JP2005320202A - Cement composition using waste concrete fine powder and method of preparing the same - Google Patents

Cement composition using waste concrete fine powder and method of preparing the same Download PDF

Info

Publication number
JP2005320202A
JP2005320202A JP2004139826A JP2004139826A JP2005320202A JP 2005320202 A JP2005320202 A JP 2005320202A JP 2004139826 A JP2004139826 A JP 2004139826A JP 2004139826 A JP2004139826 A JP 2004139826A JP 2005320202 A JP2005320202 A JP 2005320202A
Authority
JP
Japan
Prior art keywords
fine powder
cement composition
concrete
silica gel
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004139826A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kuroda
泰弘 黒田
Yoshiaki Takemoto
喜昭 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2004139826A priority Critical patent/JP2005320202A/en
Publication of JP2005320202A publication Critical patent/JP2005320202A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a cement composition having certain self hardenability in hydration by pulverizing waste concrete in which carbonation is progressed into fine powder having a prescribed particle diameter and further applying a prescribed treatment to the fine powder. <P>SOLUTION: The cement composition having a certain self hardenability in hydration is prepared by heating fine powder obtained with regenerated aggregate by pulverizing concrete waste of which the carbonation is ensured and which is produced by the demolition of a reinforced concrete structure or the like at 300-500°C and dehydrating so that highly hydrated silica gel in the fine powder is made low hydrous or anhydrous. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、廃コンクリート微粉末を用いたセメント組成物及びその製造方法に係り、老朽化したり、改築のために解体された鉄筋コンクリート構造物等から分離して取り出されたコンクリート塊を破砕処理して所定粒径の微粉末とし、さらに所定の処理を施すことにより、一定の水和自硬性能を有するセメント組成物とその製造方法に関する。   The present invention relates to a cement composition using waste concrete fine powder and a method for producing the same, crushing a concrete block taken out from a reinforced concrete structure that has been aged or dismantled for reconstruction. The present invention relates to a cement composition having a certain hydration self-hardening performance by forming a fine powder having a predetermined particle diameter and further performing a predetermined treatment, and a method for producing the same.

高度経済成長期に建設されたコンクリート構造物が今後、更新時期を迎える。このため、解体された鉄筋コンクリート構造物等から分離して取り出されたコンクリート塊(以下、廃コンクリートと記す。)のリサイクル技術の確立が急務となっており、建築分野を中心として再生骨材の品質を天然骨材なみに高め、構造用骨材として一般のコンクリート構造に再利用するための開発が進められている。   The concrete structure built during the period of high economic growth will soon be renewed. For this reason, it is an urgent task to establish recycling technology for concrete blocks (hereinafter referred to as waste concrete) separated and removed from dismantled reinforced concrete structures. Development is underway to increase the quality of natural aggregates and recycle them into general concrete structures as structural aggregates.

各種の破砕処理装置によって高次処理を行って廃コンクリートから高品質の再生骨材を製造する際、付着したセメント水和物が取り除かれ、セメント硬化物を主体とする多量のコンクリート微粉末が発生する。したがって、廃コンクリートから製造される構造用再生骨材の普及展開にあたり、この二次副産物として発生する微粉末の各分野での再利用が課題であり、各種の適用例が提案されている。   When high-quality recycled aggregates are produced from waste concrete by high-level processing using various crushing equipment, adhering cement hydrate is removed, and a large amount of concrete fine powder mainly composed of hardened cement is generated. To do. Therefore, the reuse of fine powder generated as a secondary by-product in each field is an issue in the widespread development of structural recycled aggregates produced from waste concrete, and various application examples have been proposed.

出願人も、すでにコンクリート資源の有効循環利用を目的として廃コンクリートから高品質の再生骨材を製造可能な「加熱すりもみ法」を採用し、同方法によって得られた微粉末に対しては、地盤固化材料やその他の用途を視野に入れた再利用について検討を進めてきた(特許文献1)。   Applicants have already adopted the “heated surimi method” that can produce high-quality recycled aggregates from waste concrete for the purpose of effective recycling of concrete resources, and for fine powder obtained by this method, Studies have been made on reuse with a view to solidifying materials and other uses (Patent Document 1).

それと並行して、上述の微粉末の固化メカニズムをより正確に把握することにより、その再利用を高めるための研究も進めている。今までに、再生された微粉末が極めて高い粉末度を示すことと、微粉末中のCa(OH)2量が、微粉末の自硬性(強度発現)に関係している点等について確認している(非特許文献1,非特許文献2)。 At the same time, research is underway to increase the reuse of the above-mentioned fine powder by more accurately grasping the solidification mechanism. So far, we have confirmed that the regenerated fine powder shows extremely high fineness and that the amount of Ca (OH) 2 in the fine powder is related to the self-hardness (strength development) of the fine powder. (Non-patent document 1, Non-patent document 2).

特開2003−206527公報。JP2003-206527A. 内山 伸・黒田泰弘:加熱すりもみ処理したコンクリート微粉末に関する研究(その1 微粉末の製造条件および基本特性),日本建築学会大会学術講演梗概集,pp.379-380,2003Shin Uchiyama and Yasuhiro Kuroda: Study on heat-smoked concrete fine powder (Part 1 Production conditions and basic properties of fine powder), Abstracts of Annual Conference of Architectural Institute of Japan, pp.379-380, 2003 黒田泰弘・内山 伸:加熱すりもみ処理したコンクリート微粉末に関する研究(その2 微粉末の自硬性に関する検討),日本建築学会大会学術講演梗概集,pp.381-382,2003Yasuhiro Kuroda and Nobu Uchiyama: Study on heat-scratched concrete fine powder (Part 2 Examination on self-hardness of fine powder), Abstracts of Annual Conference of Architectural Institute of Japan, pp.381-382, 2003

ところで、リサイクル工程に用いられる廃コンクリートの状態として、炭酸化の進行がみられるものの存在が確認されている。既往の研究によれば、炭酸化が進行したコンクリートを粉砕処理してセメント水和物を分析したところ、C-S-Hの炭酸化が進行するとC/S比が低下するとともに、高含水のシリカゲルと炭酸カルシウムに分解していくことが確認されている。このため、炭酸化した廃コンクリートから得た微粉末のセメント組成物としての代替性を確立するために、炭酸化したコンクリートから製造された微粉末においても、確実に再水和を促進できるような微粉末の再生処理方法の確立が課題となっている。   By the way, it has been confirmed that the state of waste concrete used in the recycling process shows that carbonization progresses. According to previous research, when carbonized concrete was pulverized and analyzed for cement hydrate, the C / S ratio decreased as the carbonation of C—S—H progressed. It has been confirmed that it decomposes into silica gel and calcium carbonate. For this reason, in order to establish the substitutability of fine powder obtained from carbonated waste concrete as a cement composition, rehydration can be reliably promoted even in fine powder produced from carbonated concrete. Establishment of a method for reclaiming fine powder has become an issue.

この点について、出願人が研究を進めた結果、経年変化等により炭酸化が進行したコンクリートの微粉末において、生成された高含水のシリカゲルを、所定温度範囲で加熱脱水し、低含水あるいは無水シリカゲルを生成することで、水和時には水酸化カルシウムとのポゾラン反応により、C-S-Hが再生可能になるとの知見を得た。すなわち、本発明の特徴として、炭酸化が進行した廃コンクリートの微粉末は、脱水工程を経て、含有する高含水シリカゲルの脱水が促進され、シリカゲルが低含水状態になることにより、緻密なC−S−Hを再生成することが可能になり、セメント組成物としてその強度発現が増加するというメカニズムが確認された。   In this regard, as a result of the applicant's research, the high-moisture content silica gel that has been carbonized due to secular change, etc., is dehydrated by heating within a specified temperature range, resulting in low-moisture or anhydrous silica gel. As a result, it was found that C—S—H can be regenerated by a pozzolanic reaction with calcium hydroxide during hydration. That is, as a feature of the present invention, the fine powder of waste concrete that has undergone carbonation is subjected to a dehydration step, the dehydration of the highly hydrous silica gel contained therein is promoted, and the silica gel becomes a low hydrous state. It became possible to regenerate S—H, and the mechanism that the strength expression increased as a cement composition was confirmed.

上記目的を達成するために、本発明は炭酸化が確認されたコンクリート廃材の破砕処理により再生骨材とともに得られた微粉末が、脱水処理された低含水または無水シリカゲルを含有することを特徴とする。   In order to achieve the above object, the present invention is characterized in that the fine powder obtained together with the recycled aggregate by the crushing treatment of the concrete waste material confirmed to be carbonized contains a low water content or anhydrous silica gel that has been dehydrated. To do.

その製造方法として、炭酸化が確認されたコンクリート廃材の破砕処理により再生骨材とともに得られた微粉末を脱水処理し、該微粉末内の高含水シリカゲルを低含水ないし無水化することを特徴とする。   The production method is characterized in that the fine powder obtained together with the recycled aggregate by the crushing treatment of the concrete waste that has been confirmed to be carbonated is dehydrated, and the high water content silica gel in the fine powder is low water content or anhydrous. To do.

前記脱水処理は、300〜500℃で加熱処理することが好ましい。なお、シリカゲルとCa(OH)2のポゾラン反応による十分な強度発現を期待するためには、シリカゲル量に見合ったCa(OH)2量が必要である。炭酸化が進行してCa(OH)2含有率が2%を下回る場合には、少なくとも3%以上のCa(OH)2含有率を確保できるように、Ca(OH)2やセメント分を加えて補う必要がある。 The dehydration treatment is preferably heat treatment at 300 to 500 ° C. In order to expect sufficient strength expression by the pozzolanic reaction between silica gel and Ca (OH) 2, an amount of Ca (OH) 2 corresponding to the amount of silica gel is required. When carbonation proceeds and the Ca (OH) 2 content is below 2%, Ca (OH) 2 or cement is added so that at least 3% Ca (OH) 2 content can be secured. Need to be compensated.

本発明によれば、炭酸化が進行した廃コンクリートにおいても、微粉末の乾燥脱水処理を経て、シリカゲルの脱水化を経て緻密なC−S−Hが再生成されるセメント組成物としての再利用を図ることが可能になると言う効果を奏する。   According to the present invention, even in waste concrete that has undergone carbonation, it is reused as a cement composition in which fine C—S—H is regenerated through drying and dehydration of fine powder and dehydration of silica gel. The effect that it becomes possible to aim at is produced.

以下、本発明の廃コンクリート微粉末を用いたセメント組成物及びその製造方法の実施するための最良の形態として、以下の実施例について添付図面を参照して説明する。   Hereinafter, the following examples will be described with reference to the accompanying drawings as the best mode for carrying out the cement composition using the waste concrete fine powder of the present invention and the method for producing the same.

[微粉末の脱水処理]
再生骨材製造の最終段階で発生し、バグフィルタ、サイクロン等の公知の集塵機あるいは公知の乾式及び湿式分級機により収集された微粉末は、粒径0.6mm以下、比表面積500cm2/g以上で、この微粉末は、図1に示した作業フローに基づいて脱水され、所定の硬化特性を有するセメント組成物として再生することができる。以下、そのセメント組成物の製造方法の一実施例について説明する。
[Dehydration of fine powder]
Fine powder generated at the final stage of recycled aggregate production and collected by known dust collectors such as bag filters and cyclones or known dry and wet classifiers has a particle size of 0.6 mm or less and a specific surface area of 500 cm 2 / g or more. Thus, the fine powder is dehydrated based on the work flow shown in FIG. 1 and can be regenerated as a cement composition having predetermined curing characteristics. Hereinafter, an example of a method for producing the cement composition will be described.

炭酸化の進行が確認された廃コンクリート微粉末は、図示しない収容サイロから所定のロットで、あるいはスクリューコンベア等により連続的に脱水部としての加熱装置10に供給される。加熱装置10としては、本実施例では、たとえば高周波(マイクロ波)加熱装置、抵抗加熱装置等の公知の加熱装置による加熱脱水を行う。脱水された微粉末1は加熱装置10の排出ホッパ12から排出され、外気に触れずに直接密閉貯蔵タンク13に収容される。   The waste concrete fine powder whose progress of carbonation has been confirmed is supplied from a storage silo (not shown) in a predetermined lot or continuously to the heating device 10 as a dehydrating unit by a screw conveyor or the like. In the present embodiment, the heating device 10 performs heat dehydration using a known heating device such as a high frequency (microwave) heating device or a resistance heating device. The dehydrated fine powder 1 is discharged from the discharge hopper 12 of the heating device 10 and directly stored in the sealed storage tank 13 without touching the outside air.

なお、湿式分級後に比重選別によって得られた微粉末(脱水処理後)はCaOの含有率が35%程度と非常に高いことから、上質のセメント組成物として利用できる。   In addition, since the fine powder (after dehydration process) obtained by specific gravity selection after wet classification has a very high CaO content of about 35%, it can be used as a high-quality cement composition.

また、上述した加熱すりもみ法によって得られた微粉末を再加熱する場合には、再加熱する加熱設備の廃熱を、再生骨材を製造するための加熱すりもみ法の設備の加熱に利用することで既存設備の多機能化を図ることができる。   In addition, when re-heating fine powder obtained by the above-mentioned hot grinding method, the waste heat of the heating equipment to be reheated is used for heating the equipment of the hot grinding method for producing recycled aggregates. By doing so, it is possible to make the existing equipment multifunctional.

以下、炭酸化が進行したコンクリートの微粉末脱水によるC−S−Hを再生成の効果確認について行った実験について説明する。   Hereinafter, an experiment conducted to confirm the effect of regenerating C—S—H by dehydration of fine powder of concrete that has undergone carbonation will be described.

(破砕物の加熱処理、炭酸化処理)
比較例として、普通ポルトランドセメントに対してW/C=40%セメントペーストを練り混ぜ、φ50mm×100mm の供試体試料を成型し、所定期間の養生後(20℃水中で30日、40℃温水中で60日養生)、40℃恒温槽で1週間乾燥した後、ジョークラッシャで5mm程度以下に破砕し、粉砕物を100〜600℃(100℃刻み)の6ケースの温度設定条件で2時間加熱処理した。これに対して、炭酸化処理を施した試料として、一部の破砕物に対して促進中性化槽(CO2濃度5%,温度20℃,相対湿度60%)で4週間の炭酸化処理を行い、その後、300℃で加熱処理した炭酸化処理破砕物を作製した。
(Heat treatment and carbonation treatment of crushed material)
As a comparative example, W / C = 40% cement paste is kneaded with ordinary Portland cement, a specimen sample of φ50 mm × 100 mm is molded, and after curing for a predetermined period (30 days in 20 ° C. water, 40 ° C. warm water) 60 days), dried in a constant temperature bath at 40 ° C for 1 week, crushed to about 5 mm or less with a jaw crusher, and pulverized product is heated for 2 hours at 6 to 100 ° C (100 ° C increments) temperature setting conditions Processed. On the other hand, as a sample subjected to carbonation treatment, carbonization treatment was carried out for 4 weeks in an accelerated neutralization tank (CO 2 concentration 5%, temperature 20 ° C., relative humidity 60%) for some crushed materials. Then, the carbonation-processed crushed material heat-processed at 300 degreeC was produced.

(試験の内容)
(1)微粉末スラリー試料の作製
加熱処理した上記破砕物を、更に振動ミルを用いて、一定条件で微粉砕し、微粉末を製造した。これを用いて、ホバートミキサで微粉末スラリー(W/P=75%)を練り混ぜ、φ50mm×100mm の供試体を成型して、所定の材齢まで20℃の恒温室で湿潤養生した。なお、再水和後の試料の化学分析には、材齢28日の一軸圧縮試験後の供試体を5mm程度以下に破砕し、アセトン処理した後、真空乾燥したものを用いた。
(2)一軸圧縮試験
スラリー硬化体の一軸圧縮試験を、JIS A 1216(土の一軸圧縮試験方法)に準じて材齢28日で行った。
(3)シリカゲルの定量分析
船戸らの方法に準拠して分析を行い、ICP発光分光分析によってSi濃度を測り、Si2含有率に換算した。
(Examination contents)
(1) Production of fine powder slurry sample The above-mentioned heat-treated crushed material was further finely pulverized under certain conditions using a vibration mill to produce fine powder. Using this, a fine powder slurry (W / P = 75%) was kneaded with a Hobart mixer, a specimen having a diameter of 50 mm × 100 mm was molded, and wet-cured in a constant temperature room at 20 ° C. until a predetermined age. For chemical analysis of the sample after rehydration, a specimen after a uniaxial compression test on the age of 28 days was crushed to about 5 mm or less, treated with acetone, and then vacuum-dried.
(2) Uniaxial compression test The uniaxial compression test of the slurry hardened body was performed at a material age of 28 days in accordance with JIS A 1216 (soil uniaxial compression test method).
(3) in compliance with the quantitative analysis Funato et al method on silica gel analyzed, measure the S i concentration by ICP emission spectroscopy, in terms of S i O 2 content.

(試験結果)
○一軸圧縮試験結果
一軸圧縮試験結果は、図2に示したように、炭酸化処理を行わない通常の加熱処理微粉末(図2中、○印)は加熱100〜400℃の範囲では緩やかな強度発現を示す。なお、この実施例では炭酸化処理を行わない場合のシリカゲル含有率としては2%程度である。これに対して、炭酸化処理後、所定の加熱処理を行って乾燥脱水した微粉末では、水和物の一部が炭酸化処理によって生成された高含水シリカゲル分が加熱による脱水により、低含水あるいは無水シリカゲルとなり、Ca(OH)2とポゾラン反応して水和物を再生するため、低温加熱(300℃)状態で、同温度で加熱処理された通常の微粉末の2倍以上の強度発現が確認された(図2中、●印)。
(Test results)
○ Uniaxial compression test results As shown in Fig. 2, the results of the uniaxial compression test show that the normal heat-treated fine powder not subjected to carbonation treatment (marked with a circle in Fig. 2) is moderate in the heating range of 100 to 400 ° C. Intensity expression is shown. In this example, the silica gel content when the carbonation treatment is not performed is about 2%. On the other hand, in the fine powder dried and dehydrated by carrying out a predetermined heat treatment after the carbonation treatment, the high water content silica gel part of the hydrate produced by the carbonation treatment is reduced by the dehydration by heating. Alternatively, it becomes anhydrous silica gel and reacts with Ca (OH) 2 to regenerate hydrates, so that the strength is more than double that of ordinary fine powder heated at the same temperature in low-temperature heating (300 ° C). Was confirmed (marked with ● in FIG. 2).

○シリカゲル含有率の分析結果について
a.炭酸化処理を行った試料のシリカゲル含有率は2%を上回っており、式(1)のようにC−S−Hの一部が炭酸化によってシリカゲルへ分解していることが確認できた。なお、本実験では、硬化セメントペーストの水セメント比がW/C=40%と低いため、炭酸化領域は破砕物の破断面のごく表層のみにとどまる。
C−S−H+CO2→g−Si2+CaCO3+XH2O…(1)
b.促進炭酸化を行なった試料の再水和前後のシリカゲルの定量分析結果から炭酸化処理を行なった微粉末の再水和後のCa(OH)2は、シリカゲルとの関係において、下式に示したような反応により消費されたと考えられる。
g−Si2+Ca(OH)2+XH2O→C−S−H…(2)
○ About analysis result of silica gel content rate a. The silica gel content of the sample subjected to carbonation treatment exceeded 2%, and it was confirmed that a part of C—S—H was decomposed into silica gel by carbonation as shown in the formula (1). In this experiment, since the water cement ratio of the hardened cement paste is as low as W / C = 40%, the carbonation region remains only on the surface layer of the fracture surface of the crushed material.
C—S—H + CO 2 → g—S i O 2 + CaCO 3 + XH 2 O (1)
b. From the quantitative analysis results of silica gel before and after rehydration of the sample subjected to accelerated carbonation, Ca (OH) 2 after rehydration of the fine powder after carbonation was expressed by the following formula in relation to silica gel. It is thought that it was consumed by such a reaction.
g-S i O 2 + Ca (OH) 2 + XH 2 O → C-S-H ... (2)

以上に述べたように、炭酸化が進行したシリカゲルは結晶水を含有し、また遊離水を多く吸着した含水シリカゲルの状態であるのに対し、脱水(たとえば300℃で加熱処理)することにより、その結晶水および遊離水を放出させることができ、より緻密な水和物組織を形成し、より高い強度発現が期待でき、セメント組成物としての有効性が確認された。   As described above, the silica gel in which carbonation has progressed contains water of crystallization and is in a state of water-containing silica gel that has adsorbed a large amount of free water, whereas dehydration (for example, heat treatment at 300 ° C.) The crystal water and free water can be released, a denser hydrated structure can be formed, and higher strength can be expected, confirming the effectiveness as a cement composition.

本発明の廃コンクリート微粉末を用いたセメント組成物の製造プロセスを模式的に示したブロック図。The block diagram which showed typically the manufacturing process of the cement composition using the waste concrete fine powder of this invention. 微粉末の加熱処理温度と一軸圧縮強さとの関係を示したグラフ。The graph which showed the relationship between the heat processing temperature of fine powder, and uniaxial compressive strength.

符号の説明Explanation of symbols

1 微粉末
10 加熱装置
1 Fine powder 10 Heating device

Claims (3)

炭酸化が確認されたコンクリート廃材の破砕処理により再生骨材とともに得られた微粉末が、脱水処理された低含水または無水シリカゲルを含有することを特徴とする廃コンクリート微粉末を用いたセメント組成物。   Cement composition using waste concrete fine powder, characterized in that fine powder obtained together with recycled aggregates by crushing treatment of concrete waste confirmed to be carbonized contains low water content or anhydrous silica gel that has been dehydrated . 炭酸化が確認されたコンクリート廃材の破砕処理により再生骨材とともに得られた微粉末を脱水処理し、該微粉末内の高含水シリカゲルを低含水ないし無水化することを特徴とする廃コンクリート微粉末を用いたセメント組成物の製造方法。   Waste concrete fine powder characterized by dehydrating a fine powder obtained together with recycled aggregates by crushing a concrete waste material that has been confirmed to be carbonated, and dehydrating or dehydrating a highly hydrous silica gel in the fine powder Method for producing a cement composition using 前記脱水処理は、300〜500℃で加熱されることを特徴とする請求項2に記載の廃コンクリート微粉末を用いたセメント組成物の製造方法。   The said dehydration process is heated at 300-500 degreeC, The manufacturing method of the cement composition using the waste concrete fine powder of Claim 2 characterized by the above-mentioned.
JP2004139826A 2004-05-10 2004-05-10 Cement composition using waste concrete fine powder and method of preparing the same Pending JP2005320202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004139826A JP2005320202A (en) 2004-05-10 2004-05-10 Cement composition using waste concrete fine powder and method of preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004139826A JP2005320202A (en) 2004-05-10 2004-05-10 Cement composition using waste concrete fine powder and method of preparing the same

Publications (1)

Publication Number Publication Date
JP2005320202A true JP2005320202A (en) 2005-11-17

Family

ID=35467742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004139826A Pending JP2005320202A (en) 2004-05-10 2004-05-10 Cement composition using waste concrete fine powder and method of preparing the same

Country Status (1)

Country Link
JP (1) JP2005320202A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006049836B4 (en) * 2006-10-23 2011-06-16 Hochschule Neubrandenburg Process for the preparation of a hydraulically hardening binder of calcium silicate hydrates or cement stone as binding phase and aggregate-containing construction residues and its use
JP2012012284A (en) * 2010-06-01 2012-01-19 Ohbayashi Corp Method for producing hydraulic material, and method for selecting crushed concrete material
CN111960704A (en) * 2020-06-18 2020-11-20 扬州大学 Recycled aggregate chemical treatment reagent and preparation method thereof
CN114751663A (en) * 2022-04-08 2022-07-15 哈尔滨工业大学(深圳) Regenerated cementing material and preparation method thereof, concrete material and preparation method thereof
EP4265582A1 (en) * 2022-04-21 2023-10-25 Holcim Technology Ltd Method for the preparation of a carbonated mineral component, carbonated mineral component and method for the preparation of a hydraulic binder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238790A (en) * 1992-02-29 1993-09-17 Sumitomo Cement Co Ltd Cement extender and production thereof
JPH0959050A (en) * 1995-08-21 1997-03-04 Chichibu Onoda Cement Corp Production of mixing material for cement
JPH10114556A (en) * 1996-10-09 1998-05-06 Chichibu Onoda Cement Corp Production of reclaimed cement, and reclaimed cement
JP2003033622A (en) * 2001-07-23 2003-02-04 Sumitomo Kinzoku Kozan Siporex Kk Humidity conditioning material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05238790A (en) * 1992-02-29 1993-09-17 Sumitomo Cement Co Ltd Cement extender and production thereof
JPH0959050A (en) * 1995-08-21 1997-03-04 Chichibu Onoda Cement Corp Production of mixing material for cement
JPH10114556A (en) * 1996-10-09 1998-05-06 Chichibu Onoda Cement Corp Production of reclaimed cement, and reclaimed cement
JP2003033622A (en) * 2001-07-23 2003-02-04 Sumitomo Kinzoku Kozan Siporex Kk Humidity conditioning material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006049836B4 (en) * 2006-10-23 2011-06-16 Hochschule Neubrandenburg Process for the preparation of a hydraulically hardening binder of calcium silicate hydrates or cement stone as binding phase and aggregate-containing construction residues and its use
JP2012012284A (en) * 2010-06-01 2012-01-19 Ohbayashi Corp Method for producing hydraulic material, and method for selecting crushed concrete material
CN111960704A (en) * 2020-06-18 2020-11-20 扬州大学 Recycled aggregate chemical treatment reagent and preparation method thereof
CN114751663A (en) * 2022-04-08 2022-07-15 哈尔滨工业大学(深圳) Regenerated cementing material and preparation method thereof, concrete material and preparation method thereof
EP4265582A1 (en) * 2022-04-21 2023-10-25 Holcim Technology Ltd Method for the preparation of a carbonated mineral component, carbonated mineral component and method for the preparation of a hydraulic binder
WO2023203216A1 (en) 2022-04-21 2023-10-26 Holcim Technology Ltd Method for the preparation of a carbonated mineral component, carbonated mineral component and method for the preparation of a hydraulic binder

Similar Documents

Publication Publication Date Title
Wang et al. An environmentally friendly method to improve the quality of recycled concrete aggregates
JP7450409B2 (en) Method for producing cement mixture, mixed cement and carbon dioxide adsorbent
JP5776749B2 (en) Cement-based solidified concrete sludge heat-dried powder and method for producing the same
CN108083668A (en) A kind of preparation method of Aggregate of recycled concrete
KR20180073865A (en) Surface modification method of recycled aggregate using hydrous hydrofluoric acid and ultrasonic vibration
JP2005320202A (en) Cement composition using waste concrete fine powder and method of preparing the same
WO2023140126A1 (en) Manufacturing method for carbon dioxide absorbed sludge fine powder and carbon dioxide absorbed sludge fine powder, and water-hardening hardened body
JPH05238790A (en) Cement extender and production thereof
JP4630690B2 (en) Cement recovery method, cement recovered by the method, and cement reuse method
KR100713686B1 (en) Porous material of calcium silicate used waste concrete powder
CN113105202B (en) Full-solid waste material and preparation method and application thereof
JP2010247027A (en) Method for treating gypsum board waste material
AU2022320862A1 (en) Separation of hardened concrete paste from aggregate
JP4418244B2 (en) Method for producing powdered solidified material
JP4664462B2 (en) Method for producing carbonated cured body
Tolosa et al. Reuse of lime mud waste as filler in gypsum composites
JP2004082061A (en) Treatment and recycling method of calcium silicate-based waste
KR100956161B1 (en) The process of manufacture with a high quality of aggregate of circulation using the process water of sulfuric acid and the tirturation device of low speedy solution
JP4627935B2 (en) Conditioning material
JP2005320201A (en) Cement composition using waste concrete fine powder and method of preparing the same
JP3602588B2 (en) Concrete waste treatment method
JP3434019B2 (en) How to Recycle Cement Flake Board Waste
JP2000086371A (en) Cement hardened body and its production
JP2005320442A (en) Ground amending and solidifying material using waste concrete fine powder and method for producing the same
RU2371406C2 (en) Method of producing anhydrite-containing binder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803