JPH10113551A - Continuous reaction apparatus and production method using thereof - Google Patents

Continuous reaction apparatus and production method using thereof

Info

Publication number
JPH10113551A
JPH10113551A JP8272251A JP27225196A JPH10113551A JP H10113551 A JPH10113551 A JP H10113551A JP 8272251 A JP8272251 A JP 8272251A JP 27225196 A JP27225196 A JP 27225196A JP H10113551 A JPH10113551 A JP H10113551A
Authority
JP
Japan
Prior art keywords
reaction
liquid
solid catalyst
catalyst
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8272251A
Other languages
Japanese (ja)
Inventor
Yasuo Azeta
康雄 畔田
Kazunori Watanabe
和則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP8272251A priority Critical patent/JPH10113551A/en
Publication of JPH10113551A publication Critical patent/JPH10113551A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To continuously separate a solid catalyst from a reaction mixture containing the catalyst and reuse the separated catalyst as it is by attaching a circulating pump and a liquid cyclone to a reaction container which is provided with a liquid raw material supplying inlet and carried out a liquid-solid reaction by using a solid catalyst. SOLUTION: In the case of producing a reaction product by reaction of liquid raw materials in liquid phase in the presence of a solid catalyst, liquid raw materials from liquid raw material supply lines 1 and a solid catalyst are set in a reaction container 2. Then, a stirring apparatus 3 is rotated, liquid substances containing the liquid raw materials and the solid catalyst are totally circulated through a cooling device 6 by a circulation pump 5. After that, at the time when prescribed operation conditions are satisfied, a gas such as hydrogen gas is sent through a gas supply line 4, a reaction is started and when a prescribed reaction ratio is achieved, a part of the reaction mixture is led to a liquid cyclone 7 and the reaction mixture is separated into a liquid and a solid. The separated solid catalyst is turned back to the reaction container 2 and reused and the separated liquid is supplied to the next process through a filter 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、連続反応装置及びそれ
を用いた生産方法に関する。さらに詳しくは、少なくと
も、液状原料供給口を備えた反応容器、反応混合物を循
環するための循環ポンプ及び液体サイクロンから構成さ
れる連続反応装置、及びそれを用いた生産方法に関す
る。
The present invention relates to a continuous reactor and a production method using the same. More specifically, the present invention relates to at least a reaction vessel having a liquid material supply port, a continuous reaction apparatus including a circulation pump for circulating a reaction mixture and a liquid cyclone, and a production method using the same.

【0002】[0002]

【従来の技術】従来、固体触媒を用いて行う液−固反応
あるいは気−液−固反応が多く知られている。これらの
反応において、反応混合物と触媒は通常濾過機又は遠心
分離機などで分離され、分離された触媒は溶媒で逆洗あ
るいは調整して循環再使用される。しかしながら、この
ような操作は極めて煩雑であり、とくに、反応系が高圧
で行われる場合、上述したような既存の分離装置で触媒
を分離しようとすると、分離する前に系を常圧又は常圧
付近にして実施する必要があり、しかも分離後の触媒を
高圧の反応容器にもどすには特殊な供給装置が必要であ
る。
2. Description of the Related Art Conventionally, a liquid-solid reaction or a gas-liquid-solid reaction performed using a solid catalyst has been widely known. In these reactions, the reaction mixture and the catalyst are usually separated by a filter or a centrifuge, and the separated catalyst is back-washed or adjusted with a solvent and reused by circulation. However, such an operation is extremely complicated, and in particular, when the reaction system is performed at a high pressure, when the catalyst is to be separated by the existing separation device as described above, the system is set to normal pressure or normal pressure before separation. It needs to be carried out in the vicinity, and a special supply device is required to return the separated catalyst to the high-pressure reaction vessel.

【0003】[0003]

【発明が解決しようとする課題】煩雑な操作を必要とし
ない合理的なプロセスを構築することは、工業的規模で
生産を実施する場合、不可欠な技術課題であり、本発明
の目的は、従来のように、触媒を分離するのに濾過機又
は遠心分離機などの回分式の分離手段によらず、固体触
媒を含む反応混合物から触媒を連続的に分離でき、分離
した触媒はそのまま再使用可能な連続反応装置を提供す
ること及びそれを用いた生産方法を提供することにあ
る。
The construction of a rational process that does not require complicated operations is an indispensable technical problem when carrying out production on an industrial scale. The catalyst can be continuously separated from the reaction mixture containing the solid catalyst without using a batch type separation means such as a filter or a centrifugal separator to separate the catalyst, and the separated catalyst can be reused as it is And a production method using the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討し、反応系に液体サイクロンを
設けることにより、上記課題が解決されることを見出
し、本発明を完成させるに至った。すなわち、本発明
は、少なくとも、液状原料供給口を備えた反応容器、反
応混合物を循環するための循環ポンプ及び液体サイクロ
ンから構成されることを特徴とする連続反応装置であ
る。
Means for Solving the Problems The present inventors diligently studied to solve the above problems, and found that the above problems could be solved by providing a liquid cyclone in the reaction system, and completed the present invention. Reached. That is, the present invention is a continuous reaction apparatus comprising at least a reaction vessel provided with a liquid material supply port, a circulation pump for circulating a reaction mixture, and a liquid cyclone.

【0005】本発明のもう一つの発明は、液状原料を固
体触媒の存在下に液相で反応させて反応生成物を得る生
産方法において、反応混合物の一部は反応容器へ循環さ
せつつ、一部を液体サイクロンへ導き、液体サイクロン
で液状の反応混合物と固体触媒を分離し、該固体触媒は
反応容器へリサイクルし、該液状の反応混合物は反応系
外へ抜き出すことを特徴とする連続生産方法である。
Another invention of the present invention relates to a production method for producing a reaction product by reacting a liquid raw material in a liquid phase in the presence of a solid catalyst. A continuous reaction method, wherein a liquid reaction mixture and a solid catalyst are separated by a liquid cyclone, the solid catalyst is recycled to a reaction vessel, and the liquid reaction mixture is withdrawn out of the reaction system. It is.

【0006】本発明の反応装置において、反応器として
液状原料供給口を備えた反応容器が使用される。反応容
器は液状原料供給口を備えていれば如何なる形状のもの
でもよく、水添反応、還元アミノ化反応などガスを使用
する場合は、別途ガスの供給口を設ければよい。
[0006] In the reaction apparatus of the present invention, a reaction vessel provided with a liquid material supply port is used as a reactor. The reaction vessel may have any shape as long as it has a liquid material supply port. When a gas such as a hydrogenation reaction or a reductive amination reaction is used, a separate gas supply port may be provided.

【0007】ガスを液状原料によく溶解させるために、
また混合状態を良好にするために反応容器に撹拌機を備
えるのが好ましい。また、液状原料供給口を備えた反応
容器にエゼクタを設けるとガスの分散が良好となり、好
ましい。反応容器は環状の反応容器であってもよい。
In order to dissolve the gas in the liquid material well,
Further, it is preferable to provide a stirrer in the reaction vessel in order to improve the mixing state. Further, it is preferable to provide an ejector in a reaction vessel provided with a liquid material supply port, since the gas can be dispersed well. The reaction vessel may be an annular reaction vessel.

【0008】本発明の連続反応装置は、少なくとも、液
状原料供給口を備えた反応容器、反応混合物を循環する
ための循環ポンプ及び液体サイクロンから構成され、所
定の操作条件下において反応を行い、反応容器から抜き
出された反応混合物の一部を反応容器へ循環させつつ、
一部を液体サイクロンへ導き、液体サイクロンで液状の
反応混合物と固体触媒を分離し、該固体触媒は反応容器
へリサイクルし、該液状の反応混合物は反応系外へ抜き
出すことによって連続生産が実施される。反応容器にお
ける液面は適宜調節すればよいが、通常は容器の60%
〜80%で実施することが多い。
[0008] The continuous reaction apparatus of the present invention comprises at least a reaction vessel provided with a liquid material supply port, a circulation pump for circulating a reaction mixture, and a liquid cyclone. While circulating a part of the reaction mixture extracted from the vessel to the reaction vessel,
A part of the reaction mixture is led to a liquid cyclone, the liquid reaction mixture is separated from the solid catalyst by the liquid cyclone, and the solid catalyst is recycled to the reaction vessel. You. The liquid level in the reaction vessel may be appropriately adjusted, but is usually 60% of the vessel.
It is often performed at ~ 80%.

【0009】液体サイクロンは液体と固体触媒を分離す
るためのものであり、分離された固体触媒は反応容器に
もどされる。液体サイクロンの効率をあげるためには、
サイクロンの円筒部の直径を小さくするのが望ましく、
スリム状のサイクロンを必要に応じて複数個使用するの
がよい。
[0009] The hydrocyclone is for separating a liquid and a solid catalyst, and the separated solid catalyst is returned to a reaction vessel. To increase the efficiency of the hydrocyclone,
It is desirable to reduce the diameter of the cylindrical part of the cyclone,
It is preferable to use a plurality of slim cyclones as necessary.

【0010】本発明において、反応圧力及び反応温度は
とくに限定されず、圧力は常圧〜高圧まで幅広く適用す
ることができ、温度も低温から高温まで幅広く適用され
る。分離された液状の反応混合物は、反応生成物、未反
応液状原料及び若干の触媒からなっており、フィルタ−
を通して次の工程へ供給される。
In the present invention, the reaction pressure and the reaction temperature are not particularly limited, and the pressure can be widely applied from normal pressure to high pressure, and the temperature is also widely applied from low to high temperature. The separated liquid reaction mixture is composed of the reaction product, unreacted liquid raw material and some catalyst.
Through to the next step.

【0011】[0011]

【発明の実施の形態】以下、本発明を図により具体的に
説明する。図1は本発明の連続反応装置を示すフローチ
ャートである。1は液状原料供給ラインであり、2は反
応容器、3は撹拌機、4はガスの分散機である。まず、
一次仕込みとして、1から液状原料及び溶媒に溶解され
たスラリ−状の固体触媒を反応容器2に仕込む。所定の
液面に達したら撹拌機3を回転し、所定の圧力及び温度
に達したら、循環ポンプ5で液状原料及びスラリ−状の
固体触媒からなる液状物を冷却器6を通して全量循環さ
せる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. FIG. 1 is a flowchart showing the continuous reaction apparatus of the present invention. 1 is a liquid raw material supply line, 2 is a reaction vessel, 3 is a stirrer, and 4 is a gas disperser. First,
As a primary charge, a slurry-like solid catalyst dissolved in a liquid raw material and a solvent is charged from 1 into the reaction vessel 2. When the liquid level reaches a predetermined level, the stirrer 3 is rotated. When the pressure and the temperature reach a predetermined level, the circulating pump 5 circulates the whole liquid material composed of the liquid raw material and the slurry-like solid catalyst through the cooler 6.

【0012】所定の操作条件に達したら、水素などのガ
スをガス供給ライン4から仕込み、反応を開始する。冷
却器は図1又は図2のように、反応容器の外部に設けて
もよいが、ジャケット形式で反応容器に直接設置しても
よい。冷却器6は必要に応じて加熱器として使用され
る。冷却器又は加熱器は他の媒体と熱交換を行うように
するのが熱的に効率がよい。
When predetermined operating conditions are reached, a gas such as hydrogen is charged from the gas supply line 4 to start the reaction. The cooler may be provided outside the reaction vessel as shown in FIG. 1 or FIG. 2, or may be provided directly in the reaction vessel in a jacket form. The cooler 6 is used as a heater as needed. Coolers or heaters are thermally efficient to exchange heat with other media.

【0013】図2は反応容器2にエゼクタ9を設けたも
のであり、このようなエゼクタ−によれば、循環された
液状反応混合物の速度をあげて反応容器内へ吹き込むこ
とができ、供給されるガスとともに反応容器内の流動状
態をさらによくし、ガスの吸収効率を高くすることがで
きる。
FIG. 2 shows an example in which an ejector 9 is provided in the reaction vessel 2. According to such an ejector, the circulated liquid reaction mixture can be blown into the reaction vessel at an increased speed and supplied. The flow state in the reaction vessel together with the gas can be further improved, and the gas absorption efficiency can be increased.

【0014】所定の反応率に達したら、液状原料及びガ
スを連続的に供給しながら、反応混合物の一部を液体サ
イクロン7に導き、反応混合物を液体と固体に分離す
る。分離された固体触媒は反応容器2へリサイクルさ
れ、再使用される。また、分離された液体は、反応生成
物及び未反応物の他、若干の固体触媒が含まれることが
あるので、必要に応じフィルタ8を通して次の工程へ供
給する。
When a predetermined reaction rate is reached, a part of the reaction mixture is introduced into a liquid cyclone 7 while continuously supplying a liquid raw material and a gas, and the reaction mixture is separated into a liquid and a solid. The separated solid catalyst is recycled to the reaction vessel 2 and reused. The separated liquid may contain a small amount of a solid catalyst in addition to a reaction product and an unreacted product, and is supplied to the next step through the filter 8 as necessary.

【0015】本発明が対象とする反応はとくに限定され
るものではなく、水素添加反応、アミノ化反応、アルキ
ル化反応、ニトリル化反応、酸化反応、塩素化反応、カ
ルボニル化反応などに適用することができる。反応に用
いられる液状原料としては、医薬、農薬、香料、染料な
どの化学反応に用いられる有機化合物があげられる。一
例をあげれば、ヘキセン、ブタジエン、アセトン、メチ
ルエチルケトン、ベンゼン、ジクロロベンゼン、トルイ
ジン、フェノール、アニリン、ニトロベンゼン、ニトロ
ベンゼンスルホン酸、ニトロT酸、pーアミノジフェニ
ルアミン、pーニトロフェノール、ゲラニオール、脂肪
酸、脂肪酸ニトリル、ラウリルアルコール、pーキシレ
ン、イソプロパノール、ブタノール、2,3ーブチレン
グリコール、1,9ーノナンジアール、2ーメチルー
1,8ーオクタンジアール、又はこれらの混合物を例示
することができる。
The reaction of the present invention is not particularly limited, and is applicable to hydrogenation, amination, alkylation, nitrilation, oxidation, chlorination, carbonylation, etc. Can be. Examples of the liquid raw material used for the reaction include organic compounds used for chemical reactions such as medicines, agricultural chemicals, flavors, and dyes. For example, hexene, butadiene, acetone, methyl ethyl ketone, benzene, dichlorobenzene, toluidine, phenol, aniline, nitrobenzene, nitrobenzenesulfonic acid, nitro T acid, p-aminodiphenylamine, p-nitrophenol, geraniol, fatty acid, fatty acid nitrile , Lauryl alcohol, p-xylene, isopropanol, butanol, 2,3-butylene glycol, 1,9-nonandial, 2-methyl-1,8-octanedial, or a mixture thereof.

【0016】なかでも、1,9ーノナンジアール、2ー
メチルー1,8ーオクタンジアール、又はこれらの混合
物のようなジアルデヒド類は不安定であり、閉鎖系で行
うのが望ましいので本発明の連続反応装置に好適であ
る。
In particular, dialdehydes such as 1,9-nonandial, 2-methyl-1,8-octanedial, and mixtures thereof are unstable, and it is desirable to carry out the reaction in a closed system. Suitable for the device.

【0017】本発明に使用される固体触媒は液状原料に
応じて決められるものであるが、液状原料と混合した場
合、スラリ−状になるものが好ましい。これらの固体触
媒を例示すると、ニッケル、コバルト、銅、銀、白金、
クロム、パラジウム、マンガン、鉄、チタン、トリウ
ム、マグネシウム、亜鉛、タングステン、モリブデン、
レニウム及びジルコニウムなどの金属のうち少なくとも
一種以上の金属触媒またはその変性触媒、ラネ−触媒及
びシリカ、アルミナ、ケイソウ土、マグネシウム、酸化
亜鉛などに担持させた触媒をあげることができる。
The solid catalyst used in the present invention is determined according to the liquid raw material, but is preferably in the form of a slurry when mixed with the liquid raw material. Illustrative of these solid catalysts are nickel, cobalt, copper, silver, platinum,
Chromium, palladium, manganese, iron, titanium, thorium, magnesium, zinc, tungsten, molybdenum,
Examples thereof include at least one metal catalyst such as rhenium and zirconium or a modified catalyst thereof, a Raney catalyst, and a catalyst supported on silica, alumina, diatomaceous earth, magnesium, zinc oxide and the like.

【0018】反応を実施するにあたって、適宜溶媒を使
用してもよい。溶媒は通常種々の反応に一般的に使用さ
れる溶媒であるが、このような例としては、メタノ−
ル、エタノ−ル、ブタノ−ル、ヘキサノ−ル、2−エチ
ルヘキサノ−ル、オクタノ−ル、エチレングリコ−ルな
どのアルコ−ル類、ヘキサン、オクタン、デカン、流動
パラフィン、シクロヘキサンなどの脂肪族炭化水素類な
どをあげることができる。触媒調製に用いる溶媒と反応
に用いる溶媒とが同じ種類のものであるのが好ましいこ
とはもちろんである。
In carrying out the reaction, a solvent may be used as appropriate. The solvent is generally a solvent generally used for various reactions. Examples of such a solvent include methano-
Alcohols such as ethanol, ethanol, butanol, hexanole, 2-ethylhexanol, octanol and ethylene glycol, and aliphatic carbons such as hexane, octane, decane, liquid paraffin and cyclohexane. Hydrogens and the like can be given. It is needless to say that the solvent used for preparing the catalyst and the solvent used for the reaction are preferably of the same type.

【0019】本発明の反応装置は、常圧でも勿論使用で
きるが、高圧になるとさらに効果を発揮する。すなわ
ち、反応系が高圧であると、従来法の場合、一旦常圧近
辺の圧力にもどして固体触媒の分離を行う必要があり、
しかも再使用のために再度昇圧して特殊な供給装置で反
応系へもどす必要があったが、本発明の反応装置はその
ような煩わしさはなく、液体サイクロンで反応混合物と
固体触媒を連続的に効率よく分離し、分離された固体触
媒を連続的に再使用しながら反応を実施することができ
る。若干の触媒の損失は反応液の状態をチェックするこ
とにより、適宜補給すればよい。連続反応は、系内の圧
力、温度、液面レベルなど所定の条件になるように適宜
制御しながら実施される。
The reactor of the present invention can of course be used at normal pressure, but it is more effective at higher pressure. That is, when the reaction system is at a high pressure, in the case of the conventional method, it is necessary to once return to a pressure near normal pressure to separate the solid catalyst,
In addition, it was necessary to increase the pressure again for reuse and return it to the reaction system with a special supply device.However, the reaction device of the present invention does not have such a troublesomeness. And the reaction can be carried out while continuously reusing the separated solid catalyst. A slight loss of the catalyst may be appropriately replenished by checking the state of the reaction solution. The continuous reaction is carried out while appropriately controlling the pressure, temperature, liquid level and the like in the system so as to satisfy predetermined conditions.

【0020】[0020]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。 実施例1 図1に示す2枚のタ−ビン翼を有する撹拌槽を反応容器
とし、図1に示す反応装置により、固体触媒としてニッ
ケルーケイソウ土触媒を使用して1,9ーノナンジアー
ル及び2ーメチルー1,8ーオクタンジアールの連続還
元アミノ化反応を行った。反応原料として、1,9ーノ
ナンジアール及び2ーメチルー1,8ーオクタンジアー
ルの8:2の混合物、溶媒としてメタノ−ル及び上記固
体触媒を反応容器に仕込み、定常時の反応容器内液状混
合物1200kg、触媒濃度1wt%、反応圧力50a
tm、温度150℃になるように、1,9ーノナンジア
ール及び2ーメチルー1,8ーオクタンジアールの混合
物を217kg/hr、メタノ−ルを616kg/h
r、液体アンモニアを355kg/hr及び水素を63
Nm3 /hrで連続的に供給して反応を行い、循環反応
液のうち30kg/minを直径1cm、高さ10cm
の液体サイクロン素子12本からなる液体サイクロン装
置に供給し、残りを140℃に設定した冷却器を通して
反応容器に循環した。
The present invention will be described more specifically with reference to the following examples. Example 1 A stirring vessel having two turbine blades as shown in FIG. 1 was used as a reaction vessel, and a 1,9-nonandial and 2-methyl-methyl diatomaceous earth catalyst was used as a solid catalyst by the reactor shown in FIG. A continuous reductive amination reaction of 1,8-octanedial was performed. As a reaction raw material, an 8: 2 mixture of 1,9-nonandial and 2-methyl-1,8-octanedial, methanol and a solid catalyst as a solvent were charged into a reaction vessel, and 1200 kg of a liquid mixture in the reaction vessel at a steady state was charged. Catalyst concentration 1 wt%, reaction pressure 50a
217 kg / hr of a mixture of 1,9-nonandial and 2-methyl-1,8-octanedial and 616 kg / h of methanol so that the temperature is 150 ° C.
r, 355 kg / hr of liquid ammonia and 63 of hydrogen
The reaction is carried out by continuously supplying Nm 3 / hr, and 30 kg / min of the circulating reaction solution is 1 cm in diameter and 10 cm in height.
Was supplied to a liquid cyclone device consisting of 12 liquid cyclone elements, and the remainder was circulated to a reaction vessel through a cooler set at 140 ° C.

【0021】液体サイクロンからは、メタノ−ル52w
t%、アンモニア26wt%、H2O4wt%と、0.
05wt%の触媒を含む1,9−ノナンジアミン及び2
−メチル−1,8−オクタンジアミン混合物17wt%
からなる清澄な液が20kg/minで得られた。清澄
液には、1,9ーノナンジアール及び2ーメチルー1,
8ーオクタンジアールは検出されなかった。該清澄液を
2m2 のフィルタ−に通してさらに触媒を分離したが、
反応系外へ流出した触媒はわずかであった。
From the hydrocyclone, methanol 52w
%, ammonia 26 wt%, H 2 O 4 wt%, and 0.1 wt%.
1,9-nonanediamine containing 05 wt% of catalyst and 2
-Methyl-1,8-octanediamine mixture 17wt%
Was obtained at 20 kg / min. The clarified liquid contained 1,9-nonandial and 2-methyl-1,
8-octanedial was not detected. The clarified liquid was passed through a 2 m 2 filter to further separate the catalyst.
A small amount of the catalyst flowed out of the reaction system.

【0022】実施例2 図2に示すエゼクタを備えた反応容器を使用した以外は
実施例1と同様に操作したところ、液体サイクロンから
0.01wt%の触媒を含む清澄な液が得られた。
Example 2 The same operation as in Example 1 was carried out except that the reaction vessel equipped with an ejector shown in FIG. 2 was used. As a result, a clear liquid containing 0.01% by weight of a catalyst was obtained from the hydrocyclone.

【0023】比較例1 液体サイクロンを有さない従来の反応装置を用いて、実
施例1と同様の反応を行った。反応液は常圧にもどし、
濾過機で固体触媒の濾過を行い、固体触媒は溶媒で再調
製した後、加圧ポンプにより反応容器にリサイクル使用
した。
Comparative Example 1 The same reaction as in Example 1 was carried out using a conventional reactor having no hydrocyclone. The reaction solution is returned to normal pressure,
The solid catalyst was filtered by a filter, and the solid catalyst was re-prepared with a solvent and then recycled to the reaction vessel by a pressure pump.

【0024】比較例2 液体サイクロンを有さない従来の反応装置を用いて、実
施例1と同様の反応を行った。反応液は常圧にもどし、
遠心分離機で固体触媒の分離を行い、固体触媒は溶媒で
再調製した後、加圧ポンプにより反応容器にリサイクル
使用した。
Comparative Example 2 The same reaction as in Example 1 was carried out using a conventional reactor having no hydrocyclone. The reaction solution is returned to normal pressure,
The solid catalyst was separated by a centrifugal separator, and the solid catalyst was re-prepared with a solvent and then recycled to the reaction vessel by a pressure pump.

【0025】比較例1及び比較例2では煩雑な触媒分離
回収操作及び触媒の調製再使用操作を必要とするのに対
し、実施例1及び実施例2ではこのような操作を必要と
せず、安定に連続運転可能であった。以上の結果から、
本発明の効果は明らかである。
In Comparative Examples 1 and 2, complicated operation for separating and recovering the catalyst and operation for preparing and reusing the catalyst are required, whereas in Examples 1 and 2, such operation is not required and the operation is stable. Could be operated continuously. From the above results,
The effects of the present invention are clear.

【0026】[0026]

【発明の効果】本発明によれば、反応系に液体サイクロ
ンを設けることにより、液状の反応混合物と固体触媒を
連続的に分離することができるので、煩雑な触媒分離回
収操作を必要とせず、連続的に効率よく生産を実施する
ことができる。
According to the present invention, by providing a liquid cyclone in a reaction system, a liquid reaction mixture and a solid catalyst can be continuously separated, so that a complicated catalyst separation and recovery operation is not required. Production can be continuously and efficiently performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の連続反応装置の一例である。FIG. 1 is an example of the continuous reaction apparatus of the present invention.

【図2】本発明の連続反応装置の別の例である。FIG. 2 is another example of the continuous reaction apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 液状原料供給ライン 2 反応容器 3 撹拌機 4 ガス供給ライン 5 循環ポンプ 6 加熱器又は冷却器 7 液体サイクロン 8 フィルタ− 9 エゼクタ Reference Signs List 1 liquid raw material supply line 2 reaction vessel 3 stirrer 4 gas supply line 5 circulation pump 6 heater or cooler 7 liquid cyclone 8 filter 9 ejector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C07B 61/00 300 B01J 23/74 321X ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C07B 61/00 300 B01J 23/74 321X

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、液状原料供給口を備えた反
応容器、反応混合物を循環するための循環ポンプ及び液
体サイクロンから構成されることを特徴とする連続反応
装置。
1. A continuous reaction apparatus comprising at least a reaction vessel having a liquid material supply port, a circulation pump for circulating a reaction mixture, and a liquid cyclone.
【請求項2】 請求項1記載の連続反応装置において、
反応容器が撹拌機を備えた反応容器である連続反応装
置。
2. The continuous reactor according to claim 1, wherein
A continuous reactor in which the reaction vessel is a reaction vessel equipped with a stirrer.
【請求項3】 請求項1記載の連続反応装置において、
反応容器がエゼクタを備えた反応容器である連続反応装
置。
3. The continuous reactor according to claim 1, wherein
A continuous reactor in which the reaction vessel is a reaction vessel provided with an ejector.
【請求項4】 請求項1記載の連続反応装置において、
反応容器が環状の反応容器である連続反応装置。
4. The continuous reactor according to claim 1, wherein
A continuous reactor in which the reaction vessel is an annular reaction vessel.
【請求項5】 液状原料を固体触媒の存在下に液相で反
応させて反応生成物を得る生産方法において、反応混合
物の一部は反応容器へ循環させつつ、一部を液体サイク
ロンへ導き、液体サイクロンで液状の反応混合物と固体
触媒を分離し、該固体触媒は反応容器へリサイクルし、
該液状の反応混合物は反応系外へ抜き出すことを特徴と
する連続生産方法。
5. A method for producing a reaction product by reacting a liquid raw material in a liquid phase in the presence of a solid catalyst, wherein a part of the reaction mixture is circulated to a reaction vessel while a part is guided to a liquid cyclone. Separate the liquid reaction mixture and the solid catalyst in the hydrocyclone, the solid catalyst is recycled to the reaction vessel,
A continuous production method, wherein the liquid reaction mixture is withdrawn outside the reaction system.
【請求項6】 請求項5の連続生産方法において、液状
原料が1,9ーノナンジアール及び/又は2ーメチルー
1,8ーオクタンジアールである連続生産方法。
6. The continuous production method according to claim 5, wherein the liquid raw material is 1,9-nonandial and / or 2-methyl-1,8-octanedial.
JP8272251A 1996-10-15 1996-10-15 Continuous reaction apparatus and production method using thereof Pending JPH10113551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8272251A JPH10113551A (en) 1996-10-15 1996-10-15 Continuous reaction apparatus and production method using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8272251A JPH10113551A (en) 1996-10-15 1996-10-15 Continuous reaction apparatus and production method using thereof

Publications (1)

Publication Number Publication Date
JPH10113551A true JPH10113551A (en) 1998-05-06

Family

ID=17511248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8272251A Pending JPH10113551A (en) 1996-10-15 1996-10-15 Continuous reaction apparatus and production method using thereof

Country Status (1)

Country Link
JP (1) JPH10113551A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000066255A1 (en) * 1999-04-30 2000-11-09 Slowik Guenter Method and device for processing a substance or substance mixture which is situated in a container and rotates about the container axis, notably because of a mixing or stirring action
WO2003035258A1 (en) * 2001-10-24 2003-05-01 Daikin Industries, Ltd. Method and system for the recovery of catalysts and process and unit for the production of perfluoroalkyl iodide telomers
JP2006199685A (en) * 2004-12-22 2006-08-03 Sumitomo Chemical Co Ltd Method for producing cyclohexanone oxime
JP2014028368A (en) * 2001-03-22 2014-02-13 Ceramic Fuel Cells Ltd Liquid phase reactor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000066255A1 (en) * 1999-04-30 2000-11-09 Slowik Guenter Method and device for processing a substance or substance mixture which is situated in a container and rotates about the container axis, notably because of a mixing or stirring action
JP2014028368A (en) * 2001-03-22 2014-02-13 Ceramic Fuel Cells Ltd Liquid phase reactor
JP2015083303A (en) * 2001-03-22 2015-04-30 ビーケイ・ギウリニ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBk Giulini Gmbh Liquid phase reactor
WO2003035258A1 (en) * 2001-10-24 2003-05-01 Daikin Industries, Ltd. Method and system for the recovery of catalysts and process and unit for the production of perfluoroalkyl iodide telomers
US7601878B2 (en) 2001-10-24 2009-10-13 Daikin Industries, Ltd. Process and unit for production of perfluoroalkyl iodide telomers
JP2006199685A (en) * 2004-12-22 2006-08-03 Sumitomo Chemical Co Ltd Method for producing cyclohexanone oxime
JP4577205B2 (en) * 2004-12-22 2010-11-10 住友化学株式会社 Method for producing cyclohexanone oxime

Similar Documents

Publication Publication Date Title
US5166420A (en) Process for the production of high purity terephthalic acid
CN106518608B (en) The continuous preparation method and device of cyclohexanedimethanol
US6749727B2 (en) Hydrogenation of a working solution in a hydrogen peroxide production process
US3761521A (en) Hydrogenation of aromatic nitro compounds
CN113402395A (en) Method for continuously and efficiently synthesizing m-phenylenediamine based on fixed bed microreactor
CN213505981U (en) System for preparing hydrogen peroxide based on anthraquinone method
JP4453798B2 (en) Method for producing aromatic carboxylic acid hydride
CN113429295A (en) Method for preparing m-phenylenediamine by continuous catalytic hydrogenation based on fixed bed microreactor
CN112499592A (en) System and process for preparing hydrogen peroxide based on anthraquinone method
JP2003511431A (en) Continuous production method of cinnamaldehyde and dihydrocinnamaldehyde
MXPA00008276A (en) Hydrogenation in suspension of an anthraquinone compound, in a special reactor, for the preparation of hydrogen peroxide
JPH10113551A (en) Continuous reaction apparatus and production method using thereof
US3356729A (en) Preparation of aromatic polyamines
JP2002145824A (en) Method for hydrogenating terephthalic acid
US3356728A (en) Process of preparing aromatic polyamines by catalytic hydrogenation of aromatic polynitro compounds
KR890000790B1 (en) Manufacture of h2o2
JP4980753B2 (en) Method for stopping liquid phase reaction
JP4256078B2 (en) Method for producing 4-aminodiphenylamine
JP4149039B2 (en) Reaction method and reaction apparatus
CN212640339U (en) Equipment for preparing p-anisidine
JP4372249B2 (en) Method for continuous catalytic reduction of organic compounds
US3895065A (en) Process for carrying out chemical reactions in heterogeneous medium
EP0052511B1 (en) Production of p-phenylenediamine
EP1091920B1 (en) Hydroformylation reactions
CN220328608U (en) Device for preparing methyl isoamyl ketone