JP2006039259A - Endoscope objective optical system and imaging apparatus using the system - Google Patents

Endoscope objective optical system and imaging apparatus using the system Download PDF

Info

Publication number
JP2006039259A
JP2006039259A JP2004219901A JP2004219901A JP2006039259A JP 2006039259 A JP2006039259 A JP 2006039259A JP 2004219901 A JP2004219901 A JP 2004219901A JP 2004219901 A JP2004219901 A JP 2004219901A JP 2006039259 A JP2006039259 A JP 2006039259A
Authority
JP
Japan
Prior art keywords
group
lens
optical system
objective optical
endoscope objective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004219901A
Other languages
Japanese (ja)
Other versions
JP4827391B2 (en
Inventor
Ken Kasai
研 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004219901A priority Critical patent/JP4827391B2/en
Publication of JP2006039259A publication Critical patent/JP2006039259A/en
Application granted granted Critical
Publication of JP4827391B2 publication Critical patent/JP4827391B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Lenses (AREA)
  • Endoscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low cost endoscope objective optical system, particularly a video endoscope objective optical system with which a wide angle is provided, distortion is made small, image surface curve is made small and only spherical lenses are used to construct the system. <P>SOLUTION: The endoscope objective optical system is made of a first group G1 which is made of a negative meniscus lens whose convex face is facing toward an object side, a brightness diaphragm S, a second group G2 which is made of a positive lens whose flat surface is facing toward the object point side, a third group G3 which includes a refractive surface, that has at least one concave surface, and has a positive refractive power as a whole and a fourth group G4 which is made of a joint lens of a negative meniscus lens and a biconvex lens and has a positive refractive power. In the system, an image is formed on an imaging element I through the first group G1 to the fourth group G4 and the main optical line is refracted to the direction separating from the optical axis at the convex surface of the positive lens of the second group G2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内視鏡対物光学系及びそれを用いた撮像装置に関し、特に、ビデオ内視鏡対物光学系と電子内視鏡に関するものである。   The present invention relates to an endoscope objective optical system and an imaging apparatus using the same, and more particularly to a video endoscope objective optical system and an electronic endoscope.

内視鏡、特に医療用分野においては、体腔内病変を容易に発見し、処置の見落とし防止等の目的から広角視野であることが望ましい。腹腔内に用いる場合は、視野角は少なくとも70°程度必要である。   In an endoscope, particularly in the medical field, it is desirable to have a wide-angle visual field for the purpose of easily detecting lesions in a body cavity and preventing oversight of treatment. When used in the abdominal cavity, the viewing angle needs to be at least about 70 °.

内視鏡光学系は、伝送効率を高めるために、像伝送手段に垂直に主光線が入射するテレセントリック光学系であることが望ましい。広角でテレセントリックな光学系は、負前群、絞り、正後群のレトロフォーカス光学系で、絞りの位置を後群の前側焦点位置に一致させることで達成できるが、絞りの前の負屈折力で負の歪曲が発生し、さらに、絞りの後ろの正屈折力により負の歪曲が発生するという、基本構成として、負の歪曲が大となる性質を持っている。   The endoscope optical system is preferably a telecentric optical system in which a chief ray is incident perpendicular to the image transmission means in order to increase transmission efficiency. A wide-angle, telecentric optical system is a negative focus group, stop, and positive back group retrofocus optical system that can be achieved by matching the stop position with the front focus position of the rear group. As a basic configuration, negative distortion occurs due to the positive refracting power behind the stop, and the negative distortion is large.

歪曲が大きいと、実物と像との乖離が大きく、術者にとって不都合となり好ましくない。   If the distortion is large, the difference between the real object and the image is large, which is inconvenient for the operator and is not preferable.

歪曲を低減する手段として、特許文献1に、図37に断面図を示すように、前群を正レンズと1枚の負メニスカスレンズで構成したレトロフォーカスタイプの歪曲収差の少ない内視鏡対物レンズが記載されている。   As a means for reducing distortion, as shown in Patent Document 1 and a cross-sectional view in FIG. 37, as shown in a cross-sectional view, an endoscope objective lens with a small distortion aberration of a retrofocus type in which the front group is constituted by a positive lens and one negative meniscus lens. Is described.

また、特許文献2には、非球面レンズを用いて歪曲収差を補正する技術が記載されている。   Patent Document 2 describes a technique for correcting distortion using an aspheric lens.

さらに、特許文献3には、非球面レンズを使用することなしに、歪曲の発生を低減する技術が記載されている。   Furthermore, Patent Document 3 describes a technique for reducing the occurrence of distortion without using an aspheric lens.

しかしながら、特許文献1記載のものでは、物体側に置く凸レンズは凹レンズよりも物体側に配置され、絞りより距離が大となり、また前群凹レンズの作用により、光線が高くなることから、外径大とならざるを得ない。内視鏡は挿入機器であるので、先端部に設置する対物光学系の外径が大となることは、挿入部の巨大化を招き好ましくない。   However, in the device described in Patent Document 1, the convex lens placed on the object side is arranged on the object side relative to the concave lens, the distance is larger than the stop, and the light beam is increased by the action of the front group concave lens. It must be. Since the endoscope is an insertion device, an increase in the outer diameter of the objective optical system installed at the distal end portion is not preferable because the insertion portion is enlarged.

また、特許文献4には、像面湾曲が正に過剰に補正された硬性内視鏡用対物光学系の実施例が記載されている。像伝送手段にリレーレンズを用いる場合は、リレーレンズで発生する負の像面湾曲を打ち消すために、リレーレンズより物体側に配置する対物レンズにおいて正の像面湾曲を発生させることが知られているが、図38(特許文献4第6図)の非点収差図にあるように、特許文献4に記載されている対物光学系はこの種のものであり、特許文献4では、CCD等の固体撮像素子に結像させるビデオスコープや、イメージガイドを用いたファイバースコープのような平面に結像しなければならない光学系、つまり、像面湾曲を略ゼロに補正された光学系については、例がない。   Patent Document 4 describes an example of an objective optical system for a rigid endoscope in which the curvature of field is positively excessively corrected. When a relay lens is used as the image transmission means, it is known that a positive curvature of field is generated in the objective lens arranged on the object side of the relay lens in order to cancel the negative curvature of field generated in the relay lens. However, as shown in the astigmatism diagram of FIG. 38 (Patent Document 4 FIG. 6), the objective optical system described in Patent Document 4 is of this type. An example of an optical system that needs to form an image on a plane such as a videoscope that forms an image on a solid-state image sensor or a fiberscope that uses an image guide, that is, an optical system that corrects curvature of field to almost zero There is no.

さらに、特許文献2に記載のような非球面レンズを用いるタイプは、歪曲除去の効果は顕著であるが、非球面レンズの製造は一般にコストが上がりやすいという欠点を有している。   Furthermore, the type using an aspherical lens as described in Patent Document 2 has a remarkable effect of removing distortion, but the production of the aspherical lens generally has a drawback that the cost tends to increase.

さらに、特許文献3に記載のものでは、前群に複数のレンズを用いており、レンズ枚数の増加となり、同様にコストが上がり好ましくない。   Further, the one described in Patent Document 3 uses a plurality of lenses in the front group, which increases the number of lenses, which similarly increases the cost and is not preferable.

上記のような歪曲、像面湾曲の少ない対物光学系は、内視鏡下外科手術に好適である。内視鏡下外科手術とは、体空内に小さな穴をあけ、ビデオスコープ等を挿入して視野を確保しながら、鉗子等を挿入し手術、処置をするもので、開腹術に対して、患者の負担が少ないという利点があり、胆嚢摘出や、自然気胸等の肺切除等に主に適用されている。   The objective optical system with less distortion and less curvature of field is suitable for endoscopic surgery. Endoscopic surgery is a procedure in which a small hole is made in the body and a video scope is inserted to secure a visual field, and forceps are inserted to perform surgery and treatment. There is an advantage that the burden on the patient is small, and it is mainly applied to gallbladder excision and lung resection such as spontaneous pneumothorax.

内視鏡下外科手術は、術者が直接目視で観察するのではなく、テレビモニターを通じてビデオ像を見て行うので、術者の負担にならないように歪曲や像面湾曲の小さい映像が好ましい。また、内視鏡下外科手術では、挿入性の良い硬性ビデオスコープがよく用いられ、長手方向に対し斜め前方を視野方向とする斜視光学系が好まれる。さらに、斜視光学系においても、術部視野を容易に確保したいというニーズがある。図39は、このようなスコープ(硬性内視鏡)の外観を示すが、操作ノブKを矢印のように例えば90°回転させると、回転前は図40(a)に示すような視野が、回転後はモニター上で図40(b)のようになる。   Endoscopic surgery is not performed directly by an operator, but is performed by watching a video image through a television monitor. Therefore, an image with small distortion and curvature of field is preferable so as not to burden the operator. In endoscopic surgery, a rigid videoscope with good insertability is often used, and a perspective optical system having a visual field direction obliquely forward with respect to the longitudinal direction is preferred. Furthermore, there is a need to easily secure a surgical field of view in a perspective optical system. FIG. 39 shows the appearance of such a scope (rigid endoscope). When the operation knob K is rotated, for example, by 90 ° as shown by an arrow, the visual field shown in FIG. After the rotation, it becomes as shown in FIG.

図41(a)は、内視鏡を用いた外科手術下のモニター像を示したものであるが、スコープごと回転させてしまうと、図41(b)のようになり、天地が重力方向と一致せず、モニター上で術者が取り扱う生検鉗子の出る方向と天地が一致しなくなる。これでは緻密な作業を要する内視鏡下外科手術等が非常に困難となる。   FIG. 41 (a) shows a monitor image under a surgical operation using an endoscope. When the entire scope is rotated, as shown in FIG. 41 (b), the top and bottom are in the direction of gravity. The direction of the biopsy forceps handled by the operator on the monitor does not match the top and bottom. This makes it very difficult to perform endoscopic surgery or the like that requires precise work.

そこで、図42(a)〜(c)に示すように、ビデオスコープ自体に回転機能を持たせ、術者天地方向を変えずに、視野方向を変換する手段として、特許文献5に記載ものでは、図43に示すように(特許文献5第1図)、光学系の撮像面9を回転させることで像回転を補正する技術が開示されている。   Therefore, as shown in FIGS. 42 (a) to (c), as a means for converting the visual field direction without changing the operator's top and bottom direction, the video scope itself has a rotation function. As shown in FIG. 43 (FIG. 1 of Patent Document 5), a technique for correcting image rotation by rotating the imaging surface 9 of the optical system is disclosed.

ところが、特許文献5のもののように、CCD撮像面9をシャフト11先端に固定し一体化して回転させる構造であると、内装部品の製造誤差や部品同士のクリアランスによる所謂あそびが生じ、シャフト11を回転させると、図44に示したように、モニター上の視野中心が円弧を描くような動きをし、観察上見難いという不具合を誘発する。
特開昭60−80816号公報 米国特許第4,867,546号明細書 米国特許第6,618,207号明細書 特公平5−85884号公報 米国特許第6,464,631号明細書
However, as in the case of Patent Document 5, if the CCD imaging surface 9 is fixed to the tip of the shaft 11 and rotated integrally, so-called play occurs due to manufacturing errors of interior parts and clearance between parts, and the shaft 11 is moved. When it is rotated, as shown in FIG. 44, the center of the visual field on the monitor moves so as to draw an arc, thereby inducing a problem that it is difficult to see on observation.
Japanese Patent Laid-Open No. 60-80816 US Pat. No. 4,867,546 US Pat. No. 6,618,207 Japanese Patent Publication No. 5-85884 US Pat. No. 6,464,631

本発明は従来技術のこのような状況に鑑みてなされたものであり、その目的は、広角で、歪曲が小さく、像面湾曲が少なく、球面レンズのみでなる低コストの内視鏡対物光学系、特にビデオ内視鏡対物光学系を提供することを目的としている。   The present invention has been made in view of such a situation of the prior art, and its purpose is a low-cost endoscope objective optical system that is wide-angle, has little distortion, has little curvature of field, and includes only a spherical lens. In particular, it aims to provide a video endoscope objective optical system.

さらに、本発明は、視野方向を所望の方向に内視鏡長手方向に対して回転可能な斜視光学系において、回転して視野方向を変換した際にも、観察面上での視野中心の偏心発生を抑制した光学系を提供し、テレビモニター上での観察に好適な電子内視鏡等の撮像装置を提供することを目的としている。   Further, the present invention provides an eccentricity of the center of the visual field on the observation surface even when the visual field direction is changed by rotating in a perspective optical system capable of rotating the visual field direction in a desired direction with respect to the longitudinal direction of the endoscope. An object of the present invention is to provide an imaging system such as an electronic endoscope suitable for observation on a television monitor by providing an optical system in which generation is suppressed.

上記課題を解決するための本発明による内視鏡対物光学系は、物体側から順に、物体側に凸面を向けた負メニスカスレンズからなる第1群と、明るさ絞りと、物点側に平面を向けた正レンズからなる第2群と、少なくとも1面の凹の屈折面を含み全体として正の屈折力を持つ第3群と、負メニスカスレンズと両凸レンズの接合レンズからなる正の屈折力の第4群とからなり、前記第1群から前記第4群を介して撮像素子に結像する内視鏡対物光学系であって、前記第2群の正レンズの凸面で主光線が光軸から離れる方向に屈折されることを特徴とするものである。   In order to solve the above problems, an endoscope objective optical system according to the present invention includes, in order from the object side, a first group of negative meniscus lenses having a convex surface facing the object side, an aperture stop, and a flat surface on the object point side. A second lens unit having a positive refractive power, a third lens unit including at least one concave refracting surface and having a positive refractive power as a whole, and a positive refractive power composed of a cemented lens of a negative meniscus lens and a biconvex lens. An objective optical system that forms an image on the image sensor from the first group through the fourth group, and the principal ray is emitted from the convex surface of the positive lens in the second group. It is refracted in a direction away from the axis.

この場合に、前記第2群の正レンズのレンズ厚をt2 、焦点距離をf2 、屈折率をn2 、前記第1群の負メニスカスレンズ、光学系全系の焦点距離をそれぞれf1 、F、前記第3群の凹の屈折面によるペッツバール和をPS3、前記第4群の正レンズ、負レンズのd線基準のアッベ数をそれぞれνp、νn、前記第4群の焦点距離をf4 としたとき、以下条件式を満足するようにすることが望ましい。 In this case, the lens thickness of the positive lens of the second group is t 2 , the focal length is f 2 , the refractive index is n 2 , and the focal lengths of the negative meniscus lens of the first group and the entire optical system are f 1 , respectively. , F, the Petzval sum due to the concave refractive surface of the third group is PS3, the Abbe numbers on the d-line basis of the positive lens and negative lens of the fourth group are νp and νn, respectively, and the focal length of the fourth group is f When 4 , it is desirable to satisfy the following conditional expression.

(1) 2<f2 (n2 −1)/t2 <6
(2) −2.3<f1 /F<−0.9
(3) −0.6<PS3<−0.2
(4) νp>50,νn<30
(5) 2.3<f4 /F
また、本発明による撮像装置は、以上の内視鏡対物光学系とその像面に配置された固体撮像素子とを備え、前記第1群と前記明るさ絞りと前記第2群とから前群が構成され、前記第3群と前記第4群とから後群が構成され、前記後群と前記固体撮像素子は機械的に一体構造になっていて、前記前群に対して撮像装置長手方向を軸として相対的に回動可能に構成されており、前記前群から前記後群に入射する軸上マージナル光線の入射角が、前記回動軸に対して略平行となるように構成されていることを特徴とするものである。
(1) 2 <f 2 (n 2 −1) / t 2 <6
(2) -2.3 <f 1 /F<-0.9
(3) -0.6 <PS3 <-0.2
(4) νp> 50, νn <30
(5) 2.3 <f 4 / F
In addition, an imaging apparatus according to the present invention includes the above-described endoscope objective optical system and a solid-state imaging device disposed on an image plane thereof, and includes a front group from the first group, the brightness stop, and the second group. The rear group is composed of the third group and the fourth group, and the rear group and the solid-state imaging device are mechanically integrated, and the imaging device longitudinal direction with respect to the front group And an angle of incidence of an on-axis marginal ray incident on the rear group from the front group is substantially parallel to the rotation axis. It is characterized by being.

本発明によるもう1つの撮像装置は、物体側から順に、負レンズ、絞り、正レンズからなる前群と、全体として正の屈折力からなる後群とからなる内視鏡対物光学系と、その像面に配置された固体撮像素子とを備え、前記後群と前記固体撮像素子は機械的に一体構造になっていて、前記前群に対して撮像装置長手方向を軸として相対的に回動可能に構成されており、前記前群から前記後群に入射する軸上マージナル光線の入射角が、前記回動軸に対して略平行となるように構成されていることを特徴とするものである。   Another imaging apparatus according to the present invention includes, in order from the object side, an endoscope objective optical system including a front group including a negative lens, a stop, and a positive lens, and a rear group including a positive refractive power as a whole, A solid-state imaging device disposed on an image plane, wherein the rear group and the solid-state imaging device are mechanically integrated, and rotate relative to the front group about the longitudinal direction of the imaging device. It is configured so that an incident angle of an on-axis marginal ray incident on the rear group from the front group is configured to be substantially parallel to the rotation axis. is there.

以上の撮像装置において、前記前群の負レンズの焦点距離をf1 、前記前群の正レンズの焦点距離をf2 、前記内視鏡対物光学系全系の焦点距離をFとしたとき、以下条件式を満足することが望ましい。 In the above imaging apparatus, when the focal length of the negative lens in the front group is f 1 , the focal length of the positive lens in the front group is f 2 , and the focal length of the entire endoscope objective optical system is F, It is desirable to satisfy the following conditional expressions.

(6) −0.3<(f2 −|f1 |)/F<1.5
また、前記内視鏡対物光学系の前群にプリズムを設けて斜視光学系とすることができる。
(6) −0.3 <(f 2 − | f 1 |) / F <1.5
Further, a prism can be provided in the front group of the endoscope objective optical system to form a perspective optical system.

以下に、本発明において上記構成をとる理由と作用を説明する。   Below, the reason and effect | action which take the said structure in this invention are demonstrated.

内視鏡対物光学系にレトロフォーカスタイプを適用した場合、歪曲を補正するためには、物点側の凹レンズより前に凸レンズを配置することが考えられるが、外径制約上それは不可能である。そこで、本発明では、絞りの直後に置く凸レンズに着目した。結像には絞り近傍に比較的強い凸作用が必要であるが、これにより一般に近軸的には強い負の湾曲が発生すると考えられる。   When the retrofocus type is applied to the endoscope objective optical system, it is conceivable to place a convex lens in front of the concave lens on the object point side in order to correct distortion, but this is not possible due to outer diameter restrictions. . Therefore, in the present invention, attention is paid to a convex lens placed immediately after the stop. In order to form an image, a relatively strong convex action is necessary in the vicinity of the stop, but it is generally considered that a strong negative curve occurs in paraxial manner.

図1(b)は、従来の光学系(図37)について、最大像高の主光線を薄肉レンズ系で表した図である。主光線は明るさ絞りASで光軸と交わり、絞りAS直後の凸レンズ(第2レンズ)L2で屈折し、以後屈折を繰り返して結像する。明るさ絞りASとその後ろの凸レンズL2との距離が比較的長いため、光線高さが高くなる。その結果、絞りAS直後の凸レンズL2での屈折作用(図1(b)中の円内部)は光軸に近づく方向に曲げられ、負の歪曲が発生する。   FIG. 1B is a diagram showing the principal ray having the maximum image height as a thin lens system in the conventional optical system (FIG. 37). The chief ray intersects the optical axis at the aperture stop AS, refracts at the convex lens (second lens) L2 immediately after the stop AS, and thereafter forms an image by repeating refraction. Since the distance between the aperture stop AS and the convex lens L2 behind the aperture stop AS is relatively long, the light beam height becomes high. As a result, the refracting action (inside the circle in FIG. 1B) at the convex lens L2 immediately after the stop AS is bent in the direction approaching the optical axis, and negative distortion occurs.

そこで、本発明においては、図1(a)のように、絞りASを第2レンズ(凸レンズ)L2の直前に配置すると、軸外主光線の第2レンズL2の曲面での屈折作用は、図1(a)中の円内部のように、光軸から離れる光方向に曲げられ、第2レンズL2は凸レンズでありながら、正の歪曲を発生させることができる。後群(第3レンズL3と第4レンズL4)が凸構成のまま、前群の凹レンズL1による負の歪曲を補正する効果を持たせることができる。   Therefore, in the present invention, as shown in FIG. 1A, when the stop AS is disposed immediately before the second lens (convex lens) L2, the refraction action of the off-axis principal ray on the curved surface of the second lens L2 is as shown in FIG. Like the inside of the circle in 1 (a), it is bent in the light direction away from the optical axis, and the second lens L2 is a convex lens, but can generate positive distortion. With the rear group (the third lens L3 and the fourth lens L4) having a convex configuration, it is possible to provide an effect of correcting negative distortion caused by the concave lens L1 of the front group.

条件式(1)は、歪曲収差を補正する能力、レンズ加工性に関する条件式で、光学系の明るさ絞りと、第2レンズL2(第2群の正レンズ)の屈折率、焦点距離に関するものである。第2レンズL2の曲面の曲率中心より絞り位置が像面側にあれば、主光線は第2レンズL2の曲面において光軸より離れる方向に屈折する。条件式(1)の下限の2を下回ると、第2レンズL2の凸面において、軸外光線を光軸から離れる方向に跳ね上げられなくなり、正の歪曲を発生できず補正効果がない。上限の6を上回ると、第2レンズL2のレンズ厚が非常に小となり、レンズ加工上好ましくない。   Conditional expression (1) is a conditional expression related to the ability to correct distortion and lens workability, and relates to the aperture stop of the optical system, the refractive index of the second lens L2 (second group positive lens), and the focal length. It is. If the stop position is on the image plane side from the center of curvature of the curved surface of the second lens L2, the principal ray is refracted in the direction away from the optical axis on the curved surface of the second lens L2. If the lower limit of 2 of the conditional expression (1) is not reached, off-axis rays cannot be raised in the direction away from the optical axis on the convex surface of the second lens L2, and positive distortion cannot be generated and there is no correction effect. When the upper limit of 6 is exceeded, the lens thickness of the second lens L2 becomes very small, which is not preferable in terms of lens processing.

条件式(2)は、視野角に関する条件式で、光学系全体の焦点距離と、第1群の第1レンズL1(負メニスカスレンズ)の焦点距離に関するものである。条件式(2)の上限の−0.9を越えると、広角にはなるものの歪曲が大となり好ましくなく、下限の−2.3を下回ると、内視鏡に好適な視野角70°以上を確保できず、好ましくない。   Conditional expression (2) is a conditional expression relating to the viewing angle, and relates to the focal length of the entire optical system and the focal length of the first lens unit L1 (negative meniscus lens). If the upper limit of -0.9 of conditional expression (2) is exceeded, the wide angle will be unfavorably large, but if it falls below the lower limit of -2.3, a viewing angle of 70 ° or more suitable for an endoscope will be obtained. It is not preferable because it cannot be secured.

さらに、本発明では、後群を第3群と題4群に分け、第3群に空気接触面を持つ比較的強い凹作用の面を設け、第4群には空気接触面の凹面を設けず、正レンズとメニスカスレンズの接合レンズからなる全体として正の屈折力の構成とする。これにより、歪曲を補正しつつ、像面湾曲を過剰としない光学系を達成できる。条件式(3)はこれらを具体化したものであって、第3群の凹面によるペッツバール和がその下限の−0.6を下回ると、像面湾曲、歪曲収差が補正不足となり、上限の−0.2を上回ると、像面湾曲が過剰となり像面の平面性を満足できなくなる。従来の歪曲収差の少ない内視鏡光学系の例として、前述の特許文献4の実施例1、2があるが、これらはそれぞれ、PS3=−0.09、−0.04となっており、条件式(3)を満足していない(表1)。   Further, in the present invention, the rear group is divided into the third group and the fourth group, and the third group is provided with a relatively strong concave surface having an air contact surface, and the fourth group is provided with a concave surface of the air contact surface. First, the positive lens and the meniscus lens are combined to have a positive refractive power as a whole. Accordingly, it is possible to achieve an optical system that corrects distortion and does not cause excessive curvature of field. Conditional expression (3) embodies these. When the Petzval sum due to the concave surface of the third lens group falls below the lower limit of −0.6, curvature of field and distortion become insufficiently corrected, and the upper limit − If it exceeds 0.2, the field curvature becomes excessive and the flatness of the image plane cannot be satisfied. Examples of a conventional endoscope optical system with little distortion include Examples 1 and 2 of Patent Document 4 described above, which are PS3 = −0.09 and −0.04, respectively. Conditional expression (3) is not satisfied (Table 1).

条件式(4)は、第4群の接合硝材に関するものである。第4群では後群内で最も光線高さが高くなることから、接合面での色収差補正効果が高い。条件式(4)において、それぞれ下限の50、上限の30を越えると、倍率の色収差が大となり、好ましくない。   Conditional expression (4) relates to the fourth group of bonding glass materials. In the fourth group, since the light ray height is highest in the rear group, the effect of correcting chromatic aberration at the cemented surface is high. In conditional expression (4), if the lower limit of 50 and the upper limit of 30 are exceeded, chromatic aberration of magnification becomes large, which is not preferable.

条件式(5)は、第4群のパワー配置に関するもので、撮像面への光線入射角を制御する条件式である。その下限の2.3を下回ると、第4群の屈折力が大となり、射出瞳をより撮像面から離せず、光線入射角を小さくすることができない。   Conditional expression (5) relates to the power arrangement of the fourth group, and is a conditional expression for controlling the light incident angle on the imaging surface. If the lower limit of 2.3 is not reached, the refractive power of the fourth group becomes large, the exit pupil cannot be further separated from the imaging surface, and the light incident angle cannot be reduced.

次に、撮像面を回転可能にする回転光学系についての本発明を説明する。像の回転補正を行うためには、光学系を前群と後群に機械的に分離する構造にせざるを得ない。その結果、前群と後群の間に嵌合部が生じ、当然クリアランスが必要となり、前群と後群で相対偏心が生まれる。本発明では、図2に示すように、前群(第1レンズL1と第2レンズL2)と後群(第3レンズL3と第4レンズL4)との関係を略アフォーカルとしている。これにより、後群の射出瞳は略無限遠となり、前群が内視鏡長手方向に対して垂直方向にずれても、近軸的には結像位置のズレが生じない。さらに、前群と後群が相対的に回転しても、視野中心のズレを抑制できる。   Next, the present invention for a rotating optical system that enables the imaging surface to rotate will be described. In order to perform image rotation correction, the optical system must be structured to be mechanically separated into a front group and a rear group. As a result, a fitting portion is formed between the front group and the rear group, and naturally a clearance is required, and relative eccentricity is generated between the front group and the rear group. In the present invention, as shown in FIG. 2, the relationship between the front group (first lens L1 and second lens L2) and the rear group (third lens L3 and fourth lens L4) is substantially afocal. As a result, the exit pupil of the rear group becomes substantially infinite, and even if the front group is displaced in the direction perpendicular to the longitudinal direction of the endoscope, no deviation of the imaging position occurs in a paraxial manner. Furthermore, even if the front group and the rear group rotate relatively, it is possible to suppress the deviation of the center of the visual field.

物体面は光学系全系の焦点距離より十分に大であるので、図3に示すように、物体面からの軸上マージナル光線amは略平行光で入射してくる。第1レンズL1の凹作用により跳ね上げられ、開口絞りASで制限を受け、第2レンズL2の凸作用により光軸方向に屈折する。このマージナル光線を光軸(回転軸)と平行とするためには、第1レンズL1の後側焦点位置と、第2レンズL2の前側焦点位置を一致させればよい。第1レンズL1、第2レンズL2の焦点距離f1 、f2 とその間の間隔t1 の関係は、
1 =f2 −|f1
となる。前群と後群間での軸上アフォーカル構成は、上記関係式を満足すれば略達成できるが、実際には斜視光学系では視野方向を変化させるプリズムが必要となり、t1 の値はある一定の制限を受ける。条件式(6)はそのプリズムの光路長と、先端レンズの外径との制限による焦点距離f1 、f2 の関係を示したもので、上限の1.5を越えると、第1レンズL1の光線高さが高くなり、先端の屈折力のないカバーガラス外径が大となり、内視鏡の太径化を招き好ましくない。さらに、下限の−0.3を下回ると、プリズム内部での2回反射のための光路長が不十分となり、1回反射で視野方向を変換させるを得ず、倒立像及び裏像(鏡像)になり好ましくない。
Since the object plane is sufficiently larger than the focal length of the entire optical system, the on-axis marginal ray am from the object plane is incident as substantially parallel light, as shown in FIG. Bounced up by the concave action of the first lens L1, restricted by the aperture stop AS, and refracted in the optical axis direction by the convex action of the second lens L2. In order to make this marginal ray parallel to the optical axis (rotation axis), the rear focal position of the first lens L1 and the front focal position of the second lens L2 may be matched. The relationship between the focal lengths f 1 and f 2 of the first lens L1 and the second lens L2 and the interval t 1 between them is as follows:
t 1 = f 2 − | f 1 |
It becomes. The axial afocal configuration between the front group and the rear group can be substantially achieved if the above relational expression is satisfied, but in reality, a prism that changes the viewing direction is required in the perspective optical system, and there is a value of t 1. Subject to certain restrictions. Conditional expression (6) shows the relationship between the focal lengths f 1 and f 2 due to the restriction between the optical path length of the prism and the outer diameter of the tip lens. When the upper limit of 1.5 is exceeded, the first lens L1 This increases the light beam height, increases the outer diameter of the cover glass having no refractive power at the tip, which leads to an increase in the diameter of the endoscope. Further, if the lower limit of −0.3 is not reached, the optical path length for twice reflection inside the prism becomes insufficient, and the viewing direction cannot be changed by one reflection, and an inverted image and a rear image (mirror image). It is not preferable.

なお、本発明においては、軸上マージナル光線の前群から後群に入射する入射角を回動軸に対して略平行となるように構成するとは、±3°以内になるようにすることを意味する。   In the present invention, when the incident angle of the on-axis marginal ray incident from the front group to the rear group is made substantially parallel to the rotation axis, it is set within ± 3 °. means.

以上の本発明によると、広角で、歪曲が小さく、像面湾曲が少なく、球面レンズのみで比較的レンズ枚数が少ない内視鏡対物光学系、特にビデオ内視鏡対物光学系、及び、内視鏡長手方向に対して視野方向を所望の方向に回転可能な斜視光学系が提供でき、さらに、所望の視野を視野に入れるために内視鏡を回転し視野方向を変換した際にも、観察面上での視野中心の偏心発生を抑制した光学系が提供でき、特にテレビモニター上での観察に好適な電子内視鏡を実現することができる。   According to the present invention described above, an endoscope objective optical system, particularly a video endoscope objective optical system, and an endoscope having a wide angle, a small distortion, a small curvature of field, and a relatively small number of lenses using only a spherical lens. It is possible to provide a perspective optical system that can rotate the visual field direction in a desired direction with respect to the mirror longitudinal direction. In addition, observation is performed even when the endoscope is rotated to change the visual field direction so that the desired visual field can be entered. An optical system that suppresses the occurrence of decentering of the field center on the surface can be provided, and in particular, an electronic endoscope suitable for observation on a television monitor can be realized.

以下に、本発明の内視鏡対物光学系の実施例1〜15について説明する。   Examples 1 to 15 of the endoscope objective optical system according to the present invention will be described below.

(実施例1)
図4に本発明の実施例1の内視鏡対物光学系の光路図を示す。また、図22に実施例1の内視鏡対物光学系の球面収差、非点収差、倍率色収差、歪曲収差、コマ収差を示す収差図を示す。ここで、“FNO”はFナンバー、“I.H”は像高を示す。以下の実施例の収差図についても同様である。この実施例の内視鏡対物光学系は、物体側から順に、対物光学系のカバーガラスC、物体側に凸面を向けた負メニスカスレンズからなる第1群G1、平行平板P、絞りS、物体側に平面を向けた正レンズの第2群G2、凹平負レンズと平凸正レンズとの接合レンズからなる第3群G3、両凸正レンズと像面側に凸面を向けた負メニスカスレンズとの接合レンズからなる第4群G4からなり、赤外カットフィルタFとCCDのカバーガラスGを経て、撮像面Iに物体像を結像する。
Example 1
FIG. 4 shows an optical path diagram of the endoscope objective optical system according to the first embodiment of the present invention. FIG. 22 is an aberration diagram showing spherical aberration, astigmatism, lateral chromatic aberration, distortion aberration, and coma aberration of the endoscope objective optical system of Example 1. Here, “FNO” indicates the F number, and “I.H” indicates the image height. The same applies to the aberration diagrams of the following examples. The endoscope objective optical system according to this embodiment includes, in order from the object side, a first glass group G1 including a cover glass C of the objective optical system, a negative meniscus lens having a convex surface facing the object side, a parallel plate P, an aperture S, and an object. A second lens group G2 having a positive surface facing the side, a third lens group G3 comprising a cemented lens of a concave plano-negative lens and a plano-convex positive lens, a negative meniscus lens having a biconvex positive lens and a convex surface facing the image surface side And an object image is formed on the imaging surface I via the infrared cut filter F and the cover glass G of the CCD.

絞りS直後の凸レンズ(第2群G2)の凸面での主光線は、図4から明らかなように、光軸から離れる方向に屈折している。さらに、第4群G4の接合面は負の屈折力であり、光線高さの高いこの面においても、主光線は光軸から離れる方向に屈折し、歪曲を補正している。CCDの撮像面Iへの入射角は、最大像高さで約3°である。   The principal ray on the convex surface of the convex lens (second group G2) immediately after the stop S is refracted in the direction away from the optical axis, as is apparent from FIG. Further, the cemented surface of the fourth group G4 has a negative refractive power, and the principal ray is also refracted in the direction away from the optical axis to correct the distortion on this surface having a high ray height. The incident angle of the CCD onto the imaging surface I is about 3 ° at the maximum image height.

また、第3群G3の凹面では、像面湾曲を補正しており、第4群G4全体の屈折力は弱く、コマ収差、非点収差、及び、倍率の色収差を主に補正している。   The concave surface of the third lens group G3 corrects the curvature of field. The refractive power of the entire fourth lens group G4 is weak, and coma, astigmatism, and lateral chromatic aberration are mainly corrected.

絞りS直後の平凸レンズ(第2レンズ、第2群G2)は、絞りSの直後で主光線を屈折していることから、傾きが起きると、光軸の上下での主光線が非対称な屈折を起こし、像面上での片ボケの原因となる。   Since the plano-convex lens (second lens, second group G2) immediately after the stop S refracts the chief ray immediately after the stop S, when the tilt occurs, the chief ray above and below the optical axis is asymmetrically refracted. Cause blurring on the image plane.

これを防止するためには、本実施例のように、平面側を物体側の平行平板Pに当てつけ面とすることで、傾きを防止できる。また、第1レンズ(第1群G1)と第2レンズ(第2群G2)の間に入っている平行平面板Pは、本実施例の光学系を斜視光学系にする場合のプリズム用の光路である。これを省略すると、非点収差や色収差が悪化する。直視光学系と斜視光学系を同一レンズで構成する場合、直視光学系には、プリズム光路長分の平行平板Pを入れておく方が望ましい。   In order to prevent this, the inclination can be prevented by setting the plane side to the object-side parallel plate P as in the present embodiment. In addition, the plane-parallel plate P placed between the first lens (first group G1) and the second lens (second group G2) is used for a prism when the optical system of this embodiment is a perspective optical system. It is an optical path. If this is omitted, astigmatism and chromatic aberration worsen. When the direct-viewing optical system and the perspective optical system are composed of the same lens, it is desirable to put a parallel plate P for the prism optical path length in the direct-viewing optical system.

この実施例のレンズデータは後記する。以下の実施例についても同様である。   Lens data of this example will be described later. The same applies to the following embodiments.

(実施例2)
図5に本発明の実施例2の内視鏡対物光学系の光路図を示す。また、図23に実施例2の内視鏡対物光学系の図22と同様の収差図を示す。第2群G2までは実施例1と同様であり、第3群G3が、物体側に凸面を向けた凸平正レンズ、両凹負レンズ、像面側に凸面を向けた平凸正レンズからなり、第4群G4は物体面側に凸面を向けた負メニスカスレンズと両凸正レンズとの接合レンズからなり、赤外カットフィルタFとCCDのカバーガラスGを経て、撮像面Iに物体像を結像する。
(Example 2)
FIG. 5 shows an optical path diagram of the endoscope objective optical system according to the second embodiment of the present invention. FIG. 23 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 2. The second group G2 is the same as in Example 1, and the third group G3 is composed of a convex plano-positive lens with a convex surface facing the object side, a biconcave negative lens, and a plano-convex positive lens with a convex surface facing the image surface side. The fourth group G4 is composed of a cemented lens of a negative meniscus lens having a convex surface facing the object surface and a biconvex positive lens. An object image is captured on the imaging surface I through an infrared cut filter F and a cover glass G of the CCD. Form an image.

絞りS直後の第2レンズ(第2群G2)の凸面での主光線の屈折は光軸から離れる方向となっており、正の歪曲を発生し、第3群G3中の負レンズの特に像側の面で歪曲を正に補正しており、歪曲は最大像高で約−6.4%と非常に小さくなっている。第4群G4の接合面の負の作用により、歪曲や倍率の色収差を補正している。第3群G3中の2つの平凸正レンズは同種のものであり、コスト的に都合が良く、両凹負レンズの曲率は等しく、組立時の方向性の判別がなく都合が良い。また、第3群G3の両凹負レンズと像面側の平凸正レンズとの間には、CCD撮像面からの反射によるゴースト光除去のために、フレア絞りFSを設けている。さらに、第3群G3の両凹負レンズは凹面に平面部を設け、撮像面側平凸正レンズと面することによって、機械枠内での傾きによる偏心発生を抑制している。   The refraction of the chief ray on the convex surface of the second lens (second group G2) immediately after the stop S is in a direction away from the optical axis, generates a positive distortion, and particularly an image of the negative lens in the third group G3. The distortion on the side surface is corrected positively, and the distortion is very small at about -6.4% at the maximum image height. Distortion and chromatic aberration of magnification are corrected by the negative action of the joint surface of the fourth group G4. The two plano-convex positive lenses in the third group G3 are of the same type and are convenient in terms of cost, and the curvatures of the biconcave negative lenses are equal, which is convenient because there is no discrimination of the direction during assembly. In addition, a flare stop FS is provided between the biconcave negative lens of the third group G3 and the planoconvex positive lens on the image plane side in order to remove ghost light by reflection from the CCD imaging surface. Further, the biconcave negative lens of the third lens group G3 is provided with a flat surface on the concave surface and faces the imaging surface side plano-convex positive lens, thereby suppressing the occurrence of eccentricity due to the tilt in the machine frame.

(実施例3)
図6に本発明の実施例3の内視鏡対物光学系の光路図を示す。また、図24に実施例3の内視鏡対物光学系の図22と同様の収差図を示す。第2群G2までは実施例1、2と同様であり、第3群G3が、両凸正レンズと両凹負レンズの接合レンズからなり、赤外吸収フィルタFを介して、第4群G4が、物体側に凸面を向けた負メニスカスレンズと両凸正レンズの接合レンズからなり、CCDのカバーガラスGを経て、撮像面Iに物体像を結像する。
(Example 3)
FIG. 6 shows an optical path diagram of the endoscope objective optical system according to the third embodiment of the present invention. FIG. 24 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 3. The second group G2 is the same as in the first and second embodiments, and the third group G3 is composed of a cemented lens of a biconvex positive lens and a biconcave negative lens. Comprises a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, and forms an object image on the imaging surface I through the cover glass G of the CCD.

第2レンズの作用は実施例1、2と同様で、第3群G3の空気接触面の負作用により歪曲、倍率色収差を補正している。歪曲は最大像高で−8.8%である。また、第3群G3とその直後の平行平板は接着されており、コバ(レンズ外周長さ)を長くして傾きによる偏心を抑制している。第3群G3と吸収フィルタFとの間には、CCD撮像面からの反射によるフレア防止を目的とする絞りFSを入れてある。また、赤外吸収フィルタFには、通常の反射防止コートの他、YAGレーザー(波長1076nm)カットコートや、半導体レーザー(波長805nm)カットコート等を施してもよい。その際には、干渉フィルタの特性を考慮して、入射角が25°以下とすることが、カット波長のシフトが少なく、レーザーカットが達成でき好ましい。   The function of the second lens is the same as in Examples 1 and 2, and the distortion and lateral chromatic aberration are corrected by the negative action of the air contact surface of the third group G3. The distortion is -8.8% at the maximum image height. Further, the third group G3 and the parallel plate immediately after the third group G3 are bonded, and the edge (lens outer peripheral length) is lengthened to suppress the eccentricity due to the inclination. Between the third group G3 and the absorption filter F, a stop FS for preventing flare caused by reflection from the CCD imaging surface is inserted. The infrared absorption filter F may be provided with a YAG laser (wavelength 1076 nm) cut coat, a semiconductor laser (wavelength 805 nm) cut coat, or the like in addition to a normal antireflection coating. In that case, considering the characteristics of the interference filter, it is preferable that the incident angle is 25 ° or less because the shift of the cut wavelength is small and laser cut can be achieved.

一般に、撮像光学系内部には、赤外域不要光をカットするために赤外カットフィルタが入っている。これらには多層膜を用いた干渉フィルタと、素材自体でカットする吸収タイプがあるが、干渉タイプは、入射角度に制限があることやフレア、ゴーストになりやすい等の欠点があり、吸収タイプを用いることが多い。赤外吸収フィルタは、一般の光学ガラスと比較して熱膨張係数が大きいことから、これをCCD撮像面等に貼り付けて接着すると、高温で滅菌した場合等に、接着面の剥離が起こることがある。こうした不具合を防止するために、CCDには吸収フィルタを接着せず、本実施例のように、光学系内部に配置するとよい。   In general, an imaging optical system includes an infrared cut filter for cutting off unnecessary infrared light. These include an interference filter using a multilayer film and an absorption type that is cut by the material itself, but the interference type has drawbacks such as a limited incident angle, flare, and ghosting. Often used. Infrared absorption filters have a larger coefficient of thermal expansion than general optical glass, so if they are pasted and bonded to a CCD imaging surface, etc., the adhesive surface will peel off when sterilized at high temperatures. There is. In order to prevent such inconvenience, an absorption filter is not bonded to the CCD, and it is preferable to arrange it inside the optical system as in this embodiment.

従来の内視鏡では、光量低下を防止するためにテレセントリック光学系が好適であることは先に述べたが、近年の撮像素子は、内視鏡先端部小型化の要望から、撮像面上直前に設置しているマイクロレンズを調整、配置することにより、光量低下の起こらない入射角を垂直より傾けることができるようになっている。現在では、入射角を20°程度までとしても、光量低下を招かないものが実現されている。本実施例は、撮像面への主光線の入射角を11°としている。   As described above, in conventional endoscopes, a telecentric optical system is suitable for preventing a reduction in light amount. By adjusting and arranging the microlens installed in the lens, it is possible to tilt the incident angle from which the light quantity does not decrease from the vertical. Nowadays, even if the incident angle is up to about 20 °, a light amount that does not cause a decrease in the amount of light is realized. In this embodiment, the incident angle of the chief ray on the imaging surface is 11 °.

(実施例4)
図7に本発明の実施例4の内視鏡対物光学系の光路図を示す。また、図25に実施例4の内視鏡対物光学系の図22と同様の収差図を示す。この実施例においては、光学系先端部にプリズムPrを設け、前方斜視30°としている。物体側より、カバーガラスC、第1群G1を構成する第1レンズ、第1プリズムPr1、第2プリズムPr2を介し、第2プリズムPr2の底面のアルミコートAlにより反射し、さらに第2プリズムPr2の第1プリズムPr1側面で全反射し、第2群G2を構成する第2レンズ側に射出している。第2群G2以降の構成は実施例1と同様である。
Example 4
FIG. 7 shows an optical path diagram of the endoscope objective optical system according to the fourth embodiment of the present invention. FIG. 25 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 4. In this embodiment, a prism Pr is provided at the tip of the optical system, and the front perspective is 30 °. From the object side, through the cover glass C, the first lens constituting the first group G1, the first prism Pr1, and the second prism Pr2, it is reflected by the aluminum coat Al on the bottom surface of the second prism Pr2, and further the second prism Pr2 Of the first prism Pr1 is totally reflected and emitted toward the second lens constituting the second group G2. The configuration after the second group G2 is the same as that of the first embodiment.

このプリズムPrは、第2プリズムPr2の第1プリズムPr1側面において、透過光束と反射光束が分離しており、アルミコートAlによる光線のケラレが発生せず、像面I上の照度が一定となり都合が良い。   In this prism Pr, the transmitted light beam and the reflected light beam are separated on the side surface of the first prism Pr1 of the second prism Pr2, the vignetting of the light beam due to the aluminum coat Al does not occur, and the illuminance on the image surface I becomes constant. Is good.

第1プリズムPr1と第2プリズムPr2の間隔には空気層があり、第2プリズムPr2内での全反射を達成している。   There is an air layer between the first prism Pr1 and the second prism Pr2, and total reflection within the second prism Pr2 is achieved.

この全反射の臨界角を大きくするためには、第2プリズムPr2の屈折率を大とすることが好ましく、本実施例では、nd =1.883、臨界角は約32°となっている。第2群G2と第3群G3間の軸上マージナル光線の角度は、光軸に対し約−2.2°となっており、前群(第2群G2まで)と後群(第3群G3以降)の偏心に対して像面I上での像中心移動が少なくなっている。 In order to increase the critical angle of this total reflection, it is preferable to increase the refractive index of the second prism Pr2. In this embodiment, n d = 1.883 and the critical angle is about 32 °. . The angle of the on-axis marginal ray between the second group G2 and the third group G3 is about −2.2 ° with respect to the optical axis, and the front group (up to the second group G2) and the rear group (third group). The movement of the image center on the image plane I is less with respect to the eccentricity of G3 and thereafter.

さらに、前群と後群のとの間隔は、機械的な嵌合と、可動部の回動によるばらつきに対応すべく、ある程度間隔をあけることが望ましい。この間隔が狭いと、組立時にレンズがぶつかり、レンズ表面を破損することがあり、好ましくない。本実施例の内視鏡対物光学系は焦点距離を規格化してあるが、実際の組立では、前群と後群の間隔は1mmとしている。   Furthermore, it is desirable that the distance between the front group and the rear group be set to some extent in order to cope with variations due to mechanical fitting and rotation of the movable part. If this distance is narrow, the lens may collide during assembly and damage the lens surface, which is not preferable. In the endoscope objective optical system of this embodiment, the focal length is standardized, but in actual assembly, the interval between the front group and the rear group is set to 1 mm.

(実施例5)
図8に本発明の実施例5の内視鏡対物光学系の光路図を示す。また、図26に実施例5の内視鏡対物光学系の図22と同様の収差図を示す。この実施例においては、第1プリズムPr1、第2プリズムPr2を通過する経路は実施例1と同様であるが、第2プリズムPr2の底面で全反射をし、第2プリズムPr2の第1プリズムPr1側面にアルミコートAlを設けて反射させた後、第2群G2を構成する第2レンズに入射している。この種プリズムは、実施例4と異なり、第1プリズムPr1と第2プリズムPr2の間に全反射のための空気層が不要となるため、空気層のクサビ効果による上下非対称の収差(特に非点収差)が発生せず都合が良い。プリズムの硝材は、全反射臨界角を大とするために屈折率が大きい方が好ましく、nd =1.883、臨界角は約32°である。第2群G2以降の構成は実施例2と同様である。また、第2群G2と第3群G3間の軸上マージナル光線の角度は、光軸に対し約−0.7°となっており、略アフォーカルであることから、前群(第2群G2まで)と後群(第3群G3以降)の偏心に対して像面移動を抑制できる。
(Example 5)
FIG. 8 shows an optical path diagram of the endoscope objective optical system according to the fifth embodiment of the present invention. FIG. 26 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 5. In this embodiment, the path passing through the first prism Pr1 and the second prism Pr2 is the same as in the first embodiment, but the total reflection is performed on the bottom surface of the second prism Pr2, and the first prism Pr1 of the second prism Pr2 is used. After the aluminum coat Al is provided on the side surface and reflected, the light enters the second lens constituting the second group G2. Unlike the fourth embodiment, this type of prism eliminates the need for an air layer for total reflection between the first prism Pr1 and the second prism Pr2, and therefore an asymmetrical aberration (particularly astigmatism due to the wedge effect of the air layer). (Aberration) does not occur, which is convenient. The glass material of the prism preferably has a large refractive index in order to increase the total reflection critical angle, n d = 1.883, and the critical angle is about 32 °. The configuration after the second group G2 is the same as that of the second embodiment. Further, the angle of the on-axis marginal ray between the second group G2 and the third group G3 is about −0.7 ° with respect to the optical axis and is substantially afocal, so that the front group (second group The image plane movement can be suppressed with respect to the eccentricity of the rear group (up to G2) and the rear group (third group G3 and later).

図9(a)、(b)は、それぞれ、本実施例の前群FGと後群RGの間を嵌合させ、後群RGとCCDユニットIUを一体に回転させる構造の光学系と、特許文献5のようにCCDユニットIUを回転させる構造の光学系において、可動部を光軸に対して垂直(↑)な方向に+0.1mmシフトさせたときの軸上光線の振る舞いについて示した図である。図9(b)は、CCDユニットIUのみを動かす特許文献5のような構造であり、光軸中心はCCD撮像面に対してCCDユニットIUのシフト量と同量の0.1mmだけ下方に移動する。図9(a)は本実施例であるが、後群RGとCCDユニットIUを同様に移動させると、CCD撮像面に対しての光軸移動は0.02mmの移動にすぎない。光学系分割部分(前群FGと後群RGの間)を略アフォーカルとし、CCDユニットIUを含む後群RGを回転させることが像偏心を低減することに効果があることが分かる。   FIGS. 9A and 9B respectively show an optical system having a structure in which the front group FG and the rear group RG of the present embodiment are fitted and the rear group RG and the CCD unit IU are rotated together, and a patent. In the optical system of the structure which rotates CCD unit IU like literature 5, it is the figure which showed the behavior of the on-axis light beam when a movable part was shifted +0.1 mm in the direction perpendicular | vertical (↑) with respect to an optical axis. is there. FIG. 9B shows a structure as in Patent Document 5 in which only the CCD unit IU is moved, and the optical axis center moves downward by 0.1 mm, which is the same amount as the shift amount of the CCD unit IU, with respect to the CCD imaging surface. To do. FIG. 9A shows the present embodiment. When the rear group RG and the CCD unit IU are moved in the same manner, the optical axis movement relative to the CCD imaging surface is only 0.02 mm. It can be seen that rotating the rear group RG including the CCD unit IU effectively reduces the image eccentricity by making the optical system division portion (between the front group FG and the rear group RG) substantially afocal.

(実施例6)
図10に本発明の実施例6の内視鏡対物光学系の光路図を示す。また、図27に実施例6の内視鏡対物光学系の図22と同様の収差図を示す。この実施例においては、第1プリズムPr1と第2プリズムPr2を通過する経路は実施例5と同様であり、プリズムの硝材も同様である。第2群G2以降の構成は実施例3と同様である。第2群G2と第3群G3間の軸上マージナル光線の角度は、光軸に対し約−1.8°となっており、略アフォーカルであり、前群と後群の偏心に対して像面上の像中心の移動が少なくなっている。
(Example 6)
FIG. 10 shows an optical path diagram of the endoscope objective optical system according to the sixth embodiment of the present invention. FIG. 27 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 6. In this embodiment, the path passing through the first prism Pr1 and the second prism Pr2 is the same as in the fifth embodiment, and the glass material of the prism is also the same. The configuration after the second group G2 is the same as that of the third embodiment. The angle of the on-axis marginal ray between the second group G2 and the third group G3 is approximately −1.8 ° with respect to the optical axis, and is substantially afocal, with respect to the eccentricity of the front group and the rear group. The movement of the image center on the image plane is reduced.

ここで、実施例4〜6に共通して、光学系と機械枠との関係を説明する。図11に図39の硬性内視鏡挿入部の内部構造の断面図を示す。図12はその先端部(図11の矢印部)を拡大した図である。先端部のメニスカスレンズ21(G1)とプリズム22(Pr)、平凸レンズ23(G2)は枠24に内装されている(以後、部組1とする。)。部組1は外装管25と接着されており、外装間25は内視鏡操作部へ伸張し、図39の操作ノブKと一体となっている。   Here, in common with Examples 4 to 6, the relationship between the optical system and the machine frame will be described. FIG. 11 shows a cross-sectional view of the internal structure of the rigid endoscope insertion portion of FIG. FIG. 12 is an enlarged view of the tip (arrow part in FIG. 11). The meniscus lens 21 (G1), the prism 22 (Pr), and the plano-convex lens 23 (G2) at the tip are housed in a frame 24 (hereinafter referred to as a “part 1”). The assembly 1 is bonded to the exterior tube 25, and the exterior space 25 extends to the endoscope operation section and is integrated with the operation knob K in FIG.

一方、第3群、第4群は枠26に一体となって内装され、CCDが内装されている枠27と嵌合し、接着一体化されている(以後、部組2とする。)。部組1と部組2は接着されておらず、部組1は部組2の長手方向中心、CCD撮像面中心を軸として相対的に回動可能である。そして、図42(a)〜(c)に示すように、所望の視野方向に変換するようにしている。枠24と枠26との相対的な傾きが発生しないようにできるだけ嵌合長を長く取ることが望ましい。   On the other hand, the third group and the fourth group are integrally mounted on the frame 26, and are fitted and integrated with the frame 27 in which the CCD is mounted (hereinafter referred to as a set 2). The part set 1 and the part set 2 are not bonded, and the part set 1 is relatively rotatable about the center in the longitudinal direction of the part set 2 and the center of the CCD imaging surface. Then, as shown in FIGS. 42A to 42C, the image is converted into a desired visual field direction. It is desirable to make the fitting length as long as possible so that a relative inclination between the frame 24 and the frame 26 does not occur.

さらに、視野方向回転補正機構がある場合は、照明手段も視野方向に追従して回動可能でなければならない(図42)。本実施例では、ライトガイドを外装管25に内装し、前群と共に回動可能な構造としている。ライトガイドは、内視鏡手元部分で固定されておらず、回動操作によって移動可能となっている。ライトガイドは、視野方向を照明できるように内視鏡先端部で屈曲成形され内装されている。   Furthermore, when there is a visual field direction rotation correction mechanism, the illumination means must also be able to rotate following the visual field direction (FIG. 42). In this embodiment, the light guide is built in the outer tube 25 and is configured to be rotatable together with the front group. The light guide is not fixed at the proximal portion of the endoscope and can be moved by a turning operation. The light guide is bent and formed at the distal end of the endoscope so as to illuminate the visual field direction.

(実施例7〜15)
以下、図13〜図21にそれぞれ実施例7〜15の内視鏡対物光学系の光路図を示す。また、図28〜図36にそれぞれ実施例7〜15の内視鏡対物光学系の図22と同様の収差図を示す。
(Examples 7 to 15)
13 to 21 show optical path diagrams of the endoscope objective optical systems of Examples 7 to 15, respectively. FIGS. 28 to 36 show aberration diagrams similar to FIG. 22 of the endoscope objective optical systems of Examples 7 to 15, respectively.

これら実施例の詳細は省くが、実施例7〜9(図13〜図15)は実施例2(図5)の構成と同様である。   Although details of these examples are omitted, Examples 7 to 9 (FIGS. 13 to 15) have the same configuration as that of Example 2 (FIG. 5).

実施例10〜13(図16〜図19)は実施例1(図4)の構成と同様である。   Examples 10 to 13 (FIGS. 16 to 19) have the same configuration as that of Example 1 (FIG. 4).

実施例14〜15(図20〜図21)は実施例3(図6)の構成と同様である。   Examples 14-15 (FIGS. 20-21) are the same as the structure of Example 3 (FIG. 6).

なお、以上の実施例1〜15の内視鏡対物光学系は全て、簡単のために、焦点距離を1で規格化してあるが、内視鏡対物光学系として、焦点距離は1〜3mm程度、像高は0.5〜2mm程度が望ましい。   In addition, although all the endoscope objective optical systems of the above Examples 1 to 15 are standardized with a focal length of 1 for simplicity, the focal length is about 1 to 3 mm as the endoscope objective optical system. The image height is desirably about 0.5 to 2 mm.

次に、本発明の実施例1〜15のレンズデータを示すが、各レンズデータに用いられている記号は、上記の外、Fは光学系全系の焦点距離、FNOはFナンバー、Ihは像面での最大像高、2ωは視野角、Dは最大像高での歪曲、αは像面の最大像高への主光線の入射角、r1 、r2 …は各レンズ面の曲率半径、d1 、d2 …は各レンズ面間の間隔、nd1、nd2…は各レンズのd線の屈折率、νd1、νd2…は各レンズのアッベ数である。なお、r0 は物体面、d0 は物体距離である。 Next, show lens data of Examples 1 to 15 of the present invention, the symbols used in the respective lens data, out of the, F is the focal length of the entire optical system, F NO is the F-number, Ih Is the maximum image height at the image plane, 2ω is the viewing angle, D is the distortion at the maximum image height, α is the incident angle of the principal ray to the maximum image height of the image plane, r 1 , r 2 . The curvature radii, d 1 , d 2 ... Are the distances between the lens surfaces, n d1 , n d2 ... Are the refractive indices of the d-line of each lens, and ν d1 , ν d2 . R 0 is the object plane, and d 0 is the object distance.


実施例1
0 = ∞(物体) d0 = 14.4568
1 = ∞ d1 = 0.2754 nd1 =1.76820 νd1 =71.79
2 = ∞ d2 = 0.2065
3 = 2.5155 d3 = 0.2065 nd2 =1.88300 νd2 =40.76
4 = 0.7993 d4 = 0.2341
5 = ∞ d5 = 1.9276 nd3 =1.80610 νd3 =40.95
6 = ∞ d6 = 0.0000
7 = ∞(絞り) d7 = 0.0207
8 = ∞ d8 = 0.3442 nd4 =1.88300 νd4 =40.76
9 = -1.4918 d9 = 0.6884
10= -1.5696 d10= 0.2134 nd5 =1.84666 νd5 =23.78
11= ∞ d11= 0.6884 nd6 =1.88300 νd6 =40.76
12= -1.4918 d12= 0.0688
13= 3.6989 d13= 0.8261 nd7 =1.51633 νd7 =64.14
14= -1.0884 d14= 0.2065 nd8 =1.84666 νd8 =23.78
15= -2.4102 d15= 0.3373
16= ∞ d16= 1.1015 nd9 =1.51399 νd9 =75.00
17= ∞ d17= 0.0138 nd10=1.51000 νd10=63.00
18= ∞ d18= 0.3442 nd11=1.51633 νd11=64.14
19= ∞ d19= 0.0207
20= ∞(像面)

F = 1.00
NO = 6.058
Ih = 0.627
2ω (°) = 69.425
D(%) = -9.475
α (°) = 3.038 。

Example 1
r 0 = ∞ (object) d 0 = 14.4568
r 1 = ∞ d 1 = 0.2754 n d1 = 1.76820 ν d1 = 71.79
r 2 = ∞ d 2 = 0.2065
r 3 = 2.5155 d 3 = 0.2065 n d2 = 1.88300 ν d2 = 40.76
r 4 = 0.7993 d 4 = 0.2341
r 5 = ∞ d 5 = 1.9276 n d3 = 1.80610 ν d3 = 40.95
r 6 = ∞ d 6 = 0.0000
r 7 = ∞ (aperture) d 7 = 0.0207
r 8 = ∞ d 8 = 0.3442 n d4 = 1.88300 ν d4 = 40.76
r 9 = -1.4918 d 9 = 0.6884
r 10 = -1.5696 d 10 = 0.2134 n d5 = 1.84666 ν d5 = 23.78
r 11 = ∞ d 11 = 0.6884 n d6 = 1.88300 ν d6 = 40.76
r 12 = -1.4918 d 12 = 0.0688
r 13 = 3.6989 d 13 = 0.8261 n d7 = 1.51633 ν d7 = 64.14
r 14 = -1.0884 d 14 = 0.2065 n d8 = 1.84666 ν d8 = 23.78
r 15 = -2.4102 d 15 = 0.3373
r 16 = ∞ d 16 = 1.1015 n d9 = 1.51399 ν d9 = 75.00
r 17 = ∞ d 17 = 0.0138 n d10 = 1.51000 ν d10 = 63.00
r 18 = ∞ d 18 = 0.3442 n d11 = 1.51633 ν d11 = 64.14
r 19 = ∞ d 19 = 0.0207
r 20 = ∞ (image plane)

F = 1.00
F NO = 6.058
Ih = 0.627
2ω (°) = 69.425
D (%) = -9.475
α (°) = 3.038.


実施例2
0 = ∞(物体) d0 = 14.9395
1 = ∞ d1 = 0.2988 nd1 =1.76820 νd1 =71.79
2 = ∞ d2 = 0.2134
3 = 4.5420 d3 = 0.1921 nd2 =1.88300 νd2 =40.76
4 = 0.8204 d4 = 0.1921
5 = ∞ d5 = 2.5610 nd3 =1.88300 νd3 =40.76
6 = ∞(絞り) d6 = 0.0128
7 = ∞ d7 = 0.4695 nd4 =1.72916 νd4 =54.68
8 = -1.7253 d8 = 0.2988
9 = 1.6404 d9 = 0.5976 nd5 =1.88300 νd5 =40.76
10= ∞ d10= 0.2134
11= -1.5832 d11= 0.6701 nd6 =1.75520 νd6 =27.51
12= 1.5832 d12= 0.1067
13= ∞ d13= 0.5976 nd7 =1.88300 νd7 =40.76
14= -1.6404 d14= 0.0427
15= 2.4889 d15= 0.2134 nd8 =1.84666 νd8 =23.78
16= 1.0321 d16= 0.6360 nd9 =1.48749 νd9 =70.23
17= -2.8462 d17= 0.2220
18= ∞ d18= 0.6829 nd10=1.51400 νd10=75.00
19= ∞ d19= 0.0085 nd11=1.51000 νd11=63.00
20= ∞ d20= 0.2134 nd12=1.51633 νd12=64.14
21= ∞ d21= 0.0128
22= ∞(像面)

F = 1.00
NO = 7.925
Ih = 0.643
2ω (°) = 69.016
D(%) = -6.353
α (°) = 5.468 。

Example 2
r 0 = ∞ (object) d 0 = 14.9395
r 1 = ∞ d 1 = 0.2988 n d1 = 1.76820 ν d1 = 71.79
r 2 = ∞ d 2 = 0.2134
r 3 = 4.5420 d 3 = 0.1921 n d2 = 1.88300 ν d2 = 40.76
r 4 = 0.8204 d 4 = 0.1921
r 5 = ∞ d 5 = 2.5610 n d3 = 1.88300 ν d3 = 40.76
r 6 = ∞ (aperture) d 6 = 0.0128
r 7 = ∞ d 7 = 0.4695 n d4 = 1.72916 ν d4 = 54.68
r 8 = -1.7253 d 8 = 0.2988
r 9 = 1.6404 d 9 = 0.5976 n d5 = 1.88300 ν d5 = 40.76
r 10 = ∞ d 10 = 0.2134
r 11 = -1.5832 d 11 = 0.6701 n d6 = 1.75520 ν d6 = 27.51
r 12 = 1.5832 d 12 = 0.1067
r 13 = ∞ d 13 = 0.5976 n d7 = 1.88300 ν d7 = 40.76
r 14 = -1.6404 d 14 = 0.0427
r 15 = 2.4889 d 15 = 0.2134 n d8 = 1.84666 ν d8 = 23.78
r 16 = 1.0321 d 16 = 0.6360 n d9 = 1.48749 ν d9 = 70.23
r 17 = -2.8462 d 17 = 0.2220
r 18 = ∞ d 18 = 0.6829 n d10 = 1.51400 ν d10 = 75.00
r 19 = ∞ d 19 = 0.0085 n d11 = 1.51000 ν d11 = 63.00
r 20 = ∞ d 20 = 0.2134 n d12 = 1.51633 ν d12 = 64.14
r 21 = ∞ d 21 = 0.0128
r 22 = ∞ (image plane)

F = 1.00
F NO = 7.925
Ih = 0.643
2ω (°) = 69.016
D (%) = -6.353
α (°) = 5.468.


実施例3
0 = ∞(物体) d0 = 14.5912
1 = ∞ d1 = 0.2918 nd1 =1.76820 νd1 =71.79
2 = ∞ d2 = 0.2084
3 = 2.7707 d3 = 0.2084 nd2 =1.88300 νd2 =40.76
4 = 0.7158 d4 = 0.1751
5 = ∞ d5 = 0.0125
6 = ∞ d6 = 2.2929 nd3 =1.88300 νd3 =40.76
7 = ∞(絞り) d7 = 0.0125
8 = ∞ d8 = 0.3669 nd4 =1.78800 νd4 =47.37
9 = -1.3111 d9 = 0.2918
10= 1.4770 d10= 0.5420 nd5 =1.88300 νd5 =40.76
11= -2.5901 d11= 0.2501 nd6 =1.74077 νd6 =27.79
12= 0.8288 d12= 0.1876
13= ∞ d13= 0.2501 nd7 =1.51800 νd7 =74.60
14= ∞ d14= 0.0417
15= 3.2188 d15= 0.2084 nd8 =1.84666 νd8 =23.78
16= 1.2428 d16= 0.6253 nd9 =1.51633 νd9 =64.14
17= -1.4479 d17= 0.1876
18= ∞ d18= 0.4211 nd10=1.51633 νd10=64.14
19= ∞ d19= 0.4169 nd11=1.61350 νd11=50.20
20= ∞ d20= 0.0000
21= ∞(像面)

F = 1.00
NO = 8.925
Ih = 0.679
2ω (°) = 72.785
D(%) = -8.913
α (°) = 11.358 。

Example 3
r 0 = ∞ (object) d 0 = 14.5912
r 1 = ∞ d 1 = 0.2918 n d1 = 1.76820 ν d1 = 71.79
r 2 = ∞ d 2 = 0.2084
r 3 = 2.7707 d 3 = 0.2084 n d2 = 1.88300 ν d2 = 40.76
r 4 = 0.7158 d 4 = 0.1751
r 5 = ∞ d 5 = 0.0125
r 6 = ∞ d 6 = 2.2929 n d3 = 1.88300 ν d3 = 40.76
r 7 = ∞ (aperture) d 7 = 0.0125
r 8 = ∞ d 8 = 0.3669 n d4 = 1.78800 ν d4 = 47.37
r 9 = -1.3111 d 9 = 0.2918
r 10 = 1.4770 d 10 = 0.5420 n d5 = 1.88300 ν d5 = 40.76
r 11 = -2.5901 d 11 = 0.2501 n d6 = 1.74077 ν d6 = 27.79
r 12 = 0.8288 d 12 = 0.1876
r 13 = ∞ d 13 = 0.2501 n d7 = 1.51800 ν d7 = 74.60
r 14 = ∞ d 14 = 0.0417
r 15 = 3.2188 d 15 = 0.2084 n d8 = 1.84666 ν d8 = 23.78
r 16 = 1.2428 d 16 = 0.6253 n d9 = 1.51633 ν d9 = 64.14
r 17 = -1.4479 d 17 = 0.1876
r 18 = ∞ d 18 = 0.4211 n d10 = 1.51633 ν d10 = 64.14
r 19 = ∞ d 19 = 0.4169 n d11 = 1.61350 ν d11 = 50.20
r 20 = ∞ d 20 = 0.0000
r 21 = ∞ (image plane)

F = 1.00
F NO = 8.925
Ih = 0.679
2ω (°) = 72.785
D (%) = -8.913
α (°) = 11.358.


実施例4
0 = ∞(物体) d0 = 14.4592
1 = ∞ d1 = 0.2754 nd1 =1.76820 νd1 =71.79
2 = ∞ d2 = 0.2066
3 = 2.5159 d3 = 0.2066 nd2 =1.88300 νd2 =40.76
4 = 0.7994 d4 = 0.2341
5 = ∞ d5 = 0.3305 nd3 =1.88300 νd3 =40.76
6 = ∞ d6 = 0.0392
7 = ∞ d7 = 0.4462 nd4 =1.88300 νd4 =40.76
8 = ∞ d8 = 0.6094 nd5 =1.88300 νd5 =40.76
9 = ∞ d9 = 0.5508 nd6 =1.88300 νd6 =40.76
10= ∞(絞り) d10= 0.0207
11= ∞ d11= 0.3443 nd7 =1.88300 νd7 =40.76
12= -1.4921 d12= 0.6885
13= -1.5699 d13= 0.2134 nd8 =1.84666 νd8 =23.78
14= ∞ d14= 0.6885 nd9 =1.88300 νd9 =40.76
15= -1.4921 d15= 0.0689
16= 3.6995 d16= 0.8262 nd10=1.51633 νd10=64.14
17= -1.0886 d17= 0.2066 nd11=1.84666 νd11=23.78
18= -2.4106 d18= 0.3374
19= ∞ d19= 1.1017 nd12=1.51399 νd12=75.00
20= ∞ d20= 0.0138 nd13=1.51000 νd13=63.00
21= ∞ d21= 0.3443 nd14=1.51633 νd14=64.14
22= ∞ d22= 0.0207
23= ∞(像面)

F = 1.00
NO = 6.058
Ih = 0.627
2ω (°) = 69.406
D(%) = -9.428
α (°) = 3.037 。

Example 4
r 0 = ∞ (object) d 0 = 14.4592
r 1 = ∞ d 1 = 0.2754 n d1 = 1.76820 ν d1 = 71.79
r 2 = ∞ d 2 = 0.2066
r 3 = 2.5159 d 3 = 0.2066 n d2 = 1.88300 ν d2 = 40.76
r 4 = 0.7994 d 4 = 0.2341
r 5 = ∞ d 5 = 0.3305 n d3 = 1.88300 ν d3 = 40.76
r 6 = ∞ d 6 = 0.0392
r 7 = ∞ d 7 = 0.4462 n d4 = 1.88300 ν d4 = 40.76
r 8 = ∞ d 8 = 0.6094 n d5 = 1.88300 ν d5 = 40.76
r 9 = ∞ d 9 = 0.5508 n d6 = 1.88300 ν d6 = 40.76
r 10 = ∞ (aperture) d 10 = 0.0207
r 11 = ∞ d 11 = 0.3443 n d7 = 1.88300 ν d7 = 40.76
r 12 = -1.4921 d 12 = 0.6885
r 13 = -1.5699 d 13 = 0.2134 n d8 = 1.84666 ν d8 = 23.78
r 14 = ∞ d 14 = 0.6885 n d9 = 1.88300 ν d9 = 40.76
r 15 = -1.4921 d 15 = 0.0689
r 16 = 3.6995 d 16 = 0.8262 n d10 = 1.51633 ν d10 = 64.14
r 17 = -1.0886 d 17 = 0.2066 n d11 = 1.84666 ν d11 = 23.78
r 18 = -2.4106 d 18 = 0.3374
r 19 = ∞ d 19 = 1.1017 n d12 = 1.51399 ν d12 = 75.00
r 20 = ∞ d 20 = 0.0138 n d13 = 1.51000 ν d13 = 63.00
r 21 = ∞ d 21 = 0.3443 n d14 = 1.51633 ν d14 = 64.14
r 22 = ∞ d 22 = 0.0207
r 23 = ∞ (image plane)

F = 1.00
F NO = 6.058
Ih = 0.627
2ω (°) = 69.406
D (%) = -9.428
α (°) = 3.037.


実施例5
0 = ∞(物体) d0 = 14.9395
1 = ∞ d1 = 0.2988 nd1 =1.76820 νd1 =71.79
2 = ∞ d2 = 0.2134
3 = 4.5420 d3 = 0.1921 nd2 =1.88300 νd2 =40.76
4 = 0.8204 d4 = 0.1921
5 = ∞ d5 = 0.7022 nd3 =1.88300 νd3 =40.76
6 = ∞ d6 = 0.4930 nd4 =1.88300 νd4 =40.76
7 = ∞ d7 = 0.8537 nd5 =1.88300 νd5 =40.76
8 = ∞ d8 = 0.5122 nd6 =1.88300 νd6 =40.76
9 = ∞(絞り) d9 = 0.0128
10= ∞ d10= 0.4695 nd7 =1.72916 νd7 =54.68
11= -1.7253 d11= 0.2988
12= 1.6404 d12= 0.5976 nd8 =1.88300 νd8 =40.76
13= ∞ d13= 0.2134
14= -1.5832 d14= 0.6701 nd9 =1.75520 νd9 =27.51
15= 1.5832 d15= 0.1067
16= ∞ d16= 0.5976 nd10=1.88300 νd10=40.76
17= -1.6404 d17= 0.0427
18= 2.4889 d18= 0.2134 nd11=1.84666 νd11=23.78
19= 1.0321 d19= 0.6360 nd12=1.48749 νd12=70.23
20= -2.8462 d20= 0.2220
21= ∞ d21= 0.6829 nd13=1.51400 νd13=75.00
22= ∞ d22= 0.0085 nd14=1.51000 νd14=63.00
23= ∞ d23= 0.2134 nd15=1.51633 νd15=64.14
24= ∞ d24= 0.0128
25= ∞(像面)

F = 1.00
NO = 7.925
Ih = 0.643
2ω (°) = 69.016
D(%) = -6.353
α (°) = 5.468 。

Example 5
r 0 = ∞ (object) d 0 = 14.9395
r 1 = ∞ d 1 = 0.2988 n d1 = 1.76820 ν d1 = 71.79
r 2 = ∞ d 2 = 0.2134
r 3 = 4.5420 d 3 = 0.1921 n d2 = 1.88300 ν d2 = 40.76
r 4 = 0.8204 d 4 = 0.1921
r 5 = ∞ d 5 = 0.7022 n d3 = 1.88300 ν d3 = 40.76
r 6 = ∞ d 6 = 0.4930 n d4 = 1.88300 ν d4 = 40.76
r 7 = ∞ d 7 = 0.8537 n d5 = 1.88300 ν d5 = 40.76
r 8 = ∞ d 8 = 0.5122 n d6 = 1.88300 ν d6 = 40.76
r 9 = ∞ (aperture) d 9 = 0.0128
r 10 = ∞ d 10 = 0.4695 n d7 = 1.72916 ν d7 = 54.68
r 11 = -1.7253 d 11 = 0.2988
r 12 = 1.6404 d 12 = 0.5976 n d8 = 1.88300 ν d8 = 40.76
r 13 = ∞ d 13 = 0.2134
r 14 = -1.5832 d 14 = 0.6701 n d9 = 1.75520 ν d9 = 27.51
r 15 = 1.5832 d 15 = 0.1067
r 16 = ∞ d 16 = 0.5976 n d10 = 1.88300 ν d10 = 40.76
r 17 = -1.6404 d 17 = 0.0427
r 18 = 2.4889 d 18 = 0.2134 n d11 = 1.84666 ν d11 = 23.78
r 19 = 1.0321 d 19 = 0.6360 n d12 = 1.48749 ν d12 = 70.23
r 20 = -2.8462 d 20 = 0.2220
r 21 = ∞ d 21 = 0.6829 n d13 = 1.51400 ν d13 = 75.00
r 22 = ∞ d 22 = 0.0085 n d14 = 1.51000 ν d14 = 63.00
r 23 = ∞ d 23 = 0.2134 n d15 = 1.51633 ν d15 = 64.14
r 24 = ∞ d 24 = 0.0128
r 25 = ∞ (image plane)

F = 1.00
F NO = 7.925
Ih = 0.643
2ω (°) = 69.016
D (%) = -6.353
α (°) = 5.468.


実施例6
0 = ∞(物体) d0 = 20.8169
1 = ∞ d1 = 0.2914 nd1 =1.76820 νd1 =71.79
2 = ∞ d2 = 0.2082
3 = 2.7670 d3 = 0.2082 nd2 =1.88300 νd2 =40.76
4 = 0.7149 d4 = 0.1874
5 = ∞ d5 = 0.6245 nd3 =1.88300 νd3 =40.76
6 = ∞ d6 = 0.4413 nd4 =1.88300 νd4 =40.76
7 = ∞ d7 = 0.7619 nd5 =1.88300 νd5 =40.76
8 = ∞ d8 = 0.4580 nd6 =1.88300 νd6 =40.76
9 = ∞(絞り) d9 = 0.0125
10= ∞ d10= 0.3664 nd7 =1.78800 νd7 =47.37
11= -1.3094 d11= 0.2914
12= 1.4751 d12= 0.5412 nd8 =1.88300 νd8 =40.76
13= -2.5867 d13= 0.2498 nd9 =1.74077 νd9 =27.79
14= 0.8277 d14= 0.1874
15= ∞ d15= 0.2498 nd10=1.51800 νd10=74.60
16= ∞ d16= 0.0416
17= 3.2145 d17= 0.2082 nd11=1.84666 νd11=23.78
18= 1.2411 d18= 0.6245 nd12=1.51633 νd12=64.14
19= -1.4459 d19= 0.1874
20= ∞ d20= 0.4205 nd13=1.51633 νd13=64.14
21= ∞ d21= 0.4163 nd14=1.61350 νd14=50.20
22= ∞ d22= 0.0000
23= ∞(像面)

F = 1.00
NO = 8.885
Ih = 0.678
2ω (°) = 72.715
D(%) = -8.621
α (°) = 11.358 。

Example 6
r 0 = ∞ (object) d 0 = 20.8169
r 1 = ∞ d 1 = 0.2914 n d1 = 1.76820 ν d1 = 71.79
r 2 = ∞ d 2 = 0.2082
r 3 = 2.7670 d 3 = 0.2082 n d2 = 1.88300 ν d2 = 40.76
r 4 = 0.7149 d 4 = 0.1874
r 5 = ∞ d 5 = 0.6245 n d3 = 1.88300 ν d3 = 40.76
r 6 = ∞ d 6 = 0.4413 n d4 = 1.88300 ν d4 = 40.76
r 7 = ∞ d 7 = 0.7619 n d5 = 1.88300 ν d5 = 40.76
r 8 = ∞ d 8 = 0.4580 n d6 = 1.88300 ν d6 = 40.76
r 9 = ∞ (aperture) d 9 = 0.0125
r 10 = ∞ d 10 = 0.3664 n d7 = 1.78800 ν d7 = 47.37
r 11 = -1.3094 d 11 = 0.2914
r 12 = 1.4751 d 12 = 0.5412 n d8 = 1.88300 ν d8 = 40.76
r 13 = -2.5867 d 13 = 0.2498 n d9 = 1.74077 ν d9 = 27.79
r 14 = 0.8277 d 14 = 0.1874
r 15 = ∞ d 15 = 0.2498 n d10 = 1.51800 ν d10 = 74.60
r 16 = ∞ d 16 = 0.0416
r 17 = 3.2145 d 17 = 0.2082 n d11 = 1.84666 ν d11 = 23.78
r 18 = 1.2411 d 18 = 0.6245 n d12 = 1.51633 ν d12 = 64.14
r 19 = -1.4459 d 19 = 0.1874
r 20 = ∞ d 20 = 0.4205 n d13 = 1.51633 ν d13 = 64.14
r 21 = ∞ d 21 = 0.4163 n d14 = 1.61350 ν d14 = 50.20
r 22 = ∞ d 22 = 0.0000
r 23 = ∞ (image plane)

F = 1.00
F NO = 8.885
Ih = 0.678
2ω (°) = 72.715
D (%) = -8.621
α (°) = 11.358.


実施例7
0 = ∞(物体) d0 = 14.6532
1 = ∞ d1 = 0.2931 nd1 =1.76820 νd1 =71.79
2 = ∞ d2 = 0.2093
3 = 4.3378 d3 = 0.1884 nd2 =1.88300 νd2 =40.76
4 = 0.8191 d4 = 0.1884
5 = ∞ d5 = 2.5120 nd3 =1.88300 νd3 =40.76
6 = ∞(絞り) d6 = 0.0126
7 = ∞ d7 = 0.4605 nd4 =1.72916 νd4 =54.68
8 = -1.6417 d8 = 0.2931
9 = 1.5032 d9 = 0.4187 nd5 =1.77250 νd5 =49.60
10= ∞ d10= 0.2093
11= -3.3253 d11= 0.4187 nd6 =1.75520 νd6 =27.51
12= 1.9014 d12= 0.1758
13= ∞ d13= 0.5382 nd7 =1.72916 νd7 =54.68
14= -2.1251 d14= 0.0837
15= 6.2758 d15= 0.6238 nd8 =1.51823 νd8 =58.90
16= -0.7299 d16= 0.2093 nd9 =1.71736 νd9 =29.52
17= -2.9131 d17= 0.0937
18= ∞ d18= 0.6699 nd10=1.51400 νd10=75.00
19= ∞ d19= 0.0084 nd11=1.51000 νd11=63.00
20= ∞ d20= 0.2093 nd12=1.51633 νd12=64.14
21= ∞ d21= 0.0126
22= ∞(像面)

F = 1.00
NO = 4.634
Ih = 0.631
2ω (°) = 68.610
D(%) = -8.317
α (°) = 8.899 。

Example 7
r 0 = ∞ (object) d 0 = 14.6532
r 1 = ∞ d 1 = 0.2931 n d1 = 1.76820 ν d1 = 71.79
r 2 = ∞ d 2 = 0.2093
r 3 = 4.3378 d 3 = 0.1884 n d2 = 1.88300 ν d2 = 40.76
r 4 = 0.8191 d 4 = 0.1884
r 5 = ∞ d 5 = 2.5120 n d3 = 1.88300 ν d3 = 40.76
r 6 = ∞ (aperture) d 6 = 0.0126
r 7 = ∞ d 7 = 0.4605 n d4 = 1.72916 ν d4 = 54.68
r 8 = -1.6417 d 8 = 0.2931
r 9 = 1.5032 d 9 = 0.4187 n d5 = 1.77250 ν d5 = 49.60
r 10 = ∞ d 10 = 0.2093
r 11 = -3.3253 d 11 = 0.4187 n d6 = 1.75520 ν d6 = 27.51
r 12 = 1.9014 d 12 = 0.1758
r 13 = ∞ d 13 = 0.5382 n d7 = 1.72916 ν d7 = 54.68
r 14 = -2.1251 d 14 = 0.0837
r 15 = 6.2758 d 15 = 0.6238 n d8 = 1.51823 ν d8 = 58.90
r 16 = -0.7299 d 16 = 0.2093 n d9 = 1.71736 ν d9 = 29.52
r 17 = -2.9131 d 17 = 0.0937
r 18 = ∞ d 18 = 0.6699 n d10 = 1.51400 ν d10 = 75.00
r 19 = ∞ d 19 = 0.0084 n d11 = 1.51000 ν d11 = 63.00
r 20 = ∞ d 20 = 0.2093 n d12 = 1.51633 ν d12 = 64.14
r 21 = ∞ d 21 = 0.0126
r 22 = ∞ (image plane)

F = 1.00
F NO = 4.634
Ih = 0.631
2ω (°) = 68.610
D (%) = -8.317
α (°) = 8.899.


実施例8
0 = ∞(物体) d0 = 14.4134
1 = ∞ d1 = 0.2883 nd1 =1.76820 νd1 =71.79
2 = ∞ d2 = 0.2059
3 = 5.1056 d3 = 0.1853 nd2 =1.88300 νd2 =40.76
4 = 0.7598 d4 = 0.1854
5 = ∞ d5 = 2.4709 nd3 =1.88300 νd3 =40.76
6 = ∞(絞り) d6 = 0.0124
7 = ∞ d7 = 0.2059 nd4 =1.72916 νd4 =54.68
8 = -1.4755 d8 = 0.2883
9 = 1.5871 d9 = 0.4375 nd5 =1.77250 νd5 =49.60
10= ∞ d10= 0.2059
11= -4.0713 d11= 0.4118 nd6 =1.75520 νd6 =27.51
12= 1.8879 d12= 0.1730
13= ∞ d13= 0.5294 nd7 =1.72916 νd7 =54.68
14= -2.1561 d14= 0.0824
15= 7.1108 d15= 0.6136 nd8 =1.51823 νd8 =58.90
16= -0.7292 d16= 0.2059 nd9 =1.71736 νd9 =29.52
17= -3.4414 d17= 0.1140
18= ∞ d18= 0.6589 nd10=1.51400 νd10=75.00
19= ∞ d19= 0.0082 nd11=1.51000 νd11=63.00
20= ∞ d20= 0.2059 nd12=1.51633 νd12=64.14
21= ∞ d21= 0.0124
22= ∞(像面)

F = 1.00
NO = 5.060
Ih = 0.621
2ω (°) = 67.792
D(%) = -8.808
α (°) = 10.508 。

Example 8
r 0 = ∞ (object) d 0 = 14.4134
r 1 = ∞ d 1 = 0.2883 n d1 = 1.76820 ν d1 = 71.79
r 2 = ∞ d 2 = 0.2059
r 3 = 5.1056 d 3 = 0.1853 n d2 = 1.88300 ν d2 = 40.76
r 4 = 0.7598 d 4 = 0.1854
r 5 = ∞ d 5 = 2.4709 n d3 = 1.88300 ν d3 = 40.76
r 6 = ∞ (aperture) d 6 = 0.0124
r 7 = ∞ d 7 = 0.2059 n d4 = 1.72916 ν d4 = 54.68
r 8 = -1.4755 d 8 = 0.2883
r 9 = 1.5871 d 9 = 0.4375 n d5 = 1.77250 ν d5 = 49.60
r 10 = ∞ d 10 = 0.2059
r 11 = -4.0713 d 11 = 0.4118 n d6 = 1.75520 ν d6 = 27.51
r 12 = 1.8879 d 12 = 0.1730
r 13 = ∞ d 13 = 0.5294 n d7 = 1.72916 ν d7 = 54.68
r 14 = -2.1561 d 14 = 0.0824
r 15 = 7.1108 d 15 = 0.6136 n d8 = 1.51823 ν d8 = 58.90
r 16 = -0.7292 d 16 = 0.2059 n d9 = 1.71736 ν d9 = 29.52
r 17 = -3.4414 d 17 = 0.1140
r 18 = ∞ d 18 = 0.6589 n d10 = 1.51400 ν d10 = 75.00
r 19 = ∞ d 19 = 0.0082 n d11 = 1.51000 ν d11 = 63.00
r 20 = ∞ d 20 = 0.2059 n d12 = 1.51633 ν d12 = 64.14
r 21 = ∞ d 21 = 0.0124
r 22 = ∞ (image plane)

F = 1.00
F NO = 5.060
Ih = 0.621
2ω (°) = 67.792
D (%) = -8.808
α (°) = 10.508.


実施例9
0 = ∞(物体) d0 = 14.8973
1 = ∞ d1 = 0.2979 nd1 =1.76820 νd1 =71.79
2 = ∞ d2 = 0.2128
3 = 3.0953 d3 = 0.1915 nd2 =1.88300 νd2 =40.76
4 = 0.9805 d4 = 0.1916
5 = ∞ d5 = 2.3800 nd3 =1.88300 νd3 =40.76
6 = ∞(絞り) d6 = 0.0128
7 = ∞ d7 = 0.6385 nd4 =1.72916 νd4 =54.68
8 = -1.8937 d8 = 0.2979
9 = 2.0182 d9 = 0.4522 nd5 =1.77250 νd5 =49.60
10= ∞ d10= 0.2128
11= -2.5538 d11= 0.4256 nd6 =1.75520 νd6 =27.51
12= 3.5902 d12= 0.1787
13= ∞ d13= 0.5472 nd7 =1.72916 νd7 =54.68
14= -1.3625 d14= 0.0851
15= 3.3306 d15= 0.6342 nd8 =1.51823 νd8 =58.90
16= -0.7834 d16= 0.2128 nd9 =1.71736 νd9 =29.52
17= -5.2313 d17= 0.1146
18= ∞ d18= 0.6810 nd10=1.51400 νd10=75.00
19= ∞ d19= 0.0085 nd11=1.51000 νd11=63.00
20= ∞ d20= 0.2128 nd12=1.51633 νd12=64.14
21= ∞ d21= 0.0128
22= ∞(像面)

F = 1.00
NO = 8.885
Ih = 0.641
2ω (°) = 68.037
D(%) = -4.880
α (°) = 4.876 。

Example 9
r 0 = ∞ (object) d 0 = 14.8973
r 1 = ∞ d 1 = 0.2979 n d1 = 1.76820 ν d1 = 71.79
r 2 = ∞ d 2 = 0.2128
r 3 = 3.0953 d 3 = 0.1915 n d2 = 1.88300 ν d2 = 40.76
r 4 = 0.9805 d 4 = 0.1916
r 5 = ∞ d 5 = 2.3800 n d3 = 1.88300 ν d3 = 40.76
r 6 = ∞ (aperture) d 6 = 0.0128
r 7 = ∞ d 7 = 0.6385 n d4 = 1.72916 ν d4 = 54.68
r 8 = -1.8937 d 8 = 0.2979
r 9 = 2.0182 d 9 = 0.4522 n d5 = 1.77250 ν d5 = 49.60
r 10 = ∞ d 10 = 0.2128
r 11 = -2.5538 d 11 = 0.4256 n d6 = 1.75520 ν d6 = 27.51
r 12 = 3.5902 d 12 = 0.1787
r 13 = ∞ d 13 = 0.5472 n d7 = 1.72916 ν d7 = 54.68
r 14 = -1.3625 d 14 = 0.0851
r 15 = 3.3306 d 15 = 0.6342 n d8 = 1.51823 ν d8 = 58.90
r 16 = -0.7834 d 16 = 0.2128 n d9 = 1.71736 ν d9 = 29.52
r 17 = -5.2313 d 17 = 0.1146
r 18 = ∞ d 18 = 0.6810 n d10 = 1.51400 ν d10 = 75.00
r 19 = ∞ d 19 = 0.0085 n d11 = 1.51000 ν d11 = 63.00
r 20 = ∞ d 20 = 0.2128 n d12 = 1.51633 ν d12 = 64.14
r 21 = ∞ d 21 = 0.0128
r 22 = ∞ (image plane)

F = 1.00
F NO = 8.885
Ih = 0.641
2ω (°) = 68.037
D (%) = -4.880
α (°) = 4.876.


実施例10
0 = ∞(物体) d0 = 14.2337
1 = ∞ d1 = 0.2711 nd1 =1.76820 νd1 =71.79
2 = ∞ d2 = 0.2033
3 = 2.1480 d3 = 0.2033 nd2 =1.88300 νd2 =40.76
4 = 0.8544 d4 = 0.2304
5 = ∞ d5 = 1.8978 nd3 =1.80610 νd3 =40.95
6 = ∞ d6 = 0.0000
7 = ∞(絞り) d7 = 0.0203
8 = ∞ d8 = 0.3389 nd4 =1.88300 νd4 =40.76
9 = -1.7259 d9 = 0.6778
10= -2.0622 d10= 0.2101 nd5 =1.84666 νd5 =23.78
11= ∞ d11= 0.6778 nd6 =1.88300 νd6 =40.76
12= -1.5631 d12= 0.0678
13= 2.2179 d13= 0.8134 nd7 =1.51633 νd7 =64.14
14= -1.2429 d14= 0.2033 nd8 =1.84666 νd8 =23.78
15= -3.6966 d15= 0.1105
16= ∞ d16= 1.0845 nd9 =1.51399 νd9 =75.00
17= ∞ d17= 0.0136 nd10=1.51000 νd10=63.00
18= ∞ d18= 0.3389 nd11=1.51633 νd11=64.14
19= ∞ d19= 0.0203
20= ∞(像面)

F = 1.00
NO = 5.522
Ih = 0.617
2ω (°) = 68.239
D(%) = -8.977
α (°) = 3.029 。

Example 10
r 0 = ∞ (object) d 0 = 14.2337
r 1 = ∞ d 1 = 0.2711 n d1 = 1.76820 ν d1 = 71.79
r 2 = ∞ d 2 = 0.2033
r 3 = 2.1480 d 3 = 0.2033 n d2 = 1.88300 ν d2 = 40.76
r 4 = 0.8544 d 4 = 0.2304
r 5 = ∞ d 5 = 1.8978 n d3 = 1.80610 ν d3 = 40.95
r 6 = ∞ d 6 = 0.0000
r 7 = ∞ (aperture) d 7 = 0.0203
r 8 = ∞ d 8 = 0.3389 n d4 = 1.88300 ν d4 = 40.76
r 9 = -1.7259 d 9 = 0.6778
r 10 = -2.0622 d 10 = 0.2101 n d5 = 1.84666 ν d5 = 23.78
r 11 = ∞ d 11 = 0.6778 n d6 = 1.88300 ν d6 = 40.76
r 12 = -1.5631 d 12 = 0.0678
r 13 = 2.2179 d 13 = 0.8134 n d7 = 1.51633 ν d7 = 64.14
r 14 = -1.2429 d 14 = 0.2033 n d8 = 1.84666 ν d8 = 23.78
r 15 = -3.6966 d 15 = 0.1105
r 16 = ∞ d 16 = 1.0845 n d9 = 1.51399 ν d9 = 75.00
r 17 = ∞ d 17 = 0.0136 n d10 = 1.51000 ν d10 = 63.00
r 18 = ∞ d 18 = 0.3389 n d11 = 1.51633 ν d11 = 64.14
r 19 = ∞ d 19 = 0.0203
r 20 = ∞ (image plane)

F = 1.00
F NO = 5.522
Ih = 0.617
2ω (°) = 68.239
D (%) = -8.977
α (°) = 3.029.


実施例11
0 = ∞(物体) d0 = 14.2786
1 = ∞ d1 = 0.2720 nd1 =1.76820 νd1 =71.79
2 = ∞ d2 = 0.2040
3 = 2.2075 d3 = 0.2040 nd2 =1.88300 νd2 =40.76
4 = 0.9147 d4 = 0.2312
5 = ∞ d5 = 1.9038 nd3 =1.80610 νd3 =40.95
6 = ∞ d6 = 0.0000
7 = ∞(絞り) d7 = 0.0204
8 = ∞ d8 = 0.6799 nd4 =1.88300 νd4 =40.76
9 = -1.5496 d9 = 0.6799
10= -1.9256 d10= 0.2108 nd5 =1.84666 νd5 =23.78
11= ∞ d11= 0.6799 nd6 =1.88300 νd6 =40.76
12= -1.5467 d12= 0.0680
13= 2.4495 d13= 0.7354 nd7 =1.51633 νd7 =64.14
14= -1.1536 d14= 0.2040 nd8 =1.84666 νd8 =23.78
15= -3.4560 d15= 0.2473
16= ∞ d16= 0.6799 nd9 =1.51399 νd9 =75.00
17= ∞ d17= 0.0136 nd10=1.51000 νd10=63.00
18= ∞ d18= 0.3400 nd11=1.51633 νd11=64.14
19= ∞ d19= 0.0204
20= ∞(像面)

F = 1.00
NO = 5.275
Ih = 0.619
2ω (°) = 68.000
D(%) = -7.990
α (°) = 1.974 。

Example 11
r 0 = ∞ (object) d 0 = 14.2786
r 1 = ∞ d 1 = 0.2720 n d1 = 1.76820 ν d1 = 71.79
r 2 = ∞ d 2 = 0.2040
r 3 = 2.2075 d 3 = 0.2040 n d2 = 1.88300 ν d2 = 40.76
r 4 = 0.9147 d 4 = 0.2312
r 5 = ∞ d 5 = 1.9038 n d3 = 1.80610 ν d3 = 40.95
r 6 = ∞ d 6 = 0.0000
r 7 = ∞ (aperture) d 7 = 0.0204
r 8 = ∞ d 8 = 0.6799 n d4 = 1.88300 ν d4 = 40.76
r 9 = -1.5496 d 9 = 0.6799
r 10 = -1.9256 d 10 = 0.2108 n d5 = 1.84666 ν d5 = 23.78
r 11 = ∞ d 11 = 0.6799 n d6 = 1.88300 ν d6 = 40.76
r 12 = -1.5467 d 12 = 0.0680
r 13 = 2.4495 d 13 = 0.7354 n d7 = 1.51633 ν d7 = 64.14
r 14 = -1.1536 d 14 = 0.2040 n d8 = 1.84666 ν d8 = 23.78
r 15 = -3.4560 d 15 = 0.2473
r 16 = ∞ d 16 = 0.6799 n d9 = 1.51399 ν d9 = 75.00
r 17 = ∞ d 17 = 0.0136 n d10 = 1.51000 ν d10 = 63.00
r 18 = ∞ d 18 = 0.3400 n d11 = 1.51633 ν d11 = 64.14
r 19 = ∞ d 19 = 0.0204
r 20 = ∞ (image plane)

F = 1.00
F NO = 5.275
Ih = 0.619
2ω (°) = 68.000
D (%) = -7.990
α (°) = 1.974.


実施例12
0 = ∞(物体) d0 = 14.4872
1 = ∞ d1 = 0.2759 nd1 =1.76820 νd1 =71.79
2 = ∞ d2 = 0.2070
3 = 2.2610 d3 = 0.2070 nd2 =1.88300 νd2 =40.76
4 = 0.9179 d4 = 0.2346
5 = ∞ d5 = 1.9316 nd3 =1.80610 νd3 =40.95
6 = ∞ d6 = 0.0000
7 = ∞(絞り) d7 = 0.0207
8 = ∞ d8 = 0.2759 nd4 =1.88300 νd4 =40.76
9 = -1.8035 d9 = 0.6899
10= -2.1647 d10= 0.2139 nd5 =1.84666 νd5 =23.78
11= ∞ d11= 0.6899 nd6 =1.88300 νd6 =40.76
12= -1.4993 d12= 0.0690
13= 2.3066 d13= 0.8251 nd7 =1.51633 νd7 =64.14
14= -1.1486 d14= 0.2070 nd8 =1.84666 νd8 =23.78
15= -3.3278 d15= 0.2910
16= ∞ d16= 0.6899 nd9 =1.51399 νd9 =75.00
17= ∞ d17= 0.0138 nd10=1.51000 νd10=63.00
18= ∞ d18= 0.3449 nd11=1.51633 νd11=64.14
19= ∞ d19= 0.0207
20= ∞(像面)

F = 1.00
NO = 5.270
Ih = 0.628
2ω (°) = 68.744
D(%) = -8.104
α (°) = 2.765 。

Example 12
r 0 = ∞ (object) d 0 = 14.4872
r 1 = ∞ d 1 = 0.2759 n d1 = 1.76820 ν d1 = 71.79
r 2 = ∞ d 2 = 0.2070
r 3 = 2.2610 d 3 = 0.2070 n d2 = 1.88300 ν d2 = 40.76
r 4 = 0.9179 d 4 = 0.2346
r 5 = ∞ d 5 = 1.9316 n d3 = 1.80610 ν d3 = 40.95
r 6 = ∞ d 6 = 0.0000
r 7 = ∞ (aperture) d 7 = 0.0207
r 8 = ∞ d 8 = 0.2759 n d4 = 1.88300 ν d4 = 40.76
r 9 = -1.8035 d 9 = 0.6899
r 10 = -2.1647 d 10 = 0.2139 n d5 = 1.84666 ν d5 = 23.78
r 11 = ∞ d 11 = 0.6899 n d6 = 1.88300 ν d6 = 40.76
r 12 = -1.4993 d 12 = 0.0690
r 13 = 2.3066 d 13 = 0.8251 n d7 = 1.51633 ν d7 = 64.14
r 14 = -1.1486 d 14 = 0.2070 n d8 = 1.84666 ν d8 = 23.78
r 15 = -3.3278 d 15 = 0.2910
r 16 = ∞ d 16 = 0.6899 n d9 = 1.51399 ν d9 = 75.00
r 17 = ∞ d 17 = 0.0138 n d10 = 1.51000 ν d10 = 63.00
r 18 = ∞ d 18 = 0.3449 n d11 = 1.51633 ν d11 = 64.14
r 19 = ∞ d 19 = 0.0207
r 20 = ∞ (image plane)

F = 1.00
F NO = 5.270
Ih = 0.628
2ω (°) = 68.744
D (%) = -8.104
α (°) = 2.765.


実施例13
0 = ∞(物体) d0 = 14.2860
1 = ∞ d1 = 0.2721 nd1 =1.76820 νd1 =71.79
2 = ∞ d2 = 0.2041
3 = 2.2591 d3 = 0.2041 nd2 =1.88300 νd2 =40.76
4 = 0.9705 d4 = 0.2313
5 = ∞ d5 = 1.9048 nd3 =1.80610 νd3 =40.95
6 = ∞ d6 = 0.0000
7 = ∞(絞り) d7 = 0.0204
8 = ∞ d8 = 0.6803 nd4 =1.88300 νd4 =40.76
9 = -1.6399 d9 = 0.6803
10= -2.0669 d10= 0.2109 nd5 =1.84666 νd5 =23.78
11= ∞ d11= 0.6803 nd6 =1.88300 νd6 =40.76
12= -1.5413 d12= 0.0680
13= 2.5467 d13= 0.7196 nd7 =1.51742 νd7 =52.43
14= -1.1240 d14= 0.2041 nd8 =1.84666 νd8 =23.78
15= -2.9600 d15= 0.2406
16= ∞ d16= 0.6803 nd9 =1.51399 νd9 =75.00
17= ∞ d17= 0.0136 nd10=1.51000 νd10=63.00
18= ∞ d18= 0.3401 nd11=1.51633 νd11=64.14
19= ∞ d19= 0.0204
20= ∞(像面)

F = 1.00
NO = 5.082
Ih = 0.620
2ω (°) = 68.000
D(%) = -7.702
α (°) = 0.838 。

Example 13
r 0 = ∞ (object) d 0 = 14.2860
r 1 = ∞ d 1 = 0.2721 n d1 = 1.76820 ν d1 = 71.79
r 2 = ∞ d 2 = 0.2041
r 3 = 2.2591 d 3 = 0.2041 n d2 = 1.88300 ν d2 = 40.76
r 4 = 0.9705 d 4 = 0.2313
r 5 = ∞ d 5 = 1.9048 n d3 = 1.80610 ν d3 = 40.95
r 6 = ∞ d 6 = 0.0000
r 7 = ∞ (aperture) d 7 = 0.0204
r 8 = ∞ d 8 = 0.6803 n d4 = 1.88300 ν d4 = 40.76
r 9 = -1.6399 d 9 = 0.6803
r 10 = -2.0669 d 10 = 0.2109 n d5 = 1.84666 ν d5 = 23.78
r 11 = ∞ d 11 = 0.6803 n d6 = 1.88300 ν d6 = 40.76
r 12 = -1.5413 d 12 = 0.0680
r 13 = 2.5467 d 13 = 0.7196 n d7 = 1.51742 ν d7 = 52.43
r 14 = -1.1240 d 14 = 0.2041 n d8 = 1.84666 ν d8 = 23.78
r 15 = -2.9600 d 15 = 0.2406
r 16 = ∞ d 16 = 0.6803 n d9 = 1.51399 ν d9 = 75.00
r 17 = ∞ d 17 = 0.0136 n d10 = 1.51000 ν d10 = 63.00
r 18 = ∞ d 18 = 0.3401 n d11 = 1.51633 ν d11 = 64.14
r 19 = ∞ d 19 = 0.0204
r 20 = ∞ (image plane)

F = 1.00
F NO = 5.082
Ih = 0.620
2ω (°) = 68.000
D (%) = -7.702
α (°) = 0.838.


実施例14
0 = ∞(物体) d0 = 14.0174
1 = ∞ d1 = 0.2803 nd1 =1.76820 νd1 =71.79
2 = ∞ d2 = 0.2002
3 = 2.3752 d3 = 0.2002 nd2 =1.88300 νd2 =40.76
4 = 0.6814 d4 = 0.1682
5 = ∞ d5 = 0.0120
6 = ∞ d6 = 2.2027 nd3 =1.88300 νd3 =40.76
7 = ∞(絞り) d7 = 0.0120
8 = ∞ d8 = 0.2465 nd4 =1.72916 νd4 =54.68
9 = -1.1787 d9 = 0.2803
10= 1.3151 d10= 0.5206 nd5 =1.88300 νd5 =40.76
11= -1.9499 d11= 0.2403 nd6 =1.74077 νd6 =27.79
12= 0.7230 d12= 0.1802
13= ∞ d13= 0.2403 nd7 =1.51800 νd7 =74.60
14= ∞ d14= 0.0400
15= 3.0872 d15= 0.2002 nd8 =1.92286 νd8 =18.90
16= 1.0404 d16= 0.6007 nd9 =1.51633 νd9 =64.14
17= -1.0701 d17= 0.1802
18= ∞ d18= 0.4045 nd10=1.51633 νd10=64.14
19= ∞ d19= 0.4005 nd11=1.61350 νd11=50.20
20= ∞ d20= 0.0000
21= ∞(像面)

F = 1.00
NO = 9.075
Ih = 0.652
2ω (°) = 68.305
D(%) = -5.000
α (°) = 11.146 。

Example 14
r 0 = ∞ (object) d 0 = 14.0174
r 1 = ∞ d 1 = 0.2803 n d1 = 1.76820 ν d1 = 71.79
r 2 = ∞ d 2 = 0.2002
r 3 = 2.3752 d 3 = 0.2002 n d2 = 1.88300 ν d2 = 40.76
r 4 = 0.6814 d 4 = 0.1682
r 5 = ∞ d 5 = 0.0120
r 6 = ∞ d 6 = 2.2027 n d3 = 1.88300 ν d3 = 40.76
r 7 = ∞ (aperture) d 7 = 0.0120
r 8 = ∞ d 8 = 0.2465 n d4 = 1.72916 ν d4 = 54.68
r 9 = -1.1787 d 9 = 0.2803
r 10 = 1.3151 d 10 = 0.5206 n d5 = 1.88300 ν d5 = 40.76
r 11 = -1.9499 d 11 = 0.2403 n d6 = 1.74077 ν d6 = 27.79
r 12 = 0.7230 d 12 = 0.1802
r 13 = ∞ d 13 = 0.2403 n d7 = 1.51800 ν d7 = 74.60
r 14 = ∞ d 14 = 0.0400
r 15 = 3.0872 d 15 = 0.2002 n d8 = 1.92286 ν d8 = 18.90
r 16 = 1.0404 d 16 = 0.6007 n d9 = 1.51633 ν d9 = 64.14
r 17 = -1.0701 d 17 = 0.1802
r 18 = ∞ d 18 = 0.4045 n d10 = 1.51633 ν d10 = 64.14
r 19 = ∞ d 19 = 0.4005 n d11 = 1.61350 ν d11 = 50.20
r 20 = ∞ d 20 = 0.0000
r 21 = ∞ (image plane)

F = 1.00
F NO = 9.075
Ih = 0.652
2ω (°) = 68.305
D (%) = -5.000
α (°) = 11.146.


実施例15
0 = ∞(物体) d0 = 13.7201
1 = ∞ d1 = 0.2744 nd1 =1.76820 νd1 =71.79
2 = ∞ d2 = 0.1960
3 = 1.9900 d3 = 0.1960 nd2 =1.88300 νd2 =40.76
4 = 0.6323 d4 = 0.1646
5 = ∞ d5 = 0.0118
6 = ∞ d6 = 2.1560 nd3 =1.88300 νd3 =40.76
7 = ∞(絞り) d7 = 0.0118
8 = ∞ d8 = 0.2413 nd4 =1.72916 νd4 =54.68
9 = -1.1327 d9 = 0.2744
10= 1.3801 d10= 0.5096 nd5 =1.88300 νd5 =40.76
11= -2.7705 d11= 0.2352 nd6 =1.74077 νd6 =27.79
12= 0.7895 d12= 0.1764
13= ∞ d13= 0.2352 nd7 =1.51800 νd7 =74.60
14= ∞ d14= 0.0392
15= 3.2999 d15= 0.1960 nd8 =1.92286 νd8 =18.90
16= 1.5997 d16= 0.5880 nd9 =1.51633 νd9 =64.14
17= -1.7023 d17= 0.1764
18= ∞ d18= 0.3959 nd10=1.51633 νd10=64.14
19= ∞ d19= 0.3920 nd11=1.61350 νd11=50.20
20= ∞ d20= 0.0021
21= ∞(像面)

F = 1.00
NO = 9.281
Ih = 0.639
2ω (°) = 67.945
D(%) = -7.009
α (°) = 12.606 。

Example 15
r 0 = ∞ (object) d 0 = 13.7201
r 1 = ∞ d 1 = 0.2744 n d1 = 1.76820 ν d1 = 71.79
r 2 = ∞ d 2 = 0.1960
r 3 = 1.9900 d 3 = 0.1960 n d2 = 1.88300 ν d2 = 40.76
r 4 = 0.6323 d 4 = 0.1646
r 5 = ∞ d 5 = 0.0118
r 6 = ∞ d 6 = 2.1560 n d3 = 1.88300 ν d3 = 40.76
r 7 = ∞ (aperture) d 7 = 0.0118
r 8 = ∞ d 8 = 0.2413 n d4 = 1.72916 ν d4 = 54.68
r 9 = -1.1327 d 9 = 0.2744
r 10 = 1.3801 d 10 = 0.5096 n d5 = 1.88300 ν d5 = 40.76
r 11 = -2.7705 d 11 = 0.2352 n d6 = 1.74077 ν d6 = 27.79
r 12 = 0.7895 d 12 = 0.1764
r 13 = ∞ d 13 = 0.2352 n d7 = 1.51800 ν d7 = 74.60
r 14 = ∞ d 14 = 0.0392
r 15 = 3.2999 d 15 = 0.1960 n d8 = 1.92286 ν d8 = 18.90
r 16 = 1.5997 d 16 = 0.5880 n d9 = 1.51633 ν d9 = 64.14
r 17 = -1.7023 d 17 = 0.1764
r 18 = ∞ d 18 = 0.3959 n d10 = 1.51633 ν d10 = 64.14
r 19 = ∞ d 19 = 0.3920 n d11 = 1.61350 ν d11 = 50.20
r 20 = ∞ d 20 = 0.0021
r 21 = ∞ (image plane)

F = 1.00
F NO = 9.281
Ih = 0.639
2ω (°) = 67.945
D (%) = -7.009
α (°) = 12.606.

次に、以上の実施例1〜15の条件式(1)〜(6)の値を従来例の対応する値と共に以下に示す。   Next, the values of conditional expressions (1) to (6) of Examples 1 to 15 are shown below together with the corresponding values of the conventional example.

条件式 (1) (2) (3) (4) (5) (6)
νp νn 実施例1 4.33 -1.41 -0.29 64.14 23.78 5.28 0.28
実施例2 4.45 -1.16 -0.54 70.23 23.78 5.88 1.20
実施例3 4.00 -1.15 -0.51 64.14 23.78 2.86 0.52
実施例4 4.33 -1.41 -0.29 64.14 23.78 5.28 0.28
実施例5 4.45 -1.16 -0.54 70.23 23.78 5.88 1.20
実施例6 4.00 -1.15 -0.51 64.14 23.78 2.86 0.52
実施例7 3.57 -1.17 -0.36 58.90 29.52 16.04 1.08
実施例8 7.17 -1.03 -0.33 58.90 29.52 66.91 0.99
実施例9 3.14 -1.70 -0.29 58.90 29.52 2.49 0.90
実施例10 5.09 -1.73 -0.22 64.14 23.78 4.98 0.22
実施例11 2.28 -1.91 -0.24 64.14 23.78 5.72 -0.16
実施例12 6.54 -1.89 -0.21 64.14 23.78 5.11 0.16
実施例13 2.41 -2.08 -0.22 52.43 23.78 5.03 -0.22
実施例14 4.78 -1.15 -0.53 64.14 18.90 2.48 0.47
実施例15 4.69 -1.13 -0.54 64.14 18.90 3.09 0.43

特許文献4の
実施例1 0.61 -0.71 -0.09 47.37 26.55 -55.72 1.96
実施例2 0.63 -0.79 -0.04 47.37 26.55 -31.28 3.11
Conditional expression (1) (2) (3) (4) (5) (6)
νp νn Example 1 4.33 -1.41 -0.29 64.14 23.78 5.28 0.28
Example 2 4.45 -1.16 -0.54 70.23 23.78 5.88 1.20
Example 3 4.00 -1.15 -0.51 64.14 23.78 2.86 0.52
Example 4 4.33 -1.41 -0.29 64.14 23.78 5.28 0.28
Example 5 4.45 -1.16 -0.54 70.23 23.78 5.88 1.20
Example 6 4.00 -1.15 -0.51 64.14 23.78 2.86 0.52
Example 7 3.57 -1.17 -0.36 58.90 29.52 16.04 1.08
Example 8 7.17 -1.03 -0.33 58.90 29.52 66.91 0.99
Example 9 3.14 -1.70 -0.29 58.90 29.52 2.49 0.90
Example 10 5.09 -1.73 -0.22 64.14 23.78 4.98 0.22
Example 11 2.28 -1.91 -0.24 64.14 23.78 5.72 -0.16
Example 12 6.54 -1.89 -0.21 64.14 23.78 5.11 0.16
Example 13 2.41 -2.08 -0.22 52.43 23.78 5.03 -0.22
Example 14 4.78 -1.15 -0.53 64.14 18.90 2.48 0.47
Example 15 4.69 -1.13 -0.54 64.14 18.90 3.09 0.43

Example 1 of Patent Document 4 0.61 -0.71 -0.09 47.37 26.55 -55.72 1.96
Example 2 0.63 -0.79 -0.04 47.37 26.55 -31.28 3.11
.

なお、以上説明した実施例の斜視方向は30°であるが、直視や30°以上の斜視にしても構わない。   In addition, although the perspective direction of the Example demonstrated above is 30 degrees, you may make it a direct view or a 30 degrees or more perspective.

さらに、撮像面に用いるCCDであるが、CCD撮像中心とCCD外装の偏心が小さいものを用いるのが好ましい。内視鏡挿入部は通常略円筒のものが多く、CCD外装と撮像面中心の偏心が大であると、回転をさせた際の軌跡が大となり、内視鏡外径の増大化となり好ましくないからである。   Furthermore, although it is CCD used for an imaging surface, it is preferable to use a CCD with a small eccentricity between the CCD imaging center and the CCD exterior. Endoscope insertion parts are usually generally cylindrical, and if the CCD exterior and the center of the imaging surface are decentered, the trajectory when rotated is large, which is not preferable because the outer diameter of the endoscope increases. Because.

以上述べたように、広角で、歪曲が小さく、像面湾曲が少なく、球面レンズのみで比較的レンズ枚数が少ない内視鏡対物光学系、特にビデオ内視鏡対物光学系、及び、内視鏡長手方向に対して視野方向を所望の方向に回転可能な斜視光学系において、所望の視野を視野に入れるために内視鏡を回転し視野方向を変換した際にも、観察面上での視野中心の偏心発生を抑制した光学系が達成され、テレビモニター上での観察に好適な電子内視鏡が実現される。   As described above, an endoscope objective optical system, particularly a video endoscope objective optical system, and an endoscope having a wide angle, a small distortion, a small curvature of field, and a relatively small number of lenses using only a spherical lens. In a perspective optical system that can rotate the visual field direction in a desired direction with respect to the longitudinal direction, the visual field on the observation surface is also changed when the endoscope is rotated and the visual field direction is changed to enter the desired visual field. An optical system that suppresses the occurrence of decentering at the center is achieved, and an electronic endoscope suitable for observation on a television monitor is realized.

以上の本発明の内視鏡対物光学系及びそれを用いた撮像装置等は例えば次のように構成することができる。   The above-described endoscope objective optical system of the present invention and an image pickup apparatus using the same can be configured as follows, for example.

〔1〕 物体側から順に、物体側に凸面を向けた負メニスカスレンズからなる第1群と、明るさ絞りと、物点側に平面を向けた正レンズからなる第2群と、少なくとも1面の凹の屈折面を含み全体として正の屈折力を持つ第3群と、負メニスカスレンズと両凸レンズの接合レンズからなる正の屈折力の第4群とからなり、前記第1群から前記第4群を介して撮像素子に結像する内視鏡対物光学系であって、前記第2群の正レンズの凸面で主光線が光軸から離れる方向に屈折されることを特徴とする内視鏡対物光学系。     [1] In order from the object side, a first group of negative meniscus lenses having a convex surface facing the object side, an aperture stop, a second group of positive lenses having a plane facing the object point side, and at least one surface And a third group having a positive refractive power as a whole and a fourth group having a positive refractive power made up of a cemented lens of a negative meniscus lens and a biconvex lens. An endoscope objective optical system that forms an image on an image pickup device through four groups, wherein the principal ray is refracted in a direction away from the optical axis by the convex surface of the positive lens of the second group. Mirror objective optical system.

〔2〕 前記第2群の正レンズのレンズ厚をt2 、焦点距離をf2 、屈折率をn2 、前記第1群の負メニスカスレンズ、光学系全系の焦点距離をそれぞれf1 、F、前記第3群の凹の屈折面によるペッツバール和をPS3、前記第4群の正レンズ、負レンズのd線基準のアッベ数をそれぞれνp、νn、前記第4群の焦点距離をf4 としたとき、以下条件式を満足することを特徴とする上記1記載の内視鏡対物光学系。 [2] The lens thickness of the positive lens in the second group is t 2 , the focal length is f 2 , the refractive index is n 2 , and the focal lengths of the negative meniscus lens in the first group and the entire optical system are f 1 , respectively. F, Petzval sum due to the concave refracting surface of the third group is PS3, Abbe numbers on the d-line basis of the positive lens and negative lens of the fourth group are νp and νn, respectively, and the focal length of the fourth group is f 4 The endoscope objective optical system according to 1 above, wherein the following conditional expression is satisfied:

(1) 2<f2 (n2 −1)/t2 <6
(2) −2.3<f1 /F<−0.9
(3) −0.6<PS3<−0.2
(4) νp>50,νn<30
(5) 2.3<f4 /F
〔3〕 上記1又は2記載の内視鏡対物光学系とその像面に配置された固体撮像素子とを備え、前記第1群と前記明るさ絞りと前記第2群とから前群が構成され、前記第3群と前記第4群とから後群が構成され、前記後群と前記固体撮像素子は機械的に一体構造になっていて、前記前群に対して撮像装置長手方向を軸として相対的に回動可能に構成されており、前記前群から前記後群に入射する軸上マージナル光線の入射角が、前記回動軸に対して略平行となるように構成されていることを特徴とする撮像装置。
(1) 2 <f 2 (n 2 −1) / t 2 <6
(2) -2.3 <f 1 /F<-0.9
(3) -0.6 <PS3 <-0.2
(4) νp> 50, νn <30
(5) 2.3 <f 4 / F
[3] The endoscope objective optical system according to 1 or 2 described above and a solid-state imaging device disposed on an image plane thereof, and the front group includes the first group, the aperture stop, and the second group The rear group is constituted by the third group and the fourth group, and the rear group and the solid-state imaging device are mechanically integrated, and the longitudinal direction of the imaging device is axially oriented with respect to the front group. And the angle of incidence of the axial marginal ray incident on the rear group from the front group is substantially parallel to the rotation axis. An imaging apparatus characterized by the above.

〔4〕 物体側から順に、負レンズ、絞り、正レンズからなる前群と、全体として正の屈折力からなる後群とからなる内視鏡対物光学系と、その像面に配置された固体撮像素子とを備え、前記後群と前記固体撮像素子は機械的に一体構造になっていて、前記前群に対して撮像装置長手方向を軸として相対的に回動可能に構成されており、前記前群から前記後群に入射する軸上マージナル光線の入射角が、前記回動軸に対して略平行となるように構成されていることを特徴とする撮像装置。     [4] In order from the object side, an endoscope objective optical system including a front group including a negative lens, a stop, and a positive lens, and a rear group including a positive refractive power as a whole, and a solid disposed on the image plane The rear group and the solid-state image sensor have a mechanically integrated structure, and are configured to be rotatable relative to the front group about the longitudinal direction of the imaging device, An imaging apparatus, wherein an incident angle of an axial marginal ray incident on the rear group from the front group is substantially parallel to the rotation axis.

〔5〕 前記前群の負レンズの焦点距離をf1 、前記前群の正レンズの焦点距離をf2 、前記内視鏡対物光学系全系の焦点距離をFとしたとき、以下条件式を満足することを特徴とする上記3又は4記載の撮像装置。 [5] the focal distance f 1 of the negative lens of the front group, the focal length f 2 of the front group of the positive lens, and a focal length of the endoscope objective optical system as a whole system was F, the following conditional expression The imaging apparatus according to 3 or 4 above, wherein:

(6) −0.3<(f2 −|f1 |)/F<1.5
〔6〕 前記内視鏡対物光学系の前群にプリズムを設けて斜視光学系としたことを特徴とする上記3から5の何れか1項記載の撮像装置。
(6) −0.3 <(f 2 − | f 1 |) / F <1.5
[6] The imaging apparatus according to any one of [3] to [5], wherein a prism is provided in a front group of the endoscope objective optical system to form a perspective optical system.

〔7〕 前記固体撮像素子は撮像面中心と外装中心が略一致していることを特徴とする上記3〜6の何れか1項記載の撮像装置。     [7] The imaging apparatus according to any one of [3] to [6], wherein the center of the imaging surface and the center of the exterior of the solid-state imaging device are substantially coincident.

〔8〕 スコープ外装管の中心と前記撮像素子の撮像面中心が略一致していることを特徴とする上記3〜6の何れか1項記載の撮像装置。     [8] The imaging apparatus according to any one of the above 3 to 6, wherein the center of the scope outer tube and the center of the imaging surface of the imaging element are substantially coincident with each other.

〔9〕 前記第4群以前に赤外域の波長をカットする干渉フィルタを設置していることを特徴とする上記1又は2記載の内視鏡対物光学系、若しくは、上記3〜8の何れか1項記載の撮像装置。     [9] The endoscope objective optical system according to the above 1 or 2, or any one of the above 3 to 8, wherein an interference filter for cutting wavelengths in the infrared region is installed before the fourth group The imaging apparatus according to 1.

〔10〕 内視鏡対物光学系内に吸収型の赤外カットフィルタを設置していることを特徴とする上記1又は2記載の内視鏡対物光学系、若しくは、上記3〜8の何れか1項記載の撮像装置。     [10] The endoscope objective optical system according to 1 or 2 above, or any one of 3 to 8 above, wherein an absorption type infrared cut filter is installed in the endoscope objective optical system The imaging apparatus according to 1.

〔11〕 前記干渉フィルタに入射する主光線の入射角は25°以下であることを特徴とする上記9記載の内視鏡対物光学系、若しくは、撮像装置。     [11] The endoscope objective optical system or the imaging device according to [9], wherein an incident angle of a principal ray incident on the interference filter is 25 ° or less.

〔12〕 最も物体側のレンズを調整することにより像面の非対称性を均衡に保つことを特徴とする上記1、2、9〜11の何れか1項記載の内視鏡対物光学系、若しくは、上記3〜11の何れか1項記載の撮像装置の組立方法。     [12] The endoscope objective optical system according to any one of the above 1, 2, 9 to 11, wherein the asymmetry of the image plane is kept in balance by adjusting the lens closest to the object side, or The method for assembling the imaging device according to any one of 3 to 11 above.

〔13〕 前記前群と前記後群を別個に組み立て、光学心を調整した後、前記前群と前記後群を組み合わせることを特徴とする上記1、2、9〜11の何れか1項記載の内視鏡対物光学系の組立方法。     [13] The structure according to any one of 1, 2, 9 to 11, wherein the front group and the rear group are assembled separately, the optical core is adjusted, and then the front group and the rear group are combined. Method for assembling an endoscope objective optical system.

〔14〕 前記前群の心出し方法は予め光学心を許容量以下に調整した後群に対して光学心を出すことを特徴とする上記1、2、9〜11の何れか1項記載の内視鏡対物光学系の組立方法。     [14] The centering method for the front group is characterized in that the optical center is centered on the rear group after the optical center is adjusted to an allowable amount or less in advance. Assembly method of an endoscope objective optical system.

〔15〕 内視鏡先端像部に対物光学系と共に配置される照明光学系は、内視鏡視野方向に指向され像回転機構により視野方向が変換された際に対物光学系と追随して回動可能な構造であることを特徴とする上記3〜11の何れか1項記載の撮像装置。     [15] The illumination optical system arranged together with the objective optical system at the endoscope front-end image portion is rotated in a manner to follow the objective optical system when the visual field direction is converted by the image rotation mechanism and directed in the endoscope visual field direction. 12. The imaging apparatus according to any one of 3 to 11, wherein the imaging apparatus has a movable structure.

〔16〕 前記前群と前記後群の間隔は0.5mm以上であることを特徴とする上記1、2、9〜11の何れか1項記載の内視鏡対物光学系。     [16] The endoscope objective optical system as set forth in any one of [1], [2] and [9] to [11], wherein a distance between the front group and the rear group is 0.5 mm or more.

本発明の内視鏡対物光学系の軸外主光線と従来の内視鏡対物光学系の軸外主光線の屈折についての説明図である。It is explanatory drawing about the refraction | bending of the off-axis principal ray of the endoscope objective optical system of this invention, and the off-axis principal ray of the conventional endoscope objective optical system. 本発明の内視鏡対物光学系の軸上マージナル光線の屈折についての説明図である。It is explanatory drawing about the refraction | bending of an axial marginal ray of the endoscope objective optical system of this invention. 本発明の内視鏡対物光学系の第1群と第2群の焦点距離、間隔に関する説明図である。It is explanatory drawing regarding the focal distance and space | interval of the 1st group of the endoscope objective optical system of this invention, and a 2nd group. 本発明の実施例1の内視鏡対物光学系の光路図である。It is an optical path figure of the endoscope objective optical system of Example 1 of the present invention. 本発明の実施例2の内視鏡対物光学系の光路図である。It is an optical path figure of the endoscope objective optical system of Example 2 of the present invention. 本発明の実施例3の内視鏡対物光学系の光路図である。It is an optical path figure of the endoscope objective optical system of Example 3 of the present invention. 本発明の実施例4の内視鏡対物光学系の光路図である。It is an optical path figure of the endoscope objective optical system of Example 4 of the present invention. 本発明の実施例5の内視鏡対物光学系の光路図である。It is an optical path figure of the endoscope objective optical system of Example 5 of this invention. 実施例5(a)と従来例(b)の可動部を光軸に対して垂直方向にシフトさせたときの視野中心に対する像中心のズレに関する説明図である。It is explanatory drawing regarding the shift | offset | difference of the image center with respect to the visual field center when the movable part of Example 5 (a) and the prior art example (b) is shifted to the orthogonal | vertical direction with respect to an optical axis. 本発明の実施例6の内視鏡対物光学系の光路図である。It is an optical path figure of the endoscope objective optical system of Example 6 of this invention. 実施例4〜6に光学系と機械枠との関係を説明するための硬性内視鏡挿入部の内部構造の断面図である。It is sectional drawing of the internal structure of the rigid endoscope insertion part for demonstrating the relationship between an optical system and a machine frame to Examples 4-6. 図11の硬性内視鏡挿入部のその先端部を拡大した図である。It is the figure which expanded the front-end | tip part of the rigid endoscope insertion part of FIG. 本発明の実施例7の内視鏡対物光学系の光路図である。It is an optical path figure of the endoscope objective optical system of Example 7 of this invention. 本発明の実施例8の内視鏡対物光学系の光路図である。It is an optical path figure of the endoscope objective optical system of Example 8 of the present invention. 本発明の実施例9の内視鏡対物光学系の光路図である。It is an optical path figure of the endoscope objective optical system of Example 9 of this invention. 本発明の実施例10の内視鏡対物光学系の光路図である。It is an optical path figure of the endoscope objective optical system of Example 10 of this invention. 本発明の実施例11の内視鏡対物光学系の光路図である。It is an optical path figure of the endoscope objective optical system of Example 11 of this invention. 本発明の実施例12の内視鏡対物光学系の光路図である。It is an optical path figure of the endoscope objective optical system of Example 12 of this invention. 本発明の実施例13の内視鏡対物光学系の光路図である。It is an optical path figure of the endoscope objective optical system of Example 13 of this invention. 本発明の実施例14の内視鏡対物光学系の光路図である。It is an optical path figure of the endoscope objective optical system of Example 14 of this invention. 本発明の実施例15の内視鏡対物光学系の光路図である。It is an optical path figure of the endoscope objective optical system of Example 15 of this invention. 実施例1の内視鏡対物光学系の球面収差、非点収差、倍率色収差、歪曲収差、コマ収差を示す収差図である。FIG. 3 is an aberration diagram showing spherical aberration, astigmatism, lateral chromatic aberration, distortion aberration, and coma aberration of the endoscope objective optical system according to Example 1. 実施例2の内視鏡対物光学系の図22と同様の収差図である。FIG. 23 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 2. 実施例3の内視鏡対物光学系の図22と同様の収差図である。FIG. 23 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 3. 実施例4の内視鏡対物光学系の図22と同様の収差図である。FIG. 23 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 4. 実施例5の内視鏡対物光学系の図22と同様の収差図である。FIG. 23 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 5. 実施例6の内視鏡対物光学系の図22と同様の収差図である。FIG. 23 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 6. 実施例7の内視鏡対物光学系の図22と同様の収差図である。FIG. 23 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 7. 実施例8の内視鏡対物光学系の図22と同様の収差図である。FIG. 23 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 8. 実施例9の内視鏡対物光学系の図22と同様の収差図である。FIG. 23 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 9. 実施例10の内視鏡対物光学系の図22と同様の収差図である。FIG. 23 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 10. 実施例11の内視鏡対物光学系の図22と同様の収差図である。FIG. 23 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 11. 実施例12の内視鏡対物光学系の図22と同様の収差図である。FIG. 23 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 12. 実施例13の内視鏡対物光学系の図22と同様の収差図である。FIG. 23 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 13. 実施例14の内視鏡対物光学系の図22と同様の収差図である。FIG. 23 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 14; 実施例15の内視鏡対物光学系の図22と同様の収差図である。FIG. 23 is an aberration diagram similar to FIG. 22 of the endoscope objective optical system according to Example 15; 従来の1例の内視鏡対物レンズの構成を示す断面図である。It is sectional drawing which shows the structure of the conventional endoscope objective lens of an example. 別の従来例の対物光学系の収差図である。It is an aberration diagram of another objective optical system of the conventional example. 硬性ビデオ内視鏡の外観を示す図である。It is a figure which shows the external appearance of a rigid video endoscope. 図39の硬性ビデオ内視鏡の回転前(a)と回転後(b)の視野を示す図である。It is a figure which shows the visual field before (a) and after rotation (b) of the rigid video endoscope of FIG. 内視鏡を用いた外科手術下の回転前(a)と回転後(b)のモニター像を示す図である。It is a figure which shows the monitor image before (a) of rotation under a surgical operation using an endoscope, and (b) after rotation. ビデオスコープの視野方向の変換を説明するための図である。It is a figure for demonstrating conversion of the visual field direction of a videoscope. 光学系の撮像面を回転させることで像回転を補正する従来例を示す図である。It is a figure which shows the prior art example which correct | amends image rotation by rotating the imaging surface of an optical system. 図43の従来例による不具合を説明するための図である。It is a figure for demonstrating the malfunction by the prior art example of FIG.

符号の説明Explanation of symbols

AS…絞り
L1…第1レンズ(負メニスカスレンズ)
L2…第2レンズ(凸レンズ)
L3…第3レンズ
L4…第4レンズ
G1…第1群
G2…第2群
G3…第3群
G4…第4群
P…平行平板
S…絞り
F…赤外カットフィルタ、赤外吸収フィルタ
G…CCDのカバーガラス
I…撮像面
C…カバーガラス
FS…フレア絞り
Pr…プリズム
Pr1…第1プリズム
Pr2…第2プリズム
Al…アルミコート
FG…前群
RG…後群
IU…CCDユニット
K…操作ノブ
am…軸上マージナル光線
21…メニスカスレンズ(G1)
22…プリズム(Pr)
23…平凸レンズ(G2)
24…枠
25…外装管
26…枠
27…枠
AS ... Aperture L1 ... First lens (negative meniscus lens)
L2 ... Second lens (convex lens)
L3 ... 3rd lens L4 ... 4th lens G1 ... 1st group G2 ... 2nd group G3 ... 3rd group G4 ... 4th group P ... Parallel plate S ... Diaphragm F ... Infrared cut filter, infrared absorption filter G ... CCD cover glass I ... imaging surface C ... cover glass FS ... flare stop Pr ... prism Pr1 ... first prism Pr2 ... second prism Al ... aluminum coat FG ... front group RG ... rear group IU ... CCD unit K ... control knob am ... On-axis marginal ray 21 ... Meniscus lens (G1)
22 ... Prism (Pr)
23 ... Plano-convex lens (G2)
24 ... Frame 25 ... Exterior pipe 26 ... Frame 27 ... Frame

Claims (6)

物体側から順に、物体側に凸面を向けた負メニスカスレンズからなる第1群と、明るさ絞りと、物点側に平面を向けた正レンズからなる第2群と、少なくとも1面の凹の屈折面を含み全体として正の屈折力を持つ第3群と、負メニスカスレンズと両凸レンズの接合レンズからなる正の屈折力の第4群とからなり、前記第1群から前記第4群を介して撮像素子に結像する内視鏡対物光学系であって、前記第2群の正レンズの凸面で主光線が光軸から離れる方向に屈折されることを特徴とする内視鏡対物光学系。 In order from the object side, a first lens unit composed of a negative meniscus lens having a convex surface facing the object side, an aperture stop, a second lens unit composed of a positive lens having a plane facing the object point side, and at least one concave surface A third group including a refracting surface and having a positive refractive power as a whole; and a fourth group having a positive refractive power composed of a cemented lens of a negative meniscus lens and a biconvex lens. An endoscope objective optical system that forms an image on an image pickup device via an optical path, wherein the principal ray is refracted in a direction away from the optical axis by the convex surface of the positive lens in the second group. system. 前記第2群の正レンズのレンズ厚をt2 、焦点距離をf2 、屈折率をn2 、前記第1群の負メニスカスレンズ、光学系全系の焦点距離をそれぞれf1 、F、前記第3群の凹の屈折面によるペッツバール和をPS3、前記第4群の正レンズ、負レンズのd線基準のアッベ数をそれぞれνp、νn、前記第4群の焦点距離をf4 としたとき、以下条件式を満足することを特徴とする請求項1記載の内視鏡対物光学系。
(1) 2<f2 (n2 −1)/t2 <6
(2) −2.3<f1 /F<−0.9
(3) −0.6<PS3<−0.2
(4) νp>50,νn<30
(5) 2.3<f4 /F
The positive lens of the second group has a lens thickness of t 2 , a focal length of f 2 , a refractive index of n 2 , a negative meniscus lens of the first group, and the focal length of the entire optical system f 1 , F, the Petzval sum according to the refractive surface of the concave of the third group PS3, the fourth group of positive lenses, respectively the Abbe number of d-line based negative lens vp, .nu.n, when the focal length of the fourth group was f 4 The endoscope objective optical system according to claim 1, wherein the following conditional expression is satisfied.
(1) 2 <f 2 (n 2 −1) / t 2 <6
(2) -2.3 <f 1 /F<-0.9
(3) -0.6 <PS3 <-0.2
(4) νp> 50, νn <30
(5) 2.3 <f 4 / F
請求項1又は2記載の内視鏡対物光学系とその像面に配置された固体撮像素子とを備え、前記第1群と前記明るさ絞りと前記第2群とから前群が構成され、前記第3群と前記第4群とから後群が構成され、前記後群と前記固体撮像素子は機械的に一体構造になっていて、前記前群に対して撮像装置長手方向を軸として相対的に回動可能に構成されており、前記前群から前記後群に入射する軸上マージナル光線の入射角が、前記回動軸に対して略平行となるように構成されていることを特徴とする撮像装置。 The endoscope objective optical system according to claim 1 or 2 and a solid-state imaging device disposed on an image plane thereof, wherein the front group is configured from the first group, the brightness stop, and the second group, A rear group is configured by the third group and the fourth group, and the rear group and the solid-state imaging device are mechanically integrated, and are relative to the front group with the longitudinal direction of the imaging device as an axis. And an angle of incidence of an on-axis marginal ray incident on the rear group from the front group is substantially parallel to the rotation axis. An imaging device. 物体側から順に、負レンズ、絞り、正レンズからなる前群と、全体として正の屈折力からなる後群とからなる内視鏡対物光学系と、その像面に配置された固体撮像素子とを備え、前記後群と前記固体撮像素子は機械的に一体構造になっていて、前記前群に対して撮像装置長手方向を軸として相対的に回動可能に構成されており、前記前群から前記後群に入射する軸上マージナル光線の入射角が、前記回動軸に対して略平行となるように構成されていることを特徴とする撮像装置。 In order from the object side, an endoscope objective optical system composed of a front group consisting of a negative lens, a stop, and a positive lens, and a rear group consisting of a positive refractive power as a whole, and a solid-state imaging device disposed on the image plane The rear group and the solid-state imaging device are mechanically integrated, and are configured to be rotatable relative to the front group about the longitudinal direction of the imaging device. The imaging apparatus is configured such that an incident angle of an axial marginal ray incident on the rear group is substantially parallel to the rotation axis. 前記前群の負レンズの焦点距離をf1 、前記前群の正レンズの焦点距離をf2 、前記内視鏡対物光学系全系の焦点距離をFとしたとき、以下条件式を満足することを特徴とする請求項3又は4記載の撮像装置。
(6) −0.3<(f2 −|f1 |)/F<1.5
When the focal length of the negative lens in the front group is f 1 , the focal length of the positive lens in the front group is f 2 , and the focal length of the entire endoscope objective optical system is F, the following conditional expression is satisfied. The imaging apparatus according to claim 3 or 4, wherein
(6) -0.3 <(f 2 - | f 1 |) / F <1.5
前記内視鏡対物光学系の前群にプリズムを設けて斜視光学系としたことを特徴とする請求項3から5の何れか1項記載の撮像装置。 6. The imaging apparatus according to claim 3, wherein a prism is provided in a front group of the endoscope objective optical system to form a perspective optical system.
JP2004219901A 2004-07-28 2004-07-28 Endoscope objective optical system and imaging apparatus using the same Expired - Fee Related JP4827391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219901A JP4827391B2 (en) 2004-07-28 2004-07-28 Endoscope objective optical system and imaging apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219901A JP4827391B2 (en) 2004-07-28 2004-07-28 Endoscope objective optical system and imaging apparatus using the same

Publications (2)

Publication Number Publication Date
JP2006039259A true JP2006039259A (en) 2006-02-09
JP4827391B2 JP4827391B2 (en) 2011-11-30

Family

ID=35904313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219901A Expired - Fee Related JP4827391B2 (en) 2004-07-28 2004-07-28 Endoscope objective optical system and imaging apparatus using the same

Country Status (1)

Country Link
JP (1) JP4827391B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155464A1 (en) * 2013-03-27 2014-10-02 富士フイルム株式会社 Imaging lens and imaging device
WO2015018473A1 (en) * 2013-08-06 2015-02-12 Olympus Winter & Ibe Gmbh Optical system of a stereo video endoscope with lateral viewing direction and stereo video endoscope with lateral viewing direction
JP2016062021A (en) * 2014-09-19 2016-04-25 富士フイルム株式会社 Imaging lens and imaging apparatus
JP2016062019A (en) * 2014-09-19 2016-04-25 富士フイルム株式会社 Imaging lens and imaging apparatus
JP2016062020A (en) * 2014-09-19 2016-04-25 富士フイルム株式会社 Imaging lens and imaging apparatus
CN104459943B (en) * 2014-12-16 2016-08-24 福建福光股份有限公司 Big target surface high-resolution focuses CS monitoring camera
US9575310B2 (en) 2012-12-27 2017-02-21 Canon Kabushiki Kaisha Optical system for endoscope and endoscope
JP2017526019A (en) * 2014-09-03 2017-09-07 ハンズ レーザー テクノロジー インダストリー グループ カンパニー リミテッド Objective lens for imaging
CN108254871A (en) * 2017-12-18 2018-07-06 瑞声科技(新加坡)有限公司 Camera optical camera lens
JP2019028342A (en) * 2017-08-01 2019-02-21 日本電産コパル株式会社 Imaging lens, and imaging device
JP6491768B1 (en) * 2017-12-18 2019-03-27 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
JP2019109476A (en) * 2017-12-18 2019-07-04 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical lens
CN110073268A (en) * 2016-12-15 2019-07-30 奥林匹斯冬季和Ibe有限公司 Optical system and side view endoscope for side view endoscope
WO2019193933A1 (en) * 2018-04-02 2019-10-10 オリンパス株式会社 Light path deflection prism for endoscope, and oblique-viewing endoscope optical system
JP2020144166A (en) * 2019-03-04 2020-09-10 株式会社タムロン Observation imaging apparatus
CN113467070A (en) * 2021-07-06 2021-10-01 卓外(上海)医疗电子科技有限公司 Endoscope imaging objective lens with focusing function and focusing method
CN115128781A (en) * 2022-08-30 2022-09-30 江西联创电子有限公司 Optical lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659199A (en) * 1992-06-09 1994-03-04 Olympus Optical Co Ltd Stereoscopic viewing endoscope
JPH0882766A (en) * 1994-09-13 1996-03-26 Olympus Optical Co Ltd Stereoscopic endoscope
JPH10115788A (en) * 1996-10-09 1998-05-06 Olympus Optical Co Ltd Hard mirror optical system
JP2000316794A (en) * 1999-05-10 2000-11-21 Olympus Optical Co Ltd Endoscope holder
JP2004145256A (en) * 2002-08-26 2004-05-20 Minolta Co Ltd Wide angle lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659199A (en) * 1992-06-09 1994-03-04 Olympus Optical Co Ltd Stereoscopic viewing endoscope
JPH0882766A (en) * 1994-09-13 1996-03-26 Olympus Optical Co Ltd Stereoscopic endoscope
JPH10115788A (en) * 1996-10-09 1998-05-06 Olympus Optical Co Ltd Hard mirror optical system
JP2000316794A (en) * 1999-05-10 2000-11-21 Olympus Optical Co Ltd Endoscope holder
JP2004145256A (en) * 2002-08-26 2004-05-20 Minolta Co Ltd Wide angle lens

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9575310B2 (en) 2012-12-27 2017-02-21 Canon Kabushiki Kaisha Optical system for endoscope and endoscope
US9632288B2 (en) 2013-03-27 2017-04-25 Fujifilm Corporation Imaging lens and imaging apparatus
CN105143948A (en) * 2013-03-27 2015-12-09 富士胶片株式会社 Imaging lens and imaging device
JP5869727B2 (en) * 2013-03-27 2016-02-24 富士フイルム株式会社 Imaging lens and imaging apparatus
WO2014155464A1 (en) * 2013-03-27 2014-10-02 富士フイルム株式会社 Imaging lens and imaging device
JPWO2014155464A1 (en) * 2013-03-27 2017-02-16 富士フイルム株式会社 Imaging lens and imaging apparatus
WO2015018473A1 (en) * 2013-08-06 2015-02-12 Olympus Winter & Ibe Gmbh Optical system of a stereo video endoscope with lateral viewing direction and stereo video endoscope with lateral viewing direction
CN105474066A (en) * 2013-08-06 2016-04-06 奥林匹斯冬季和Ibe有限公司 Optical system of a stereo video endoscope with lateral viewing direction and stereo video endoscope with lateral viewing direction
US10088665B2 (en) 2013-08-06 2018-10-02 Olympus Winter & Ibe Gmbh Optical system of a stereo video endoscope with lateral viewing direction and stereo video endoscope with lateral viewing direction
CN105474066B (en) * 2013-08-06 2018-06-26 奥林匹斯冬季和Ibe有限公司 The optical system of three-dimensional video-frequency endoscope with lateral view direction and the three-dimensional video-frequency endoscope with lateral view direction
JP2016527566A (en) * 2013-08-06 2016-09-08 オリンパス ビンテル ウント イーベーエー ゲーエムベーハーOlympus Winter & Ibe Gesellschaft Mit Beschrankter Haftung Stereoscopic video endoscope optical system with side viewing direction and stereoscopic endoscope with side viewing direction
JP2017526019A (en) * 2014-09-03 2017-09-07 ハンズ レーザー テクノロジー インダストリー グループ カンパニー リミテッド Objective lens for imaging
JP2016062020A (en) * 2014-09-19 2016-04-25 富士フイルム株式会社 Imaging lens and imaging apparatus
JP2016062019A (en) * 2014-09-19 2016-04-25 富士フイルム株式会社 Imaging lens and imaging apparatus
JP2016062021A (en) * 2014-09-19 2016-04-25 富士フイルム株式会社 Imaging lens and imaging apparatus
CN104459943B (en) * 2014-12-16 2016-08-24 福建福光股份有限公司 Big target surface high-resolution focuses CS monitoring camera
CN110073268A (en) * 2016-12-15 2019-07-30 奥林匹斯冬季和Ibe有限公司 Optical system and side view endoscope for side view endoscope
US11579432B2 (en) 2016-12-15 2023-02-14 Olympus Winter & Ibe Gmbh Optical system for a side-viewing endoscope, and side-viewing endoscope
JP2020502575A (en) * 2016-12-15 2020-01-23 オリンパス ビンテル ウント イーベーエー ゲーエムベーハーOlympus Winter & Ibe Gesellschaft Mit Beschrankter Haftung Optical system for side-viewing endoscope and side-viewing endoscope
JP2019028342A (en) * 2017-08-01 2019-02-21 日本電産コパル株式会社 Imaging lens, and imaging device
JP2019109469A (en) * 2017-12-18 2019-07-04 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical lens
JP2019109476A (en) * 2017-12-18 2019-07-04 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing optical lens
JP6491768B1 (en) * 2017-12-18 2019-03-27 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Imaging optical lens
CN108254871A (en) * 2017-12-18 2018-07-06 瑞声科技(新加坡)有限公司 Camera optical camera lens
WO2019193933A1 (en) * 2018-04-02 2019-10-10 オリンパス株式会社 Light path deflection prism for endoscope, and oblique-viewing endoscope optical system
US11805983B2 (en) 2018-04-02 2023-11-07 Olympus Corporation Optical path deflecting prism for endoscope, oblique-viewing endoscope optical system having the same and endoscope
JP2020144166A (en) * 2019-03-04 2020-09-10 株式会社タムロン Observation imaging apparatus
CN111654598A (en) * 2019-03-04 2020-09-11 株式会社腾龙 Observation camera device
CN113467070A (en) * 2021-07-06 2021-10-01 卓外(上海)医疗电子科技有限公司 Endoscope imaging objective lens with focusing function and focusing method
CN115128781A (en) * 2022-08-30 2022-09-30 江西联创电子有限公司 Optical lens
CN115128781B (en) * 2022-08-30 2023-01-20 江西联创电子有限公司 Optical lens

Also Published As

Publication number Publication date
JP4827391B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
US7280283B1 (en) Endoscopic objective optical system, and imaging system using the same
JP4827391B2 (en) Endoscope objective optical system and imaging apparatus using the same
JP6636128B2 (en) Variable magnification optical system for endoscope, endoscope and endoscope system
EP1526398B1 (en) Endoscope with an objective lens
EP2474851B1 (en) Objective optical system
JP5118937B2 (en) Imaging optical system
JP5601924B2 (en) Endoscope variable magnification optical system and endoscope
EP2402808A1 (en) Objective lens and endoscope device
EP2579083A1 (en) Objective lens for endoscope, and endoscope
JP2876252B2 (en) Endoscope objective lens
JPH0910170A (en) Objective optical system of endoscope
JP6046322B1 (en) Endoscope variable magnification optical system and endoscope
JP5374667B1 (en) Endoscope objective optical system
US20070188892A1 (en) Objective lens for endoscope
JPWO2017043351A1 (en) Endoscope variable magnification optical system and endoscope
JP6836466B2 (en) Endoscopic objective optical system
JP2008083316A (en) Objective optical system for endoscope
JP2004020972A (en) Photo-optical system and endoscope using the same
JP4373749B2 (en) Imaging optical system, imaging apparatus for endoscope, and endoscope system
CN107703606B (en) Objective optical system for endoscope and endoscope
JP5082486B2 (en) Zoom lens and optical apparatus having the same
CN109073866B (en) Objective optical system for endoscope
JP6754916B2 (en) Variable magnification optics for endoscopes and endoscopes
JPWO2020174561A1 (en) Objective optical system for endoscopes and endoscopes
JPWO2020178885A1 (en) Wide-angle optical system and imaging equipment equipped with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4827391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees