JPH10115259A - Egr flow amount diagnostic device for internal combustion engine - Google Patents

Egr flow amount diagnostic device for internal combustion engine

Info

Publication number
JPH10115259A
JPH10115259A JP8269621A JP26962196A JPH10115259A JP H10115259 A JPH10115259 A JP H10115259A JP 8269621 A JP8269621 A JP 8269621A JP 26962196 A JP26962196 A JP 26962196A JP H10115259 A JPH10115259 A JP H10115259A
Authority
JP
Japan
Prior art keywords
combustion engine
internal combustion
egr
flow rate
state parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8269621A
Other languages
Japanese (ja)
Inventor
Eisaku Fukuchi
栄作 福地
Akito Numata
明人 沼田
Takanobu Ichihara
隆信 市原
Yuji Ikeda
勇次 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP8269621A priority Critical patent/JPH10115259A/en
Publication of JPH10115259A publication Critical patent/JPH10115259A/en
Pending legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To diagnose a recirculation amount of EGR during control of the EGR. SOLUTION: In an internal combustion engine system having an exhaust gas recirculating device EGR, a valve control means 103 of the EGR, a detection means 102 of an internal combustion engine condition parameter and an estimation means 101 are set, an actual intake pressure at EGR time is detected, here, an intake pressure at the time with no EGR applied is estimated. A difference between output values of these means represents an EGR partial pressure value. In a condition that an EGR valve opening is almost fully closed, so as to make the EGR partial pressure value zero, a gain of the estimation means 101 of the internal combustion engine parameter is adjusted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関のNOx低
減のために取り付けられたEGRシステムの流量診断に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate diagnosis of an EGR system installed for reducing NOx of an internal combustion engine.

【0002】[0002]

【従来の技術】内燃機関の排気系に三元触媒を設置し、
排気ガス中の炭化水素HC,一酸化炭素CO,酸化窒素
酸化物NOxを浄化する技術で、三元触媒の浄化能力が
効率良くなる理論空燃比を中心に実空燃比を制御するた
めに、空燃比検出手段を三元触媒より上流の排気系に設
置し、排気ガス中の酸素濃度を内燃機関制御装置にフィ
ードバックさせることは公知技術である。また、混合気
に空気中のN2 に比べて熱容量の大きいCO2 ガスを含
む排気ガスを適度に混入すると、同じ発熱量の燃焼を行
っても、排気ガスを混入しない場合に比べて燃焼温度が
下がりNOxの生成を抑制できる。これが排気ガス再循
環(以下EGR)であり、EGR流量診断の公知技術と
してEGRバルブを開閉し、その閉動作する前後の運転
状態からEGR流量診断を行う方式が特開平6−31571号
公報としてある。
2. Description of the Related Art A three-way catalyst is installed in an exhaust system of an internal combustion engine,
A technology for purifying hydrocarbons HC, carbon monoxide CO, and nitric oxide NOx in exhaust gas. In order to control the actual air-fuel ratio centering on the stoichiometric air-fuel ratio at which the purification performance of the three-way catalyst becomes efficient, It is a known technique to provide a fuel ratio detecting means in an exhaust system upstream of a three-way catalyst and feed back an oxygen concentration in exhaust gas to an internal combustion engine control device. In addition, when the mixture gas is appropriately mixed with exhaust gas containing CO 2 gas having a larger heat capacity than N 2 in the air, the combustion temperature is higher than when no exhaust gas is mixed even if the same calorific value is burned. And generation of NOx can be suppressed. This is known as exhaust gas recirculation (hereinafter referred to as EGR). As a known technique for EGR flow rate diagnosis, Japanese Patent Laid-Open Publication No. Hei 6-31571 discloses a method for performing EGR flow rate diagnosis based on operating conditions before and after the EGR valve is closed and opened. .

【0003】[0003]

【発明が解決しようとする課題】米国加州のAir Resour
ces Board により提案されたOn-Board Diagnosis Phase
IIにより、EGR装置の持つ自動車はEGR還流量をモ
ニタすることが義務づけられることになる。本発明はこ
れに対応したEGR流量の検出手段を課題とした。
[Problems to be Solved by the Invention] Air Resour in California, USA
On-Board Diagnosis Phase proposed by ces Board
According to II, the vehicle equipped with the EGR device is required to monitor the EGR recirculation amount. An object of the present invention is to provide a means for detecting the EGR flow rate corresponding to this.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
の本発明による内燃機関の燃焼状態検出装置は、基本的
に、排気ガス還流装置EGRを有する内燃機関システム
において、上記EGRのバルブ制御手段と、内燃機関状
態パラメータ検出手段と、内燃機関状態パラメータ推定
手段と、上記検出及び推定した内燃機関状態パラメータ
を比較する、内燃機関状態パラメータ比較手段と、上記
比較値からEGR流量を判定する、EGR流量判定手段
と、内燃機関状態パラメータ推定手段を修正する、内燃
機関状態パラメータ修正手段と、を備えた。
A combustion state detecting apparatus for an internal combustion engine according to the present invention for solving the above-mentioned problems is basically provided in an internal combustion engine system having an exhaust gas recirculation device EGR. An internal combustion engine state parameter detecting means, an internal combustion engine state parameter estimating means, an internal combustion engine state parameter comparing means for comparing the detected and estimated internal combustion engine state parameters, and an EGR flow rate judging from the comparison value. There is provided a flow rate determining means and an internal combustion engine state parameter correcting means for correcting the internal combustion engine state parameter estimating means.

【0005】EGRがかかっている時の実吸気圧を内燃
機関状態パラメータ検出手段により検出し、その時にE
GRがかかっていない時の吸気圧を内燃機関状態パラメ
ータ推定手段から推定する。上記手段の出力値の差は、
EGR分圧値を示す。この時、内燃機関状態パラメータ
推定手段の精度を向上させるために、EGRバルブ開度
がほぼ全閉の状態において、上記EGR分圧値が零にな
るように、内燃機関状態パラメータ推定手段のゲインを
調整する。
[0005] The actual intake pressure when EGR is applied is detected by an internal combustion engine state parameter detecting means.
The intake pressure when GR is not applied is estimated from the internal combustion engine state parameter estimating means. The difference between the output values of the above means is
This shows the EGR partial pressure value. At this time, in order to improve the accuracy of the internal combustion engine state parameter estimating means, the gain of the internal combustion engine state parameter estimating means is adjusted so that the EGR partial pressure value becomes zero when the EGR valve opening is almost fully closed. adjust.

【0006】[0006]

【発明の実施の形態】以下、実施例に基づき、本発明に
よる内燃機関のEGR流量診断装置及びそれによる診断
方法を詳細に説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an EGR flow rate diagnosing apparatus for an internal combustion engine according to an embodiment of the present invention;

【0007】図1に本発明のブロック図を示す。図よ
り、ブロック101の内燃機関状態パラメータ推定手段
により吸気圧を推定し、ブロック102の内燃機関状態
パラメータ検出手段により吸気圧を検出する。そして、
ブロック103のEGRバルブ制御手段によって、EG
Rバルブを制御し、ブロック104の内燃機関状態パラ
メータ比較手段にて、EGR分圧を検出する。この時、
ブロック105の内燃機関状態パラメータ修正手段によ
って、内燃機関状態パラメータ推定手段のゲインを調整
する。最後にブロック106のEGR流量判定手段で、
EGR流量が所定値以上かどうか判定する。
FIG. 1 shows a block diagram of the present invention. As shown in the figure, the intake pressure is estimated by the internal combustion engine state parameter estimating means in block 101, and the intake pressure is detected by the internal combustion engine state parameter detecting means in block 102. And
EG is controlled by the EGR valve control means in block 103.
The R valve is controlled, and the EGR partial pressure is detected by the internal combustion engine state parameter comparison means in block 104. At this time,
The gain of the internal combustion engine state parameter estimating means is adjusted by the internal combustion engine state parameter correcting means in block 105. Finally, the EGR flow rate determination means in block 106
It is determined whether the EGR flow is equal to or more than a predetermined value.

【0008】図2に本発明の対象となる内燃機関システ
ムを示す。内燃機関,吸気系,排気系からなり、内燃機
関には点火装置201,燃料噴射装置202及び回転数
検出手段203が取り付けられている。また吸気系には
エアークリーナ,吸気温度検出手段,流量検出手段20
4が取り付けられ、排気系には空燃比センサ205,三
元触媒206が取り付けられている。内燃機関制御装置
207は流量検出手段204の出力信号Qaと回転数検
出手段203によってリングギアまたはプレート208
の回転数Neを取り込み、燃料噴射量Tiを計算し、燃
料噴射装置の噴射量を制御する。また、内燃機関制御装
置207は、内燃機関内の空燃比を空燃比センサ205
から検出し、内燃機関内の空燃比を理論空燃比になるよ
うに燃料噴射量Tiを補正する空燃比フィードバック制
御を行う。
FIG. 2 shows an internal combustion engine system to which the present invention is applied. The engine includes an internal combustion engine, an intake system, and an exhaust system. The internal combustion engine is provided with an ignition device 201, a fuel injection device 202, and a rotation speed detecting means 203. The intake system includes an air cleaner, intake temperature detecting means, and flow rate detecting means 20.
4, and an exhaust system is provided with an air-fuel ratio sensor 205 and a three-way catalyst 206. The internal combustion engine control device 207 uses the output signal Qa of the flow rate detection means 204 and the rotation speed detection means 203 to generate a ring gear or plate 208.
, The fuel injection amount Ti is calculated, and the injection amount of the fuel injection device is controlled. Further, the internal combustion engine control device 207 uses the air-fuel ratio sensor 205
The air-fuel ratio feedback control for correcting the fuel injection amount Ti so that the air-fuel ratio in the internal combustion engine becomes the stoichiometric air-fuel ratio is performed.

【0009】さらに、混合気に空気中のN2 に比べて熱
容量の大きいCO2 ガスを含む排気ガスを適度に混入す
ると、同じ発熱量の燃焼を行っても、排気ガスを混入し
ない場合に比べて燃焼温度が下がりNOxの生成を抑制
できる。これを排気ガス再循環(EGR)と呼び、内燃
機関制御装置207がEGRバルブ209を制御し、こ
れを実現している。本発明は、このEGRの還流量診断
に関する。
Further, when an exhaust gas containing CO 2 gas having a larger heat capacity than N 2 in the air is appropriately mixed into the air-fuel mixture, even if the same calorific value is burned, no exhaust gas is mixed. As a result, the combustion temperature decreases, and the generation of NOx can be suppressed. This is called exhaust gas recirculation (EGR), and the internal combustion engine control device 207 controls the EGR valve 209 to realize this. The present invention relates to the diagnosis of the EGR recirculation amount.

【0010】EGRは、排気ガスの一部を吸気系に循環
させて、NOxの低減をはかる装置であり、EGR流量
と吸入空気量の比を一般にEGR率と呼び、数1で定義
される。
The EGR is a device for circulating a part of the exhaust gas to the intake system to reduce NOx. The ratio between the EGR flow rate and the intake air amount is generally called an EGR rate, and is defined by the following equation (1).

【0011】[0011]

【数1】 (Equation 1)

【0012】但し、 QEGR :EGRによる還流量,Pe:EGR分圧,Q
a:吸入空気量,Pa:実吸気圧,L:負荷,Ne:回
転数,K1:定数 ここで、数1を整理すると数2が得られ、これから、E
GR還流量QEGR がPeとNeの積に比例することが分
かる。
Here, Q EGR : recirculation amount by EGR, Pe: EGR partial pressure, Q
a: intake air amount, Pa: actual intake pressure, L: load, Ne: rotation speed, K1: constant Here, when rearranging equation (1), equation (2) is obtained.
It can be seen that the GR reflux amount Q EGR is proportional to the product of Pe and Ne.

【0013】[0013]

【数2】 QEGR=K1・Pe・Ne …(数2) これは、所望する回転数Naと、その時のEGR分圧P
enの積が、測定時の回転数Neと、その時のEGR分
圧Peの積に等しいことを示している。従って、数3が
成立し、
## EQU2 ## Q EGR = K1 · Pe · Ne (Equation 2) This is the desired rotational speed Na and the EGR partial pressure P at that time.
This shows that the product of en is equal to the product of the rotational speed Ne at the time of measurement and the EGR partial pressure Pe at that time. Therefore, Equation 3 holds,

【0014】[0014]

【数3】 Pen・Na=Pe・Ne …(数3) 但し、 Na:正規化回転数,Pen:正規化EGR分圧 数3から、所望回転数Na時のPenを検出することが
できる。
[Equation 3] Pen · Na = Pe · Ne (Equation 3) where Na: normalized rotation speed, Pen: normalized EGR partial pressure From the expression 3, Pen at the desired rotation speed Na can be detected.

【0015】では、次に、Peを検出する方法について
記述する。Peを求めるためには、実際にEGRがかか
っている時の吸気圧Paを測定し、その時にEGRがか
かっていない時の吸気圧P0を推定する。差圧がEGR
によって増加したEGR分圧Peになる。つまり、数4
が成立し、P0を推定することが重要になる。
Next, a method for detecting Pe will be described. In order to obtain Pe, the intake pressure Pa when EGR is actually applied is measured, and the intake pressure P0 when EGR is not applied at that time is estimated. Differential pressure is EGR
The EGR partial pressure Pe thus increased. That is, Equation 4
Holds, and it is important to estimate P0.

【0016】[0016]

【数4】 Pe=Pa−P0 …(数4) 上記のP0を求めるためには、図3に示す吸気系モデル
を考える。このモデルは、計測された空気量Qaが、イ
ンテークマニホールドチャージ現象によって滞留し、そ
の後、各気筒に流入する空気量Qcになることを示して
いる。ここで、計算される吸気圧をP0とすると、数
5,数6が成立する。
(Equation 4) Pe = Pa−P0 (Equation 4) In order to obtain the above P0, consider the intake system model shown in FIG. This model indicates that the measured air amount Qa stays due to the intake manifold charge phenomenon, and then becomes the air amount Qc flowing into each cylinder. Here, assuming that the calculated intake pressure is P0, Equations 5 and 6 hold.

【0017】[0017]

【数5】 (Equation 5)

【0018】[0018]

【数6】 (Equation 6)

【0019】数6は、吸気系の構造で決定するパラメー
タからなるため、予め、回転数Neと推定吸気圧P0の
マップによって設定できる。上記推定吸気圧P0は、吸
気系の全てのバイパス系の影響を受けないため、EGR
がかかっていても、EGRがかかっていない時の値を示
す。数5,数6から作成できる吸気圧推定ブロック図を
図4に示す。推定吸気圧P0と空気量Qaの関係は、回
転数Neによって、遮断周波数が変化する一種の低域通
過フィルタと考えることができる。以上より、吸気圧セ
ンサから実吸気圧Paを測定し、数5,数6より、推定
吸気圧P0を求めることによって、その差圧をEGR分
圧Peとすることができる。
Equation (6) consists of parameters determined by the structure of the intake system, and can be set in advance by a map of the rotational speed Ne and the estimated intake pressure P0. Since the estimated intake pressure P0 is not affected by all the bypass systems of the intake system, EGR
It shows the value when EGR is not applied even if it is applied. FIG. 4 shows an intake pressure estimation block diagram that can be created from Equations 5 and 6. The relationship between the estimated intake pressure P0 and the air amount Qa can be considered as a kind of low-pass filter whose cutoff frequency changes depending on the rotation speed Ne. As described above, by measuring the actual intake pressure Pa from the intake pressure sensor and obtaining the estimated intake pressure P0 from Equations 5 and 6, the differential pressure can be used as the EGR partial pressure Pe.

【0020】図5に推定吸気圧と実吸気圧を示す。EG
Rがかかっていない場合は、実吸気圧Paと推定吸気圧
P0は、ほぼ一致しているが、EGRがかかると、実吸
気圧Paが推定吸気圧P0よりも高くなり、その差圧が
EGR分圧Peとなる。
FIG. 5 shows the estimated intake pressure and the actual intake pressure. EG
When R is not applied, the actual intake pressure Pa and the estimated intake pressure P0 are almost the same, but when EGR is applied, the actual intake pressure Pa becomes higher than the estimated intake pressure P0, and the differential pressure becomes equal to the EGR. The partial pressure becomes Pe.

【0021】以上の方式により、Penを検出すること
ができる。だが、本方式はEGRバルブが全閉時に、P
aとPenが等しくなり、差圧が必ず零となることを前
提としている。ところが、実際はQaの脈動の影響,温
度の影響,大気圧の影響等により、推定吸気圧P0の推
定精度が低下し、EGRバルブを全閉にしても、必ずし
も差圧Peは零にはならない(図5では、ほぼ零)。そ
こで、本発明は、上記吸気圧推定方式に所定のゲインを
設定し、EGRが所定値1(ほぼ全閉)以下の時に、実
吸気圧Paと推定吸気圧P0の差圧が零になるようにゲ
インを調整する。そして、EGRバルブが所定値2以上
(所定値2は所定値1より大)になった場合に、実吸気
圧Paを測定し、上記のゲイン調整された推定吸気圧P
0から数3を用いて、正規化EGR分圧Penを検出す
る。この正規化EGR分圧Penが所定値より大きい
時、正常判定とし、以下の場合異常判定とする。
With the above method, Pen can be detected. However, in this system, when the EGR valve is fully closed, P
It is assumed that a and Pen are equal and the differential pressure is always zero. However, actually, the estimation accuracy of the estimated intake pressure P0 decreases due to the influence of the pulsation of Qa, the influence of the temperature, the influence of the atmospheric pressure, and the like, and even if the EGR valve is fully closed, the differential pressure Pe does not always become zero ( In FIG. 5, it is almost zero). Therefore, the present invention sets a predetermined gain in the above-described intake pressure estimation method, and when the EGR is equal to or less than a predetermined value 1 (almost fully closed), the differential pressure between the actual intake pressure Pa and the estimated intake pressure P0 becomes zero. Adjust the gain to. Then, when the EGR valve becomes equal to or more than a predetermined value 2 (the predetermined value 2 is larger than the predetermined value 1), the actual intake pressure Pa is measured, and the estimated intake pressure P with the above-mentioned gain adjustment is measured.
The normalized EGR partial pressure Pen is detected by using Expression 3 from 0. When the normalized EGR partial pressure Pen is larger than a predetermined value, the normal judgment is made, and in the following cases, the abnormality judgment is made.

【0022】この処理を示した図を図6に示す。ステッ
プ601で、空気量Qaを測定し、フィルタリングす
る。フィルタリングはQaの過渡応答を改善するための
ものである。ステップ602で、回転数Neを測定す
る。次にステップ603で、推定吸気圧P0の変化分を
求める。そして、ステップ604で、推定吸気圧P0の
変化分を積分し、推定吸気圧P0を求める。ここで、ス
テップ603のKはK=R・Tm/Vmであり、Qcと
P0old には初期値を与えておく。また、ステップ60
5で、推定吸気圧P0の平均値P0mを求め、ステップ
606で、推定平均吸気圧P0mに所定のゲインaをか
ける。ステップ607で、EGR外のバイパス系の変動
がないことを確認した後に、ステップ608で、EGR
バルブ開度を調べる。通常、EGR開度は回転数と負荷
のマップ値であり、運転状態によって、その値が変化す
る。このEGRバルブ開度が、所定値1以下の場合は、
ステップ616で実吸気圧paを測定し、平均値pam
を求める。ステップ617で、実平均吸気圧Pamと修
正された推定平均吸気圧P0maの差ΔPを求める。ス
テップ618で、ΔPが所定範囲(ε0〜ε1)であれ
ば、ΔPは、ほぼ零とみなし、ステップ619で、ΔP
がε0より小さい場合は、ステップ620で、ゲインa
を減少させ、ΔPがε1より大きい場合は、ステップ6
21で、ゲインaを増加させる。ここで、ゲインaを増
加及び減少させる単位量(Δa)は、定数または、吸気
温度の関数として与えられる。そして、ステップ622
で、ゲインaを1サンプリングずらして、バックアップ
する。
FIG. 6 shows this process. In step 601, the air amount Qa is measured and filtered. The filtering is for improving the transient response of Qa. In step 602, the rotational speed Ne is measured. Next, in step 603, a change in the estimated intake pressure P0 is obtained. Then, in step 604, the estimated intake pressure P0 is obtained by integrating the variation of the estimated intake pressure P0. Here, K in step 603 is K = R.Tm / Vm, and initial values are given to Qc and P0old. Step 60
In step 5, an average value P0m of the estimated intake pressure P0 is obtained, and in step 606, a predetermined gain a is applied to the estimated average intake pressure P0m. After confirming in step 607 that there is no fluctuation of the bypass system outside the EGR, in step 608, the EGR
Check the valve opening. Normally, the EGR opening is a map value of the rotation speed and the load, and the value changes depending on the operation state. If the EGR valve opening is equal to or less than a predetermined value 1,
In step 616, the actual intake pressure pa is measured, and the average value
Ask for. In step 617, a difference ΔP between the actual average intake pressure Pam and the corrected estimated average intake pressure P0ma is determined. If ΔP is within a predetermined range (ε0−ε1) in step 618, ΔP is regarded as substantially zero, and in step 619, ΔP
Is smaller than ε0, in step 620, the gain a
And if ΔP is greater than ε1, step 6
At 21, the gain a is increased. Here, the unit amount (Δa) for increasing and decreasing the gain a is given as a constant or a function of the intake air temperature. Then, step 622
Then, the gain a is shifted by one sampling to back up.

【0023】また、ステップ608で、EGRバルブ開
度が、所定値1から所定値2の範囲であれば、何も行わ
ず、所定値2以上になった場合、ステップ609で、実
吸気圧paを測定し、平均値pamを求める。ステップ
610で、実平均吸気圧Pamと修正された推定平均吸気
圧Pomaの差Peを求める。また、ステップ611
で、所望の回転数時のPenを求めるために、測定時の
回転数Neと所望の回転数Naの比を、Peにかける。
ステップ612で、判定値を大気圧のテーブルから検索
し、ステップ613で、Penが判定値より、大きい場
合、ステップ614で、正常判定し、Penが判定値以下
の場合、ステップ615で、異常判定する。
If it is determined in step 608 that the EGR valve opening is in the range of the predetermined value 1 to the predetermined value 2, nothing is performed. Is measured, and an average value pam is obtained. In step 610, a difference Pe between the actual average intake pressure Pam and the corrected estimated average intake pressure Poma is determined. Step 611
Then, in order to obtain Pen at the desired rotation speed, Pe is multiplied by the ratio of the rotation speed Ne at the measurement and the desired rotation speed Na.
In step 612, a determination value is retrieved from the atmospheric pressure table. In step 613, if Pen is larger than the determination value, normality is determined in step 614. If Pen is equal to or less than the determination value, abnormality determination is performed in step 615. I do.

【0024】最後に、ステップ623で、回転数Neと
推定吸気圧Pから気筒流入空気量Qcをマップ検索し、
ステップ624で、推定吸気圧Pを1サンプリングずら
して、バックアップする。
Finally, at step 623, a map search is performed for the cylinder inflow air amount Qc from the rotational speed Ne and the estimated intake pressure P,
In step 624, the estimated intake pressure P is backed up by shifting one sampling.

【0025】また、他の態様として、EGRがかかって
いる時の、実吸気圧Paと推定吸気圧P0の比から診断
する方法も考えられる。この場合のEGR流量診断PA
D図を図7に示す。図6との相違点は、ステップ61
0,617とであり、それぞれが、ステップ710,7
17に変更になる。ステップ710は、実平均吸気圧P
amと修正された推定平均吸気圧P0maの比を求め、
診断値として使用する。また、ステップ717は、実平
均吸気圧Pamと修正された推定平均吸気圧P0maの
比を求め、ゲインaの更新に使用する。他のステップは
図6と同様の機能をもつ。
As another mode, a method of diagnosing from the ratio between the actual intake pressure Pa and the estimated intake pressure P0 when EGR is applied can be considered. EGR flow rate diagnosis PA in this case
Fig. D is shown in Fig. 7. The difference from FIG.
0, 617, respectively, which are steps 710, 7
It will be changed to 17. In step 710, the actual average intake pressure P
am and the corrected estimated average intake pressure P0ma are determined,
Used as a diagnostic value. In step 717, a ratio between the actual average intake pressure Pam and the corrected estimated average intake pressure P0ma is obtained and used for updating the gain a. Other steps have the same functions as in FIG.

【0026】以上より、EGRバルブがほぼ全閉時にお
いて、推定吸気圧を実吸気圧に、一致するように修正
し、EGR制御中にEGRの流量を診断することができ
る。
As described above, when the EGR valve is almost fully closed, the estimated intake pressure is corrected to match the actual intake pressure, and the EGR flow can be diagnosed during the EGR control.

【0027】[0027]

【発明の効果】EGR制御中に、EGRの還流量を診断
することができる。
The recirculation amount of EGR can be diagnosed during the EGR control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のブロック図。FIG. 1 is a block diagram of the present invention.

【図2】本発明の対象になる内燃機関システムのブロッ
ク図。
FIG. 2 is a block diagram of an internal combustion engine system to which the present invention is applied.

【図3】インマニ圧推定モデルの説明図。FIG. 3 is an explanatory diagram of an intake manifold pressure estimation model.

【図4】インマニ圧推定のブロック図。FIG. 4 is a block diagram of intake manifold pressure estimation.

【図5】推定インマニ圧とEGRがかかっている時の実
インマニ圧との差の説明図。
FIG. 5 is an explanatory diagram of a difference between an estimated intake manifold pressure and an actual intake manifold pressure when EGR is applied.

【図6】本発明のPAD図。FIG. 6 is a PAD diagram of the present invention.

【図7】本発明のPAD図。FIG. 7 is a PAD diagram of the present invention.

【符号の説明】[Explanation of symbols]

101…内燃機関状態パラメータ推定手段、102…内
燃機関状態パラメータ検出手段、103…EGRバルブ
制御手段、104…内燃機関状態パラメータ比較手段、
105…内燃機関状態パラメータ修正手段、106…E
GR流量判定手段。
101: internal combustion engine state parameter estimating means, 102: internal combustion engine state parameter detecting means, 103: EGR valve control means, 104: internal combustion engine state parameter comparing means,
105 ... internal combustion engine state parameter correction means, 106 ... E
GR flow rate determining means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 市原 隆信 茨城県ひたちなか市大字高場2520番地 株 式会社日立製作所自動車機器事業部内 (72)発明者 池田 勇次 茨城県ひたちなか市高場2477番地 株式会 社日立カーエンジニアリング内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Takanobu Ichihara 2520 Ojitakaba, Hitachinaka City, Ibaraki Prefecture Inside the Automotive Equipment Division, Hitachi, Ltd. (72) Inventor Yuji Ikeda 2477 Takaba, Hitachinaka City, Ibaraki Prefecture Within Hitachi Car Engineering

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】排気ガス還流装置のEGRを有する内燃機
関システムにおいて、上記EGRのバルブ制御手段と、
内燃機関状態パラメータ検出手段と、内燃機関状態パラ
メータ推定手段と、上記検出及び推定した内燃機関状態
パラメータを比較する、内燃機関状態パラメータ比較手
段と、上記比較値からEGR流量を判定する、EGR流
量判定手段と、上記内燃機関状態パラメータ推定手段を
修正する内燃機関状態パラメータ修正手段とを備えたこ
とを特徴とする内燃機関のEGR流量診断装置。
In an internal combustion engine system having an EGR of an exhaust gas recirculation device, the EGR valve control means includes:
Internal-combustion-engine state parameter detecting means, internal-combustion-engine state parameter estimating means, internal-combustion-engine state parameter comparing means for comparing the detected and estimated internal-combustion-engine state parameters, and EGR flow rate determination from the comparison values; Means for correcting internal combustion engine state parameter estimation means for correcting the internal combustion engine state parameter estimation means.
【請求項2】請求項1において、上記内燃機関状態パラ
メータは吸気圧であり、上記内燃機関状態パラメータを
検出する手段は吸気圧を測定する手段であり、内燃機関
状態パラメータを推定する手段は吸気圧を推定する手段
である内燃機関のEGR流量診断装置。
2. The system according to claim 1, wherein the internal combustion engine state parameter is an intake pressure, the means for detecting the internal combustion engine state parameter is a means for measuring the intake pressure, and the means for estimating the internal combustion engine state parameter is an intake pressure. An EGR flow rate diagnostic device for an internal combustion engine, which is means for estimating an atmospheric pressure.
【請求項3】請求項1または2において、上記吸気圧を
推定する手段は、回転数と空気量から求められ、吸気系
のあらゆるバイパス系の影響を受けない内燃機関のEG
R流量診断装置。
3. The EG of an internal combustion engine according to claim 1, wherein the means for estimating the intake pressure is obtained from a rotational speed and an air amount and is not affected by any bypass system of the intake system.
R flow rate diagnostic device.
【請求項4】請求項1,2または3において、上記吸気
圧を推定する手段は、EGRがかかっている場合でも、
EGRがかかっていない時の吸気圧を推定する内燃機関
のEGR流量診断装置。
4. The apparatus according to claim 1, wherein said means for estimating the intake pressure is provided even when EGR is applied.
An EGR flow rate diagnostic device for an internal combustion engine that estimates intake pressure when EGR is not applied.
【請求項5】請求項1,2,3または4において、上記
内燃機関状態パラメータ修正手段は、上記内燃機関状態
パラメータ推定手段のゲインを調整する内燃機関のEG
R流量診断装置。
5. An internal combustion engine EG according to claim 1, wherein said internal combustion engine state parameter correcting means adjusts a gain of said internal combustion engine state parameter estimating means.
R flow rate diagnostic device.
【請求項6】請求項1,2,3,4または5において、
上記内燃機関状態パラメータ修正手段は、上記内燃機関
状態パラメータ検出手段の検出値に、上記内燃機関状態
パラメータ推定手段の推定値が、一致するようにゲイン
を調整する内燃機関のEGR流量診断装置。
6. The method of claim 1, 2, 3, 4, or 5,
An internal combustion engine EGR flow rate diagnostic device for adjusting a gain such that the estimated value of the internal combustion engine state parameter estimating means matches the detected value of the internal combustion engine state parameter detecting means.
【請求項7】上記内燃機関状態パラメータ修正手段は、
上記内燃機関状態パラメータ検出手段の検出値が、上記
内燃機関状態パラメータ推定手段の推定値より大きい場
合、上記内燃機関状態パラメータ推定手段のゲインを増
加させ、小さい場合、減少させる請求項1,2,3,
4,5または6に記載の内燃機関のEGR流量診断装
置。
7. The internal combustion engine state parameter correcting means,
The gain of the internal combustion engine state parameter estimating means is increased when the detected value of the internal combustion engine state parameter detecting means is larger than the estimated value of the internal combustion engine state parameter estimating means, and is decreased when the detected value is smaller. 3,
7. The apparatus for diagnosing EGR flow of an internal combustion engine according to 4, 5, or 6.
【請求項8】上記内燃機関状態パラメータ修正手段のゲ
イン増加減量は、定数または、吸気温度の関数である請
求項1,2,3,4,5,6または7に記載の内燃機関
のEGR流量診断装置。
8. The EGR flow rate of an internal combustion engine according to claim 1, wherein the gain increase / decrease of said internal combustion engine state parameter correcting means is a constant or a function of an intake air temperature. Diagnostic device.
【請求項9】上記のゲイン調整は、吸入空気量とバイパ
ス系の流量の比が、所定値以下の場合に実行される請求
項1,2,3,4,5,6,7または8に記載の内燃機
関のEGR流量診断装置。
9. The method according to claim 1, wherein said gain adjustment is performed when a ratio between an intake air amount and a flow rate of a bypass system is equal to or less than a predetermined value. An EGR flow rate diagnostic device for an internal combustion engine according to any one of the preceding claims.
【請求項10】上記のゲイン調整は、バイパス系バルブ
の開度が、所定値以下の場合に実行される請求項1,
2,3,4,5,6,7,8または9に記載の内燃機関
のEGR流量診断装置。
10. The gain control according to claim 1, wherein said gain adjustment is performed when an opening of said bypass valve is equal to or less than a predetermined value.
10. The EGR flow rate diagnostic device for an internal combustion engine according to 2, 3, 4, 5, 6, 7, 8, or 9.
【請求項11】上記のゲイン調整は、上記EGRバルブ
開度が所定値以下の場合に実行される請求項1,2,
3,4,5,6,7,8,9または10に記載の内燃機
関のEGR流量診断装置。
11. The gain adjustment is performed when the EGR valve opening is equal to or less than a predetermined value.
The apparatus for diagnosing EGR flow of an internal combustion engine according to any one of 3, 4, 5, 6, 7, 8, 9 and 10.
【請求項12】上記のゲイン調整が行われない条件は、
上記EGRバルブ開度が所定値以上であり、この条件成
立時にEGR流量の判定が行われる請求項1,2,3,
4,5,6,7,8,9,10または11に記載の内燃
機関のEGR流量診断装置。
12. The condition under which the gain adjustment is not performed is as follows.
The EGR valve opening is equal to or greater than a predetermined value, and the EGR flow rate is determined when the condition is satisfied.
The EGR flow rate diagnostic device for an internal combustion engine according to any one of 4, 5, 6, 7, 8, 9, 10 and 11.
【請求項13】上記のEGR流量が判定されるために計
算される診断値は、上記吸気圧を検出する手段の検出値
と、上記吸気圧を推定する手段の推定値の差または比で
ある請求項1,2,3,4,5,6,7,8,9,1
0,11または12に記載の内燃機関のEGR流量診断
装置。
13. The diagnostic value calculated for determining the EGR flow rate is a difference or a ratio between a detected value of the means for detecting the intake pressure and an estimated value of the means for estimating the intake pressure. Claims 1,2,3,4,5,6,7,8,9,1
13. The apparatus for diagnosing EGR flow of an internal combustion engine according to 0, 11 or 12.
【請求項14】上記のEGR流量が判定されるために計
算される診断値は、上記吸気圧を検出する手段の検出値
と、上記吸気圧を推定する手段の推定値の差または比を
回転数で正規化した値である請求項1,2,3,4,
5,6,7,8,9,10,11,12または13に記
載の内燃機関のEGR流量診断装置。
14. A diagnostic value calculated for determining the EGR flow rate is obtained by rotating a difference or a ratio between a detected value of the intake pressure detecting means and an estimated value of the intake pressure estimating means. A value normalized by a number.
An EGR flow rate diagnostic device for an internal combustion engine according to any one of 5, 6, 7, 8, 9, 10, 11, 12 and 13.
【請求項15】上記診断値と比較される判定値は大気圧
の関数とする請求項1,2,3,4,5,6,7,8,
9,10,11,12,13または14に記載の内燃機
関のEGR流量診断装置。
15. The judgment value to be compared with the diagnosis value is a function of the atmospheric pressure.
The EGR flow rate diagnostic device for an internal combustion engine according to any one of 9, 10, 11, 12, 13 and 14.
【請求項16】上記EGR以外のバイパス系の流量が変
化した場合、EGR流量診断を行わない請求項1,2,
3,4,5,6,7,8,9,10,11,12,1
3,14または15に記載の内燃機関のEGR流量診断
装置。
16. An EGR flow rate diagnosis is not performed when a flow rate of a bypass system other than the EGR changes.
3,4,5,6,7,8,9,10,11,12,1
16. The EGR flow rate diagnostic device for an internal combustion engine according to 3, 14, or 15.
JP8269621A 1996-10-11 1996-10-11 Egr flow amount diagnostic device for internal combustion engine Pending JPH10115259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8269621A JPH10115259A (en) 1996-10-11 1996-10-11 Egr flow amount diagnostic device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8269621A JPH10115259A (en) 1996-10-11 1996-10-11 Egr flow amount diagnostic device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH10115259A true JPH10115259A (en) 1998-05-06

Family

ID=17474908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8269621A Pending JPH10115259A (en) 1996-10-11 1996-10-11 Egr flow amount diagnostic device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH10115259A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1148228A2 (en) 2000-04-20 2001-10-24 Hitachi, Ltd. Failure diagnosis apparatus for exhaust gas recirculation system
KR101229461B1 (en) 2011-10-28 2013-02-04 주식회사 현대케피코 Diagnosis method of exhaust gas recirculation valve
US8437946B2 (en) 2009-07-31 2013-05-07 Transtron Inc. Intake system control device and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1148228A2 (en) 2000-04-20 2001-10-24 Hitachi, Ltd. Failure diagnosis apparatus for exhaust gas recirculation system
US6508111B2 (en) 2000-04-20 2003-01-21 Hitachi, Ltd. Failure diagnosis apparatus for exhaust gas recirculation system
US6655200B2 (en) 2000-04-20 2003-12-02 Hitachi, Ltd. Failure diagnosis apparatus for exhaust gas recirculation system
EP1148228A3 (en) * 2000-04-20 2004-03-24 Hitachi, Ltd. Failure diagnosis apparatus for exhaust gas recirculation system
US6779390B2 (en) 2000-04-20 2004-08-24 Hitachi, Ltd. Failure diagnosis apparatus for exhaust gas recirculation system
US8437946B2 (en) 2009-07-31 2013-05-07 Transtron Inc. Intake system control device and method
KR101229461B1 (en) 2011-10-28 2013-02-04 주식회사 현대케피코 Diagnosis method of exhaust gas recirculation valve

Similar Documents

Publication Publication Date Title
US7536851B2 (en) Catalyst condition monitor based on differential area under the oxygen sensors curve algorithm
US7895838B2 (en) Exhaust gas recirculation apparatus of an internal combustion engine and control method thereof
EP2198141B1 (en) Exhaust-gas recirculation apparatus and exhaust-gas recirculation flow rate estimation method for internal combustion engines
JP2893308B2 (en) Air-fuel ratio control device for internal combustion engine
US8095296B2 (en) Procedure and device for an adaptation of a dynamic model of an exhaust gas probe
US11105289B2 (en) Method and control device for monitoring the function of a particulate filter
CN103244295B (en) Method and apparatus for the signal for adapting to the oxygen sensor in the air input passage of internal combustion engine
US7499792B2 (en) Diagnostic method for an exhaust gas probe and diagnostic device for an exhaust gas probe
US10316716B2 (en) Exhaust purification system and method for restoring NOx purification capacity
US8146345B2 (en) Normalizing oxygen storage capacity(OSC) for catalyst monitoring
US10345184B2 (en) Apparatus and method for diagnosing failure of sensor
JP3855877B2 (en) Deterioration detection device for air-fuel ratio detection device
WO2019214821A1 (en) An egr flow determination method, an egr rate error determination method, a control method for an internal combustion engine, and an internal combustion engine
JP3338712B2 (en) Exhaust gas recirculation system for internal combustion engine
KR102422973B1 (en) Method for heating and regenerating a particulate filter in an exhaust gas of an otto engine
JP4162017B2 (en) Exhaust purification device for internal combustion engine and exhaust purification method for internal combustion engine
JP2006057523A (en) Failure diagnosis device for engine control system
JPH10115259A (en) Egr flow amount diagnostic device for internal combustion engine
CN111664017B (en) Method and device for diagnosing a component of an exhaust system in a motor system with an internal combustion engine
JP3663921B2 (en) Oxygen sensor diagnostic device
JPH08246962A (en) Egr diagnosing device for internal combustion engine
JPH0933478A (en) Apparatus for diagnosing response of oxygen sensor in internal combustion engine
JPH0777145A (en) Engine control device
JP2006126218A (en) Deterioration detector for air-fuel ratio detection device
US11608801B2 (en) Engine control device