JP2004020972A - Photo-optical system and endoscope using the same - Google Patents

Photo-optical system and endoscope using the same Download PDF

Info

Publication number
JP2004020972A
JP2004020972A JP2002176502A JP2002176502A JP2004020972A JP 2004020972 A JP2004020972 A JP 2004020972A JP 2002176502 A JP2002176502 A JP 2002176502A JP 2002176502 A JP2002176502 A JP 2002176502A JP 2004020972 A JP2004020972 A JP 2004020972A
Authority
JP
Japan
Prior art keywords
lens
object side
optical system
image
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002176502A
Other languages
Japanese (ja)
Other versions
JP2004020972A5 (en
JP4197897B2 (en
Inventor
Tsutomu Uzawa
鵜澤 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002176502A priority Critical patent/JP4197897B2/en
Publication of JP2004020972A publication Critical patent/JP2004020972A/en
Publication of JP2004020972A5 publication Critical patent/JP2004020972A5/ja
Application granted granted Critical
Publication of JP4197897B2 publication Critical patent/JP4197897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photo-optical system tolerant to an autoclave sterilization and inconspicuous in ghost light. <P>SOLUTION: The photo-optical system is composed of at least a cover glass which is exposed outside and an objective lens from object side to order, the cover glass is composed of a material which has ruggedness against the autoclave sterilization, the objective lens is composed by a pre-group which has a negative refraction, a brightness diaphragm and a back group which has a positive refraction from the object side to order, and the concave face of the pre-group which is closest to the object is directed to the object. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、撮影光学系およびこの撮影光学系を用いた内視鏡に関するものである。
【0002】
【従来の技術】
今日、医療分野において、体腔内等に細長い挿入部を挿入して体腔内の深部を観察したり、必要に応じて処理具を用いて治療、処理等を行うために内視鏡が広く用いられている。
【0003】
これら内視鏡は、使用後に、確実に消毒滅菌することが、感染症等を防止するために不可欠である。
【0004】
最近、煩雑な作業を伴わずに、滅菌後に直ちに使用でき、しかもランニングコストの安い、オートクレーブ滅菌と呼ばれる、高温高圧水蒸気による滅菌が、内視鏡機器の滅菌において主流になりつつある。
【0005】
また、医療用内視鏡は、操作性向上のために、内視鏡挿入部の細径化や、内視鏡挿入部の先端硬質部の短縮化が望まれている。そのために、これら医療用内視鏡にて使用される対物レンズは、実用上十分な収差補正がなされていることと、レンズの外径が小であって全長が短い構成にすることが必要不可欠である。
【0006】
上記のような、オートクレーブ滅菌への耐性のある撮影光学系の従来例として、特願2001−173908号に記載されたものがある。また、他の従来の撮影光学系として、例えば、特開2001−260347号公報に記載されたものが知られている。
【0007】
【発明が解決しようとする課題】
オートクレーブ滅菌への耐性がある撮影光学系は、ゴーストが発生しやすい欠点がある。
【0008】
特願2001−173908号の第5実施例の撮影光学系は、カバーガラスを用いて、オートクレーブ滅菌への耐性のある構成にしている。この撮影光学系は、物体側から順に、サファイヤ製の平行平板よりなるカバーガラスと像面に凹面を向けた平凹レンズとよりなる第1レンズ群と、像側に凸面を向けた平凸レンズよりなる第2レンズ群と、両凸正レンズと負レンズとの接合レンズよりなる第3レンズ群とにて構成されている。
【0009】
この従来例の光学系は、輝度の高い被写体を撮影した場合、カバーガラスが原因となるゴースト光が生ずる。
【0010】
図19は、この従来例の撮影光学系において、物点より射出して撮影光学系に入射角(光軸と光線とのなす角)10°にて入射する通常光の結像光路を示す。
【0011】
また、図20は、同じ従来の光学系において、物点から射出して、入射角10°にて撮影光学系に入射するゴースト光の結像光路を示す図である。このゴースト光は、対物レンズの最も物体側の面で反射した後、カバーガラスの物体の面で再度反射し、対物レンズにより結像される。
【0012】
この図20に示すゴースト光の結像位置は、図19に示す通常光の結像位置と画面上の結像位置も光軸上の結像位置も、近い位置である。
【0013】
このように、ゴースト光の光軸上の結像位置が、通常光の光軸上の結像位置に近いと、ゴースト像にピントが合ってしまい、ゴースト像が明瞭に観察されてしまう。
【0014】
この図19に示す従来例の光学系は、カバーガラスとしてサファイヤを用いているが。このサファイヤは屈折率が1.7682で、高い屈折率であるため光の反射率が高く、ゴーストが目立ち易い。
【0015】
また、特願2001−173908号の第5実施例以外の実施例は、カバーガラスを用いておらず、対物レンズの第1レンズがサファイヤにて形成されている。そのため、この光学系はゴーストを生ずることはないが、サファイヤが極めて硬いため、これをレンズに加工することが困難であり、コスト高になる。
【0016】
また、内視鏡撮影光学系は、小型であり、サファイヤを用いない場合でも、一般的にレンズ加工が困難である。例えば、特願2001−173908号の第6実施例の第1レンズは、像側の面の曲率半径が小であり、加工が難しい。
【0017】
本発明は、以上のような従来例の問題点に鑑みなされたもので、オートクレーブ滅菌への耐性を有する撮影光学系で、ゴースト光が目立たない撮影光学系およびこの撮影光学系を備えた内視鏡を提供するものである。
【0018】
また、本発明は、小型で結像性能が良好な撮影光学系であって、かつ加工性のよい撮影光学系およびこの撮影光学系を備えた内視鏡を提供するものである。
【0019】
【課題を解決するための手段】
本発明の撮影光学系の第1の構成は、物体側から順に、外部に露出するカバーガラスと、対物レンズとから少なくともなっていて、カバーガラスがオートクレーブ耐性を有する材質よりなり、対物レンズが、物体側より順に、負の屈折力を持つ前群と、明るさ絞りと、正の屈折力を持つ後群とより構成されていて、前群の最も物体側の面が物体側に凹面を向けたものである。
【0020】
このような構成の本発明の撮影光学系は、オートクレーブ耐性の材質よりなるカバーガラスを物体側に配置したにも拘らず、ゴーストの発生を抑制し得たものである。
【0021】
次にこの点を図11に示す薄肉光学系に近似した光学系で物点が無限遠での場合にもとづき説明する。
【0022】
図11は、カバーガラスCGと対物レンズOBLよりなる光学系および、この光学系による通常光と、ゴースト光の結像位置を示す。このうち、対物レンズOBLは、薄肉レンズに置き換えたもので図には矢印にて示す。また、対物レンズOBLの焦点距離は、fとする。
【0023】
通常、光束は図11の(A)に示すように対物レンズOBLによりその後ろ側焦点位置FB’上のP’に結像する(通常光R)。
【0024】
また、ゴースト光GRは、図11の(B)に示すように対物レンズOBLの前群の最も物体側の面(S1)にて反射されて対物レンズOBLの物体側で距離|R|/2の位置にていったん結像する。
【0025】
次に、光束は、図11の(C)に示すように対物レンズOBLの物体側のカバーガラスCGにて反射され、その対称位置である像側の距離|R|/2の位置Qに結像する。
【0026】
更に、対物レンズOBLにて再結像されて、最終的に対物レンズOBLから距離bの位置Q’に結像する。ここで図11の(D)に示すように、点Q’は点P’より物体側にずれた位置になる。
【0027】
このゴースト光GRと通常光Rとの光軸方向の像位置の差Δは、近軸計算により下記の通りである。
【0028】
Δ=Q’−P’
−1/a+1/b=1/f
ただし、aは物点距離、bは像点距離である。上記式にa=1/2×|r1|を代入し、bの値を求めると次の通りである。
b=(f×|r1|)/(|r1|+2×f)
【0029】
よって、Δは、下記のように表わされる。
Δ=f×(2×f/(|r1|+2×f))
【0030】
焦点距離に対する割合Δ/fは次のようになる。
Δ/f=2×f/(|r1|+2×f)
【0031】
以上のように、対物レンズOBLにとっての、ゴースト光GRの物点が、第1面S1およびカバーガラスCGの反射によって、通常光Rの物点よりも遠点側に移動し、これにより結像位置が物点側にずれたことになる。
【0032】
その結果、ゴースト光の結像位置を像面からずらすことができ、ゴースト像がぼけて明瞭ではなくなる。
【0033】
また、本発明の撮影光学系は、画面上の結像位置(光軸に垂直な方向の結像位置)に関しては、通常光の結像位置よりも画面の外側(光軸から離れる方向)にずれる。その結果、ゴースト光が発生することが少なくなる。
【0034】
本発明の撮影光学系の対物レンズは、負の屈折力を有する前群と明るさ絞りと正の屈折力を有する後群とよりなるレトロフォーカスタイプである。このような、レトロフォーカスタイプのレンズ系は、その第1面から対物レンズ全系の主点位置までの距離が大である。そのため、対物レンズの第1面の凹面とカバーガラスの反射による結像位置と、対物レンズの主点位置が近くなりやすい。その結果、上記薄肉レンズでの見積もりに対し、対物レンズの結像倍率が大になる。対物レンズによるゴース像の結像倍率が大になる方向は、光軸から離れる方向であり、輝度の高い被写体が画面周辺にあると、ゴーストが画面外に外れて観察されなくなる。
【0035】
以上の理由から、本発明の上記構成の撮影光学系は、画面上に輝度の高い部分のある被写体であってもゴースト像が目立たない良好な観察像が得られる。
【0036】
上記の本発明の撮影光学系は、図11(C)に示すゴースト光のほか、対物レンズの最も物体側の面S1にて反射され更にカバーガラスの像側の面にて反射されて対物レンズにて結像されるゴースト光の改善も可能である。
【0037】
また、本発明の撮影光学系は、対物レンズの最も物体側の面(前群の最も物体側の面)が負の屈折力を有するため、この負の屈折力の面が前群の負の屈折力を分担することが可能である。そのため前群のその他の面の曲率半径を大きくすることが可能であり、レンズの加工が容易になる。
【0038】
また、本発明の撮影光学系において、オートクレーブ耐性を有する材質としてサファイヤの代わりに合成石英、透過性のYAG、スピネル等の高温高圧水蒸気に対する耐性の高い光学部材を用いてもゴーストの発生を抑制して良好な観察像を得ることが可能である。
【0039】
本発明の前記第1の構成の撮影光学系において、下記条件(1)を満足することが好ましい。
(1) −2<f/r<−0.02, r<0
ただし、fは対物レンズ全系の焦点距離、rは前群の負レンズの物体側の面の曲率半径である。
【0040】
条件(1)は、前群の最も物体側の面の屈折力を規定したものである。
【0041】
この条件(1)において、f/rが上限値の−0.02を超えるとゴースト像のデフォーカス量が小さすぎてゴースト光の改善効果が少ない。またf/rが条件(1)の下限値の−2を超えると、ゴースト光の改善には有利であるが|r|が小さくなり、広画角を得ることが困難になる。
【0042】
なお、f/rが条件(1)にて規定する上限値である−0.02の場合、薄肉光学系ではΔ/f≒0.04となり焦点距離の約4%ゴースト光の像位置をずらすことができる。
【0043】
上記薄肉光学系での見積もり値は、厚肉レンズである実際の光学系での値とは異なるが、ゴースト像のデフォーカス方向は常にQ’がP’よりも物体側である。
【0044】
上記構成の光学系において、条件(1)の代わりに下記条件(1−1)を満足すればより好ましい。
(1−1) −1.5<f/r<−0.02, r<0
【0045】
この条件(1−1)のように、下限値を−1.5にすれば、ゴースト光が一層改善され、かつ画角(2ω)が70°以上の広画角を確保し易くなり、内視鏡用撮影レンズとしては好ましい。
【0046】
次に、本発明の第2の構成は対物レンズが下記の通りである点を特徴とする。
【0047】
本発明の対物レンズは、前群が物体側に凹面を向けた負レンズよりなり、また後群が、物体側より順に、正レンズと接合レンズとよりなり、対物レンズが次の条件(3)、(4)、(5)を満足することが好ましい。
(3) −0.95<(r+r)/(r−r)<1.05
(4) 1.5<fB/IH<2.7
(5) ν(C)<19
ただし、rは前群の負レンズの物体側の面の曲率半径、rは前群の負レンズの像側の面の曲率半径、fBは対物レンズの最も像側の面から後ろ側焦点位置までの距離、IHは最大像高、ν(C)は接合レンズの負レンズのアッベ数である。
【0048】
条件(3)は、前群の負レンズの物体側および像側の面の曲率半径を規定したもので、この負レンズの加工性の改善と、結像性能を確保するために設けた。
【0049】
この条件(3)を満足するように前群の負レンズの負の屈折力をその両面で分担し、これにより曲率半径が大になり、レンズの加工性が良くなる。また、この負レンズを条件(3)を満足する形状にすることにより非点収差を良好に補正することができる。
【0050】
この条件(3)において、下限値の−0.95超えると、負レンズの負の屈折力をその両面で分担する効果がなくなり、レンズの加工性を改善できない。また、非点収差が補正不足になり、メサジオナル像面がマイナスになりやすい。条件(3)の上限値の1.05を超えると、負レンズの負の屈折力を両面を分担する効果がなくなり、レンズの加工性が改善されない。また、負レンズの物体側の面の曲率半径が小になり、広画角化にとって不利である。また、非点収差が補正過剰になりやすく、メリディオナル像面がプラスになりやすい。
【0051】
また、内視鏡の小型化のためには、条件(4)を満足することが望ましい。つまり、条件(4)を満足するようにしてバックフォーカスを確保することにより、内視鏡の小型化とフィルターを配置するスペースを確保することを両立させ得る。
【0052】
fB/IHの値が条件(4)の上限値の2.7を超えると、必要以上にバックフォーカスが大になり、小型化にとって不利になる。fB/IHの値が条件(4)の下限値の1.5を超えると、小型化にとっては有利であるが、バックフォーカスが小になる。そのため、フィルター等を配置するスペースがなくなり好ましくない。
【0053】
また、条件(4)の代わりに次の条件(4−1)を満足するようにすれば、より好ましい。
(4−1) 2<fB/IH<2.4
【0054】
条件(4−1)のように、fB/IHの値の上限値および下限値を夫々2.4および2とすれば、小型化とフィルター等の配置スペースの確保とを両立させる上で一層好ましい。
【0055】
次に、条件(5)は、後群の接合レンズの負レンズのアッベ数を規定するもので、色収差の補正と接合レンズの加工性に関するものである。
【0056】
本発明の内視鏡の対物レンズのように負の屈折力を持つ前群が負レンズのみにて構成される場合、倍率の色収差が補正不足になりやすい。そのため効果的な硝材を効果的な位置に配置することが重要である。
【0057】
本発明の対物レンズにおいて、負レンズの効果的な配置位置は、明るさ絞りの像側であって、絞りから離れた位置である。
【0058】
したがって、本発明は、倍率の色収差を補正するために効果的な硝材である条件(5)を満足する硝材の負レンズを明るさ絞りの像側で、かつ最も像側に配置された接合レンズに用いることにより、補正不足になりやすい倍率の色収差の効果的に補正し得る。
【0059】
また、接合レンズは、物体側から順に、正レンズと負レンズにて構成することが好ましい。
【0060】
更に、接合レンズの加工性を考えると、アッベ数の小さい硝材を用いて、正レンズと負レンズのアッベ数差を大にすることにより、接合面の曲率半径を小さくする必要がない。つまり、前記負レンズのアッベ数ν(C)が条件(5)の上限値19を超えると、倍率の色収差を効果的に補正し、かつ加工性のよい接合レンズになし得ない。
【0061】
以上のように、本発明の第2の構成によれば、小型であって結像性能のよい特に倍率の色収差を含めた諸収差が良好に補正された内視鏡の撮影光学系が得られる。
【0062】
本発明の第2の構成である前記対物レンズにおいて、その物体側にカバーガラスを配置して撮影光学系とする場合、対物レンズとカバーガラスの間隔およびカバーガラスの厚さの分だけ、カバーガラスの物体側の面での軸外光線高が高くなり、カバーガラスの径が大になり易い。
【0063】
この問題を解決するためには、次の条件(2)を満足することが好ましい。
(2) 0.13<d/f<1
ただし、dは前群の最も物体側に位置するレンズの像側の面から明るさ絞りまでの距離で、空気以外の媒質がある場合も含めて実寸法である。
【0064】
この条件(2)は、カバーガラスを用いた撮影光学系の小型化のための条件である。
【0065】
/fの値が、条件(2)の上限値の1を超えると、軸外光線高が高くなり、カバーガラスの径が大になり好ましくない。内視鏡のように広画角の光学系の場合、特に好ましくない。また、d/fが条件(2)の下限値の0.13を超えるとカバーガラスの径を小さくし得る点では好ましいが、バックフォーカスの確保が困難になり、またバックフォーカスの確保を優先すると広画角が困難になる。
【0066】
更に、本発明の第3の構成は、物体側から順に、少なくとも外部に露出するカバーガラスと、対物レンズとからなり、カバーガラスがオートクレーブ耐性を有する材質からなり、対物レンズが、物体側より順に、負の屈折力を持つ前群と、明るさ絞りと、正の屈折力を持つ後群とにて構成され、前群が物体側に凹面を向けた負レンズからなり、後群が物体側から順に正レンズと正レンズと負レンズとを接合した接合レンズとよりなり、対物レンズが次の条件(1)〜(5)を満足することを特徴とする。
(1) −2<f/r<−0.02, r<0
(2) 0.13<d/f<1
(3) −0.95<(r+r)/(r−r)<1.05
(4) 1.5<fB/IH<2.7
(5) ν(C)<19
ただし、fは対物レンズ全系の焦点距離、rは前群の負レンズの物体側の面の曲率半径、rは前群の負レンズの像側の面の曲率半径、dは前群の最も物体側に位置するレンズの像側の面から明るさ絞りまでの距離でその間にフィルターが配置されている場合も含め実寸法、fBは対物レンズの最も像側の面から後ろ側焦点位置までの距離、IHは最大像高、ν(C)は接合レンズの負レンズのアッベ数である。
【0067】
この第3の構成の撮影光学系は、対物レンズの後群が正レンズと、正レンズと負レンズとを接合した接合レンズとにて構成されていることを特徴とする。
【0068】
また、条件(1)〜(5)を満足するものである。
【0069】
これら条件は、前述の通りであり、条件(1)は、前群の第1面rの値を規定したもので、ゴースト光除去効果を大にするためのものである。
【0070】
また条件(2)は、カバーガラスを用いた撮影光学系の小型化等を実現するためのものである。
【0071】
また、条件(3)は前群の負レンズの形状を規定したもので、レンズの加工性をよくする等のために設けた条件である。
【0072】
また、条件(4)は、バックフォーカスを確保してフィルター類の配置スペース確保と光学系の小型化を両立させるためのものである。
【0073】
更に条件(5)は、倍率の色収差の補正のためのものである。
【0074】
また、各条件における上限値、下限値の設定は、既に述べたと同じ理由による。
【0075】
【発明の実施の形態】
本発明の実施の形態を、図示する実施例にもとづいて説明する。
【0076】
図1乃至図5は、夫々本発明の内視鏡撮影光学系の実施例1乃至実施例5の構成を示す図である。これら実施例は、下記データを有する。
【0077】
実施例1
f=1 ,2ω=86.5°,F/4.008
 =∞       d =22.1625
 =∞       d =0.3694  n =1.76820   ν =71.79
 =∞       d =0.2586
 =−3.7344     d =0.2216  n =1.88300   ν =40.76
 =1.0202     d =0.2955
 =∞(絞り)   d =0.0222
 =∞          d =1.0195  n =1.88300   ν =40.76
 =−0.9766     d =−0.0813
 =∞          d =0.1182
 =7.0100      d =0.8643  n =1.72916   ν =54.68
10=−0.9183         d10=0.2216  n =1.92286   ν =18.90
11=−3.0732         d11=0.0369
12=∞       d12=0.2955  n =1.52287   ν =59.89
13=∞              d13=0.0222
14=∞       d14=0.7387  n =1.49400   ν =75.00
15=∞              d15=0.2290
16=∞              d16=0.0222
17=∞              d17=0.3694  n8 =1.76820   ν =71.79
18=∞              d18=0.3694  n =1.51633   ν =64.14
19=∞              d19=0.0570
20=∞
=−3.7344,   f/r=−0.268
=0.2955,    d/f=0.296
=1.0202,    (r+r)/(r−r)=−0.571fB=1.4643,  IH=0.673,  fB/IH=2.176
ν(C)=18.9
【0078】
実施例2
f=1 ,2ω=70.2°,F/4.018
 =∞       d =18.0066
 =∞       d =0.3001  n =1.76820   ν =71.79
 =∞       d =0.2101
 =−0.9602         d =0.1918  n =1.88300   ν =40.76
 =∞       d =0.1426
 =∞(絞り)   d =0.0216
 =∞          d =0.7965  n =1.88300   ν =40.76
 =−1.3593     d =0
 =∞          d =0.0300
 =1.5644      d =0.7702  n =1.72916   ν =54.68
10=−0.9141         d10=0.1801  n =1.92286   ν =18.90
11=−3.0006         d11=0.0300
12=∞       d12=0.2401  n =1.52287   ν =59.89
13=∞              d13=0.0300
14=∞       d14=0.6002  n =1.49400   ν =75.00
15=∞              d15=0.1889
16=∞              d16=0.0180
17=∞              d17=0.3001  n8 =1.76820   ν =71.79
18=∞              d18=0.3001  n =1.51633   ν =64.14
19=∞              d19=0.0288
20=∞
=−0.9602,   f/r=−1.041
=0.1426,    d/f=0.143
=∞,       (r+r)/(r−r)=1.000
fB=1.1680,  IH=0.547,  fB/IH=2.135
ν(C)=18.9
【0079】
実施例3
f=1 ,2ω=110.2°,F/4.018
 =∞       d =24.4417
 =∞       d =0.4074  n =1.76820   ν =71.79
 =∞       d =0.2444
 =−2.0480         d =0.2603  n =1.88300   ν =40.76
 =1.3026     d =0.4649
 =∞(絞り)   d =0.0147
 =10.2683         d =1.3455  n =1.88300   ν =40.76
 =−1.3686     d =0
 =∞          d =0.0407
 =2.7862      d =0.9584  n =1.72916   ν =54.68
10=−1.2409         d10=0.2444  n =1.92286   ν =18.90
11=−8.8720         d11=0.0407
12=∞       d12=0.3259  n =1.52287   ν =59.89
13=∞              d13=0.0407
14=∞       d14=0.8147  n =1.49400   ν =75.00
15=∞              d15=0.2331
16=∞              d16=0.0244
17=∞              d17=0.4074  n8 =1.76820   ν =71.79
18=∞              d18=0.4074  n =1.51633   ν =64.14
19=∞              d19=0.0400
20=∞
=−2.0480,   f/r=−0.488
=0.4649,    d/f=0.465
=1.3026,    (r+r)/(r−r)=−0.222fB=1.5975,  IH=0.742,  fB/IH=2.153
ν(C)=18.9
【0080】
実施例4
f=1 ,2ω=130.2°,F/4.018
 =∞       d =28.4127
 =∞       d =0.4735  n =1.76820   ν =71.79
 =∞       d =0.1894
 =−5.9985         d =0.3026  n =1.88300   ν =40.76
 =1.0984     d =0.7574
 =∞(絞り)   d =0.0467
 =−12.0492        d =1.5722  n =1.88300   ν =40.76
 =−1.4815     d =0
 =∞          d =0.0474
 =4.0066      d =1.2406  n =1.72916   ν =54.68
10=−1.3080         d10=0.2841  n =1.92286   ν =18.90
11=−6.1617         d11=0.0474
12=∞       d12=0.3788  n =1.52287   ν =59.89
13=∞              d13=0.0474
14=∞       d14=0.9471  n =1.49400   ν =75.00
15=∞              d15=0.2679
16=∞              d16=0.0284
17=∞              d17=0.4735  n8 =1.76820   ν =71.79
18=∞              d18=0.4735  n =1.51633   ν =64.14
19=∞              d19=0.0468
20=∞
=−−5.9985,   f/r=−0.167
=0.7574,     d/f=0.757
=1.0984,    (r+r)/(r−r)=−0.690fB=1.8665,  IH=0.863,  fB/IH=2.163
ν(C)=18.9
【0081】
実施例5
f=1 ,2ω=152.3°,F/4.018
 =∞       d =32.0198
 =∞       d =0.5337  n =1.76820   ν =71.79
 =∞       d =0.1067
 =−35.5776        d =0.3410  n =1.88300   ν =40.76
 =1.1019     d =0.9060
 =∞(絞り)   d =0.0759
 =−3.9484         d =2.0721  n =1.88300   ν =40.76
 =−1.6220     d =0
 =∞          d =0.0534
 =3.5587      d =1.3536  n =1.72916   ν =54.68
10=−1.5334         d10=0.3202  n =1.92286   ν =18.90
11=−13.4984        d11=0.0534
12=∞       d12=0.4269  n =1.52287   ν =59.89
13=∞              d13=0.0534
14=∞       d14=1.0673  n =1.49400   ν =75.00
15=∞              d15=0.2793
16=∞              d16=0.0320
17=∞              d17=0.5337  n8 =1.76820   ν =71.79
18=∞              d18=0.5337  n =1.51633   ν =64.14
19=∞              d19=0.0820
20=∞
=−35.5776,  f/r=−0.028
=0.9060,     d/f=0.906
=1.1019,    (r+r)/(r−r)=−0.940fB=2.1183,  IH=0.972,  fB/IH=2.179
ν(C)=18.9
ただし、r,r、・・・はレンズ各面の曲率半径、d,d、・・・は各レンズの肉厚および空気間隔、n,n、・・・は各レンズのd線に対する屈折率、ν,ν、・・・は各レンズのd線に対するアッベ数である。尚、rは物体面、dは物体面からカバーガラスまでの距離である。
【0082】
実施例1の撮影光学系は、図1に示すように、カバーガラスC1と、負の屈折力を持つ前群GFと明るさ絞りSと正の屈折力を持つ後群GRとよりなる対物レンズと、フィルターF1、F2と、撮像素子カバーガラスC2と撮像素子封止ガラスC3とよりなり、前群GFが両凹レンズ(r〜r)よりなり、後群GRが正レンズ(r〜r)と正レンズと負レンズとを接合した正の接合レンズ(r〜r11)とよりなる。尚FSはフレアー絞りである。
【0083】
また実施例2〜5は夫々図2〜図5に記載する通りの構成で、実施例1と実質上同じレンズ構成である。
【0084】
図6〜図10は夫々前記実施例1〜5の収差曲線図である。
【0085】
これら実施例1〜5の光学系における結像光、ゴースト光について述べる。
【0086】
実施例1の撮影光学系において、正規光の結像光路、ゴースト光の結像光路を図12、13に示す。
【0087】
これら図において、図12は物点から射出した光線が、本発明の撮影光学系(実施例1)に入射角10°にて入射した時の正規の結像光路を示す。
【0088】
この場合の近軸結像位置は、面r19より像側に0.057の距離である。
【0089】
また、図13は、物点から射出して実施例1の撮影光学系に入射角10°にて入射するゴースト光の結像光路を示す。
【0090】
このゴースト光の近軸の結像位置は、第19面(r19)より物体側0.965の位置である。つまり、図13のr14とr15の間の位置であり、フィルターF中である。
【0091】
上記のようにゴースト光の結像位置Q’は、正規光の結像位置P’より物体側に1.022ずれている。また、画面上の結像位置(光軸と垂直な方向の結像位置)に関しては、通常光の結層位置よりも画面の外側に(光軸から離れる方向に)ずれている。
【0092】
この結果、ゴーストがボケて明瞭ではなくなる。しかも輝度の高い被写体が画面周辺部にあれば、ゴースト画面外に外れ観察されなくなる。
【0093】
図18は、画面上の通常光と、ゴースト光の位置関係を示す。
【0094】
この図18において、R1は通常光(結像光)の画面中心近くの像、RG1は通常光R1によるゴースト、R2は通常光の画面周辺部の像、RG2は通常光R2によるゴーストである。
【0095】
この図に示すように、ゴースト光RG1は、結像位置が画面から光軸方向にずれているためボケている。また、ゴースト光RG2は、ボケていると共に画面外に外れている。
【0096】
以上は、実施例1で、オートクレーブを用いた装置における光学系である。
【0097】
また、オートクレーブを用いていない装置の場合、撮影光学系は図に示す構成でもよい。
【0098】
図14はカバーガラスを用いていない撮影光学系であり、撮像素子のカバーガラスC2のガラス材料としてS−BSL7(株式会社オハラ製)を用いたものである。
【0099】
また、図15は、物体側のカバーガラスC1の材料として、S−BSL7を用いたものである。
【0100】
このように、オートクレーブを用いない装置に使用する撮影光学系は、カバーガラスの材料をサファイヤにする必要はない。そのため、カバーガラスの材料としてB−BSL7を用いてコストを低減させることができる。
【0101】
また、すべての実施例の光学系において、鉛や砒素を含まない硝材にて構成することができる。
【0102】
例えば、実施例1においては、物体側から順に、カバーガラスC1がサファイヤ、第1レンズ(r〜r)及び第2レンズ(r〜r)がS−LAH58(株式会社オハラ製)、第3レンズ(r〜r10)がS−NPH2(株式会社オハラ製)、フィルターF1が白板またはS−BSL7(株式会社オハラ製)、フィルターF2がCM5000(HOYA株式会社製)、カバーガラスC2がサファイヤ、撮像素子封止ガラスC3がS−BSL7(株式会社オハラ製)である。
【0103】
したがって、オートクレーブ滅菌への耐性があって、ゴーストの目立たない構成であり、小型で、個々のレンズの加工性がよく、また有害な鉛、砒素を含まず環境にとっても好ましい構成の撮影光学系である。また、この実施例の撮影光学系は、耐用年数が過ぎた後に回収し、これを分解廃棄する時も、廃棄コストを低減し得る。
【0104】
以上、実施例1について述べたが、実施例2〜4の撮影光学系も、実施例1と類似のレンズ構成であり、使用する硝材も同様の硝材である。
【0105】
したがって、実施例1にて述べたと同様の特徴を有している。
【0106】
実施例5は、図5に示す通りの構成である。この実施例5は、他の実施例とレンズ構成が類似する光学系である。f/rの値が条件(1)の上限に近い値であるが、本実施例においてもゴーストを改善できる。つまり、ゴースト光の結像位置Q’が正規光の結像位置P’よりも物体側にずれている。
【0107】
図16は、この実施例5の光学系において、物点から射出して、入射角20°にて撮影光学系に入射する正規の結像光路を示す。この光学系の近軸の結像位置は、第19面(r19)から像側に0.082の距離にある。
【0108】
また図17は、この実施例5において、物点から射出して入射角20°にて撮影光学系に入射するゴースト光の結像光路を示す。
【0109】
この実施例5は、ゴースト光の近軸の結像位置が第19面(r19)より像側に0.025の距離である。
【0110】
この実施例5は、ゴースト光の結像位置Q’が正規光の結像位置より物体側に0.057ずれている。
【0111】
本発明は以上詳細に説明した通りであり、特許請求の範囲に記載した発明のほか、次の各項に記載する発明もその目的を達成し得る。
【0112】
(1) 特許請求の範囲の請求項1に記載する光学系で、下記条件(1)を満足することを特徴とする撮影光学系。
(1) −2<f/r<−0.02, r<0
ただし、fは対物レンズ全系の焦点距離、rは前群の負レンズの物体側の面の曲率半径である。
【0113】
(2) 特許請求の範囲の請求項1に記載する光学系で、下記条件(2)を満足することを特徴とする撮影光学系。
(2) 0.13<d/f<1
ただし、dは前群の最も物体側に位置するレンズの像側の面から明るさ絞りまでの距離で、空気以外の媒質がある場合も含めて実寸法である。
【0114】
(3) 特許請求の範囲の請求項2に記載する光学系で、前記後群の正レンズが物体側の面が平面である平凸レンズであることを特徴とする撮影光学系。
【0115】
(4) 特許請求の範囲の請求項2に記載する光学系で、前記後群の接合レンズは像側のレンズが負レンズであることを特徴とする撮影光学系。
【0116】
(5) 特許請求の範囲の請求項2に記載する光学系で、下記条件(2)を満足することを特徴とする撮影光学系。
(2) 0.13<d/f<1
ただし、dは前群の最も物体側に位置するレンズの像側の面から明るさ絞りまでの距離で、空気以外の媒質がある場合も含めて実寸法である。
【0117】
(6) 物体側から順に、外部に露出するカバーガラスと、対物レンズとを少なくとも含み、前記カバーガラスがオートクレーブ耐性を有する材質からなり、前記対物レンズが物体側から順に、負の屈折力を持つ前群と、明るさ絞りと、正の屈折力を持つ後群とにて構成され、前群の最も物体側の面が物体側に凹面を向け、下記条件(1−1)を満足する撮影光学系。
(1−1) −1.5<f/r<−0.02, r<0
ただし、fは対物レンズ全系の焦点距離、rは前群の負レンズの物体側の面の曲率半径である。
【0118】
(7) 前記の(6)の項に記載する光学系で、下記条件(2)を満足することを特徴とする撮像光学系。
(2) 0.13<d/f<1
ただし、dは前群の最も物体側に位置するレンズの像側の面から明るさ絞りまでの距離で、空気以外の媒質がある場合も含めて実寸法である。
【0119】
(8) 物体側から順に、負の屈折力を持つ前群と、明るさ絞りと、正の屈折力を持つ後群とからなり、前群が物体側に凹面を向けた負レンズよりなり、後群が物体側から順に、物体側が平面の平凸レンズと、像側が負レンズの接合レンズとからなり、下記条件(3)、(4−1)、(5)を満足する対物レンズ。
(3) −0.95<(r+r)/(r−r)<1.05
(4−1) 2<fB/IH<2.4
(5) ν(C)<19
ただし、rは前群の負レンズの物体側の面の曲率半径、rは前群の負レンズの像側の面の曲率半径、fBは対物レンズの最も像側の面から後ろ側焦点位置までの距離、IHは最大像高、ν(C)は接合レンズの負レンズのアッベ数である。
【0120】
(9) 物体側から順に、負の屈折力を持つ前群と、明るさ絞りと、正の屈折力を持つ後群とからなり、前群が物体側に凹面を向けた負レンズよりなり、後群が物体側から順に、物体側が平面の平凸レンズと、像側が負レンズの接合レンズとからなり、下記条件(2)、(3)、(4−1)、(5)を満足する対物レンズ。
(2) 0.13<d/f<1
(3) −0.95<(r+r)/(r−r)<1.05
(4−1) 2<fB/IH<2.4
(5) ν(C)<19
ただし、rは前群の負レンズの物体側の面の曲率半径、rは前群の負レンズの像側の面の曲率半径、fBは対物レンズの最も像側の面から後ろ側焦点位置までの距離、IHは最大像高、ν(C)は接合レンズの負レンズのアッベ数である。
【0121】
(10) 物体側から順に、少なくとも外部に露出するカバーガラスと、対物レンズとからなり、前記カバーガラスがオートクレーブ耐性を有する材質からなり、前記対物レンズが、物体側より順に、負の屈折力を持つ前群と、明るさ絞りと、正の屈折力を持つ後群とよりなり、前群が物体側に凹面を向けた負レンズからなり、後群が物体側から順に正レンズと接合レンズとよりなり、前記対物レンズが、下記条件(1−1)、(2)、(3)、(4−1)、(5)を満足することを特徴とする請求項1の撮影光学系。
(1−1) −1.5<f/r<−0.02, r<0
(2) 0.13<d/f<1
(3) −0.95<(r+r)/(r−r)<1.05
(4−1) 2<fB/IH<2.4
(5) ν(C)<19
ただし、fは対物レンズ全系の焦点距離、rは前群の負レンズの物体側の面の曲率半径、rは前群の負レンズの像側の面の曲率半径、dは前群の最も物体側に位置するレンズの像側の面から明るさ絞りまでの距離でその間にフィルターが配置されている場合も含め実寸法、fBは対物レンズの最も像側の面から後ろ側焦点位置までの距離、IHは最大像高、ν(C)は接合レンズの負レンズのアッベ数である。
【0122】
(11) 前記の(9)の項に記載する光学系で、接合レンズが物体側より順に、正レンズと負レンズよりなることを特徴とする撮影光学系。
【0123】
(12) 前記の(10)の項に記載する光学系で、接合レンズが物体側より順に、正レンズと負レンズよりなることを特徴とする撮影光学系。
【0124】
(13) 前記の(6)の項に記載する光学系で、撮影光学系が砒素、鉛等の有害物質を含まない材質からなることを特徴とする撮影光学系。
【0125】
(14) 前記の(8)の項に記載する光学系で、撮影光学系が砒素、鉛等の有害物質を含まない材質からなることを特徴とする撮影光学系。
【0126】
(15) 特許請求の範囲の請求項(1)、(2)又は(3)あるいは前記の(1)乃至(14)の項のいずれかの項に記載する撮影光学系を用いた内視鏡。
【0127】
【発明の効果】
本発明によれば、オートクレーブ滅菌への耐性を有しており、ゴースト光が目立たない撮影光学系およびそれを用いた内視鏡を実現し得る。また、小型で結像性能がよく、加工性のよい撮影光学系およびそれを用いた内視鏡を実現し得る。
【図面の簡単な説明】
【図1】本発明の撮影光学系の実施例1の断面図
【図2】本発明の撮影光学系の実施例2の断面図
【図3】本発明の撮影光学系の実施例3の断面図
【図4】本発明の撮影光学系の実施例4の断面図
【図5】本発明の撮影光学系の実施例5の断面図
【図6】本発明の撮影光学系の実施例1の収差曲線図
【図7】本発明の撮影光学系の実施例2の収差曲線図
【図8】本発明の撮影光学系の実施例3の収差曲線図
【図9】本発明の撮影光学系の実施例4の収差曲線図
【図10】本発明の撮影光学系の実施例5の収差曲線図
【図11】カバーガラスと対物レンズよりなる撮影光学系の通常光とゴースト光の結像等を示す図
【図12】本発明の実施例1の正規光の光路図
【図13】本発明の実施例1のゴースト光の光路図
【図14】カバーガラスを用いない光学系の構成を示す図
【図15】S−BSL7のカバーガラスを用いた光学系の構成を示す図
【図16】本発明の実施例5の正規光の光路図
【図17】本発明の実施例5のゴースト光の光路図
【図18】画面上の正規光とゴースト光の結像位置を示す図
【図19】従来の撮影光学系の正規光の光路図
【図20】図19に示す従来の撮影光学系のゴースト光の光路図
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photographic optical system and an endoscope using the photographic optical system.
[0002]
[Prior art]
2. Description of the Related Art In the medical field, endoscopes are widely used today to observe a deep portion of a body cavity by inserting an elongated insertion portion into the body cavity or the like, or to perform treatment, processing, and the like using a processing tool as necessary. ing.
[0003]
It is essential for these endoscopes to surely sterilize and sterilize them after use in order to prevent infectious diseases and the like.
[0004]
Recently, sterilization using high-temperature and high-pressure steam called autoclave sterilization, which can be used immediately after sterilization without complicated operations and has low running costs, is becoming the mainstream in sterilization of endoscope equipment.
[0005]
Further, in medical endoscopes, it is desired to reduce the diameter of the endoscope insertion portion and shorten the rigid distal end portion of the endoscope insertion portion in order to improve operability. For this reason, it is essential that the objective lenses used in these medical endoscopes have practically sufficient aberration correction, and that the lens has a small outer diameter and a short overall length. It is.
[0006]
As a conventional example of an imaging optical system having resistance to autoclave sterilization as described above, there is one described in Japanese Patent Application No. 2001-173908. As another conventional photographing optical system, for example, one described in JP-A-2001-260347 is known.
[0007]
[Problems to be solved by the invention]
An imaging optical system that is resistant to autoclave sterilization has a disadvantage that ghosts are likely to occur.
[0008]
The photographing optical system of the fifth embodiment of Japanese Patent Application No. 2001-173908 has a configuration that is resistant to autoclave sterilization by using a cover glass. The imaging optical system includes, in order from the object side, a first lens group including a cover glass made of a parallel flat plate made of sapphire, a plano-concave lens having a concave surface facing the image surface, and a plano-convex lens having a convex surface facing the image side. The second lens group includes a third lens group including a cemented lens of a biconvex positive lens and a negative lens.
[0009]
In the optical system of this conventional example, when an image of a high-luminance subject is taken, ghost light caused by the cover glass is generated.
[0010]
FIG. 19 shows an imaging optical path of ordinary light which is emitted from an object point and enters the imaging optical system at an incident angle (angle between an optical axis and a light ray) of 10 ° in the imaging optical system of the conventional example.
[0011]
FIG. 20 is a diagram showing an image forming optical path of ghost light emitted from an object point and incident on a photographing optical system at an incident angle of 10 ° in the same conventional optical system. The ghost light is reflected by the object-side surface of the objective lens, then reflected again by the object surface of the cover glass, and is imaged by the objective lens.
[0012]
The ghost light image formation position shown in FIG. 20 is close to the normal light image formation position shown in FIG. 19, both on the screen and on the optical axis.
[0013]
As described above, when the imaging position of the ghost light on the optical axis is close to the imaging position of the normal light on the optical axis, the ghost image is focused and the ghost image is clearly observed.
[0014]
The conventional optical system shown in FIG. 19 uses sapphire as a cover glass. This sapphire has a refractive index of 1.7682 and a high refractive index, so that light reflectance is high and ghosts are conspicuous.
[0015]
In the embodiments other than the fifth embodiment of Japanese Patent Application No. 2001-173908, no cover glass is used, and the first lens of the objective lens is formed of sapphire. Therefore, this optical system does not cause ghost, but since sapphire is extremely hard, it is difficult to process it into a lens, which increases the cost.
[0016]
Further, the endoscope photographing optical system is small, and it is generally difficult to process a lens even when sapphire is not used. For example, the first lens of the sixth embodiment of Japanese Patent Application No. 2001-173908 has a small radius of curvature of the image-side surface, and is difficult to process.
[0017]
The present invention has been made in view of the above-described problems of the conventional example, and is an imaging optical system having resistance to autoclave sterilization, an imaging optical system in which ghost light is inconspicuous, and an endoscope including the imaging optical system. Offers a mirror.
[0018]
Another object of the present invention is to provide an imaging optical system which is small and has good imaging performance, has good workability, and an endoscope provided with the imaging optical system.
[0019]
[Means for Solving the Problems]
The first configuration of the imaging optical system according to the present invention includes, in order from the object side, a cover glass exposed to the outside and an objective lens, and the cover glass is made of a material having autoclave resistance. In order from the object side, it consists of a front group with negative refractive power, a stop, and a rear group with positive refractive power, with the most object side surface of the front group facing the object side concave. It is a thing.
[0020]
The photographic optical system of the present invention having such a configuration can suppress the occurrence of ghost, despite the fact that a cover glass made of an autoclave-resistant material is disposed on the object side.
[0021]
Next, this point will be described based on a case where the object point is at infinity in an optical system similar to the thin optical system shown in FIG.
[0022]
FIG. 11 shows an optical system including a cover glass CG and an objective lens OBL, and an image forming position of normal light and ghost light by the optical system. Of these, the objective lens OBL is replaced by a thin lens and is indicated by an arrow in the figure. The focal length of the objective lens OBL is f.
[0023]
Normally, the light beam forms an image at P 'on the rear focal position FB' by the objective lens OBL as shown in FIG. 11A (normal light R).
[0024]
Also, the ghost light GR is reflected by the most object side surface (S1) of the front group of the objective lens OBL as shown in FIG. 1 An image is formed once at the position of | / 2.
[0025]
Next, the light beam is reflected by the cover glass CG on the object side of the objective lens OBL as shown in FIG. 1 An image is formed at a position Q of | / 2.
[0026]
Further, an image is formed again by the objective lens OBL, and finally an image is formed at a position Q ′ at a distance b from the objective lens OBL. Here, as shown in FIG. 11D, the point Q ′ is a position shifted toward the object side from the point P ′.
[0027]
The difference Δ between the image positions of the ghost light GR and the normal light R in the optical axis direction is as follows by paraxial calculation.
[0028]
Δ = Q'-P '
−1 / a + 1 / b = 1 / f
Here, a is the object point distance, and b is the image point distance. By substituting a = 1/2 × | r1 | into the above equation, the value of b is obtained as follows.
b = (f × | r1 |) / (| r1 | + 2 × f)
[0029]
Therefore, Δ is expressed as follows.
Δ = f × (2 × f / (| r1 | + 2 × f))
[0030]
The ratio Δ / f to the focal length is as follows.
Δ / f = 2 × f / (| r1 | + 2 × f)
[0031]
As described above, the object point of the ghost light GR for the objective lens OBL moves to a point farther than the object point of the normal light R due to the reflection of the first surface S1 and the cover glass CG, thereby forming an image. This means that the position has shifted to the object point side.
[0032]
As a result, the image position of the ghost light can be shifted from the image plane, and the ghost image is blurred and not clear.
[0033]
Further, the imaging optical system of the present invention, with respect to the image formation position on the screen (image formation position in the direction perpendicular to the optical axis), is located outside the screen (in the direction away from the optical axis) from the image formation position of normal light. Shift. As a result, the occurrence of ghost light is reduced.
[0034]
The objective lens of the photographing optical system of the present invention is a retrofocus type including a front group having a negative refractive power, a brightness stop, and a rear group having a positive refractive power. In such a retrofocus type lens system, the distance from the first surface to the principal point position of the entire objective lens system is large. Therefore, the image forming position due to the reflection of the concave surface of the first surface of the objective lens and the cover glass and the principal point position of the objective lens tend to be close to each other. As a result, the imaging magnification of the objective lens becomes larger than the estimation with the thin lens. The direction in which the imaging magnification of the ghost image by the objective lens increases is a direction away from the optical axis. If a high-luminance subject is located around the screen, the ghost will be out of the screen and will not be observed.
[0035]
For the above reasons, the imaging optical system having the above-described configuration of the present invention can obtain a good observation image in which a ghost image is not conspicuous even for a subject having a high luminance portion on a screen.
[0036]
The photographic optical system according to the present invention described above includes, in addition to the ghost light shown in FIG. 11C, the objective lens which is reflected on the most object side surface S1 of the objective lens and further reflected on the image side surface of the cover glass. It is also possible to improve the ghost light imaged at.
[0037]
Further, in the imaging optical system of the present invention, since the most object side surface of the objective lens (the most object side surface of the front group) has a negative refractive power, the surface of the negative refractive power of the front group has the negative refractive power. It is possible to share the refractive power. Therefore, it is possible to increase the radius of curvature of the other surface of the front group, and the processing of the lens becomes easy.
[0038]
Further, in the imaging optical system of the present invention, generation of ghost is suppressed even when an optical member having high resistance to high-temperature and high-pressure steam such as synthetic quartz, permeable YAG, and spinel is used instead of sapphire as a material having autoclave resistance. And a good observation image can be obtained.
[0039]
In the imaging optical system having the first configuration according to the present invention, it is preferable that the following condition (1) is satisfied.
(1) -2 <f / r a <-0.02, r a <0
Where f is the focal length of the entire objective lens system, r a Is the radius of curvature of the object-side surface of the negative lens in the front group.
[0040]
Condition (1) defines the refractive power of the surface closest to the object in the front group.
[0041]
Under this condition (1), f / r a Exceeds the upper limit of -0.02, the defocus amount of the ghost image is too small, and the effect of improving the ghost light is small. F / r a Is larger than the lower limit of −2 to condition (1), it is advantageous for improving ghost light, but | r a Becomes smaller, and it becomes difficult to obtain a wide angle of view.
[0042]
Note that f / r a Is -0.02, which is the upper limit value defined in the condition (1), Δ / f ≒ 0.04 in the thin optical system, and the image position of the ghost light can be shifted by about 4% of the focal length.
[0043]
The estimated value in the thin optical system is different from the value in the actual optical system which is a thick lens, but in the defocus direction of the ghost image, Q 'is always closer to the object side than P'.
[0044]
In the optical system having the above configuration, it is more preferable that the following condition (1-1) is satisfied instead of the condition (1).
(1-1) −1.5 <f / r a <-0.02, r a <0
[0045]
When the lower limit is -1.5 as in the condition (1-1), ghost light is further improved, and a wide angle of view (2ω) of 70 ° or more can be easily secured. It is preferable as a photographing lens for an endoscope.
[0046]
Next, a second configuration of the present invention is characterized in that the objective lens is as follows.
[0047]
In the objective lens according to the present invention, the front group includes a negative lens whose concave surface faces the object side, and the rear group includes a positive lens and a cemented lens in order from the object side. , (4), and (5) are preferably satisfied.
(3) −0.95 <(r b + R a ) / (R b -R a ) <1.05
(4) 1.5 <fB / IH <2.7
(5) ν d (C) <19
Where r a Is the radius of curvature of the object-side surface of the negative lens in the front group, r b Is the radius of curvature of the image-side surface of the negative lens in the front group, fB is the distance from the most image-side surface of the objective lens to the rear focal position, IH is the maximum image height, ν d (C) is the Abbe number of the negative lens of the cemented lens.
[0048]
Condition (3) defines the radii of curvature of the object-side and image-side surfaces of the negative lens in the front group, and is provided to improve the workability of the negative lens and ensure the imaging performance.
[0049]
In order to satisfy the condition (3), the negative refractive power of the negative lens of the front group is shared on both surfaces, whereby the radius of curvature is increased and the workability of the lens is improved. Further, astigmatism can be satisfactorily corrected by forming the negative lens into a shape satisfying the condition (3).
[0050]
If the lower limit of the condition (3) is exceeded by -0.95, the effect of sharing the negative refractive power of the negative lens on both surfaces is lost, and the workability of the lens cannot be improved. In addition, astigmatism is insufficiently corrected, and the mesa diagonal image plane is likely to be negative. When the value exceeds the upper limit of 1.05 of the condition (3), the effect of sharing the negative refractive power of the negative lens on both surfaces is lost, and the workability of the lens is not improved. Further, the radius of curvature of the object-side surface of the negative lens becomes small, which is disadvantageous for widening the angle of view. In addition, astigmatism tends to be overcorrected, and the meridional image plane tends to be positive.
[0051]
In order to reduce the size of the endoscope, it is desirable to satisfy the condition (4). That is, by securing the back focus so as to satisfy the condition (4), it is possible to achieve both miniaturization of the endoscope and securing of a space for disposing the filter.
[0052]
If the value of fB / IH exceeds the upper limit of 2.7 of the condition (4), the back focus becomes unnecessarily large, which is disadvantageous for miniaturization. When the value of fB / IH exceeds the lower limit of 1.5 of the condition (4), it is advantageous for miniaturization, but the back focus becomes small. Therefore, there is no space for disposing a filter or the like, which is not preferable.
[0053]
It is more preferable that the following condition (4-1) is satisfied instead of the condition (4).
(4-1) 2 <fB / IH <2.4
[0054]
If the upper limit and the lower limit of the value of fB / IH are set to 2.4 and 2, respectively, as in the condition (4-1), it is more preferable to achieve both miniaturization and securing a space for disposing filters and the like. .
[0055]
Next, the condition (5) defines the Abbe number of the negative lens of the cemented lens in the rear group, and relates to correction of chromatic aberration and workability of the cemented lens.
[0056]
When the front group having a negative refractive power, such as the objective lens of the endoscope of the present invention, is composed of only a negative lens, chromatic aberration of magnification is likely to be insufficiently corrected. Therefore, it is important to arrange an effective glass material at an effective position.
[0057]
In the objective lens of the present invention, the effective arrangement position of the negative lens is on the image side of the aperture stop, and is a position away from the stop.
[0058]
Therefore, the present invention provides a cemented lens in which a negative lens made of a glass material that satisfies the condition (5), which is an effective glass material for correcting chromatic aberration of magnification, is disposed on the image side of the aperture stop and closest to the image side. , It is possible to effectively correct chromatic aberration of magnification that is likely to be insufficiently corrected.
[0059]
Further, it is preferable that the cemented lens is composed of a positive lens and a negative lens in order from the object side.
[0060]
Further, considering the workability of the cemented lens, it is not necessary to reduce the radius of curvature of the cemented surface by using a glass material having a small Abbe number and increasing the Abbe number difference between the positive lens and the negative lens. That is, the Abbe number ν of the negative lens d If (C) exceeds the upper limit of 19 in the condition (5), chromatic aberration of magnification is effectively corrected, and a cemented lens with good workability cannot be obtained.
[0061]
As described above, according to the second configuration of the present invention, it is possible to obtain an imaging optical system of an endoscope that is small and has good imaging performance, in which various aberrations including chromatic aberration of magnification in particular are corrected well. .
[0062]
In the objective lens having the second configuration of the present invention, when a cover glass is arranged on the object side to form a photographing optical system, the cover glass is provided by the distance between the objective lens and the cover glass and the thickness of the cover glass. , The off-axis ray height on the object side surface increases, and the diameter of the cover glass tends to increase.
[0063]
In order to solve this problem, it is preferable to satisfy the following condition (2).
(2) 0.13 <d F / F <1
Where d F Is the distance from the image-side surface of the lens closest to the object side in the front group to the aperture stop, and is the actual size including the case where there is a medium other than air.
[0064]
The condition (2) is a condition for downsizing the photographing optical system using the cover glass.
[0065]
d F If the value of / f exceeds the upper limit of 1 in condition (2), the height of off-axis rays increases, and the diameter of the cover glass increases, which is not preferable. An optical system having a wide angle of view such as an endoscope is not particularly preferable. Also, d F If / f exceeds the lower limit of 0.13 of the condition (2), it is preferable in that the diameter of the cover glass can be reduced. However, it is difficult to secure the back focus. Becomes difficult.
[0066]
Furthermore, the third configuration of the present invention includes, in order from the object side, at least a cover glass exposed to the outside and an objective lens, wherein the cover glass is made of a material having autoclave resistance, and the objective lens is sequentially arranged from the object side. , A front group having a negative refractive power, a brightness stop, and a rear group having a positive refractive power. The front group includes a negative lens having a concave surface facing the object side, and the rear group includes an object side. , The objective lens satisfies the following conditions (1) to (5).
(1) -2 <f / r a <-0.02, r a <0
(2) 0.13 <d F / F <1
(3) −0.95 <(r b + R a ) / (R b -R a ) <1.05
(4) 1.5 <fB / IH <2.7
(5) ν d (C) <19
Where f is the focal length of the entire objective lens system, r a Is the radius of curvature of the object-side surface of the negative lens in the front group, r b Is the radius of curvature of the image-side surface of the negative lens in the front group, d F Is the distance from the image side surface of the lens closest to the object side of the front group to the aperture stop, and the actual size including the case where a filter is placed between them. FB is the distance from the most image side surface of the objective lens to the rear. Distance to side focus position, IH is maximum image height, ν d (C) is the Abbe number of the negative lens of the cemented lens.
[0067]
The photographing optical system having the third configuration is characterized in that the rear group of the objective lens includes a positive lens and a cemented lens in which the positive lens and the negative lens are cemented.
[0068]
Further, the conditions (1) to (5) are satisfied.
[0069]
These conditions are as described above, and the condition (1) is the first surface r of the front group. 3 Is specified to increase the ghost light removing effect.
[0070]
The condition (2) is for realizing miniaturization and the like of a photographing optical system using a cover glass.
[0071]
The condition (3) defines the shape of the negative lens in the front group, and is provided for improving the workability of the lens.
[0072]
The condition (4) is to ensure the back focus and to secure the space for disposing the filters and downsize the optical system.
[0073]
Further, the condition (5) is for correcting chromatic aberration of magnification.
[0074]
The setting of the upper limit value and the lower limit value in each condition is based on the same reason as described above.
[0075]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described based on the illustrated embodiments.
[0076]
FIG. 1 to FIG. 5 are diagrams showing the configurations of Embodiments 1 to 5 of the endoscope photographing optical system according to the present invention, respectively. These examples have the following data.
[0077]
Example 1
f = 1, 2ω = 86.5 °, F / 4.008
r 0 = ∞d 0 = 22.1625
r 1 = ∞d 1 = 0.3694 n 1 = 1.76820 ν 1 = 71.79
r 2 = ∞d 2 = 0.2586
r 3 = -3.7344 d 3 = 0.2216 n 2 = 1.88300 ν 2 = 40.76
r 4 = 1.0202 d 4 = 0.2955
r 5 = ∞ (aperture) d 5 = 0.0222
r 6 = ∞d 6 = 1.0195 n 3 = 1.88300 ν 3 = 40.76
r 7 = -0.9766 d 7 = -0.0813
r 8 = ∞d 8 = 0.1182
r 9 = 7.0100 d 9 = 0.8643 n 4 = 1.72916 ν 4 = 54.68
r 10 = -0.9183 d 10 = 0.2216 n 5 = 1.92286 ν 5 = 18.90
r 11 = -3.0732 d 11 = 0.0369
r 12 = ∞d 12 = 0.295 n 6 = 1.52287 ν 6 = 59.89
r 13 = ∞d 13 = 0.0222
r 14 = ∞d 14 = 0.7387 n 7 = 1.49400 ν 7 = 75.00
r Fifteen = ∞d Fifteen = 0.2290
r 16 = ∞d 16 = 0.0222
r 17 = ∞d 17 = 0.3694 n 8 = 1.76820 ν 8 = 71.79
r 18 = ∞d 18 = 0.3694 n 9 = 1.51633 ν 9 = 64.14
r 19 = ∞d 19 = 0.0570
r 20 = ∞
r a = -3.7344, f / r a = -0.268
d F = 0.2955, d F /F=0.296
r b = 1.0202, (r b + R a ) / (R b -R a ) =-0.571 fB = 1.4633, IH = 0.673, fB / IH = 2.176
ν d (C) = 18.9
[0078]
Example 2
f = 1, 2ω = 70.2 °, F / 4.018
r 0 = ∞d 0 = 18.0066
r 1 = ∞d 1 = 0.3001 n 1 = 1.76820 ν 1 = 71.79
r 2 = ∞d 2 = 0.2101
r 3 = -0.9602 d 3 = 0.1918 n 2 = 1.88300 ν 2 = 40.76
r 4 = ∞d 4 = 0.1426
r 5 = ∞ (aperture) d 5 = 0.0216
r 6 = ∞d 6 = 0.7965 n 3 = 1.88300 ν 3 = 40.76
r 7 = -1.3593 d 7 = 0
r 8 = ∞d 8 = 0.0300
r 9 = 1.5644 d 9 = 0.7702 n 4 = 1.72916 ν 4 = 54.68
r 10 = -0.9141 d 10 = 0.1801 n 5 = 1.92286 ν 5 = 18.90
r 11 = -3.0006 d 11 = 0.0300
r 12 = ∞d 12 = 0.2401 n 6 = 1.52287 ν 6 = 59.89
r 13 = ∞d 13 = 0.0300
r 14 = ∞d 14 = 0.6002 n 7 = 1.49400 ν 7 = 75.00
r Fifteen = ∞d Fifteen = 0.1889
r 16 = ∞d 16 = 0.0180
r 17 = ∞d 17 = 0.3001 n 8 = 1.76820 ν 8 = 71.79
r 18 = ∞d 18 = 0.3001 n 9 = 1.51633 ν 9 = 64.14
r 19 = ∞d 19 = 0.0288
r 20 = ∞
r a = -0.9602, f / r a = -1.041
d F = 0.1426, d F /F=0.143
r b = ∞, (r b + R a ) / (R b -R a ) = 1.000
fB = 1.1680, IH = 0.547, fB / IH = 2.135
ν d (C) = 18.9
[0079]
Example 3
f = 1, 2ω = 110.2 °, F / 4.018
r 0 = ∞d 0 = 24.4417
r 1 = ∞d 1 = 0.4074 n 1 = 1.76820 ν 1 = 71.79
r 2 = ∞d 2 = 0.2444
r 3 = -2.0480 d 3 = 0.2603 n 2 = 1.88300 ν 2 = 40.76
r 4 = 1.3030 d 4 = 0.4649
r 5 = ∞ (aperture) d 5 = 0.0147
r 6 = 10.2683 d 6 = 1.3455 n 3 = 1.88300 ν 3 = 40.76
r 7 = -1.3686 d 7 = 0
r 8 = ∞d 8 = 0.0407
r 9 = 2.7762 d 9 = 0.9584 n 4 = 1.72916 ν 4 = 54.68
r 10 = -1.2409 d 10 = 0.2444 n 5 = 1.92286 ν 5 = 18.90
r 11 = -8.8720 d 11 = 0.0407
r 12 = ∞d 12 = 0.3259 n 6 = 1.52287 ν 6 = 59.89
r 13 = ∞d 13 = 0.0407
r 14 = ∞d 14 = 0.8147 n 7 = 1.49400 ν 7 = 75.00
r Fifteen = ∞d Fifteen = 0.2331
r 16 = ∞d 16 = 0.0244
r 17 = ∞d 17 = 0.4074 n 8 = 1.76820 ν 8 = 71.79
r 18 = ∞d 18 = 0.4074 n 9 = 1.51633 ν 9 = 64.14
r 19 = ∞d 19 = 0.0400
r 20 = ∞
r a = -2.0480, f / r a = −0.488
d F = 0.4649, d F /F=0.465
r b = 1.3226, (r b + R a ) / (R b -R a ) = − 0.222 fB = 1.9755, IH = 0.742, fB / IH = 2.153
ν d (C) = 18.9
[0080]
Example 4
f = 1, 2ω = 130.2 °, F / 4.018
r 0 = ∞d 0 = 28.4127
r 1 = ∞d 1 = 0.4735 n 1 = 1.76820 ν 1 = 71.79
r 2 = ∞d 2 = 0.1894
r 3 = -5.9985 d 3 = 0.3026 n 2 = 1.88300 ν 2 = 40.76
r 4 = 1.0984 d 4 = 0.7574
r 5 = ∞ (aperture) d 5 = 0.0467
r 6 = -12.0492 d 6 = 1.5722 n 3 = 1.88300 ν 3 = 40.76
r 7 = -1.4815 d 7 = 0
r 8 = ∞d 8 = 0.0474
r 9 = 4.066 d 9 = 1.2406 n 4 = 1.72916 ν 4 = 54.68
r 10 = -1.3080 d 10 = 0.2841 n 5 = 1.92286 ν 5 = 18.90
r 11 = -6.1617 d 11 = 0.0474
r 12 = ∞d 12 = 0.3788 n 6 = 1.52287 ν 6 = 59.89
r 13 = ∞d 13 = 0.0474
r 14 = ∞d 14 = 0.9471 n 7 = 1.49400 ν 7 = 75.00
r Fifteen = ∞d Fifteen = 0.2679
r 16 = ∞d 16 = 0.0284
r 17 = ∞d 17 = 0.4735 n 8 = 1.76820 ν 8 = 71.79
r 18 = ∞d 18 = 0.4735 n 9 = 1.51633 ν 9 = 64.14
r 19 = ∞d 19 = 0.0468
r 20 = ∞
r a = −− 5.99985, f / r a = -0.167
d F = 0.7574, d F / F = 0.757
r b = 1.0984, (r b + R a ) / (R b -R a ) = − 0.690 fB = 1.665, IH = 0.633, fB / IH = 2.163
ν d (C) = 18.9
[0081]
Example 5
f = 1, 2ω = 152.3 °, F / 4.018
r 0 = ∞d 0 = 32.0198
r 1 = ∞d 1 = 0.5337 n 1 = 1.76820 ν 1 = 71.79
r 2 = ∞d 2 = 0.1067
r 3 = -3.55.5776 d 3 = 0.3410 n 2 = 1.88300 ν 2 = 40.76
r 4 = 1.109 d 4 = 0.9060
r 5 = ∞ (aperture) d 5 = 0.0759
r 6 = -3.9484 d 6 = 2.0721 n 3 = 1.88300 ν 3 = 40.76
r 7 = -1.6220 d 7 = 0
r 8 = ∞d 8 = 0.0534
r 9 = 3.5587 d 9 = 1.3536 n 4 = 1.72916 ν 4 = 54.68
r 10 = -1.5334d 10 = 0.3202 n 5 = 1.92286 ν 5 = 18.90
r 11 = -13.4984 d 11 = 0.0534
r 12 = ∞d 12 = 0.4269 n 6 = 1.52287 ν 6 = 59.89
r 13 = ∞d 13 = 0.0534
r 14 = ∞d 14 = 1.067 n 7 = 1.49400 ν 7 = 75.00
r Fifteen = ∞d Fifteen = 0.2793
r 16 = ∞d 16 = 0.0320
r 17 = ∞d 17 = 0.5337 n 8 = 1.76820 ν 8 = 71.79
r 18 = ∞d 18 = 0.5337 n 9 = 1.51633 ν 9 = 64.14
r 19 = ∞d 19 = 0.0820
r 20 = ∞
r a = −35.5776, f / r a = -0.028
d F = 0.9060, d F /F=0.906
r b = 1.109, (r b + R a ) / (R b -R a ) = − 0.940 fB = 2.1183, IH = 0.772, fB / IH = 2.179
ν d (C) = 18.9
Where r 1 , R 2 , ... are the radii of curvature of the respective surfaces of the lens, d 1 , D 2 ,... Indicate the thickness and air space of each lens, n 1 , N 2 ,... Are the refractive indices of each lens for the d-line, ν 1 , Ν 2 ,... Are Abbe numbers of each lens with respect to the d-line. Note that r 0 Is the object plane, d 0 Is the distance from the object plane to the cover glass.
[0082]
As shown in FIG. 1, the photographing optical system according to the first embodiment includes an objective lens including a cover glass C1, a front group GF having a negative refractive power, a brightness stop S, and a rear group GR having a positive refractive power. , Filters F1 and F2, an image sensor cover glass C2 and an image sensor sealing glass C3, and the front group GF is a biconcave lens (r 3 ~ R 4 ), And the rear group GR is a positive lens (r 6 ~ R 7 ) And a positive cemented lens (r 9 ~ R 11 ). FS is a flare stop.
[0083]
Examples 2 to 5 have the same configurations as those shown in FIGS. 2 to 5, respectively, and have substantially the same lens configuration as Example 1.
[0084]
6 to 10 are aberration curve diagrams of Examples 1 to 5, respectively.
[0085]
Image light and ghost light in the optical systems of Examples 1 to 5 will be described.
[0086]
FIGS. 12 and 13 show an imaging optical path of normal light and an imaging optical path of ghost light in the imaging optical system of the first embodiment.
[0087]
In these figures, FIG. 12 shows a normal image forming optical path when a light beam emitted from an object point enters the imaging optical system of the present invention (Example 1) at an incident angle of 10 °.
[0088]
The paraxial imaging position in this case is the plane r 19 The distance is 0.057 closer to the image side.
[0089]
FIG. 13 shows an image forming optical path of ghost light emitted from an object point and incident on the imaging optical system of Example 1 at an incident angle of 10 °.
[0090]
The paraxial image position of this ghost light is on the nineteenth surface (r 19 ) On the object side of 0.965. That is, r in FIG. 14 And r Fifteen And in the filter F.
[0091]
As described above, the ghost light imaging position Q ′ is shifted 1.022 toward the object side from the regular light imaging position P ′. Further, the image forming position on the screen (image forming position in the direction perpendicular to the optical axis) is shifted to the outside of the screen (in the direction away from the optical axis) from the layering position of normal light.
[0092]
As a result, the ghost is blurred and not clear. In addition, if a high-luminance subject is located at the periphery of the screen, it will not be observed outside the ghost screen.
[0093]
FIG. 18 shows the positional relationship between normal light and ghost light on the screen.
[0094]
In FIG. 18, R1 is an image of the normal light (imaging light) near the center of the screen, RG1 is a ghost by the normal light R1, R2 is an image of the peripheral portion of the normal light on the screen, and RG2 is a ghost by the normal light R2.
[0095]
As shown in this figure, the ghost light RG1 is blurred because the image formation position is shifted from the screen in the optical axis direction. Also, the ghost light RG2 is blurred and out of the screen.
[0096]
The above is the optical system in the apparatus using the autoclave in the first embodiment.
[0097]
In the case of an apparatus that does not use an autoclave, the photographing optical system may have the configuration shown in the figure.
[0098]
FIG. 14 shows a photographing optical system that does not use a cover glass, in which S-BSL7 (manufactured by OHARA CORPORATION) is used as the glass material of the cover glass C2 of the image sensor.
[0099]
FIG. 15 shows a case where S-BSL7 is used as the material of the cover glass C1 on the object side.
[0100]
As described above, the photographing optical system used in the apparatus that does not use the autoclave does not need to use sapphire as the material of the cover glass. Therefore, the cost can be reduced by using B-BSL7 as the material of the cover glass.
[0101]
Further, in all the optical systems of the embodiments, the optical system can be made of a glass material that does not contain lead or arsenic.
[0102]
For example, in Example 1, the cover glass C1 is sapphire and the first lens (r 3 ~ R 4 ) And the second lens (r 6 ~ R 7 ) Is S-LAH58 (manufactured by OHARA CORPORATION) and the third lens (r 9 ~ R 10 ) Is S-NPH2 (manufactured by OHARA Co., Ltd.), filter F1 is white plate or S-BSL7 (manufactured by OHARA Co., Ltd.), filter F2 is CM5000 (manufactured by HOYA CORPORATION), cover glass C2 is sapphire, and image sensor sealing glass C3. Is S-BSL7 (produced by Ohara Corporation).
[0103]
Therefore, the photographic optical system has a configuration that is resistant to autoclave sterilization and ghosts are inconspicuous, small in size, has good workability of individual lenses, and does not contain harmful lead and arsenic and is also preferable for the environment. is there. Further, the photographing optical system according to the present embodiment can reduce the disposal cost even when the photographing optical system is collected after the end of its useful life and disassembled and disposed.
[0104]
Although the first embodiment has been described above, the imaging optical systems of the second to fourth embodiments also have a lens configuration similar to that of the first embodiment, and the same glass material is used.
[0105]
Therefore, it has the same features as described in the first embodiment.
[0106]
Example 5 has a configuration as shown in FIG. The fifth embodiment is an optical system similar in lens configuration to the other embodiments. f / r 3 Is close to the upper limit of the condition (1), but the ghost can be improved also in the present embodiment. That is, the image position Q 'of the ghost light is shifted toward the object side from the image position P' of the normal light.
[0107]
FIG. 16 shows a normal imaging optical path which is emitted from the object point and enters the imaging optical system at an incident angle of 20 ° in the optical system of the fifth embodiment. The paraxial imaging position of this optical system is at the nineteenth surface (r 19 ) At a distance of 0.082 from the image side.
[0108]
FIG. 17 shows an imaging optical path of ghost light emitted from the object point and incident on the imaging optical system at an incident angle of 20 ° in the fifth embodiment.
[0109]
In the fifth embodiment, the paraxial imaging position of the ghost light is on the 19th surface (r 19 ) Is closer to the image side by 0.025.
[0110]
In the fifth embodiment, the image position Q ′ of the ghost light is shifted by 0.057 toward the object side from the image position of the normal light.
[0111]
The present invention has been described in detail above. In addition to the inventions described in the claims, the inventions described in the following items can also achieve the objects.
[0112]
(1) An optical system according to claim 1, wherein the following condition (1) is satisfied.
(1) -2 <f / r a <-0.02, r a <0
Where f is the focal length of the entire objective lens system, r a Is the radius of curvature of the object-side surface of the negative lens in the front group.
[0113]
(2) An imaging optical system according to claim 1, wherein the following condition (2) is satisfied.
(2) 0.13 <d F / F <1
Where d F Is the distance from the image-side surface of the lens closest to the object side in the front group to the aperture stop, and is the actual size including the case where there is a medium other than air.
[0114]
(3) The imaging optical system according to claim 2, wherein the positive lens in the rear group is a plano-convex lens having a flat object-side surface.
[0115]
(4) The optical system according to claim 2, wherein in the cemented lens in the rear group, the image-side lens is a negative lens.
[0116]
(5) An optical system according to claim 2, wherein the following condition (2) is satisfied.
(2) 0.13 <d F / F <1
Where d F Is the distance from the image-side surface of the lens closest to the object side in the front group to the aperture stop, and is the actual size including the case where there is a medium other than air.
[0117]
(6) In order from the object side, at least including a cover glass exposed to the outside and an objective lens, the cover glass is made of a material having autoclave resistance, and the objective lens has a negative refractive power in order from the object side. The front group, the aperture stop, and the rear group having a positive refractive power, the most object side surface of the front group having the concave surface facing the object side, and satisfying the following condition (1-1). Optical system.
(1-1) −1.5 <f / r a <-0.02, r a <0
Where f is the focal length of the entire objective lens system, r a Is the radius of curvature of the object-side surface of the negative lens in the front group.
[0118]
(7) An imaging optical system according to the above (6), wherein the following condition (2) is satisfied.
(2) 0.13 <d F / F <1
Where d F Is the distance from the image-side surface of the lens closest to the object side in the front group to the aperture stop, and is the actual size including the case where there is a medium other than air.
[0119]
(8) In order from the object side, the front unit includes a front unit having a negative refractive power, a brightness stop, and a rear unit having a positive refractive power. The front unit includes a negative lens having a concave surface facing the object side. An objective lens in which the rear group includes, in order from the object side, a plano-convex lens having a flat surface on the object side and a cemented lens having a negative lens on the image side, and satisfying the following conditions (3), (4-1), and (5).
(3) −0.95 <(r b + R a ) / (R b -R a ) <1.05
(4-1) 2 <fB / IH <2.4
(5) ν d (C) <19
Where r a Is the radius of curvature of the object-side surface of the negative lens in the front group, r b Is the radius of curvature of the image-side surface of the negative lens in the front group, fB is the distance from the most image-side surface of the objective lens to the rear focal position, IH is the maximum image height, ν d (C) is the Abbe number of the negative lens of the cemented lens.
[0120]
(9) In order from the object side, the front unit includes a front unit having a negative refractive power, a brightness stop, and a rear unit having a positive refractive power. The front unit includes a negative lens having a concave surface facing the object side. The rear group includes, in order from the object side, a plano-convex lens having a flat surface on the object side and a cemented lens having a negative lens on the image side, and satisfying the following conditions (2), (3), (4-1), and (5). lens.
(2) 0.13 <d F / F <1
(3) −0.95 <(r b + R a ) / (R b -R a ) <1.05
(4-1) 2 <fB / IH <2.4
(5) ν d (C) <19
Where r a Is the radius of curvature of the object-side surface of the negative lens in the front group, r b Is the radius of curvature of the image-side surface of the negative lens in the front group, fB is the distance from the most image-side surface of the objective lens to the rear focal position, IH is the maximum image height, ν d (C) is the Abbe number of the negative lens of the cemented lens.
[0121]
(10) In order from the object side, at least an externally exposed cover glass and an objective lens, and the cover glass is made of a material having autoclave resistance, and the objective lens has a negative refractive power in order from the object side. The front group consists of a front lens group, a brightness stop, and a rear lens group with positive refractive power.The front lens group consists of a negative lens with a concave surface facing the object side. The rear lens group consists of a positive lens and a cemented lens in order from the object side. The imaging optical system according to claim 1, wherein the objective lens satisfies the following conditions (1-1), (2), (3), (4-1), and (5).
(1-1) −1.5 <f / r a <-0.02, r a <0
(2) 0.13 <d F / F <1
(3) −0.95 <(r b + R a ) / (R b -R a ) <1.05
(4-1) 2 <fB / IH <2.4
(5) ν d (C) <19
Where f is the focal length of the entire objective lens system, r a Is the radius of curvature of the object-side surface of the negative lens in the front group, r b Is the radius of curvature of the image-side surface of the negative lens in the front group, d F Is the distance from the image side surface of the lens closest to the object side of the front group to the aperture stop, and the actual size including the case where a filter is placed between them. FB is the distance from the most image side surface of the objective lens to the rear. Distance to side focus position, IH is maximum image height, ν d (C) is the Abbe number of the negative lens of the cemented lens.
[0122]
(11) The imaging optical system according to the above (9), wherein the cemented lens comprises a positive lens and a negative lens in order from the object side.
[0123]
(12) The imaging optical system according to the above (10), wherein the cemented lens comprises a positive lens and a negative lens in order from the object side.
[0124]
(13) The optical system according to the above (6), wherein the imaging optical system is made of a material that does not contain harmful substances such as arsenic and lead.
[0125]
(14) The optical system according to the above (8), wherein the imaging optical system is made of a material that does not contain harmful substances such as arsenic and lead.
[0126]
(15) An endoscope using the photographing optical system according to any one of the claims (1), (2) or (3) or the above (1) to (14). .
[0127]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it has resistance to autoclave sterilization and can implement | achieve the imaging | photography optical system which ghost light is not outstanding, and the endoscope using the same. Further, a small-sized imaging optical system having good imaging performance and good workability and an endoscope using the same can be realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a photographing optical system according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of Embodiment 2 of the photographing optical system of the present invention.
FIG. 3 is a sectional view of a third embodiment of a photographing optical system according to the present invention;
FIG. 4 is a cross-sectional view of a photographing optical system according to a fourth embodiment of the present invention.
FIG. 5 is a cross-sectional view of Embodiment 5 of the imaging optical system of the present invention.
FIG. 6 is an aberration curve diagram of the imaging optical system according to the first embodiment of the present invention.
FIG. 7 is an aberration curve diagram of Embodiment 2 of the imaging optical system of the present invention.
FIG. 8 is an aberration curve diagram of the photographing optical system according to the third embodiment of the present invention.
FIG. 9 is an aberration curve diagram of the photographing optical system according to the fourth embodiment of the present invention.
FIG. 10 is an aberration curve diagram of the fifth embodiment of the imaging optical system of the present invention.
FIG. 11 is a diagram illustrating an image formation and the like of normal light and ghost light of a photographing optical system including a cover glass and an objective lens.
FIG. 12 is an optical path diagram of normal light according to the first embodiment of the present invention.
FIG. 13 is an optical path diagram of ghost light according to the first embodiment of the present invention.
FIG. 14 is a diagram illustrating a configuration of an optical system that does not use a cover glass.
FIG. 15 is a diagram showing a configuration of an optical system using a cover glass of S-BSL7.
FIG. 16 is an optical path diagram of normal light according to a fifth embodiment of the present invention.
FIG. 17 is an optical path diagram of ghost light according to a fifth embodiment of the present invention.
FIG. 18 is a diagram showing image formation positions of normal light and ghost light on a screen.
FIG. 19 is an optical path diagram of normal light of a conventional photographing optical system.
20 is an optical path diagram of ghost light of the conventional photographing optical system shown in FIG.

Claims (3)

物体側から順に、外部に露出したカバーガラスと、対物レンズとよりなり、前記カバーガラスがオートクレーブ耐性を有する材質よりなり、前記対物レンズが、物体側より順に、負の屈折力を持つ前群と明るさ絞りと正の屈折力を持つ後群とより構成され、前記前群の最も物体側の面が物体側に凹面を向けたことを特徴とする撮影光学系。In order from the object side, a cover glass exposed to the outside and an objective lens, the cover glass is made of a material having autoclave resistance, and the objective lens is, in order from the object side, a front group having a negative refractive power. 1. An imaging optical system comprising a brightness stop and a rear group having a positive refractive power, wherein a surface closest to the object side of the front group has a concave surface facing the object side. 対物レンズであって、前記対物レンズは物体側から順に、負の屈折力を持つ前群、明るさ絞り、正の屈折力を持つ後群から構成され、前記前群が物体側に凹面を向けた負レンズよりなり、前記後群が物体側から順に、正レンズと接合レンズとよりなり、前記対物レンズが下記条件(3)、(4)、(5)を満足する。
(3) −0.95<(r+r)/(r−r)<1.05
(4) 1.5<fB/IH<2.7
(5) ν(C)<19
ただし、rは前群の負レンズの物体側の面の曲率半径、rは前群の負レンズの像側の面の曲率半径、fBは対物レンズの最も像側の面から後ろ側焦点位置までの距離、IHは最大像高、ν(C)は接合レンズの負レンズのアッベ数である。
An objective lens, wherein the objective lens includes, in order from the object side, a front group having a negative refractive power, a brightness stop, and a rear group having a positive refractive power, and the front group has a concave surface facing the object side. The rear unit includes a positive lens and a cemented lens in order from the object side, and the objective lens satisfies the following conditions (3), (4), and (5).
(3) -0.95 <(r b + r a) / (r b -r a) <1.05
(4) 1.5 <fB / IH <2.7
(5) ν d (C) <19
However, r a is the radius of curvature of the object side surface of the negative lens of the front group, r b is the radius of curvature of the image side surface of the negative lens of the front group, fB is back focal from the surface located nearest to the image side of the objective lens The distance to the position, IH is the maximum image height, and ν d (C) is the Abbe number of the negative lens of the cemented lens.
物体側から順に、少なくとも外部に露出するカバーガラスと、対物レンズとからなり、前記カバーガラスがオートクレーブ耐性を有する材質からなり、前記対物レンズが、物体側より順に、負の屈折力を持つ前群と、明るさ絞りと、正の屈折力を持つ後群とよりなり、前記前群が物体側に凹面を向けた負レンズからなり、前記後群が物体側から順に正レンズと接合レンズとよりなり、前記対物レンズが次の条件(1)、(2)、(3)、(4)、(5)を満足することを特徴とする撮影光学系。
(1) −2<f/r<−0.02, r<0
(2) 0.13<d/f<1
(3) −0.95<(r+r)/(r−r)<1.05
(4) 1.5<fB/IH<2.7
(5) ν(C)<19
ただし、fは対物レンズ全系の焦点距離、rは前群の負レンズの物体側の面の曲率半径、rは前群の負レンズの像側の面の曲率半径、dは前群の最も物体側に位置するレンズの像側の面から明るさ絞りまでの距離でその間にフィルターが配置されている場合も含め実寸法、fBは対物レンズの最も像側の面から後ろ側焦点位置までの距離、IHは最大像高、ν(C)は接合レンズの負レンズのアッベ数である。
In order from the object side, at least a cover glass exposed to the outside, and an objective lens, wherein the cover glass is made of a material having autoclave resistance, and the objective lens is, in order from the object side, a front group having a negative refractive power. , A brightness stop, and a rear group having a positive refractive power, the front group includes a negative lens having a concave surface facing the object side, and the rear group includes a positive lens and a cemented lens in order from the object side. Wherein the objective lens satisfies the following conditions (1), (2), (3), (4), and (5).
(1) -2 <f / r a <-0.02, r a <0
(2) 0.13 <d F / f <1
(3) -0.95 <(r b + r a) / (r b -r a) <1.05
(4) 1.5 <fB / IH <2.7
(5) ν d (C) <19
However, f is the focal length of the objective lens system, r a is the radius of curvature of the object side surface of the negative lens of the front group, r b is the radius of curvature of the image side surface of the negative lens of the front group, d F before The actual size including the distance between the image-side surface of the lens located closest to the object side of the group and the aperture stop and the filter in between, and fB is the focal point from the most image-side surface of the objective lens to the rear focal point. The distance to the position, IH is the maximum image height, and ν d (C) is the Abbe number of the negative lens of the cemented lens.
JP2002176502A 2002-06-18 2002-06-18 Imaging optical system and endoscope using the same Expired - Fee Related JP4197897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002176502A JP4197897B2 (en) 2002-06-18 2002-06-18 Imaging optical system and endoscope using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176502A JP4197897B2 (en) 2002-06-18 2002-06-18 Imaging optical system and endoscope using the same

Publications (3)

Publication Number Publication Date
JP2004020972A true JP2004020972A (en) 2004-01-22
JP2004020972A5 JP2004020972A5 (en) 2005-09-29
JP4197897B2 JP4197897B2 (en) 2008-12-17

Family

ID=31174788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176502A Expired - Fee Related JP4197897B2 (en) 2002-06-18 2002-06-18 Imaging optical system and endoscope using the same

Country Status (1)

Country Link
JP (1) JP4197897B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251272A (en) * 2005-03-10 2006-09-21 Olympus Medical Systems Corp Endoscope imaging unit
JP2007286372A (en) * 2006-04-18 2007-11-01 Nidec Copal Corp Imaging lens
WO2013018306A1 (en) * 2011-07-29 2013-02-07 富士フイルム株式会社 Imaging lens and imaging device
WO2013018321A1 (en) * 2011-07-29 2013-02-07 富士フイルム株式会社 Imaging lens and imaging device
WO2013018309A1 (en) * 2011-07-29 2013-02-07 富士フイルム株式会社 Imaging lens and imaging device
WO2013018307A1 (en) * 2011-07-29 2013-02-07 富士フイルム株式会社 Image capturing lens and image capturing device
WO2013018316A1 (en) * 2011-07-29 2013-02-07 富士フイルム株式会社 Imaging lens and imaging device
CN103513400A (en) * 2013-08-29 2014-01-15 利达光电股份有限公司 Wide-angle high-resolution pick-up lens
EP2706391A1 (en) * 2011-06-06 2014-03-12 Olympus Medical Systems Corp. Optical unit and endoscope
CN108761766A (en) * 2018-05-29 2018-11-06 浙江大学 Have the endoscope lens of optical amplifier function
WO2020194379A1 (en) * 2019-03-22 2020-10-01 オリンパス株式会社 Endoscope
WO2021176509A1 (en) * 2020-03-02 2021-09-10 オリンパス株式会社 Objective optical system, imaging device, and endoscope

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145614A (en) * 1989-11-01 1991-06-20 Olympus Optical Co Ltd Endoscope objective
JPH0980304A (en) * 1995-09-12 1997-03-28 Olympus Optical Co Ltd Objective lens
JPH09113799A (en) * 1995-10-19 1997-05-02 Konica Corp Retrofocus type photographic lens
JPH10260347A (en) * 1997-03-19 1998-09-29 Fuji Photo Optical Co Ltd Objective for endoscope
WO1999006866A1 (en) * 1997-08-01 1999-02-11 Olympus Optical Co., Ltd. Objective of endoscope
JP2002098888A (en) * 2000-09-25 2002-04-05 Sony Corp Imaging lens
JP2002365535A (en) * 2001-06-08 2002-12-18 Olympus Optical Co Ltd Objective lens for endoscope

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145614A (en) * 1989-11-01 1991-06-20 Olympus Optical Co Ltd Endoscope objective
JPH0980304A (en) * 1995-09-12 1997-03-28 Olympus Optical Co Ltd Objective lens
JPH09113799A (en) * 1995-10-19 1997-05-02 Konica Corp Retrofocus type photographic lens
JPH10260347A (en) * 1997-03-19 1998-09-29 Fuji Photo Optical Co Ltd Objective for endoscope
WO1999006866A1 (en) * 1997-08-01 1999-02-11 Olympus Optical Co., Ltd. Objective of endoscope
JP2002098888A (en) * 2000-09-25 2002-04-05 Sony Corp Imaging lens
JP2002365535A (en) * 2001-06-08 2002-12-18 Olympus Optical Co Ltd Objective lens for endoscope

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575198B2 (en) * 2005-03-10 2010-11-04 オリンパスメディカルシステムズ株式会社 Endoscopic imaging unit
JP2006251272A (en) * 2005-03-10 2006-09-21 Olympus Medical Systems Corp Endoscope imaging unit
JP2007286372A (en) * 2006-04-18 2007-11-01 Nidec Copal Corp Imaging lens
EP2706391A1 (en) * 2011-06-06 2014-03-12 Olympus Medical Systems Corp. Optical unit and endoscope
US9106848B2 (en) 2011-06-06 2015-08-11 Olympus Medical Systems Corp. Optical unit and endoscope including the optical unit
EP2706391A4 (en) * 2011-06-06 2014-11-05 Olympus Medical Systems Corp Optical unit and endoscope
JPWO2013018306A1 (en) * 2011-07-29 2015-03-05 富士フイルム株式会社 Imaging lens and imaging apparatus
WO2013018306A1 (en) * 2011-07-29 2013-02-07 富士フイルム株式会社 Imaging lens and imaging device
US9477068B2 (en) * 2011-07-29 2016-10-25 Fujifilm Corporation Imaging lens and imaging apparatus
WO2013018307A1 (en) * 2011-07-29 2013-02-07 富士フイルム株式会社 Image capturing lens and image capturing device
US20140118853A1 (en) * 2011-07-29 2014-05-01 Fujifilm Corporation Imaging lens and imaging apparatus
WO2013018309A1 (en) * 2011-07-29 2013-02-07 富士フイルム株式会社 Imaging lens and imaging device
WO2013018321A1 (en) * 2011-07-29 2013-02-07 富士フイルム株式会社 Imaging lens and imaging device
JPWO2013018316A1 (en) * 2011-07-29 2015-03-05 富士フイルム株式会社 Imaging lens and imaging apparatus
US9036279B2 (en) 2011-07-29 2015-05-19 Fujifilm Corporation Imaging lens and imaging apparatus
WO2013018316A1 (en) * 2011-07-29 2013-02-07 富士フイルム株式会社 Imaging lens and imaging device
US9176306B2 (en) 2011-07-29 2015-11-03 Fujifilm Coporation Imaging lens and imaging apparatus
US9335523B2 (en) 2011-07-29 2016-05-10 Fujifilm Corporation Imaging lens and imaging apparatus
CN105629444A (en) * 2011-07-29 2016-06-01 富士胶片株式会社 Imaging lens and imaging apparatus
CN103513400A (en) * 2013-08-29 2014-01-15 利达光电股份有限公司 Wide-angle high-resolution pick-up lens
CN108761766A (en) * 2018-05-29 2018-11-06 浙江大学 Have the endoscope lens of optical amplifier function
CN108761766B (en) * 2018-05-29 2023-08-04 浙江大学 Endoscope objective lens with optical amplification function
WO2020194379A1 (en) * 2019-03-22 2020-10-01 オリンパス株式会社 Endoscope
CN113613544A (en) * 2019-03-22 2021-11-05 奥林巴斯株式会社 Endoscope with a detachable handle
CN113613544B (en) * 2019-03-22 2024-05-28 奥林巴斯株式会社 Endoscope with a lens
WO2021176509A1 (en) * 2020-03-02 2021-09-10 オリンパス株式会社 Objective optical system, imaging device, and endoscope

Also Published As

Publication number Publication date
JP4197897B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP4575198B2 (en) Endoscopic imaging unit
JP4229754B2 (en) Objective lens and endoscope using the same
US5999327A (en) Objective lens system
JP4914136B2 (en) Zoom lens and imaging apparatus having the same
CN109416459B (en) Endoscope objective optical system
JP4909089B2 (en) Zoom lens and imaging apparatus having the same
JP6095877B1 (en) Endoscope objective optical system
CN106842518B (en) Endoscopic image pickup objective optical system
JPWO2017043351A1 (en) Endoscope variable magnification optical system and endoscope
JP4197897B2 (en) Imaging optical system and endoscope using the same
CN111868599B (en) Objective optical system for endoscope
JP2009251520A (en) Camera head optical system
JP4814746B2 (en) Endoscope objective optical system
JP3758801B2 (en) Endoscope objective lens system
JP2013250290A (en) Rear converter lens, optical device, and method for manufacturing rear converter lens
JP3574484B2 (en) Objective optical system for endoscope
JP3746849B2 (en) Endoscope objective lens
CN107703606B (en) Objective optical system for endoscope and endoscope
JP7047075B2 (en) Endoscope objective optical system, image pickup device and endoscope
JP2001133684A (en) Photographic lens
JP4648670B2 (en) Endoscope objective optical system and endoscope
JPH10111452A (en) Endoscopic objective lens
JP3742484B2 (en) Endoscope objective lens system
JP2004226722A (en) Objective optical system for endoscope using optical path deflecting device
JPWO2020174561A1 (en) Objective optical system for endoscopes and endoscopes

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees