JPH10114556A - Production of reclaimed cement, and reclaimed cement - Google Patents

Production of reclaimed cement, and reclaimed cement

Info

Publication number
JPH10114556A
JPH10114556A JP8287429A JP28742996A JPH10114556A JP H10114556 A JPH10114556 A JP H10114556A JP 8287429 A JP8287429 A JP 8287429A JP 28742996 A JP28742996 A JP 28742996A JP H10114556 A JPH10114556 A JP H10114556A
Authority
JP
Japan
Prior art keywords
cement
fine
fine powder
strength
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8287429A
Other languages
Japanese (ja)
Other versions
JP3761996B2 (en
Inventor
Takeaki Ookami
剛章 大神
Satoru Fujii
悟 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Onoda Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP28742996A priority Critical patent/JP3761996B2/en
Publication of JPH10114556A publication Critical patent/JPH10114556A/en
Application granted granted Critical
Publication of JP3761996B2 publication Critical patent/JP3761996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/246Cements from oil shales, residues or waste other than slag from waste building materials, e.g. waste asbestos-cement products, demolition waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Abstract

PROBLEM TO BE SOLVED: To obtain a reclaimed cement high in initial and long-age strength and with the heat of hydration low at the time of processing the fine grain generated when spent cement is reclaimed to obtain a reclaimed cement. SOLUTION: The undersize obtained by separating the fine grains with 2.5-0.3mm, preferably 1.5-0.5mm, separation diameter is crushed and processed. The undersize is heat-treated at 400-800 deg.C, preferably at 600-750 deg.C or more preferably at about 700 deg.C and crushed. The crushed material is hat-treated at 400-800 deg.C, preferably at 650-700 deg.C or more preferably at about 700 deg.C. The crushed fine grain is controlled to <=0.1mm diameter and 8000-10000cm<2> /g Blaine specific surface. The content of the spent cement fine powder in the reclaimed cement is adjusted to >=60wt.%, especially to 60-80wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、コンクリート廃
材の再資源化に関するものであり、特にコンクリートガ
ラから粗骨材及び細骨材の回収時に発生する微粉を母材
とした再生セメントの製造方法及び再生セメントに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the recycling of waste concrete, and more particularly to a method for producing a recycled cement using fine powder generated during recovery of coarse aggregate and fine aggregate from concrete waste and a base material. It relates to recycled cement.

【0002】[0002]

【従来の技術】従来、コンクリート構造物を解体する際
に発生するコンクリート廃材は、そのの大半が埋立等の
廃棄処分にされているが、埋立地の確保難により処理が
困難になりつつあり、処理費も高騰している。一方、資
源リサイクル法の立法に伴い資源としてのコンクリート
廃材の利用も検討され、一部が路盤材等の敷石として使
用されるようになっており、また、廃材の高度処理によ
りJIS規格に相当する良質の細骨材及び粗骨材の回収
も可能となっている。
2. Description of the Related Art Conventionally, most of concrete waste generated when dismantling concrete structures has been disposed of by landfilling, etc. Processing costs are also rising. On the other hand, the use of concrete waste as a resource has also been studied in accordance with the enactment of the Resource Recycling Law, and some of it has been used as paving stones for roadbed materials, etc. It is also possible to recover high quality fine aggregate and coarse aggregate.

【0003】しかしながら、良質の骨材を得るために
は、コンクリートガラの破砕、及び磨砕処理を伴うた
め、20〜30%の廃コンクリート微粒物が発生する。
この微粒物は、格別の用途がなく、しかも、セメント水
和に伴う水酸化カルシウムが生成しており、微粒物が水
と接触した場合、水酸化カルシウムが溶解して高アルカ
リを呈し水質汚染の因となり埋立処分には難がある等、
その処分が大きな問題となっている。
[0003] However, in order to obtain high-quality aggregates, crushing and grinding of concrete pieces are required, so that 20 to 30% of waste concrete fine particles are generated.
These fine particles have no special use, and calcium hydroxide is generated with the hydration of cement.When the fine particles come into contact with water, calcium hydroxide dissolves and exhibits high alkalinity, thus causing water pollution. There are difficulties in landfill disposal,
Its disposal is a major problem.

【0004】このような中にあって、廃コンクリート微
粉に、高炉スラグ、石膏、セメント等からなる混合材を
添加した水硬性材料としての再利用方法(特開昭62−
158146号、特開昭63−2842号)が提案され
ている。しかしながら、これらは水和硬化後の強度が低
く、また、硬化に多くの時間を要するため、その用途が
限定されるという欠点がある。さらに、水和硬化後の強
度を増加させるためには、スラグ等の混合材の添加量を
著しく増加する必要があり、このため、廃コンクリート
微粉の使用量は20〜50重量部に過ぎず、廃コンクリ
ート微粉の大量利用には至っていないのが現状である。
Under such circumstances, a method of recycling as a hydraulic material by adding a mixed material composed of blast furnace slag, gypsum, cement, etc. to waste concrete fine powder (Japanese Patent Laid-Open No. Sho 62-62)
158146, JP-A-63-2842) have been proposed. However, these have the drawback that their strength after hydration curing is low, and that they require a lot of time for curing, and their uses are limited. Furthermore, in order to increase the strength after hydration hardening, it is necessary to significantly increase the amount of the mixed material such as slag, and therefore, the used amount of the waste concrete fine powder is only 20 to 50 parts by weight, At present, waste concrete fines have not been used in large quantities.

【0005】[0005]

【発明が解決しようとする課題】この発明は、上述の欠
点を解消し、廃コンクリートの高度処理による骨材の再
資源化に於て発生する微粉を廃棄することなく資源とし
て有効利用するもので、初期強度および長期強度が大き
く、また、低水和発熱性の再生セメントの製造方法及び
再生セメントを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks, and effectively utilizes fine powder generated in the recycling of aggregate by advanced treatment of waste concrete without discarding it as a resource. It is an object of the present invention to provide a method for producing a regenerated cement having a high initial strength and a long-term strength and a low hydration heat generation property, and a regenerated cement.

【0006】[0006]

【課題を解決するための手段】上述の目的を達成するた
めに、この発明の再生セメントの製造方法によれば、コ
ンクリート廃材を再生処理する際に発生する微粒物を調
製して再生セメントを製造する方法であって、前記微粒
物を分離径2.5mm〜0.3mm、好ましくは1.5
mm〜0.5mmで分離した篩下通過物を粉砕して調製
すること(請求項1)、篩下通過物を400〜800℃
で加熱処理して粉砕すること(請求項2)、篩下通過物
を粉砕後400〜800℃で加熱処理すること(請求項
3)、及び、粒径0.1mm以下、ブレーン比表面積が
8000cm2/g 以上に粉砕すること(請求項4)、を特
徴とする。
In order to achieve the above-mentioned object, according to the method for producing regenerated cement of the present invention, fine particles generated when reclaiming concrete waste material are prepared to produce regenerated cement. A fine particle having a separation diameter of 2.5 mm to 0.3 mm, preferably 1.5 mm.
(1) pulverizing and preparing the sieved material separated at a diameter of 0.5 to 0.5 mm (claim 1);
(Claim 2), heat treatment at 400 to 800 ° C. after grinding the pulverized material (Claim 3), and a particle diameter of 0.1 mm or less and a Blaine specific surface area of 8000 cm. Pulverizing to 2 / g or more (claim 4).

【0007】また、この発明の再生セメントによれば、
前記いずれか記載の微粒物を調製して得た廃コンクリー
ト微粉末を主要構成材料とすること(請求項5)、及
び、廃コンクリート微粉末を少なくとも60重量%以上
含んでなること(請求項6)、を特徴とする。以下、こ
の発明を詳しく説明する。
Further, according to the recycled cement of the present invention,
The waste concrete fine powder obtained by preparing any of the fine particles according to any one of the above is used as a main constituent material (Claim 5), and the waste concrete fine powder is at least 60% by weight or more (Claim 6). ). Hereinafter, the present invention will be described in detail.

【0008】[0008]

【発明の実施の形態】この発明は、コンクリート廃材を
高度処理して良質の粗骨材及び細骨材を回収する際に発
生する微粒物を調製して再生セメントを製造することを
第一の特徴とする。微粒物の調製は、これを粉砕するこ
とにより行うが、粉砕は、前記微粒物を分離径2.5m
m〜0.3mm、好ましくは1.5mm〜0.5mmで
分離した篩下通過物を使用する。発明者らは、微粒物の
分離径が再生セメントの物性に大きく影響を及ぼすこと
を見出し、種々検討した結果、微粒物の分離径を前記所
定の範囲、すなわち、やや粗目にし、粗骨材及び細骨材
の一部を取り込み、これを微粉砕することによりモルタ
ル、コンクリートの流動性を改善し、この発明を完成し
たものである。
The first object of the present invention is to manufacture recycled cement by preparing fine particles generated when recovering high quality coarse aggregate and fine aggregate by subjecting concrete waste material to advanced treatment. Features. Preparation of the fine particles is performed by crushing the fine particles.
A sieve pass separated at m to 0.3 mm, preferably 1.5 mm to 0.5 mm is used. The inventors have found that the separation diameter of the fine particles greatly affects the physical properties of the regenerated cement, and as a result of various studies, determined that the separation diameter of the fine particles is in the predetermined range, that is, slightly coarse. The present invention has been completed by improving the fluidity of mortar and concrete by taking in a part of fine aggregate and pulverizing the fine aggregate.

【0009】分離径が0.3mm未満の微粒物は、これ
をそのまま、あるいは粉砕してモルタル、コンクリート
に適用しても、モルタル、コンクリートの流動性が悪
く、空気を巻き込んで容重が低下することによる強度低
下が著しい。例えば、分離径150μmの篩下通過物の
ブレーン比表面積は5600cm2/g 程度であるが、これ
を再生セメントに供した場合、後述する実施例に示すよ
うにJISモルタル試験におけるモルタルフローが18
0mm、モルタル容重が2.053kg/lであり、また、この
微粒物をブレーン比表面積8000cm2/g 程度に粉砕し
ても、モルタルフローは192mm、モルタル容重は2.
066kg/lと若干改善されるものの、流動性不良に起因す
る容重低下がみられる。
Fine particles having a separation diameter of less than 0.3 mm, even when used as such or when crushed and applied to mortar or concrete, have poor fluidity of the mortar or concrete and reduce the weight due to entrainment of air. The strength decrease is remarkable. For example, although the Blaine specific surface area of the under-sieved material having a separation diameter of 150 μm is about 5600 cm 2 / g, when this is used for regenerated cement, the mortar flow in the JIS mortar test is 18
0 mm, the mortar weight is 2.053 kg / l. Even if the fine particles are crushed to a Blaine specific surface area of about 8000 cm 2 / g, the mortar flow is 192 mm and the mortar weight is 2.
Although slightly improved to 066 kg / l, a decrease in weight due to poor fluidity is observed.

【0010】また、分離径が2.5mmを越える篩下通
過物は、これを粉砕しても、前記流動性の改善効果以上
に良質の細骨材回収量が少なくなるほか、強度の上昇が
小さく、後述する微粒物の加熱効果による水硬性能の上
昇が低下し好ましくない。
[0010] Further, even if the separated material having a separation diameter of more than 2.5 mm passes through the sieve, the amount of fine aggregate recovered becomes smaller than the effect of improving the fluidity, and the strength increases. It is not preferable because the increase in hydraulic performance due to the heating effect of the fine particles described below decreases.

【0011】次に、篩下通過物は、これを粉砕前、ある
いは粉砕後400〜800℃、好ましくは600〜75
0℃で加熱処理することが望ましい。前述したように微
粒物は、コンクリート廃材を破砕及び磨砕処理して砂利
等の骨材を分離して取り出した残物として得られるもの
であり、粗骨材および細骨材の破砕粉、セメントの水和
生成物であるカルシウムシリケート水和物(C-S-H )、
モノサルフェート、水酸化カルシウム、及び炭酸カルシ
ウムや若干の未水和セメント粒子等からなるが、コンク
リートの経時年数進行と共に炭酸カルシウムの含有量が
多くなり、未水和のセメント粒子は殆ど残存しなくな
り、微粒物の水硬作用は殆どない。
Next, the material passed through the sieve is heated at 400 to 800 ° C., preferably 600 to 75 ° C. before or after the pulverization.
Heat treatment at 0 ° C. is desirable. As described above, fine particles are obtained as a residue obtained by crushing and grinding concrete waste material to separate and remove aggregates such as gravel, and crushed powder of coarse aggregate and fine aggregate, cement powder. Calcium silicate hydrate (CSH), which is a hydration product of
Monosulfate, calcium hydroxide, and calcium carbonate and some unhydrated cement particles, etc., the content of calcium carbonate increases with the aging of concrete, unhydrated cement particles hardly remain, There is almost no hydraulic action of the fine particles.

【0012】しかしながら、微粒物は400℃以上で加
熱することにより水硬性を有するようになり、加熱温度
の上昇と共に水硬性能が高まる。水硬の因はビーライト
の生成にある。驚くにコンクリート微粒物を400℃の
極く低温からビーライトの生成が始まり加熱温度の上昇
と共に生成量が増加することを見いだした。しかし80
0℃を越える加熱では含有するカルサイトが分解して酸
化カルシウムを生成するため再生セメント化した場合、
水量の増加が著しいばかりではなく異常膨張を引き起こ
す。従って総合的に判断した場合、加熱温度は、好まし
くは600〜750℃、さらに好ましくは700℃前後
が最適である。
However, the fine particles become hydraulically hard by being heated at 400 ° C. or higher, and the hydraulic performance increases as the heating temperature increases. The cause of hydraulic is the formation of belite. Surprisingly, it has been found that the production of belite starts at a very low temperature of 400 ° C., and the amount of the produced fine particles increases as the heating temperature increases. But 80
When heated above 0 ° C, contained calcite decomposes to produce calcium oxide.
The increase in the amount of water is not only significant but also causes abnormal expansion. Therefore, when judged comprehensively, the heating temperature is preferably from 600 to 750 ° C, more preferably around 700 ° C.

【0013】微粒物の粉砕は、粒径0.1mm以下、ブ
レーン比表面積が8000cm2/g 以上にすること好まし
い。粉砕手段としては、ボールミル、ローラーミル、デ
ィスクミル等、各種の粉砕手段を用いることができる。
前述したように微粒物は、セメントの水和生成物や若干
の未水和セメント粒子を含み、また、加熱により水硬性
能が高まるものであるが、粒径0.1mm以下、粉末度
を8000cm2/g 以上とすることにより、微細な未水和
セメント粒子面の出現による水硬性の増加と共に、水和
組織の破壊が起こり、加水混練後の流動性を向上するこ
とができ、また、これが8000cm2/g を下回ると、水
和が不均一になり、強度が低下し好ましくない。通常
は、ブレーン比表面積を8000cm2/g 〜10000cm
2/g の範囲とすることがより好ましい。
In the pulverization of the fine particles, it is preferable that the particle size is 0.1 mm or less and the Blaine specific surface area is 8000 cm 2 / g or more. As the pulverizing means, various pulverizing means such as a ball mill, a roller mill, and a disk mill can be used.
As described above, the fine particles contain hydration products of cement and some unhydrated cement particles, and the hydraulic performance is enhanced by heating. However, the particle size is 0.1 mm or less, and the fineness is 8000 cm. By setting it to 2 / g or more, the hydraulic property is increased due to the appearance of the fine unhydrated cement particle surface, the hydration structure is destroyed, and the fluidity after the water kneading can be improved. If it is less than 8000 cm 2 / g, hydration becomes non-uniform and strength is undesirably reduced. Usually, the specific surface area of the brane is 8,000 cm 2 / g to 10,000 cm
More preferably, it is in the range of 2 / g.

【0014】この発明の再生セメントは、このように調
製して得た廃コンクリート微粉末を主要構成材料とする
ものであり、好適には、廃コンクリート微粉末を少なく
とも60重量%以上含んでなるものである。すなわち、
水硬性を殆ど持たない廃コンクリート微粉末から高強度
の再生セメントを得るために、後述する高炉スラグ微粉
末を主成分とした各種高性能混和材を添加して初期強度
を、また、微粉フライアッシュ及びシリカフラワー等の
活性化ポゾランを用いて長期強度等の改善をもたらす
が、廃コンクリート微粉末の配合量は、再生セメント
中、60重量%以上、好ましくは、60〜80重量%の
範囲とすることが好適である。これが60重量%より少
ないと、硬化後の強度は増加するが、この発明の目的と
するコンクリート廃材の大量使用にそぐわなくなり、し
かも高炉スラグ等の他の材料の配合比が増加し、反応熱
量が上昇するため低発熱性の点で好ましくない。また、
80重量%を越えると、硬化後の強度が著しく低下する
ため好ましくない。
The reclaimed cement of the present invention comprises the waste concrete fine powder prepared as described above as a main constituent material, and preferably contains at least 60% by weight or more of the waste concrete fine powder. It is. That is,
In order to obtain high-strength recycled cement from waste concrete fine powder having almost no hydraulic property, various high-performance admixtures mainly composed of blast furnace slag fine powder described later are added to increase initial strength, and fine powder fly ash Activated pozzolans such as silica flour and the like are used to improve long-term strength, etc., but the amount of the waste concrete fine powder is 60% by weight or more, preferably 60 to 80% by weight in the recycled cement. Is preferred. If it is less than 60% by weight, the strength after curing will increase, but it will not be suitable for the large-scale use of concrete wastes aimed at by the present invention, and the mixing ratio of other materials such as blast furnace slag will increase, and the reaction heat will increase. It is not preferable from the viewpoint of low heat build-up because it rises. Also,
If it exceeds 80% by weight, the strength after curing is significantly reduced, which is not preferable.

【0015】次に、廃コンクリート微粉末に添加する混
合材としては、高炉スラグ微粉末が経済的にも強度発現
的にも最適である。特に、強度発現的には高炉スラグの
粉末度が大きく影響を及ぼし、微粉になるほど強度発現
性は良好となる。すなわち、コンクリート微粉末を多量
に使用した場合、コンクリート微粉の周辺にスラグ粉末
が万遍なく行き渡る程度の粉末度が必要であり、スラグ
の粉末度としては、廃コンクリート微粉末とスラグ粉末
の混合比に廃コンクリート微粉末の粉末度を乗じた値以
上とすることにより良好な強度発現性が得られる。例え
ば、廃コンクリート微粉末60重量部、スラグ粉末40
重量部の再生セメントにおいて、廃コンクリート微粉末
の粉末度8000cm2/g とすると、スラグの粉末度は、
12000cm2/g 以上にすることが好ましい。
Next, as a mixed material to be added to the waste concrete fine powder, blast furnace slag fine powder is optimal both economically and in terms of strength development. Particularly, in terms of strength development, the fineness of the blast furnace slag has a great effect, and the finer the powder, the better the strength development. In other words, when a large amount of concrete fine powder is used, the fineness of the slag powder is required to be evenly distributed around the concrete fine powder, and the fineness of the slag is determined by the mixing ratio of the waste concrete fine powder and the slag powder. When the value is multiplied by the fineness of the waste concrete fine powder, good strength development can be obtained. For example, waste concrete fine powder 60 parts by weight, slag powder 40
Assuming that the fineness of the waste concrete powder is 8000 cm 2 / g in the recycled cement by weight, the fineness of the slag is
It is preferred to be 12000 cm 2 / g or more.

【0016】再生セメント中の高炉スラグ微粉末の配合
量は、これを多くすれば強度の向上を計ることができる
が、前述したように廃コンクリート微粉末の大量使用の
観点からこれを40重量%以下、好ましくは20〜40
重量%の範囲とする。これが40重量%を越えると、硬
化後の強度は増加するが、廃コンクリート微粉の配合量
を増大させることができなくなるほか、反応熱量が上昇
するため好ましくない。また、20重量%未満の場合、
硬化後の強度が著しく低下するため好ましくない。
If the amount of the blast furnace slag fine powder in the recycled cement is increased, the strength can be improved by increasing the blast furnace slag fine powder. Below, preferably 20 to 40
% By weight. If it exceeds 40% by weight, the strength after curing increases, but the amount of waste concrete fine powder cannot be increased, and the amount of heat of reaction is undesirably increased. When the content is less than 20% by weight,
This is not preferable because the strength after curing is significantly reduced.

【0017】この発明の再生セメントは、前記廃コンク
リート微粉末及び高炉スラグ微粉末に加えて、石膏を添
加することが好ましい。石膏を配合することにより、高
炉スラグの反応刺激剤、硬化初期での空隙充填材として
作用し、初期強度の増加、乾燥収縮の低減をすることが
できる。石膏としては、無水石膏、二水石膏、半水石膏
等を用いることができる。この発明に用いる石膏は、乾
燥の後、粉砕し粉末度2000〜7000cm2/g とする
ことが好ましい。粉砕手段としては、縦型ミルやボール
ミルが好ましく、二水石膏に関しては、乾燥、及び粉砕
を60℃以下で行うことが好ましい。また、石膏の粉砕
は、廃コンクリート微粒物と共に混合粉砕することが可
能であり、この場合は、混合粉砕後の粉末度を8000
cm2/g 以上とするとすることが好ましい。再生セメント
中の石膏の配合量は、無水換算による石膏量として2〜
6重量%であることが好ましい。これが6重量%を越え
ると、膨張量が大きく硬化後の強度低下を引き起こすた
め好ましくない。
The recycled cement of the present invention preferably contains gypsum in addition to the waste concrete fine powder and the blast furnace slag fine powder. By blending gypsum, it acts as a reaction stimulant for blast furnace slag and a void filler at the early stage of curing, and can increase initial strength and reduce drying shrinkage. As the gypsum, anhydrous gypsum, gypsum dihydrate, hemihydrate gypsum and the like can be used. The gypsum used in the present invention is preferably dried and pulverized to a fineness of 2000 to 7000 cm 2 / g. As a pulverizing means, a vertical mill or a ball mill is preferable. For dihydrate gypsum, drying and pulverization are preferably performed at 60 ° C. or less. In addition, the gypsum can be mixed and pulverized together with the waste concrete fine particles. In this case, the fineness after the mixing and pulverization is 8000.
It is preferably at least cm 2 / g. The amount of gypsum in the recycled cement is 2 to 2 gypsum in anhydrous conversion.
Preferably, it is 6% by weight. If it exceeds 6% by weight, the amount of swelling is so large that the strength after curing is undesirably reduced.

【0018】また、前記混合材中、高炉スラグ微粉末の
一部と置換してセメント微粉末、及び5μ以下の微粉フ
ライアッシュやシリカフラワー等の活性化ポゾランの少
なくとも一種以上を配合することができる。セメント微
粉末を配合することにより初期強度の発現を、微粉フラ
イアッシュやシリカフラワーの配合により、中期から長
期の強度増進をすることができる。
In the above-mentioned mixed material, cement fine powder and at least one activated pozzolan such as fine fly ash or silica flour having a particle size of 5 μm or less can be blended in place of a part of the blast furnace slag fine powder. . The incorporation of the fine cement powder enables the development of the initial strength, and the incorporation of the fine fly ash and the silica flour allows the medium to long-term strength enhancement.

【0019】セメントとしては、普通ポルトランドセメ
ント、早強ポルトランドセメント、中庸熱ポルトランド
セメント等のほか、混合セメントや都市ごみ灰を主原料
としたセメント等、各種のセメントを使用することがで
きるが、この発明に用いるセメント微粉末は、粉砕、及
び分級により粉末度を前記高炉スラグ微粉末と同程度に
することにより、高炉スラグ微粉末のアルカリ刺激効果
を早めることができ、高炉スラグ微粉末及びセメントの
早期の水和反応は、初期強度の改善に貢献することがで
きる。セメント微粉末の配合量は、前記高炉スラグ微粉
末の30重量%以下の量と置換されてこの発明の再生セ
メント中、1〜12重量%程度とすることが好ましい。
セメント微粉末の配合量が12重量%を越えると、反応
熱量が上昇するため好ましくない。尚、セメントを配合
した場合は、前記石膏は必ずしも配合しなくても良い。
また、廃コンクリートが比較的若材齢で、水酸化カルシ
ウムの含有量が高い場合や、混合材として前記石膏を配
合した場合は、セメント微粉末は必ずしも配合しなくて
も良い。
As the cement, various cements such as ordinary Portland cement, early-strength Portland cement, moderately heated Portland cement, etc., as well as mixed cement and cement made mainly from municipal ash can be used. The fine cement powder used in the present invention is capable of accelerating the alkali stimulating effect of the fine blast furnace slag powder by pulverizing and classifying the fineness to the same level as that of the fine blast furnace slag powder by classification, and Early hydration can contribute to an improvement in initial strength. The blending amount of the cement fine powder is preferably about 1 to 12% by weight in the regenerated cement of the present invention by being replaced with an amount of 30% by weight or less of the blast furnace slag fine powder.
If the amount of the cement fine powder exceeds 12% by weight, the heat of reaction increases, which is not preferable. In addition, when cement is blended, the gypsum is not necessarily blended.
In addition, when the waste concrete is relatively young and has a high calcium hydroxide content, or when the gypsum is blended as a mixture, the cement fine powder does not necessarily need to be blended.

【0020】また、5μ以下の微粉フライアッシュ及び
シリカフラワー等の非晶質の活性化ポゾランは、前記高
炉スラグ微粉末やセメント微粉末が水和し、生成した高
アルカリの水酸化カルシウムと反応して中期(7日)〜
長期(28日以降)の強度を発現するすることができ
る。非晶質ポゾラン類は、前記高炉スラグ微粉末の30
重量%以下の量と置換されてこの発明の再生セメント
中、1〜12重量%程度配合されることが好ましい。
Amorphous activated pozzolan, such as fine fly ash and silica flour having a particle size of 5 μ or less, reacts with the high alkali calcium hydroxide produced by hydration of the blast furnace slag fine powder and cement fine powder. Mid-term (7 days)-
Long-term (after 28 days) strength can be exhibited. Amorphous pozzolans can be obtained by mixing 30 fine powders of the blast furnace slag.
It is preferable that about 1 to 12% by weight of the reclaimed cement of the present invention is replaced with less than 1% by weight.

【0021】以上説明したように、この発明の再生セメ
ントは、廃コンクリート微粉末及び高炉スラグ微粉末を
主要構成材料とし、石膏、セメント微粉末、及び微粉フ
ライアッシュやシリカフラワー等の活性化ポゾランの少
なくとも一種以上を配合してなるものであり、各材料の
粉末度をそれぞれ調整して配合するが、これら材料の混
合後の粉末度は、ブレーン値で8500cm2/g 以上とす
ることが強度発現性の上で好ましい。また、混合は、均
一な混合が可能であれば、特に制限されるものではな
い。さらに、廃コンクリート微粒物、高炉スラグ、及び
セメントは、各材料の被粉砕性が異なり、任意の粉末度
に設定するためにそれぞれ別粉砕することが望ましい。
As described above, the reclaimed cement of the present invention comprises waste concrete fine powder and blast furnace slag fine powder as main constituent materials, and gypsum, cement fine powder, and activated pozzolan such as fine powder fly ash and silica flour. At least one kind is blended, and the fineness of each material is adjusted and blended. The fineness after mixing these materials is 8500 cm 2 / g or more in terms of Blaine value. It is preferable in terms of properties. The mixing is not particularly limited as long as uniform mixing is possible. Further, the waste concrete fine particles, blast furnace slag, and cement have different grindability of each material, and it is desirable to separately grind each of them in order to set an arbitrary fineness.

【0022】この発明の再生セメントは、水を任意の添
加量で混練し、養生することで強度を発現する。従っ
て、この発明の再生セメントは一般のセメントと同様
に、砂、砂利等のほか、各種混和剤(材)を加え、或い
は加えることなく、ペースト材、モルタル材、コンクリ
ート材として用いることができる。
The regenerated cement of the present invention develops strength by kneading and curing water in an optional amount. Therefore, the reclaimed cement of the present invention can be used as a paste material, a mortar material, or a concrete material, with or without addition of various admixtures (materials), in addition to sand, gravel, and the like, similarly to general cement.

【0023】[0023]

【実施例】以下、実施例を挙げてこの発明を更に詳細に
説明するが、この発明はこれに限定されるものではな
い。尚、以下に示す配合比%等はすべて重量%である。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto. In addition, all the compounding ratios% shown below are% by weight.

【0024】(実施例1)材令30年のコンクリート廃
棄物から粗骨材及び細骨材を回収する際に発生した微粒
物を、分離径4.0mm〜0.15mmで分離して各種
大きさの篩下通過物を得た。次いで、篩下通過物をブレ
ーン比表面積が8000cm2/g になるように粉砕して得
た廃コンクリート微粉末60重量部と、ブレーン比表面
積が12000cm2/g の高炉スラグ微粉末35.3重量
部及びブレーン比表面積が4000cm2/g の無水石膏
4.7重量部を混合して再生セメントを調製し、JIS R
5201に従いモルタル試験を行った。尚、各材料は竪型
ミルを用いて粉砕後、CLASIEL(秩父小野田社製分級
機)を用いて分級し調製した。また、NO7は、篩下通
過物をそのまま(未粉砕物、ブレーン比表面積5600
cm2/g )試験に供したものである。結果を表1に示す。
(Example 1) Fine particles generated during the recovery of coarse aggregate and fine aggregate from concrete waste of 30 years of age are separated at a separation diameter of 4.0 mm to 0.15 mm into various sizes. An undersize sieve was obtained. Then, blast furnace slag 35.3 weight and under sieve pass was Blaine specific surface area of 8000 cm 2 / waste concrete powder obtained by pulverizing such that g 60 parts by weight, Blaine specific surface area of 12000 2 / g Parts and 4.7 parts by weight of anhydrous gypsum having a specific surface area of 4000 cm 2 / g to prepare a regenerated cement.
A mortar test was performed according to 5201. Each material was pulverized using a vertical mill, and then classified and prepared using CLASIEL (a classifier manufactured by Chichibu Onoda Co.). In addition, NO7 refers to the material passed under the sieve as it is (unground material, Blaine specific surface area 5600
cm 2 / g). Table 1 shows the results.

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示すように、微粒物の分離径が再生
セメントの物性に大きく影響を及ぼし、分離径が0.1
5mm(150μm)のコンクリート微粉では、未粉砕
の状態で再生セメントに供した場合(NO7)、流動性
が悪く、空気を巻き込みモルタル容重が軽くなる。ま
た、150μm分離微粉を粉砕したNO6でも、モルタ
ルフローは若干改善されるものの、流動性不良に起因す
る容重低下がみられ、強度低下の因につながっている。
これに対し、0.3〜2.5mmで分離して得た微粉末
を使用したもの(NO2〜5)では、いずれもモルタル
フロー、モルタル容重、圧縮強さが大幅に改善された。
尚、分離径が4.0mmを越える篩下通過物は、これを
粉砕しても、前記流動性、強度の改善効果も少なく良質
の細骨材の回収量が少なくなり、好ましくなかった。
As shown in Table 1, the separation diameter of the fine particles greatly affects the physical properties of the recycled cement.
When the concrete fine powder of 5 mm (150 μm) is supplied to the regenerated cement in an unground state (NO7), the fluidity is poor and the air is involved and the mortar weight is reduced. Further, even with NO6 obtained by pulverizing 150 μm-separated fine powder, although the mortar flow is slightly improved, a decrease in weight due to poor fluidity is observed, leading to a decrease in strength.
On the other hand, in the case of using the fine powder obtained by separating at 0.3 to 2.5 mm (NO2 to 5), the mortar flow, mortar capacity and compressive strength were all significantly improved.
It should be noted that even if the separated material having a separation diameter of more than 4.0 mm was crushed, the effect of improving the fluidity and strength was small and the amount of high quality fine aggregate recovered was reduced.

【0027】(実施例2)実施例1の廃コンクリート微
粒物を1.2mmで分離した篩下通過物を各種の粉末度
に粉砕して得た廃コンクリート微粉末60重量部と、異
なる粉末度の高炉スラグ微粉末35.3重量部、及びブ
レーン比表面積が4000cm2/g の無水石膏4.7重量
部を混合して再生セメントを調製し、JIS R 5201 に従
いモルタル強度試験を行った。結果を表2に示すよう
に、廃コンクリート微粉末の粉末度を8000cm2/g 以
上、高炉スラグの粉末度を12000cm2/g 以上にする
ことにより圧縮強度が優れていることがわかる。
(Example 2) 60 parts by weight of a waste concrete fine powder obtained by pulverizing the fine particles of the waste concrete of Example 1 through a sieve separated at 1.2 mm into various finenesses, and a different fineness 35.3 parts by weight of blast furnace slag fine powder and 4.7 parts by weight of anhydrous gypsum having a Blaine specific surface area of 4000 cm 2 / g were mixed to prepare a regenerated cement, which was subjected to a mortar strength test in accordance with JIS R5201. As shown in Table 2, the compressive strength is excellent when the fineness of the waste concrete is 8000 cm 2 / g or more and the fineness of the blast furnace slag is 12000 cm 2 / g or more.

【0028】[0028]

【表2】 [Table 2]

【0029】(実施例3)実施例1の廃コンクリート微
粒物を1.2mmで分離した篩下通過物を加熱した後、
ブレーン比表面積が8000cm2/g になるように粉砕し
て得た廃コンクリート微粉末60重量部と、ブレーン比
表面積が12000cm2/g の高炉スラグ微粉末35.3
重量部、及びブレーン比表面積が4000cm2/g の無水
石膏4.7重量部を混合して再生セメントを調製し、JI
S R 5201 に従いモルタル強度試験を行った。結果を表
3に示すように、廃コンクリート微粉末は加熱すること
により強度が増大するが、加熱温度が900℃になると
酸化カルシウムの生成により、水量の増加が著しいばか
りではなく異常膨張を引き起こした。
(Example 3) The waste concrete fine particles of Example 1 were separated by 1.2 mm and heated under a sieve.
And waste concrete powder 60 parts by weight of Blaine specific surface area obtained by pulverizing such that 8000 cm 2 / g, blast furnace slag of Blaine specific surface area of 12000 2 / g 35.3
Parts by weight and 4.7 parts by weight of anhydrous gypsum having a Blaine specific surface area of 4000 cm 2 / g to prepare a regenerated cement.
A mortar strength test was performed according to SR 5201. As shown in Table 3, the strength of the waste concrete fine powder was increased by heating, but when the heating temperature reached 900 ° C., the amount of water increased not only significantly but also caused abnormal expansion due to the formation of calcium oxide. .

【0030】[0030]

【表3】 [Table 3]

【0031】(実施例4)実施例1の廃コンクリート微
粒物を1.2mmで分離した篩下通過物を、ブレーン比
表面積が8000cm2/g になるように粉砕して得た廃コ
ンクリート微粉末と、ブレーン比表面積が12000cm
2/g の高炉スラグ微粉末と、ブレーン比表面積が400
0cm2/g の無水石膏と、ブレーン比表面積が12000
cm2/g の普通ポルトランドセメントと、平均粒径5μ以
下の微粉フライアッシュと、1μ以下のシリカフラワー
をそれぞれ調製し、表4に示す各種の割合で混合して再
生セメントを得た。次いで、JIS R 5201 に従いモルタ
ル強度試験を行った。結果を表4に併せて示すように、
この発明は、早強性と安定性及び長期強度のバランスが
とれたものであることがわかる。
Example 4 Waste concrete fine powder obtained by pulverizing the waste concrete fine particles of Example 1 separated by 1.2 mm under a sieve to have a Blaine specific surface area of 8000 cm 2 / g. And the specific surface area of Blaine is 12000cm
2 / g blast furnace slag fine powder and a Blaine specific surface area of 400
0 cm 2 / g of anhydrous gypsum and a Blaine specific surface area of 12000
Ordinary Portland cement of cm 2 / g, fine fly ash having an average particle size of 5 μm or less, and silica flour of 1 μm or less were prepared and mixed at various ratios shown in Table 4 to obtain a regenerated cement. Next, a mortar strength test was performed according to JIS R 5201. As the results are shown in Table 4,
It can be seen that the present invention has a balance between early strength, stability and long-term strength.

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【発明の効果】この発明によって、廃コンクート微粉
を、早強性と安定性及び長期強度のバランスがとれた再
生セメントとして、大量に活用することが可能となり、
資源の有効利用、及び埋立地枯渇の解消に大きく貢献す
ることができる。
According to the present invention, waste coconut fine powder can be used in large quantities as a recycled cement having a balance between early strength, stability and long-term strength.
It can greatly contribute to effective use of resources and elimination of landfill depletion.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 コンクリート廃材を再生処理する際に発
生する微粒物を調製して再生セメントを製造する方法で
あって、前記微粒物を分離径2.5mm〜0.3mm、
好ましくは1.5mm〜0.5mmで分離した篩下通過
物を粉砕して調製することを特徴とする再生セメントの
製造方法。
1. A method for producing a recycled cement by preparing fine particles generated when a waste concrete material is regenerated, wherein the fine particles have a separation diameter of 2.5 mm to 0.3 mm,
A method for producing a recycled cement, characterized by pulverizing and preparing a material passed through a sieve separated preferably at 1.5 mm to 0.5 mm.
【請求項2】 篩下通過物を400〜800℃で加熱処
理して粉砕することを特徴とする請求項1記載の再生セ
メントを製造する方法。
2. The method for producing a recycled cement according to claim 1, wherein the material passed under the sieve is heat-treated at 400 to 800 ° C. and pulverized.
【請求項3】 篩下通過物を粉砕後400〜800℃で
加熱処理することを特徴とする請求項1記載の再生セメ
ントの製造方法。
3. The method for producing recycled cement according to claim 1, wherein the material passed under the sieve is pulverized and heat-treated at 400 to 800 ° C.
【請求項4】 粒径0.1mm以下、ブレーン比表面積
が8000cm2/g 以上に粉砕することを特徴とする請求
項1〜3いずれか記載の再生セメントの製造方法。
4. The method for producing a recycled cement according to claim 1, wherein the pulverization is performed to a particle diameter of 0.1 mm or less and a Blaine specific surface area of 8000 cm 2 / g or more.
【請求項5】 請求項1〜4いずれか記載の微粒物を調
製して得た廃コンクリート微粉末を主要構成材料とする
ことを特徴とする再生セメント。
5. Recycled cement characterized by using, as a main constituent material, waste concrete fine powder obtained by preparing the fine granules according to claim 1.
【請求項6】 廃コンクリート微粉末を少なくとも60
重量%以上含んでなることを特徴とする請求項5記載の
再生セメント。
6. The method according to claim 6, wherein the waste concrete powder is at least 60.
The recycled cement according to claim 5, wherein the cement content is at least 10% by weight.
JP28742996A 1996-10-09 1996-10-09 Method for producing recycled cement and recycled cement Expired - Fee Related JP3761996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28742996A JP3761996B2 (en) 1996-10-09 1996-10-09 Method for producing recycled cement and recycled cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28742996A JP3761996B2 (en) 1996-10-09 1996-10-09 Method for producing recycled cement and recycled cement

Publications (2)

Publication Number Publication Date
JPH10114556A true JPH10114556A (en) 1998-05-06
JP3761996B2 JP3761996B2 (en) 2006-03-29

Family

ID=17717214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28742996A Expired - Fee Related JP3761996B2 (en) 1996-10-09 1996-10-09 Method for producing recycled cement and recycled cement

Country Status (1)

Country Link
JP (1) JP3761996B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027624A1 (en) * 1998-11-06 2000-05-18 Mitsubishi Chemical Corporation Water absorbing composite, method for preparation thereof and water absorbing article
JP2005320201A (en) * 2004-05-10 2005-11-17 Shimizu Corp Cement composition using waste concrete fine powder and method of preparing the same
JP2005320202A (en) * 2004-05-10 2005-11-17 Shimizu Corp Cement composition using waste concrete fine powder and method of preparing the same
DE102006049836B4 (en) * 2006-10-23 2011-06-16 Hochschule Neubrandenburg Process for the preparation of a hydraulically hardening binder of calcium silicate hydrates or cement stone as binding phase and aggregate-containing construction residues and its use
JP2012006812A (en) * 2010-06-28 2012-01-12 Tokyo Institute Of Technology Regenerated cement raw material and regenerated cement composition using the same
JP2012006811A (en) * 2010-06-28 2012-01-12 Takenaka Komuten Co Ltd Recycled fine powder, method for recovering the same, concrete composition using the same, and classifier
JP2012012284A (en) * 2010-06-01 2012-01-19 Ohbayashi Corp Method for producing hydraulic material, and method for selecting crushed concrete material
JP2012121764A (en) * 2010-12-08 2012-06-28 Takenaka Komuten Co Ltd Concrete and method for producing concrete
CN105130221A (en) * 2015-07-09 2015-12-09 湖南省小尹无忌环境能源科技开发有限公司 Method for comprehensively utilizing waste concrete and sludge to produce ecologic clinker
JP2016216267A (en) * 2015-05-14 2016-12-22 三和石産株式会社 Hydraulic cured body containing concrete sludge fine powder as binding material
CN109796153A (en) * 2019-04-02 2019-05-24 山东建筑大学 A kind of aged cement hydration activity exciting agent

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027624A1 (en) * 1998-11-06 2000-05-18 Mitsubishi Chemical Corporation Water absorbing composite, method for preparation thereof and water absorbing article
JP2005320201A (en) * 2004-05-10 2005-11-17 Shimizu Corp Cement composition using waste concrete fine powder and method of preparing the same
JP2005320202A (en) * 2004-05-10 2005-11-17 Shimizu Corp Cement composition using waste concrete fine powder and method of preparing the same
DE102006049836B4 (en) * 2006-10-23 2011-06-16 Hochschule Neubrandenburg Process for the preparation of a hydraulically hardening binder of calcium silicate hydrates or cement stone as binding phase and aggregate-containing construction residues and its use
JP2012012284A (en) * 2010-06-01 2012-01-19 Ohbayashi Corp Method for producing hydraulic material, and method for selecting crushed concrete material
JP2012006812A (en) * 2010-06-28 2012-01-12 Tokyo Institute Of Technology Regenerated cement raw material and regenerated cement composition using the same
JP2012006811A (en) * 2010-06-28 2012-01-12 Takenaka Komuten Co Ltd Recycled fine powder, method for recovering the same, concrete composition using the same, and classifier
JP2012121764A (en) * 2010-12-08 2012-06-28 Takenaka Komuten Co Ltd Concrete and method for producing concrete
JP2016216267A (en) * 2015-05-14 2016-12-22 三和石産株式会社 Hydraulic cured body containing concrete sludge fine powder as binding material
CN105130221A (en) * 2015-07-09 2015-12-09 湖南省小尹无忌环境能源科技开发有限公司 Method for comprehensively utilizing waste concrete and sludge to produce ecologic clinker
CN109796153A (en) * 2019-04-02 2019-05-24 山东建筑大学 A kind of aged cement hydration activity exciting agent

Also Published As

Publication number Publication date
JP3761996B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
JP4614768B2 (en) How to treat fly ash
JPH05238792A (en) Production of regenerated aggregate and regenerated aggregate
JPH10114556A (en) Production of reclaimed cement, and reclaimed cement
DE102006049836B4 (en) Process for the preparation of a hydraulically hardening binder of calcium silicate hydrates or cement stone as binding phase and aggregate-containing construction residues and its use
CN103351107A (en) Method for low temperature separation of waste concrete
JP3555987B2 (en) Recyclable concrete, mortar and recycling method
KR102008742B1 (en) Wet Concrete Secondary Products Using Recycled Aggregate Recycling Waste Electric Pole And Manufacturing Method Thereof
US5203512A (en) Processing additive for high-pressure roll press process of forming finish grind cement
JP2021042093A (en) Recycled raw material for autoclaved lightweight aerated concrete and manufacturing method of autoclaved lightweight aerated concrete using thereof
JP3723646B2 (en) Low heat generating hydraulic material and method for producing the same
JP3366451B2 (en) Concrete production method
JPH10130045A (en) Regeneratable concrete material and method for recycling waste concrete material made from this concrete material
JPH0959050A (en) Production of mixing material for cement
JP4317391B2 (en) Eco lime cement, method for producing the same and method for producing eco lime cement solidified body
JP3814860B2 (en) Method for producing non-fired aggregate
JP3499537B2 (en) Raw consludge granular material and method for producing the same
JP3602588B2 (en) Concrete waste treatment method
JP3707356B2 (en) Method for producing fly ash cement
JP3175629B2 (en) Filling mortar for solidifying radioactive waste, method for treating radioactive concrete waste, and method for producing filling mortar for solidifying radioactive waste
JP2003176162A (en) Concrete-not-hardened sludge granular material and production method therefor
JP2002121053A (en) Cement/concrete admixture and its production process
JP3434019B2 (en) How to Recycle Cement Flake Board Waste
JP3358715B2 (en) Cement-based composition
JP3373832B2 (en) Raw consludge granular material and method for producing the same
JP2001270769A (en) Method for manufacturing subgrade material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees