lens component identical to the first lens component. Are arranged symmetrically. The interval between the fifth surface r 5 ~ seventh surface r 7 is large, it can be a field direction changing prism.

【0094】この実施例3の収差状況は、図7に示す通
りである。
The aberration situation in the third embodiment is as shown in FIG.

【0095】実施例1、3の非球面の形状は光軸方向を
Zと光軸に直角な方向をYとする時下記の式にて表わさ
れる。
The shapes of the aspherical surfaces in the first and third embodiments are represented by the following formulas when the optical axis direction is Z and the direction perpendicular to the optical axis is Y.

【0096】ただし、Rは基準球面の曲率半径、K,
E,F,G,・・・は非球面係数である。
Where R is the radius of curvature of the reference sphere, K,
E, F, G,... Are aspherical coefficients.

【0097】実施例4は、実施例1〜3の光学系と組合
わせて用いることを想定した接眼光学系で、図4に示す
通りの構成である。この接眼光学系は図9に示すように
リレー光学系の後に配置され、硬性鏡光学系は、全体と
して物体側から順に、対物光学系、リレー光学系、接眼
光学系が配置されている。
The fourth embodiment is an eyepiece optical system which is assumed to be used in combination with the optical systems of the first to third embodiments, and has a configuration as shown in FIG. The eyepiece optical system is arranged after the relay optical system as shown in FIG. 9, and the rigid mirror optical system has an objective optical system, a relay optical system, and an eyepiece optical system arranged in this order from the object side as a whole.

【0098】図4に示す接眼光学系を、実施例1又は実
施例2と組合わせて使用する場合は、倒立像を観察する
ことになり、又実施例3と組合わせ使用する場合は、正
立像を観察することになる。
When the eyepiece optical system shown in FIG. 4 is used in combination with the first or second embodiment, an inverted image is observed. You will observe a standing image.

【0099】本発明の硬性鏡光学系中に用いられる接眼
光学系は、その仕様が高度であり厳しい収差補正が要求
される。しかし、接眼光学系は、把持部内に配置される
ので、空間的な自由度が高く良好な光学性能を有する光
学系の設計が可能である。
The eyepiece optical system used in the rigid mirror optical system of the present invention has a high specification and requires strict aberration correction. However, since the eyepiece optical system is arranged in the grip, it is possible to design an optical system having high spatial flexibility and good optical performance.

【0100】この実施例4の接眼光学系は、硬性鏡の接
眼光学系としては高級なガウスタイプの光学系である。
The eyepiece optical system according to the fourth embodiment is a high-grade Gaussian type optical system as an eyepiece optical system for a rigid endoscope.

【0101】尚データー中r1 はリレー光学系の最終像
面であり、r12〜r13の平行平面板はカバーラスであ
る。
In the data, r 1 is the final image plane of the relay optical system, and the plane-parallel plates r 12 to r 13 are coverlass.

【0102】図5に示す実施例5は、本発明の硬性鏡光
学系で用いる像反転リレー光学系であって、実施例1又
は実施例2と組合わせて使用することを想定して設計し
たものである。この実施例の像反転リレー光学系を実施
例1又は2と組合わせ使用する場合、図10に示すよう
に、物体側から対物光学系3、リレー光学系4、像反転
光学系12、接眼光学系16の順に配置される。これに
よりリレー光学系による倒立像を像反転光学系にて正立
像となり、この正立像が接眼光学系により観察される。
Embodiment 5 shown in FIG. 5 is an image inversion relay optical system used in the rigid mirror optical system of the present invention, and is designed on the assumption that it is used in combination with Embodiment 1 or Embodiment 2. Things. When the image inversion relay optical system of this embodiment is used in combination with the first or second embodiment, as shown in FIG. 10, the objective optical system 3, the relay optical system 4, the image inversion optical system 12, and the eyepiece optics from the object side. They are arranged in the order of the system 16. Thus, the inverted image formed by the relay optical system becomes an erect image by the image inverting optical system, and this erect image is observed by the eyepiece optical system.

【0103】この像反転光学系も、本発明の硬性鏡光学
系中に用いる場合、その仕様が高度であり厳しい収差補
正が要求される。通常のリレー光学系では残存しやすい
像面湾曲を良好に補正する必要がある。しかし、この像
反転リレー光学系は、把持部内に配置し得るので、空間
的な制約が小さく自由度が高いので、良好な収差補正が
可能である。
When this image reversing optical system is also used in the rigid mirror optical system of the present invention, its specifications are high and strict aberration correction is required. In a normal relay optical system, it is necessary to satisfactorily correct field curvature that tends to remain. However, since this image reversing relay optical system can be arranged in the grip portion, spatial restriction is small and flexibility is high, so that good aberration correction can be performed.

【0104】この実施例5の像反転リレー光学系は、変
形ガウスタイプの光学系を二つ対称に並べ配置した構成
になっているので、像面湾曲を含む全ての収差が良好に
補正されている。この像反転リレー光学系において、そ
の中央部の瞳位置にフレアー軽減の役割を含めて明るさ
絞りを配置することが望ましい。
Since the image inversion relay optical system of the fifth embodiment has a configuration in which two modified Gaussian type optical systems are arranged symmetrically, all aberrations including field curvature are corrected well. I have. In this image reversing relay optical system, it is desirable to arrange a brightness stop including a role of flare reduction at a pupil position at the center thereof.

【0105】尚接眼光学系としては、実施例4のものが
利用できる。
The eyepiece optical system according to the fourth embodiment can be used.

【0106】図11は本発明の硬性鏡光学系に用いる視
野方向変換プリズムを示すもので、(A)は断面図で、
(B)は斜視図である。これは、本発明の実施例1、
2、3の光学系に使用可能である。これら実施例1、
2、3の対物光学系中の第3面〜第7面のブロック状部
分に代えて、図11に示す視野方向変換プリズムを用い
て斜視用の対物光学系を構成し得る。この図に示す視野
方向変換プリズムを用いることにより、視野方向をリレ
ー光学系の光軸に対して35°傾けることが出来る。
FIG. 11 shows a viewing direction changing prism used in the rigid mirror optical system of the present invention.
(B) is a perspective view. This corresponds to Example 1 of the present invention,
It can be used for a few optical systems. These Examples 1,
Instead of the block-shaped portions of the third to seventh surfaces in the few objective optical systems, a perspective objective optical system can be configured using a viewing direction conversion prism shown in FIG. By using the viewing direction conversion prism shown in this figure, the viewing direction can be inclined by 35 ° with respect to the optical axis of the relay optical system.

【0107】この視野方向変換プリズムは、物体側から
順に、物体側光軸に垂直な入射面R1 と、リレー光学系
の光軸に平行な第1反射面R2 と、第1反射面R2 に対
して視野方向変換角(35°)の半分の角(17.5
°)だけ傾いている第2反射面R3 とリレー光学系に垂
直な出射面R4 とよりなっている。第1反射面R2 と第
2反射面R3 は、共に全反射を利用している。又臨界角
の余裕を確保するためプリズムには屈折率は高屈折率
(1.883)の材料を用いることが望ましい。視野方
向変換プリズムの入射面R1 と出射面R4 との間の硝路
長Tp は、21.57mmであり、実施例1、2、3の対
物光学系に適用した場合、いずれも条件(3)を満足す
るように構成されている。
The viewing direction changing prism includes, in order from the object side, an incident surface R 1 perpendicular to the object-side optical axis, a first reflecting surface R 2 parallel to the optical axis of the relay optical system, and a first reflecting surface R 1. The half angle (17.5) of the viewing direction conversion angle (35 °) with respect to 2
°) it has become more and the second reflecting surface R 3 perpendicular exit surface R 4 in the relay optical system is inclined by. The first reflection surface R 2 and the second reflection surface R 3 both use total reflection. Further, it is desirable to use a material having a high refractive index (1.883) for the prism in order to secure a margin of the critical angle. The glass path length T p between the entrance surface R 1 and the exit surface R 4 of the viewing direction conversion prism is 21.57 mm, and when applied to the objective optical systems of Examples 1, 2, and 3, all conditions are satisfied. It is configured to satisfy (3).

【0108】本発明において、特許請求の範囲に記載す
る光学系のほか、次に示す構成の光学系も本発明の目的
を達成し得る。
In the present invention, in addition to the optical system described in the claims, an optical system having the following configuration can also achieve the object of the present invention.

【0109】(1)特許請求の範囲の請求項1、2、3
又は4に記載する硬性鏡光学系で、部分リレー光学系が
物体側より順に、第1レンズ成分、第2レンズ成分、第
3レンズ成分よりなり、第1レンズ成分は外径よりも中
心肉厚が大である両凸形状であり、第2レンズ成分は両
凸形状であり、第3レンズ成分は第1レンズ成分と同一
形状であり、部分リレー光学系全体が対称な構成である
ことを特徴とする硬性鏡光学系。
(1) Claims 1, 2, and 3 of the claims
Or the rigid mirror optical system according to 4, wherein the partial relay optical system is composed of a first lens component, a second lens component, and a third lens component in order from the object side, and the first lens component has a center thickness greater than an outer diameter. Is large, the second lens component has a biconvex shape, the third lens component has the same shape as the first lens component, and the entire partial relay optical system has a symmetric configuration. And a rigid endoscope optical system.

【0110】(2)特許請求の範囲の請求項1、3又は
4に記載する硬性鏡光学系で、対物光学系が、物体側か
ら順に、負のパワーを有する第1レンズ群と、視野方向
変換プリズムと、正のパワーを有する第2レンズ群とよ
りなり、下記条件(3)を満足する硬性鏡光学系。 (3) 0.2≦Tp /Lo ≦0.4
(2) The rigid mirror optical system according to claim 1, wherein the objective optical system includes, in order from the object side, a first lens group having a negative power; A rigid mirror optical system comprising a conversion prism and a second lens group having a positive power, and satisfying the following condition (3). (3) 0.2 ≦ T p / L o ≦ 0.4

【0111】(3)特許請求の範囲の請求項3あるいは
前記の(1)又は(2)の項に記載する硬性鏡光学系
で、条件(1)の代りに下記条件(1−1)を満足する
ことを特徴とする硬性鏡光学系。 (1−1) 0.4mm≦Dr 2/Lr ≦0.6mm
(3) The rigid mirror optical system according to claim 3 or (1) or (2), wherein the following condition (1-1) is satisfied instead of condition (1). A rigid mirror optical system characterized by satisfying. (1-1) 0.4mm ≦ D r 2 / L r ≦ 0.6mm

【0112】(4)特許請求の範囲の請求項4あるいは
前記の(1)又は(2)の項に記載する硬性鏡光学系
で、条件(1)の代りに下記条件(1−2)を満足する
ことを特徴とする硬性鏡光学系。 (1−2) 0.5mm≦Dr 2/Lr ≦0.7mm
(4) The rigid mirror optical system according to claim 4 or (1) or (2), wherein the following condition (1-2) is used instead of condition (1). A rigid mirror optical system characterized by satisfying. (1-2) 0.5mm ≦ D r 2 / L r ≦ 0.7mm

【0113】[0113]

【発明の効果】本発明によれば、解像力がHDTVと同
等以上で、又HDTVカメラに対応し得る情報量を有す
る硬性鏡光学系を実現し得る。
According to the present invention, it is possible to realize a rigid-mirror optical system having a resolution equal to or higher than that of an HDTV and having an information amount compatible with an HDTV camera.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の硬性鏡光学系の実施例1の構成を示す
FIG. 1 is a diagram showing a configuration of a first embodiment of a rigid mirror optical system according to the present invention.

【図2】本発明の硬性鏡光学系の実施例2の対物光学系
の構成を示す図
FIG. 2 is a diagram showing a configuration of an objective optical system according to a second embodiment of the rigid mirror optical system of the present invention;

【図3】本発明の硬性鏡光学系の実施例3の構成を示す
FIG. 3 is a diagram showing a configuration of a hard mirror optical system according to a third embodiment of the present invention.

【図4】本発明の硬性鏡光学系の接眼光学系の構成を示
す図
FIG. 4 is a diagram showing a configuration of an eyepiece optical system of a rigid endoscope optical system according to the present invention.

【図5】本発明の硬性鏡光学系の像反転リレー光学系の
構成を示す図
FIG. 5 is a diagram showing a configuration of an image inversion relay optical system of the rigid mirror optical system of the present invention.

【図6】本発明の実施例1の収差曲線図FIG. 6 is an aberration curve diagram according to the first embodiment of the present invention.

【図7】本発明の実施例2の収差曲線図FIG. 7 is an aberration curve diagram according to the second embodiment of the present invention.

【図8】本発明の実施例3の収差曲線図FIG. 8 is an aberration curve diagram according to the third embodiment of the present invention.

【図9】本発明の硬性鏡光学系の全体構成の一例を示す
概略図
FIG. 9 is a schematic diagram showing an example of the entire configuration of a rigid mirror optical system according to the present invention.

【図10】本発明の硬性鏡光学系の全体構成の他の例を
示す概略図
FIG. 10 is a schematic diagram showing another example of the entire configuration of the rigid mirror optical system of the present invention.

【図11】本発明の硬性鏡光学系で用いる視野方向変換
プリズムの構成を示す図
FIG. 11 is a diagram showing a configuration of a viewing direction conversion prism used in the rigid mirror optical system of the present invention.

【図12】硬性鏡システムの観察光学系の構成を示す図FIG. 12 is a diagram showing a configuration of an observation optical system of the rigid endoscope system.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】挿入部内に配置される観察光学系が、先端
部より順に、対物光学系とリレー光学系とを有し、挿入
部内に位置するリレー光学系が単数又は複数の部分リレ
ー光学系を有し、前記対物光学系およびすべての部分リ
レー光学系が下記条件(1)、(2)を満足することを
特徴とする硬性鏡光学系。 (1) 0.4mm≦Dr 2/Lr ≦0.8mm (2) Do 2/Lo ≧Dr 2/Lr ただし、Do は対物光学系の最大レンズ径(mm)、Lo
は対物光学系の全長(mm)、Dr は部分リレー光学系の
最大レンズ外径(mm)、Lr は部分リレー光学系の(m
m)全長である。
1. An observation optical system disposed in an insertion section includes an objective optical system and a relay optical system in order from a distal end, and a relay optical system located in the insertion section is a single or a plurality of partial relay optical systems. Wherein the objective optical system and all of the partial relay optical systems satisfy the following conditions (1) and (2). (1) 0.4mm ≦ D r 2 / L r ≦ 0.8mm (2) D o 2 / L o ≧ D r 2 / L r However, D o is the maximum lens diameter of the objective optical system (mm), L o
Is the total length (mm) of the objective optical system, Dr is the maximum lens outer diameter (mm) of the partial relay optical system, and Lr is (m) of the partial relay optical system.
m) Total length.
【請求項2】前記挿入部内に位置する部分リレー光学系
の個数が2以下であることを特徴とする請求項1の硬性
鏡光学系。
2. The rigid mirror optical system according to claim 1, wherein the number of partial relay optical systems located in said insertion portion is two or less.
【請求項3】挿入部と把持部とを有する硬性鏡で、前記
挿入部内の観察光学系が先端より順に、対物光学系、リ
レー光学系からなり、前記把持部内の観察光学系が接眼
光学系からなる硬性鏡光学系において、前記挿入部内に
位置するリレー光学系が一つの部分リレー光学系よりな
り、前記対物光学系と前記部分リレー光学系が下記条件
を満足することを特徴とする硬性鏡光学系。 (1) 0.4mm≦Dr 2/Lr ≦0.8mm (2) Do 2/Lo ≧Dr 2/Lr ただし、Do は対物光学系の最大レンズ径(mm)、Lo
は対物光学系の全長(mm)、Dr は部分リレー光学系の
最大レンズ径(mm)、Lr は部分リレー光学系の全長で
ある。
3. A rigid endoscope having an insertion portion and a grip portion, wherein the observation optical system in the insertion portion comprises an objective optical system and a relay optical system in order from the tip, and the observation optical system in the grip portion is an eyepiece optical system. Wherein the relay optical system located in the insertion portion comprises one partial relay optical system, and wherein the objective optical system and the partial relay optical system satisfy the following conditions: Optical system. (1) 0.4mm ≦ D r 2 / L r ≦ 0.8mm (2) D o 2 / L o ≧ D r 2 / L r However, D o is the maximum lens diameter of the objective optical system (mm), L o
The overall length of the objective optical system (mm), D r partial maximum lens diameter of the relay optical system (mm), L r is the total length of the portion relay optical system.
【請求項4】挿入部と把持部とを有する硬性鏡で、挿入
部内の観察光学系が先端側から順に、対物光学系と、リ
レー光学系とよりなり、把持部内の観察光学系が像反転
リレー光学系と接眼光学系とよりなる硬性鏡光学系にお
いて、前記挿入部内に位置するリレー光学系が二つの部
分リレー光学系からなり、前記対物光学系および前記部
分リレー光学系のすべてが下記条件を満足することを特
徴とする硬性鏡光学系。 (1) 0.4mm≦Dr 2/Lr ≦0.8mm (2) Do 2/Lo ≧Dr 2/Lr ただし、Do は対物光学系の最大レンズ径(mm)、Lo
は対物光学系の全長(mm)、Dr は部分リレー光学系の
最大レンズ外径(mm)、Lr は部分リレー光学系の(m
m)全長である。
4. A rigid endoscope having an insertion portion and a grip portion, wherein the observation optical system in the insertion portion is composed of an objective optical system and a relay optical system in order from the distal end side, and the observation optical system in the grip portion is image-inverted. In a rigid mirror optical system including a relay optical system and an eyepiece optical system, the relay optical system located in the insertion portion includes two partial relay optical systems, and all of the objective optical system and the partial relay optical system satisfy the following conditions. A rigid mirror optical system characterized by satisfying the following. (1) 0.4mm ≦ D r 2 / L r ≦ 0.8mm (2) D o 2 / L o ≧ D r 2 / L r However, D o is the maximum lens diameter of the objective optical system (mm), L o
Is the total length (mm) of the objective optical system, Dr is the maximum lens outer diameter (mm) of the partial relay optical system, and Lr is (m) of the partial relay optical system.
m) Total length.
JP8285869A 1996-10-09 1996-10-09 Hard mirror optical system Withdrawn JPH10115788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8285869A JPH10115788A (en) 1996-10-09 1996-10-09 Hard mirror optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8285869A JPH10115788A (en) 1996-10-09 1996-10-09 Hard mirror optical system

Publications (1)

Publication Number Publication Date
JPH10115788A true JPH10115788A (en) 1998-05-06

Family

ID=17697097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8285869A Withdrawn JPH10115788A (en) 1996-10-09 1996-10-09 Hard mirror optical system

Country Status (1)

Country Link
JP (1) JPH10115788A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241720A (en) * 1999-02-18 2000-09-08 Asahi Optical Co Ltd Micro-lens system for endoscope
JP2006039259A (en) * 2004-07-28 2006-02-09 Olympus Corp Endoscope objective optical system and imaging apparatus using the system
CN102736221A (en) * 2011-03-31 2012-10-17 上海微电子装备有限公司 Projection lithography objective lens
CN106324796A (en) * 2015-06-17 2017-01-11 浙江大华技术股份有限公司 Optical lens
JP2017509019A (en) * 2014-03-04 2017-03-30 ノバダック テクノロジーズ インコーポレイテッド Relay lens system for wide area imaging
US10495860B2 (en) 2015-06-17 2019-12-03 Zhejiang Dahua Technology Co., Ltd. Zoom lens system
US10656316B2 (en) 2015-08-31 2020-05-19 Novadaq Technologies ULC Polarization dependent filter, system using the same, and associated kits and methods
US10948638B2 (en) 2014-03-04 2021-03-16 Stryker European Operations Limited Spatial and spectral filtering apertures and optical imaging systems including the same
US11395578B2 (en) 2017-06-09 2022-07-26 Olympus Corporation Optical system for rigid endoscope and rigid endoscope
US11520135B2 (en) 2018-06-15 2022-12-06 Olympus Corporation Objective optical system, and optical system for rigid endoscope and rigid endoscope using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241720A (en) * 1999-02-18 2000-09-08 Asahi Optical Co Ltd Micro-lens system for endoscope
JP2006039259A (en) * 2004-07-28 2006-02-09 Olympus Corp Endoscope objective optical system and imaging apparatus using the system
CN102736221A (en) * 2011-03-31 2012-10-17 上海微电子装备有限公司 Projection lithography objective lens
JP2017509019A (en) * 2014-03-04 2017-03-30 ノバダック テクノロジーズ インコーポレイテッド Relay lens system for wide area imaging
US10948638B2 (en) 2014-03-04 2021-03-16 Stryker European Operations Limited Spatial and spectral filtering apertures and optical imaging systems including the same
US11304592B2 (en) 2014-03-04 2022-04-19 Stryker European Operations Limited Relay lens system for broadband imaging
CN106324796A (en) * 2015-06-17 2017-01-11 浙江大华技术股份有限公司 Optical lens
CN106324796B (en) * 2015-06-17 2018-12-07 浙江大华技术股份有限公司 A kind of optical lens
US10495860B2 (en) 2015-06-17 2019-12-03 Zhejiang Dahua Technology Co., Ltd. Zoom lens system
US10656316B2 (en) 2015-08-31 2020-05-19 Novadaq Technologies ULC Polarization dependent filter, system using the same, and associated kits and methods
US11395578B2 (en) 2017-06-09 2022-07-26 Olympus Corporation Optical system for rigid endoscope and rigid endoscope
US11520135B2 (en) 2018-06-15 2022-12-06 Olympus Corporation Objective optical system, and optical system for rigid endoscope and rigid endoscope using the same

Similar Documents

Publication Publication Date Title
JP2697822B2 (en) Endoscope objective lens
US9341838B2 (en) Objective optical system
US20120057251A1 (en) Objective optical system
JP3466385B2 (en) Small zoom lens
JP4274602B2 (en) Objective optical system
JP2018021951A (en) Single focal length lens and optical device having the same
JP2022542038A (en) wide field objective lens
CN103562771A (en) Endoscope objective optical system
US11022789B2 (en) Observation imaging apparatus
JPH10115788A (en) Hard mirror optical system
JP6437017B2 (en) Zoom imaging device
JPH07294807A (en) Endoscope with observation part and with endoscope tube withbuilt-in imageforming optical system
JPH04315118A (en) Endoscope objective optical system
JP4373749B2 (en) Imaging optical system, imaging apparatus for endoscope, and endoscope system
JP6857572B2 (en) Objective optical system for endoscopes
JPH11281887A (en) Solid tube optical system
JP3530571B2 (en) Rigid endoscope
JP7061226B2 (en) Wide-angle optical system and an image pickup device equipped with it
JP6754916B2 (en) Variable magnification optics for endoscopes and endoscopes
JP4694014B2 (en) Endoscope imaging device
US10871641B2 (en) Objective optical system for endoscope and endoscope
JP4394197B2 (en) Endoscope objective variable magnification optical system
JPH075377A (en) Variable power optical system and endoscope system having the same
US11933961B2 (en) Stereoscopic vision endoscope objective optical system and endoscope using the same
JPH0933807A (en) Zoom lens

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106