JP3466385B2 - Small zoom lens - Google Patents

Small zoom lens

Info

Publication number
JP3466385B2
JP3466385B2 JP19242896A JP19242896A JP3466385B2 JP 3466385 B2 JP3466385 B2 JP 3466385B2 JP 19242896 A JP19242896 A JP 19242896A JP 19242896 A JP19242896 A JP 19242896A JP 3466385 B2 JP3466385 B2 JP 3466385B2
Authority
JP
Japan
Prior art keywords
lens
group
object side
zoom lens
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19242896A
Other languages
Japanese (ja)
Other versions
JPH1039214A (en
Inventor
小泉  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP19242896A priority Critical patent/JP3466385B2/en
Publication of JPH1039214A publication Critical patent/JPH1039214A/en
Application granted granted Critical
Publication of JP3466385B2 publication Critical patent/JP3466385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は小型ズームレンズ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact zoom lens.

【0002】[0002]

【従来の技術】CCD等の固体撮像素子を用いる従来か
らのビデオカメラに加え、近来、デジタルスチルカメラ
が普及してきている。これらビデオカメラやデジタルス
チルカメラに用いる固体撮像素子は、フルカラーの画像
を取り込めるように、同一の受光面内に色分解用のカラ
ーフィルタが配備されているものが多い。
2. Description of the Related Art In addition to a conventional video camera using a solid-state image pickup device such as a CCD, a digital still camera has recently become popular. Many solid-state image pickup devices used in these video cameras and digital still cameras are provided with color filters for color separation in the same light receiving surface so as to capture a full-color image.

【0003】このようなカラー画像用の固体撮像素子で
はCCDに代表されるように、受光面とカラーフィルタ
との間に隙間があるので、結像光束が斜めから入射する
と、受光面に達する光がフィルタにケラれて実質的な開
口効率が低下したり、フィルタ画素と受光素子との対応
関係がずれて「色ずれ」の原因になったりする。
In such a solid-state image pickup device for a color image, as represented by a CCD, there is a gap between the light-receiving surface and the color filter. May be eclipsed by the filter and the aperture efficiency may be substantially reduced, or the correspondence between the filter pixel and the light receiving element may be displaced, causing “color shift”.

【0004】このため、このようなカラー画像用の固体
撮像素子に結像を行なうレンズ系では、射出瞳位置を像
面から十分に離すことによりテレセントリック性を高め
る必要がある。
Therefore, in such a lens system which forms an image on a solid-state image pickup device for color images, it is necessary to enhance the telecentricity by sufficiently separating the exit pupil position from the image plane.

【0005】従来から広く知られた2群ズームレンズ
は、負の屈折力を有する第1群を物体側に、正の屈折力
を持つ第2群を像側に配して構成されるが、これらの多
くは射出瞳位置が像面に近く、カラー画像用の固体撮像
素子に撮影対象を結像させるレンズとしては好ましくな
い。
A two-group zoom lens, which has been widely known from the past, is constructed by arranging a first group having a negative refractive power on the object side and a second group having a positive refractive power on the image side. Many of these have an exit pupil position close to the image plane and are not preferable as a lens for forming an image of a subject on a solid-state image sensor for color images.

【0006】上記2群ズームレンズの像側に正の屈折力
を持つ第3群を配することにより射出瞳位置を像面から
離すことが考えられる。このような3群ズームレンズ
は、1眼レフスチルカメラ用には知られているが(特開
昭62−87925号公報等)、これらは一般に、第3
群の屈折力が極めて弱く、ために射出瞳位置を像面から
大きく離すことはできない。
It is conceivable to dispose the exit pupil position away from the image plane by arranging the third group having a positive refractive power on the image side of the above-mentioned two-group zoom lens. Although such a three-group zoom lens is known for a single-lens reflex still camera (Japanese Patent Laid-Open No. 62-87925, etc.), these are generally the third lens.
Since the refractive power of the group is extremely weak, the exit pupil position cannot be largely separated from the image plane.

【0007】また、3群ズームレンズで、射出瞳位置を
像面から大きく離すようにしたものとして、特開平6−
94996号公報開示ものが知られているが、このレン
ズでは、射出瞳位置を像面から遠ざけるために絞りを、
第1,第2群間に固定したため、第1,第2群の移動が
絞りによる制約を受け、変倍比が2倍弱程度に留まって
いる。勿論、ズームレンズは小型であることが望まし
い。
Further, as a three-group zoom lens in which the exit pupil position is largely separated from the image plane, Japanese Patent Laid-Open No. 6-
Although the one disclosed in Japanese Patent No. 94996 is known, in this lens, an aperture is used to keep the exit pupil position away from the image plane.
Since it is fixed between the first and second groups, the movement of the first and second groups is restricted by the diaphragm, and the variable power ratio remains about a little less than twice. Of course, it is desirable that the zoom lens is small.

【0008】[0008]

【発明が解決しようとする課題】この発明は上述した事
情に鑑み、射出瞳位置を像面から十分に離すことがで
き、広画角で明るく、小型化が可能で性能良好であり、
なおかつ大きい変倍比が可能で、デジタルスチルカメラ
やビデオカメラの撮影用レンズに適した小型ズームレン
ズの実現を課題とする。
In view of the above-mentioned circumstances, the present invention is capable of sufficiently separating the exit pupil position from the image plane, is bright with a wide angle of view, is compact, and has good performance.
Furthermore, it is an object to realize a small zoom lens that is capable of a large zoom ratio and is suitable as a shooting lens for digital still cameras and video cameras.

【0009】[0009]

【課題を解決するための手段】この発明の小型ズームレ
ンズは、図1に示すように、物体側(図の左方)から像
側へ向かって順次、第1〜第3群を配して成る。第1群
GIは「負の屈折力」を有し、第2群GIIは「正の屈折
力」を有し、第3群GIIIは「正の屈折力」を有する。
第2群GIIの物体側に設けられた開口絞りSは、ズーミ
ング時に第2群GIIと一体に移動する。また、第3群G
IIIは「ズーミングに関して固定群」である。
As shown in FIG. 1, a compact zoom lens according to the present invention has first to third groups arranged in order from the object side (left side in the figure) toward the image side. Become. The first group GI has a "negative refractive power", the second group GII has a "positive refractive power", and the third group GIII has a "positive refractive power".
The aperture stop S provided on the object side of the second group GII moves integrally with the second group GII during zooming. Also, the third group G
III is a "fixed group for zooming".

【0010】広角端(図1(a))から望遠端(図1
(b))へのズーミングに際し、第1群GIは、光軸上
を先ず像側へ移動し、途中で移動方向を物体側へ反転す
ることにより「像側に凸の凸弧状に移動」して焦点位置
の変動を補正し、第2群GIIは、光軸上を「物体側へ単
調に移動」して変倍を行なう。
From the wide-angle end (FIG. 1A) to the telephoto end (FIG. 1)
During zooming to (b)), the first group GI first moves to the image side on the optical axis, and then "moves in a convex arc shape convex to the image side" by reversing the moving direction to the object side. The second group GII performs "monotonic movement toward the object side" on the optical axis to perform zooming by correcting variations in the focal position.

【0011】開口絞りSはズーミングに際して、第2群
GIIと一体に移動するので、開口絞りにより第2群GII
の移動が妨げられることがない。
Since the aperture stop S moves together with the second lens group GII during zooming, the second aperture group GII is moved by the aperture diaphragm.
Movement is not hindered.

【0012】第I群(I=1〜3)の焦点距離をfI
望遠端における全系の合成焦点距離をfT、望遠端にお
ける第2群の結像倍率をm(2T)とするとき、これらは条
件: (1)0.74<|f1|/fT<0.9 (2)0.46<f2/f3<0.62(f2>0,f3
0) (3)1.6<|m(2T)|<1.9(m(2T)<0) を満足する。
The focal length of the I-th group (I = 1 to 3) is f I ,
Assuming that the combined focal length of the entire system at the telephoto end is f T and the imaging magnification of the second lens unit at the telephoto end is m (2T), these conditions are: (1) 0.74 <| f 1 | / f T <0.9 (2) 0.46 <f 2 / f 3 <0.62 (f 2> 0, f 3>
0) (3) 1.6 <| m (2T) | <1.9 (m (2T) <0) is satisfied.

【0013】上記「望遠端における第2群の結像倍率:
m(2T)」は、望遠端における群配置で、第1群の像点を
物点とする第2群の結像倍率を言う。なお、図1におい
て、符号CGは、第3群GIIIと像面との間に位置する
固体撮像素子のカバーガラスを示し、像面の位置には固
体撮像素子の受光面が位置する。
The above-mentioned "imaging magnification of the second lens unit at the telephoto end:
“M (2T)” is the group arrangement at the telephoto end, and refers to the image forming magnification of the second group having the image point of the first group as the object point. In FIG. 1, reference numeral CG indicates a cover glass of the solid-state image sensor located between the third group GIII and the image plane, and the light-receiving surface of the solid-state image sensor is located at the image plane.

【0014】上記条件(1)は、全系を小型化し、収差
を良好に補正するため、第1群の焦点距離:f1の範囲
を規制する条件であり、下限を越えると、第1群の負の
屈折力が強く成りすぎ、レンズ全系の小型化には有利で
あるが、球面収差を始めとする諸収差が悪化するため好
ましくない。また条件(1)の上限を越えると、収差は
良好になるが、レンズ全系を小型化することが困難にな
る。
The above condition (1) is a condition for restricting the range of the focal length: f 1 of the first lens unit in order to downsize the entire system and satisfactorily correct aberrations. The negative refracting power of is too strong, which is advantageous for downsizing of the entire lens system, but it is not preferable because various aberrations such as spherical aberration are deteriorated. If the upper limit of the condition (1) is exceeded, the aberration will be good, but it will be difficult to downsize the entire lens system.

【0015】条件(2)は、共に正の屈折力を持つ第
2,第3群の屈折力の配分を規制する条件であり、第
2,第3群の構成枚数を少なく保って小型化を容易に
し、なおかつ収差を良好に補正するための条件である。
条件(2)の下限を越えると、第3群の屈折力が不十分
で、射出瞳位置が像面に近づき、テレセントリック性が
失われる。また、第2群の屈折力負担が過大となり、球
面収差が悪化し、像の平坦性も悪くなる。条件(2)の
上限を越えると、第3群の屈折力負担が大きく、第2群
の屈折力負担が緩和され、収差が良好となり、像の平坦
性も良好になるが、負の第1群、正の第2群双方の屈折
力が弱くなる傾向とも合致し、レンズ全系の小型化が困
難になる。
The condition (2) is a condition for restricting the distribution of the refracting powers of the second and third groups, both having a positive refracting power, and keeping the number of constituent lenses of the second and third groups small to reduce the size. This is a condition for facilitating the correction of aberrations and satisfactorily correcting aberrations.
When the value goes below the lower limit of the condition (2), the refractive power of the third lens group is insufficient, the exit pupil position approaches the image plane, and the telecentricity is lost. Further, the burden of refracting power of the second group becomes excessive, spherical aberration is deteriorated, and flatness of the image is also deteriorated. If the upper limit of the condition (2) is exceeded, the refractive power load of the third lens unit will be large, the refractive power load of the second lens unit will be alleviated, the aberration will be good, and the flatness of the image will be good, but the negative first This also matches the tendency that the refractive powers of both the group and the positive second group become weak, and it becomes difficult to downsize the entire lens system.

【0016】条件(3)は、レンズ全長に関する条件で
あり、上限を越えると望遠端において全長が長くなりす
ぎて小型化に不利であるし、下限を越えると、望遠端で
は全長が短くなるが、これに伴い、望遠端で所定の全系
焦点距離を確保するために第1群の屈折力が弱くなり、
第1群の移動量が増大してしまう。
The condition (3) is a condition relating to the total length of the lens. When the upper limit is exceeded, the total length becomes too long at the telephoto end, which is disadvantageous for downsizing, and when the lower limit is exceeded, the total length becomes short at the telephoto end. , Along with this, the refractive power of the first lens unit becomes weaker in order to secure a predetermined focal length for the entire system at the telephoto end,
The movement amount of the first group increases.

【0017】上記請求項1記載の小型ズームレンズにお
いて、第1群GIは、物体側から像側へ向かって順に、
物体側に凸面を向けた負メニスカスレンズ、像面に強い
屈折面を向けた負レンズ、両凸レンズを配して構成し、
第2群GIIは、物体側から像側へ向かって順に、両凸レ
ンズ、物体側に凸面を向けた正メニスカスレンズ、物体
側に凸面を向けた負メニスカスレンズ、両凸レンズを配
して構成することができる(請求項2)。
In the compact zoom lens according to claim 1, the first group GI includes, in order from the object side to the image side,
A negative meniscus lens with a convex surface facing the object side, a negative lens with a strong refractive surface facing the image surface, and a biconvex lens are arranged.
The second group GII is composed of a biconvex lens, a positive meniscus lens having a convex surface facing the object side, a negative meniscus lens having a convex surface facing the object side, and a biconvex lens arranged in this order from the object side to the image side. (Claim 2)

【0018】このように、第1群GIにおいて、負レン
ズを物体側に配することにより、小型ズームレンズのレ
ンズ外径を小さくすることが可能となる。また、第2群
GIIで発生する球面収差、コマ収差、非点収差を補正す
るため、第2群GIIにおける物体側の2枚の正レンズ
(両凸レンズと正メニスカスレンズ)とにより球面収差
の発生を極力抑えて正の屈折力を得、続いて、負メニス
カスレンズにより補正過剰とし、続く両凸レンズで各収
差の画角差を平均化するのである。
As described above, by disposing the negative lens on the object side in the first group GI, it is possible to reduce the lens outer diameter of the compact zoom lens. Further, in order to correct the spherical aberration, the coma aberration, and the astigmatism generated in the second group GII, the spherical aberration is generated by the two object-side positive lenses (the biconvex lens and the positive meniscus lens) in the second group GII. Is suppressed as much as possible to obtain a positive refracting power, and then the negative meniscus lens is overcorrected, and the subsequent biconvex lens averages the angle of view difference of each aberration.

【0019】上記請求項2記載の小型ズームレンズにお
いて、第1群の正レンズである両凸レンズの物体側のレ
ンズ面を「光軸を離れるに従い正の屈折力が強くなる形
状をした非球面」とすることができる(請求項3)。こ
のような非球面の採用により、特に短焦点側で増大する
負の歪曲収差の補正が容易になる。
In the compact zoom lens according to the second aspect, the object-side lens surface of the biconvex lens, which is the positive lens of the first group, has an aspherical surface having a shape in which the positive refracting power becomes stronger as the distance from the optical axis increases. Can be set (Claim 3). By adopting such an aspherical surface, it becomes easy to correct the negative distortion which increases particularly on the short focus side.

【0020】また、請求項2または3記載の小型ズーム
レンズにおいて、第2群の物体側の両凸レンズの物体側
の面を「光軸を離れるに従い正の屈折力が弱くなる形状
をした非球面」とすることができる(請求項4)。この
ような非球面の採用により、補正不足となりがちな球面
収差を良好に補正することが可能となる。
Further, in the compact zoom lens according to claim 2 or 3, the object side surface of the object side biconvex lens of the second group is an aspherical surface having a shape in which the positive refracting power becomes weaker as the distance from the optical axis increases. It can be set to (Claim 4). By adopting such an aspherical surface, it becomes possible to satisfactorily correct spherical aberration that tends to be undercorrected.

【0021】さらに、上記請求項2または3または4記
載の小型ズームレンズにおいて、第3群GIIIを「屈折
力の強い面を物体側にした両凸レンズ」とすることがで
きる(請求項5)。即ち、ズームレンズの構成枚数を少
なくするには、固定群である第3群GIIIのレンズ枚数
も成るべく少ないことが望ましく、請求項5記載の発明
のように、第3群を単一のレンズで構成することによ
り、第3群の付加が小型化に対する妨げとならないよう
にできる。その場合、第3群GIIIのレンズ形態を「両
凸レンズ」とすることにより、第3群に必要とされる強
い正の屈折力を両面に分配でき、屈折力の強い凸面を物
体側に向けることにより、テレセントリック性を高める
ことができる。
Further, in the compact zoom lens according to claim 2 or 3 or 4, the third group GIII can be a "biconvex lens having a surface having a strong refractive power on the object side" (claim 5). That is, in order to reduce the number of constituent lenses of the zoom lens, it is desirable that the number of lenses of the third group GIII, which is a fixed group, be as small as possible. As in the invention of claim 5, the third group is a single lens. With the configuration, the addition of the third group can be prevented from hindering miniaturization. In that case, by making the lens form of the third lens group GIII a “biconvex lens”, the strong positive refractive power required for the third lens group can be distributed to both surfaces, and the convex surface having a strong refractive power should be directed to the object side. As a result, the telecentricity can be improved.

【0022】また、上記請求項2または3または4また
は5において、第1群GIの、物体側から2枚目の「像
面に強い屈折面を向けた負レンズ」は、これを、負メニ
スカスレンズもしくは両凹レンズとすることができる
(請求項6)。
Further, in the above-mentioned claim 2 or 3 or 4 or 5, the "negative lens having a strong refracting surface facing the image plane" of the second lens from the object side of the first group GI has the negative meniscus It can be a lens or a biconcave lens (claim 6).

【0023】[0023]

【発明の実施の形態】以下、具体的な実施の形態を説明
する。図1に示すのは、請求項2,5記載の小型ズーム
レンズの実施の1形態であり、第1群GIは、物体側に
凸面を向けた負メニスカスレンズ、像面に強い屈折面を
向けた負レンズ、両凸レンズを配してなり、第2群GII
は、物体側から像側へ向かって順に、両凸レンズ、物体
側に凸面を向けた正メニスカスレンズ、物体側に凸面を
向けた負メニスカスレンズ、両凸レンズを配して成り、
第3群GIIIは、屈折力の強い面を物体側にした両凸レ
ンズである。
BEST MODE FOR CARRYING OUT THE INVENTION Specific embodiments will be described below. FIG. 1 shows an embodiment of a compact zoom lens according to claims 2 and 5, wherein the first group GI is a negative meniscus lens having a convex surface facing the object side, and a strong refracting surface facing the image surface. The second lens group GII
Consists of a biconvex lens, a positive meniscus lens with a convex surface facing the object side, a negative meniscus lens with a convex surface facing the object side, and a biconvex lens in this order from the object side to the image side.
The third group GIII is a biconvex lens with the surface having a strong refractive power facing the object side.

【0024】[0024]

【実施例】以下、図1に示す実施に形態に関する具体的
な実施例を3例挙げる。 物体側から数えて、第i番目
の面(絞りSの面および固体撮像素子のカバーガラス
の面を含む)をr(i=1〜19)、物体側から数
えて第i番目の面と第i+1番目の面の光軸上の面間隔
をd(i=1〜18)、物体側から数えてj番目のレ
ンズもしくはカバーガラスの屈折率およびアッベ数を、
それぞれnおよびν(j=1〜9)とする。また、
fは「全系の焦点距離」、ωは「半画角」F/No.は
「明るさ」、Y’は「像高」、f(I=1〜3)は
「第I群の焦点距離」、fは「望遠端における全系の
合成焦点距離」、m(2T)は「望遠端における第2群
の結像倍率」である。
[Examples] Three specific examples of the embodiment shown in FIG. 1 will be given below. Counted from the object side, the i-th surface (the surface of the diaphragm S and the cover glass C of the solid-state image sensor)
The included) the face of the G r i (i = 1~19) , the i-th surface counted from the object side and the surface spacing on the optical axis of the i + 1 th surface d i (i = 1 to 18) , The refractive index and Abbe number of the jth lens or cover glass counted from the object side,
Let n j and ν j (j = 1 to 9), respectively. Also,
f is “focal length of the entire system”, ω is “half angle of view” F / No. Is “brightness”, Y ′ is “image height”, f I (I = 1 to 3) is “focal length of I-th group”, f T is “composite focal length of entire system at telephoto end”, m ( 2T) is the "magnification of the second group at the telephoto end".

【0025】実施例1〜3とも、第5面(i=5)及び
第8面(i=8)に「非球面」を採用している(請求項
3,4)。非球面は周知の如く、光軸方向にZ軸、光軸
直交方向にY軸を取るとき、周知の非球面式: Z=(Y2/r)/[1+√{1−(1+K)(Y/r)
2}]+A・Y4+B・Y6+C・Y8+D・Y10+.. で与えられる曲線を光軸の回りに回転して得られる曲面
で、近軸曲率半径:r、円錐定数:K、高次の非球面係
数:A,B,C,Dを与えて形状を特定する。なお、高
次の非球面係数の表記において「Eとそれに続く数字」
は「10の巾乗」を表す。例えば「E−9」は10~9
意味し、この数値がその直前の数値に掛かるのである。
In each of Examples 1 to 3, "aspherical surface" is adopted for the fifth surface (i = 5) and the eighth surface (i = 8) (claims 3 and 4). As is well known, when an aspherical surface has a Z axis in the optical axis direction and a Y axis in a direction orthogonal to the optical axis, a known aspherical surface formula: Z = (Y 2 / r) / [1 + √ {1- (1 + K) ( Y / r)
2 }] + A · Y 4 + B · Y 6 + C · Y 8 + D · Y 10 +. . A curved surface obtained by rotating the curve given by in the direction of the optical axis, and the shape is specified by giving paraxial radius of curvature: r, conical constant: K, and higher-order aspherical coefficients: A, B, C, D To do. In addition, in the notation of the high-order aspherical coefficient, "E and the number following it"
Represents "10 to the power of power". For example, "E-9" means 10 to 9 , and this numerical value multiplies the numerical value immediately before it.

【0026】実施例1 f=4.6〜14.0mm、F/No.=2.5〜4.4、ω=36.3〜1 2.8度、Y’=3.15 i rii j nj νj 1 13.169 2.50 1 1.74400 44.90 2 5.718 2.09 3 379.395 0.80 2 1.69680 55.46 4 8.086 2.02 5 19.723 1.32 3 1.80518 25.46 6 −158.315 可変 7 ∞(絞り) 0.50 8 13.065 1.21 4 1.69350 53.20 9 −37.766 0.10 10 5.310 1.17 5 1.69680 55.46 11 6.626 0.65 12 21.207 1.91 6 1.84666 23.78 13 5.232 0.58 14 11.603 1.47 7 1.48749 70.44 15 −11.189 可変 16 14.064 1.33 8 1.48749 70.44 17 −51.027 1.00 18 ∞ 3.10 9 1.51680 64.20 19 ∞ 。Example 1 f = 4.6 to 14.0 mm, F / No. = 2.5 to 4.4, ω = 36.3 to 12.8 degrees, Y ′ = 3.15 i r i d i j j j j v j 1 13.169 2.50 1 1.74400 44. 90 2 5.718 2.09 3 379.395 0.80 2 1.69680 55.46 4 8.086 2.02 5 19.723 1.32 3 1.80518 25.46 6 158.315 Variable 7 ∞ (aperture) 0.50 8 13.065 1.21 4 1.69350 53.209 9-37.766 0.10 10 5.310 1.17 5 1.69680 55.46 11 6.626 0.65 12 21.207 1.91 6 1.846666 23.78 13 5.232 0.58 14 11.603 1.47 7 1.48749 70.44 15 -11.189 Variable 16 14.064 1.33 8 1 .48749 70. 4 17 -51.027 1.00 18 ∞ 3.10 9 1.51680 64.20 19 ∞.

【0027】 非球面 第5面: K= 4.03478,A= 2.74354E−4, B=−1.06833E−5,C= 8.56489E−7, D=−2.05438E−8 第8面: K=−2.51053,A=−2.23827E−5, B=−1.60847E−6,C= 6.58013E−8 。[0027]   Aspherical surface   Fifth surface:   K = 4.03478, A = 2.743354E-4,   B = -1.06833E-5, C = 8.56489E-7,   D = -2.05438E-8   8th surface:   K = -2.51053, A = -2.23827E-5,   B = -1.60847E-6, C = 6.58013E-8.

【0028】 可変量: f 4.6 8.0 14.0 d6 14.85 6.46 1.60 d15 3.40 8.15 16.54 。Variable amount: f 4.6 8.0 14.0 d 6 14.85 6.46 1.60 d 15 3.40 8.15 16.54.

【0029】 条件式のパラメータの値: |f1|/fT=0.79,f2/f3=0.49,|m(2T)|=1.74 。Value of parameter of conditional expression: | f 1 | / f T = 0.79, f 2 / f 3 = 0.49, | m (2T) | = 1.74.

【0030】実施例2 f=4.6〜14.0mm、F/No.=2.4〜4.3、ω=36.3〜1 2.8度、Y’=3.15 i rii j nj νj 1 13.221 1.86 1 1.69680 55.46 2 6.025 2.27 3 −168.650 0.80 2 1.69680 55.46 4 8.485 1.92 5 18.013 1.41 3 1.82027 29.70 6 −217.214 可変 7 ∞(絞り) 0.50 8 15.437 1.24 4 1.69350 53.20 9 −24.215 0.10 10 5.435 1.31 5 1.65160 58.40 11 9.588 0.47 12 21.919 2.07 6 1.84666 23.78 13 4.726 0.82 14 32.830 1.18 7 1.56384 60.83 15 −13.147 可変 16 13.629 1.41 8 1.48749 70.44 17 −27.945 1.00 18 ∞ 3.10 9 1.51680 64.20 19 ∞ 。Example 2 f = 4.6 to 14.0 mm, F / No. = 2.4 to 4.3, ω = 36.3 to 12.8 degrees, Y ′ = 3.15 i r i d i j n j ν j 1 13.221 1.86 1 1.69680 55. 46 2 6.025 2.27 3 168.650 0.80 2 1.69680 55.46 4 8.485 1.92 5 18.013 1.41 3 1.82027 29.70 6 217.214 Variable 7 ∞ (aperture) 0.50 8 15.437 1.24 4 1.69350 53.20 9 -24.215 0.10 10 5.435 1.31 5 1.65160 58.40 11 9.588 0. 47 12 21.919 2.07 6 1.84666 23.78 13 4.726 0.82 14 32.830 1.18 7 1.56384 60.83 15 -13.147 Variable 16 13.629 1.41 8 1.48749 70 44 17 -27.945 1.00 18 ∞ 3.10 9 1.51680 64.20 19 ∞.

【0031】 非球面 第5面: K= 2.47732,A= 2.24428E−4, B=−7.92930E−6,C= 5.09709E−7, D=−1.02881E−8 第8面: K=−2.78904,A=−3.17852E−5, B=−7.98743E−7,C= 4.41065E−8 。[0031]   Aspherical surface   Fifth surface:   K = 2.47732, A = 2.24428E-4,   B = -7.9929E-6, C = 5.09709E-7,   D = -1.02881E-8   8th surface:   K = -2.78904, A = -3.17852E-5,   B = -7.98743E-7, C = 4.41065E-8.

【0032】 可変量: f 4.6 8.0 14.0 d6 15.63 6.75 1.60 d15 2.91 7.40 15.34 。Variable amount: f 4.6 8.0 14.0 d 6 15.63 6.75 1.60 d 15 2.91 7.40 15.34.

【0033】 条件式のパラメータの値: |f1|/fT=0.87,f2/f3=0.59,|m(2T)|=1.64 。Value of parameter of conditional expression: | f 1 | / f T = 0.87, f 2 / f 3 = 0.59, | m (2T) | = 1.64.

【0034】実施例3 f=4.5〜15.0mm、F/No.=2.5〜4.8、ω=36.9〜1 1.9度、Y’=3.15 i rii j nj νj 1 12.748 0.94 1 1.69680 55.46 2 5.771 2.09 3 −428.071 0.80 2 1.69680 55.46 4 8.093 1.90 5 18.674 1.37 3 1.82027 29.70 6 −108.177 可変 7 ∞(絞り) 0.50 8 15.160 1.20 4 1.69350 53.20 9 −32.440 0.10 10 6.007 1.31 5 1.65160 58.40 11 12.964 0.42 12 23.503 2.54 6 1.84666 23.78 13 4.832 0.77 14 26.130 1.18 7 1.56384 60.83 15 −14.405 可変 16 13.996 1.39 8 1.48749 70.44 17 −30.891 1.00 18 ∞ 3.10 9 1.51680 64.20 19 ∞ 。Example 3 f = 4.5 to 15.0 mm, F / No. = 2.5 to 4.8, ω = 36.9 to 11.9 degrees, Y ′ = 3.15 i r i d i j j j j v j 1 12.748 0.94 1 1.69680 55. 46 2 5.771 2.09 3 -428.071 0.80 2 1.69680 55.46 4 8.093 1.90 5 18.674 1.37 3 1.82027 29.70 6 -108.177 Variable 7 ∞ (aperture) 0.50 8 15.160 1.20 4 1.69350 53.20 9 −32.440 0.10 10 6.007 1.31 5 1.65160 58.40 11 12.964 0. 42 12 23.503 2.54 6 1.84666 23.78 13 4.832 0.77 14 26.130 1.187 7 1.56384 60.83 15 -14.405 Variable 16 13.996 1.39 98 1.48749 7 .44 17 -30.891 1.00 18 ∞ 3.10 9 1.51680 64.20 19 ∞.

【0035】 非球面 第5面: K= 3.47729,A= 2.57066E−4, B=−1.01953E−5,C= 7.96988E−7, D=−1.86637E−8 第8面: K=−2.23816,A=−1.44192E−5, B=−1.87950E−6,C= 1.09630E−7 。[0035]   Aspherical surface   Fifth surface:   K = 3.477729, A = 2.57066E-4,   B = -1.01953E-5, C = 7.996988E-7,   D = -1.866637E-8   8th surface:   K = -2.23816, A = -1.44192E-5,   B = -1.87950E-6, C = 1.09630E-7.

【0036】 可変量: f 4.6 8.0 15.0 d6 16.18 6.78 1.60 d15 3.22 8.36 17.80 。Variables: f 4.6 8.0 15.0 d 6 16.18 6.78 1.60 d 15 3.22 8.36 17.80.

【0037】 条件式のパラメータの値: |f1|/fT=0.77,f2/f3=0.57,|m(2T)|=1.82 。Value of parameter of conditional expression: | f 1 | / f T = 0.77, f 2 / f 3 = 0.57, | m (2T) | = 1.82.

【0038】図2〜図4に順次、実施例1に関する収差
図を示す。図2は広角端、図3は中間焦点距離、図4は
望遠端に関するものである。図5〜図7に順次、実施例
2に関する収差図を示す。図5は広角端、図6は中間焦
点距離、図7は望遠端に関するものである。図8〜図1
0に順次、実施例3に関する収差図を示す。図8は広角
端、図9は中間焦点距離、図10は望遠端に関するもの
である。
Aberration diagrams relating to Example 1 are sequentially shown in FIGS. 2 is for the wide-angle end, FIG. 3 is for the intermediate focal length, and FIG. 4 is for the telephoto end. Aberration diagrams relating to Example 2 are sequentially shown in FIGS. 5 is for the wide-angle end, FIG. 6 is for the intermediate focal length, and FIG. 7 is for the telephoto end. 8 to 1
Aberration diagrams related to Example 3 are sequentially shown in 0. 8 is for the wide-angle end, FIG. 9 is for the intermediate focal length, and FIG. 10 is for the telephoto end.

【0039】各収差図において、「SA」は球面収差、
「SC」は正弦条件、「Ast」は非点収差、「Dis
t」は歪曲収差を示す。収差図中の[dおよびg」は、
収差がd線およびg線に関するものであることを示す。
球面収差および正弦条件の図において実線が球面収差、
破線が正弦条件である。また非点収差の図において実線
はサジタル光線、破線はメリディオナル光線を示す。
In each aberration diagram, "SA" is spherical aberration,
“SC” is a sine condition, “Ast” is astigmatism, and “Dis”
“T” indicates distortion. [D and g] in the aberration diagrams are
It shows that the aberrations are for d and g lines.
In the figure of spherical aberration and sine conditions, the solid line is spherical aberration,
The broken line is the sine condition. In the diagram of astigmatism, the solid line shows the sagittal ray and the broken line shows the meridional ray.

【0040】各実施例とも、広角・中間・望遠の何れに
おいても、収差は良好に補正され、性能良好であり、明
るく、広画角である。
In each of the examples, aberrations are corrected well, performance is good, bright, and wide angle of view is obtained in any of wide angle, intermediate, and telephoto.

【0041】[0041]

【発明の効果】以上に説明したように、この発明によれ
ば新規な小型ズームレンズを提供できる。この発明の小
型ズームレンズは、上記の如く、射出瞳位置を像面から
十分に離すことができるためテレセントリック性に優
れ、カラー画像用の固体撮像素子における色分解用の
ィルタによるケラれや、色ずれを有効に軽減できる。
As described above, according to the present invention, a novel compact zoom lens can be provided. Small zoom lens of the present invention, as described above, excellent telecentricity order to be able to release sufficiently the exit pupil position of the image plane, off for color separation in the solid-state imaging device for color image
Kera Re and due to the filter, it is possible to effectively reduce the color shift.

【0042】また、開口絞りが移動群の移動を制限しな
いので、上記各実施例に見られるように3倍以上の変倍
比が可能である。望遠端におけるレンズ全長は実施例1
で42.4mm、実施例2で40.38mm、実施例3
で42.02mmであり、コンパクトである。
Further, since the aperture stop does not limit the movement of the moving group, a zoom ratio of 3 times or more is possible as seen in each of the above embodiments. The total lens length at the telephoto end is the first embodiment.
42.4 mm, Example 2 40.38 mm, Example 3
It is 42.02 mm and is compact.

【0043】また、各実施例に見られるように、明るく
広画角で良好な性能を実現できる。この発明の小型ズー
ムレンズはこのような効果を有するため、デジタルスチ
ルカメラやビデオカメラの撮影用ズームレンズとして好
適である。
Further, as seen in each of the embodiments, good performance can be realized with a bright and wide angle of view. Since the small-sized zoom lens of the present invention has such effects, it is suitable as a zoom lens for photographing a digital still camera or a video camera.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の小型ズームレンズのレンズ構成と変
倍動作を説明するための図である。
FIG. 1 is a diagram for explaining a lens configuration and a zooming operation of a compact zoom lens according to the present invention.

【図2】実施例1に関する広角端の収差図である。FIG. 2 is an aberration diagram at a wide-angle end according to Example 1.

【図3】実施例1に関する中間焦点距離の収差図であ
る。
FIG. 3 is an aberration diagram of an intermediate focal length according to Example 1.

【図4】実施例1に関する望遠端の収差図である。FIG. 4 is an aberration diagram for Example 1 at the telephoto end.

【図5】実施例2に関する広角端の収差図である。FIG. 5 is an aberration diagram for Example 2 at the wide-angle end.

【図6】実施例2に関する中間焦点距離の収差図であ
る。
FIG. 6 is an aberration diagram of an intermediate focal length according to Example 2.

【図7】実施例2に関する望遠端の収差図である。FIG. 7 is an aberration diagram for Example 2 at the telephoto end.

【図8】実施例3に関する広角端の収差図である。FIG. 8 is an aberration diagram at a wide-angle end according to Example 3;

【図9】実施例3に関する中間焦点距離の収差図であ
る。
FIG. 9 is an aberration diagram of intermediate focal lengths according to Example 3;

【図10】実施例3に関する望遠端の収差図である。FIG. 10 is an aberration diagram for Example 3 at the telephoto end.

【符号の説明】[Explanation of symbols]

GI 第1群 GII 第2群 GIII 第3群 S 開口絞り GI first group GII second group GIII Third group S aperture stop

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側から像側へ向かって順次、第1〜第
3群を配して成り、 第1群は、負の屈折力を有し、 第2群は、正の屈折力を有し、 第3群は、正の屈折力を有し、 上記第2群の物体側に、ズーミング時に第2群と一体に
移動する開口絞りを有し、上記第3群はズーミングに関
して固定群であり、 広角端から望遠端へのズーミングに際し、第1群は、光
軸上を先ず像側へ移動し、途中で移動方向を物体側へ反
転することにより、像側に凸の凸弧状に移動して焦点位
置の変動を補正し、第2群は光軸上を物体側へ単調に移
動して変倍を行ない、 第I群(I=1〜3)の焦点距離をf、望遠端におけ
る全系の合成焦点距離をf、望遠端における第2群の
結像倍率をm(2T)とするとき、これらが条件: (1)0.74<|f|/f<0.9 (2)0.46<f/f3<0.62(f>0,f
>0) (3)1.6<|m(2T)|<1.9 を満足することを特徴とする小型ズームレンズ。
1. A first lens unit to a third lens unit are arranged in this order from the object side to the image side, the first group having a negative refractive power, and the second group having a positive refractive power. The third lens unit has a positive refracting power, has an aperture stop on the object side of the second lens unit, which moves integrally with the second lens unit during zooming, and the third lens unit is a fixed lens unit for zooming. When zooming from the wide-angle end to the telephoto end, the first group first moves to the image side on the optical axis, and then reverses the moving direction to the object side, forming a convex arc shape convex to the image side. moving by correcting the variation of the focal position, the second group performs zooming monotonously moved on the optical axis toward the object side, the focal distance f I group I (I = 1 to 3), the telephoto When the combined focal length of the entire system at the end is f T and the imaging magnification of the second lens unit at the telephoto end is m (2T), these are the conditions: (1) 0.74 <| f 1 | / F T <0.9 (2) 0.46 <f 2 /f3<0.62 (f 2 > 0, f
3 > 0) (3) A small zoom lens characterized by satisfying 1.6 <| m (2T) | <1.9.
【請求項2】請求項1記載の小型ズームレンズにおい
て、 第1群が、物体側から像側へ向かって順に、物体側に凸
面を向けた負メニスカスレンズ、像面に強い屈折面を向
けた負レンズ、両凸レンズを配してなり、 第2群が、物体側から像側へ向かって順に、両凸レン
ズ、物体側に凸面を向けた正メニスカスレンズ、物体側
に凸面を向けた負メニスカスレンズ、両凸レンズを配し
て成ることを特徴とする小型ズームレンズ。
2. The compact zoom lens according to claim 1, wherein the first lens group has, in order from the object side to the image side, a negative meniscus lens having a convex surface facing the object side and a strong refracting surface facing the image surface. A negative lens and a biconvex lens are arranged, and the second lens group in order from the object side to the image side is a biconvex lens, a positive meniscus lens with a convex surface facing the object side, and a negative meniscus lens with a convex surface facing the object side. A compact zoom lens characterized by comprising a biconvex lens.
【請求項3】請求項2記載の小型ズームレンズにおい
て、 第1群の、正レンズである両凸レンズの物体側のレンズ
面が、光軸を離れるに従い正の屈折力が強くなる形状を
した非球面であることを特徴とする小型ズームレンズ。
3. The compact zoom lens according to claim 2, wherein the object-side lens surface of the biconvex lens, which is a positive lens, in the first lens group has a shape in which the positive refracting power becomes stronger as the distance from the optical axis increases. A compact zoom lens that is spherical.
【請求項4】請求項2または3記載の小型ズームレンズ
において、 第2群における物体側の両凸レンズの物体側の面が、光
軸を離れるに従い正の屈折力が弱くなる形状をした非球
面であることを特徴とする小型ズームレンズ。
4. A compact zoom lens according to claim 2 or 3, wherein the object-side surface of the object-side biconvex lens in the second group has a shape in which the positive refracting power becomes weaker as the distance from the optical axis increases. A compact zoom lens.
【請求項5】請求項2または3または4記載の小型ズー
ムレンズにおいて、 第3群が、屈折力の強い面を物体側にした両凸レンズで
あることを特徴とする小型ズームレンズ。
5. The compact zoom lens according to claim 2, 3 or 4, wherein the third group is a biconvex lens having a surface having a strong refractive power on the object side.
【請求項6】請求項2または3または4または5記載の
小型ズームレンズにおいて、 第1群の、物体側から2枚目の、像面に強い屈折面を向
けた負レンズが、負メニスカスレンズもしくは両凹レン
ズであることを特徴とする小型ズームレンズ。
6. The compact zoom lens according to claim 2, 3 or 4 or 5, wherein the second lens from the object side in the first lens group, which is a negative lens having a strong refracting surface facing the image surface, is a negative meniscus lens. Or a small zoom lens that is a biconcave lens.
JP19242896A 1996-07-22 1996-07-22 Small zoom lens Expired - Fee Related JP3466385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19242896A JP3466385B2 (en) 1996-07-22 1996-07-22 Small zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19242896A JP3466385B2 (en) 1996-07-22 1996-07-22 Small zoom lens

Publications (2)

Publication Number Publication Date
JPH1039214A JPH1039214A (en) 1998-02-13
JP3466385B2 true JP3466385B2 (en) 2003-11-10

Family

ID=16291156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19242896A Expired - Fee Related JP3466385B2 (en) 1996-07-22 1996-07-22 Small zoom lens

Country Status (1)

Country Link
JP (1) JP3466385B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777967B2 (en) 2007-02-08 2010-08-17 Ricoh Company, Ltd. Zoom lens, camera device and personal digital assistant
US8018663B2 (en) 2008-08-02 2011-09-13 Ricoh Company, Ltd. Image forming lens, camera and portable information terminal

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3909989B2 (en) 1999-11-12 2007-04-25 オリンパス株式会社 Camera with zoom lens and electronic image sensor
JP2001208969A (en) 2000-01-25 2001-08-03 Fuji Photo Optical Co Ltd Wide-angle zoom lens
US6522476B2 (en) 2000-02-02 2003-02-18 Pentax Corporation Three-group zoom lens
EP1220002B1 (en) * 2000-12-27 2006-09-20 Canon Kabushiki Kaisha Zoom lens
JP3709148B2 (en) * 2001-03-19 2005-10-19 ペンタックス株式会社 Zoom lens system
KR100373929B1 (en) * 2001-03-21 2003-02-26 삼성테크윈 주식회사 Compact zoom lens
JPWO2002082158A1 (en) 2001-04-02 2005-03-10 松下電器産業株式会社 Zoom lens and electronic still camera using the same
US6771433B2 (en) 2001-07-24 2004-08-03 Ricoh Company, Ltd. Zoom lens, variable magnification group, camera unit and portable information terminal unit
JP4030743B2 (en) * 2001-10-31 2008-01-09 ペンタックス株式会社 Zoom lens system
US6829102B2 (en) 2002-03-20 2004-12-07 Ricoh Company, Ltd. Zoom lens, and camera and portable information terminal for utilizing zoom lens
JP4354153B2 (en) 2002-06-11 2009-10-28 株式会社リコー Zoom lens, camera, and portable information terminal device
JP2004144947A (en) 2002-10-23 2004-05-20 Ricoh Co Ltd Zoom lens, camera and personal digital assistant device
US6839185B2 (en) 2002-11-01 2005-01-04 Ricoh Company, Ltd. Compact zoom lens system and digital camera using the compact zoom lens system
JP2005049536A (en) 2003-07-31 2005-02-24 Ricoh Co Ltd Electronic imaging unit and portable terminal device equipped with the same
US7151638B2 (en) 2004-02-27 2006-12-19 Ricoh Company, Ltd. Zooming lens system and device using the zooming lens system
JP2006113404A (en) 2004-10-15 2006-04-27 Konica Minolta Opto Inc Variable power optical system, imaging lens device and digital apparatus
US7173777B1 (en) * 2006-02-14 2007-02-06 3M Innovative Properties Company Projection lens and display device for multimedia and other systems
JP5006514B2 (en) 2004-12-16 2012-08-22 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP4890090B2 (en) 2006-05-10 2012-03-07 Hoya株式会社 Zoom lens system
JP2008122589A (en) 2006-11-10 2008-05-29 Sharp Corp Driving method for zoom lens, imaging apparatus using the method, and portable information device
JP2007148433A (en) * 2007-02-19 2007-06-14 Olympus Corp Imaging apparatus
JP6780438B2 (en) 2016-10-20 2020-11-04 セイコーエプソン株式会社 Projection zoom lens and projection type image display device
CN107065406A (en) * 2017-03-21 2017-08-18 北京和光科技有限公司 A kind of universal short focus projection optical system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777967B2 (en) 2007-02-08 2010-08-17 Ricoh Company, Ltd. Zoom lens, camera device and personal digital assistant
US8018663B2 (en) 2008-08-02 2011-09-13 Ricoh Company, Ltd. Image forming lens, camera and portable information terminal

Also Published As

Publication number Publication date
JPH1039214A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
JP3466385B2 (en) Small zoom lens
JP3709148B2 (en) Zoom lens system
JP3862520B2 (en) Zoom lens and optical apparatus using the same
JP4030743B2 (en) Zoom lens system
JP4366109B2 (en) Zoom lens and optical apparatus having the same
JP4909089B2 (en) Zoom lens and imaging apparatus having the same
US20070171541A1 (en) Zoom lens system and image pickup apparatus having the system
JPH11194274A (en) Zoom lens
JP3451471B2 (en) Small zoom lens
JP4173977B2 (en) Zoom lens system
JP2001033703A (en) Rear focus type zoom lens
JP2001194586A (en) Zoom lens and photographing device using the same
JP3619117B2 (en) Zoom lens and optical apparatus using the same
JP3652179B2 (en) Zoom lens
JP2000231050A (en) Rear focus type zoom lens
US6751029B2 (en) Zoom lens image pickup apparatus
JP4444625B2 (en) Zoom lens and imaging apparatus having the same
JP3527130B2 (en) Zoom lens and video camera using the same
JP3576679B2 (en) Zoom lens
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JP3085823B2 (en) Aspherical zoom lens and video camera using it
JP2001100098A (en) Aspherical lens
JPH08146297A (en) Zoom lens of large aperture diameter
JP3566838B2 (en) Zoom lens
JP2003131128A (en) Zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees