JP2006199685A - Method for producing cyclohexanone oxime - Google Patents

Method for producing cyclohexanone oxime Download PDF

Info

Publication number
JP2006199685A
JP2006199685A JP2005364436A JP2005364436A JP2006199685A JP 2006199685 A JP2006199685 A JP 2006199685A JP 2005364436 A JP2005364436 A JP 2005364436A JP 2005364436 A JP2005364436 A JP 2005364436A JP 2006199685 A JP2006199685 A JP 2006199685A
Authority
JP
Japan
Prior art keywords
cyclohexanone
supply port
ammonia
hydrogen peroxide
reaction mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005364436A
Other languages
Japanese (ja)
Other versions
JP4577205B2 (en
Inventor
Franco Trivellone
トリベロン フランコ
Piero Furlan
フルラン ピエール
Miyuki Oikawa
幸 老川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005364436A priority Critical patent/JP4577205B2/en
Publication of JP2006199685A publication Critical patent/JP2006199685A/en
Application granted granted Critical
Publication of JP4577205B2 publication Critical patent/JP4577205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method with which the selectivity of cyclohexanone oxime is further improved and the cyclohexanone oxime can be produced in higher yield in a continuous ammoximation reaction of cyclohexanone. <P>SOLUTION: The method for production is carried out as follows. A reaction mixture in which a titanosilicate catalyst is dispersed is made to exist in a reactor and the cyclohexanone, hydrogen peroxide and ammonia are fed from a cyclohexanone feed port, a hydrogen peroxide feed port and an ammonia feed port into the reactor, respectively to produce the cyclohexanone oxime by the continuous reaction. In the process, a circulating flow of the reaction mixture is formed and the hydrogen peroxide feed port and ammonia feed port are located in the order mentioned on the downstream side of the circulating flow on the basis of the cyclohexanone feed port. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、シクロヘキサノンのアンモキシム化反応により、シクロヘキサノンオキシムを製造する方法に関するものである。シクロヘキサノンオキシムは、ε−カプロラクタムの原料等として有用である。   The present invention relates to a method for producing cyclohexanone oxime by an ammoximation reaction of cyclohexanone. Cyclohexanone oxime is useful as a raw material for ε-caprolactam.

シクロヘキサノンオキシムを製造する方法の1つとして、チタノシリケート触媒の存在下に、シクロヘキサノンを過酸化水素とアンモニアでアンモキシム化する方法が提案されている(例えば、特許文献1〜4参照)。この方法は、従来のヒドロキシルアミン硫酸塩でオキシム化する方法のように硫酸をアンモニアで中和する必要がなく、また、固体触媒反応であるため、生成物と触媒との分離が容易である等の利点を有している。   As one of the methods for producing cyclohexanone oxime, a method for ammoximation of cyclohexanone with hydrogen peroxide and ammonia in the presence of a titanosilicate catalyst has been proposed (for example, see Patent Documents 1 to 4). This method does not require neutralization of sulfuric acid with ammonia as in the conventional method of oximation with hydroxylamine sulfate, and since it is a solid catalytic reaction, it is easy to separate the product and the catalyst. Has the advantage of

上記アンモキシム化反応は、連続式で行うのが生産性ないし操作性の点で有利であり、例えば、特許文献2及び3には、シクロヘキサノン、過酸化水素及びアンモニアを反応器に供給しながら、反応器内の触媒が分散した反応混合物の液相をフィルターを介して抜き出すことにより、連続式でアンモキシム化反応を行うことが開示されている。また、特許文献4には、原料と共に触媒を反応器に供給しながら、連続式でアンモキシム化反応を行うことが開示されている。   The ammoximation reaction is advantageously performed in a continuous manner in terms of productivity or operability. For example, in Patent Documents 2 and 3, the reaction is performed while cyclohexanone, hydrogen peroxide and ammonia are supplied to the reactor. It is disclosed that the ammoximation reaction is continuously carried out by extracting the liquid phase of the reaction mixture in which the catalyst in the vessel is dispersed through a filter. Patent Document 4 discloses that the ammoximation reaction is carried out continuously while supplying the catalyst together with the raw material to the reactor.

特開昭62−59256号公報JP-A-62-59256 特開平6−49015号公報JP-A-6-49015 特開平6−92922号公報Japanese Patent Laid-Open No. 6-92922 特開2000−72737号公報JP 2000-72737 A

本発明の目的は、上記連続式アンモキシム化反応において、シクロヘキサノンオキシムの選択率をさらに向上させて、シクロヘキサノンオキシムをより高い収率で製造しうる方法を提供することにある。   An object of the present invention is to provide a process capable of producing cyclohexanone oxime in a higher yield by further improving the selectivity of cyclohexanone oxime in the continuous ammoximation reaction.

本発明者等は鋭意研究を行った結果、反応器内に触媒が分散した反応混合物の循環流を形成し、この中に各原料を所定の位置から供給することにより、上記目的を達成できることを見出し、本発明を完成するに至った。すなわち、本発明は、反応器内にチタノシリケート触媒が分散した反応混合物を存在させ、この中にシクロヘキサノン、過酸化水素及びアンモニアをそれぞれシクロヘキサノン供給口、過酸化水素供給口及びアンモニア供給口から供給して、連続式反応によりシクロヘキサノンオキシムを製造する方法であって、上記反応混合物は循環流を形成しており、かつ、シクロヘキサノン供給口を基準として、該循環流の下流側に、過酸化水素供給口及びアンモニア供給口がこの順に設けられていることを特徴とする方法を提供するものである。   As a result of intensive studies, the present inventors have found that the above object can be achieved by forming a circulation flow of a reaction mixture in which a catalyst is dispersed in a reactor, and supplying each raw material from a predetermined position. The headline and the present invention were completed. That is, in the present invention, a reaction mixture in which a titanosilicate catalyst is dispersed is present in a reactor, and cyclohexanone, hydrogen peroxide, and ammonia are supplied to the reactor from a cyclohexanone supply port, a hydrogen peroxide supply port, and an ammonia supply port, respectively. Then, a process for producing cyclohexanone oxime by a continuous reaction, wherein the reaction mixture forms a circulating flow, and hydrogen peroxide is supplied to the downstream side of the circulating flow with respect to the cyclohexanone supply port. The method is characterized in that the port and the ammonia supply port are provided in this order.

本発明によれば、シクロヘキサノンの連続式アンモキシム化反応を高選択率で行うことができ、高収率でシクロヘキサノンオキシムを製造することができる。   According to the present invention, a continuous ammoximation reaction of cyclohexanone can be carried out with high selectivity, and cyclohexanone oxime can be produced in high yield.

以下、本発明を詳細に説明する。本発明で用いるチタノシリケートとは、骨格を構成する元素としてチタン、ケイ素及び酸素を含むゼオライトであり、実質的にチタンとケイ素と酸素から骨格が構成されるものであってもよいし、骨格を構成する元素としてさらに他の元素を含むものであってもよい。チタノシリケートとしては、ケイ素/チタンの原子比が10〜1000のものが好適に用いられ、またその形状は、例えば、微粉状であってもよいし、ペレット状であってもよい。チタノシリケートは、例えば特開昭56−96720号公報に記載の方法により、調製することができる。   Hereinafter, the present invention will be described in detail. The titanosilicate used in the present invention is a zeolite containing titanium, silicon, and oxygen as elements constituting the skeleton, and the skeleton may be substantially composed of titanium, silicon, and oxygen. Further, other elements may be included as an element constituting the element. As the titanosilicate, those having an atomic ratio of silicon / titanium of 10 to 1000 are preferably used, and the shape thereof may be, for example, fine powder or pellet. Titanosilicate can be prepared, for example, by the method described in JP-A-56-96720.

上記チタノシリケートを触媒として用い、この触媒の存在下に、シクロヘキサノンを過酸化水素とアンモニアでアンモキシム化することにより、シクロヘキサノンオキシムを製造することができる。   Cyclohexanone oxime can be produced by using the above titanosilicate as a catalyst and ammoximation of cyclohexanone with hydrogen peroxide and ammonia in the presence of this catalyst.

原料のシクロヘキサノンは、例えば、シクロヘキサンの酸化反応により得られたものであってもよいし、シクロヘキセンの水和、脱水素反応により得られたものであってもよいし、フェノールの水素化反応により得られたものであってもよい。   The raw material cyclohexanone may be obtained, for example, by an oxidation reaction of cyclohexane, may be obtained by a hydration or dehydrogenation reaction of cyclohexene, or may be obtained by a hydrogenation reaction of phenol. It may be what was made.

過酸化水素は、通常、所謂アントラキノン法により製造され、一般に濃度10〜70重量%の水溶液として市販されているので、これを用いることができる。また、過酸化水素は、金属パラジウムを担持した固体触媒の存在下に、有機溶媒中で水素と酸素を反応させることにより製造することもでき、この方法による過酸化水素を使用する場合、反応混合物から触媒を分離して得られる過酸化水素の有機溶媒溶液を、上記過酸化水素水溶液に代えて使用すればよい。過酸化水素の使用量は、シクロヘキサノン1モルに対して、通常0.5〜3モル、好ましくは0.5〜1.5モルである。なお、過酸化水素には、例えば、リン酸ナトリウムのようなリン酸塩、ピロリン酸ナトリウムやトリポリリン酸ナトリウムのようなポリリン酸塩、ピロリン酸、アスコルビン酸、エチレンジアミンテトラ酢酸、ニトロトリ酢酸、アミノトリ酢酸、ジエチレントリアミンペンタ酢酸等の安定剤が添加されていてもよい。   Hydrogen peroxide is usually produced by the so-called anthraquinone method, and is generally commercially available as an aqueous solution having a concentration of 10 to 70% by weight, so that it can be used. Hydrogen peroxide can also be produced by reacting hydrogen and oxygen in an organic solvent in the presence of a solid catalyst supporting metal palladium. When hydrogen peroxide is used in this method, the reaction mixture An organic solvent solution of hydrogen peroxide obtained by separating the catalyst from the catalyst may be used in place of the aqueous hydrogen peroxide solution. The usage-amount of hydrogen peroxide is 0.5-3 mol normally with respect to 1 mol of cyclohexanone, Preferably it is 0.5-1.5 mol. Examples of hydrogen peroxide include phosphates such as sodium phosphate, polyphosphates such as sodium pyrophosphate and sodium tripolyphosphate, pyrophosphate, ascorbic acid, ethylenediaminetetraacetic acid, nitrotriacetic acid, aminotriacetic acid, A stabilizer such as diethylenetriaminepentaacetic acid may be added.

アンモニアは、ガス状のものを用いてもよいし、液状のものを用いてもよく、また水や有機溶媒の溶液として用いてもよい。アンモニアの使用量は、シクロヘキサノン1モルに対して、好ましくは1モル以上であり、さらに好ましくは1.5モル以上である。   Ammonia may be used in the form of gas, liquid, or water or an organic solvent solution. The amount of ammonia used is preferably 1 mol or more, more preferably 1.5 mol or more, per 1 mol of cyclohexanone.

上記アンモキシム化反応は、溶媒中で行ってもよく、この反応溶媒としては、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール、n−ブチルアルコール、s−ブチルアルコール、t−ブチルアルコール、t−アミルアルコールのようなアルコール類や水、またはこれらの混合溶媒が好適に用いられる。   The ammoximation reaction may be carried out in a solvent, and examples of the reaction solvent include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, s-butyl alcohol, t-butyl alcohol, t -Alcohols such as amyl alcohol, water, or a mixed solvent thereof is preferably used.

上記アンモキシム化反応の反応温度は通常50〜120℃であり、好ましくは70〜100℃である。また、反応圧力は常圧でもよいが、反応混合物の液相へのアンモニアの溶解量を高めるためには、加圧下で反応を行うのが好ましく、この場合、窒素やヘリウム等の不活性ガスを用いて、圧力を調整してもよい。   The reaction temperature of the ammoximation reaction is usually 50 to 120 ° C, preferably 70 to 100 ° C. The reaction pressure may be normal pressure, but in order to increase the amount of ammonia dissolved in the liquid phase of the reaction mixture, the reaction is preferably performed under pressure. In this case, an inert gas such as nitrogen or helium is used. It may be used to adjust the pressure.

本発明では、上記アンモキシム化反応を連続式で行う。この連続式反応は、通常、攪拌槽型やループ型の如き連続式反応器に、触媒が分散した反応混合物を所定量滞留させ、この中に、シクロヘキサノン、過酸化水素、アンモニア及び必要により溶媒等を供給しながら、これら原材料と略同量の反応混合物を抜き出すことにより行われる。ここで、反応混合物の抜き出しは、フィルター等を介して、その液相のみを抜き出し、触媒は反応器内に留まるようにするのがよい。触媒も一緒に抜き出す場合は、反応器への触媒の供給が必要となる。なお、この供給する触媒としては、通常、反応に未使用の新品触媒が使用されるが、抜き出した反応混合物から分離した回収触媒を、必要に応じて再生処理、例えば焼成による有機物の除去等に付した後、再使用することもでき、また新品触媒と回収触媒を併用してもよい。   In the present invention, the ammoximation reaction is carried out continuously. In this continuous reaction, a predetermined amount of a reaction mixture in which a catalyst is dispersed is usually retained in a continuous reactor such as a stirred tank type or a loop type, and in this, cyclohexanone, hydrogen peroxide, ammonia, and a solvent if necessary. The reaction mixture is withdrawn in approximately the same amount as these raw materials while feeding. Here, in extracting the reaction mixture, it is preferable to extract only the liquid phase through a filter or the like so that the catalyst remains in the reactor. When the catalyst is also extracted, it is necessary to supply the catalyst to the reactor. As the catalyst to be supplied, an unused new catalyst is usually used for the reaction, but the recovered catalyst separated from the extracted reaction mixture is used for regeneration treatment, for example, removal of organic substances by firing, etc. After being attached, it can be reused, and a new catalyst and a recovered catalyst may be used in combination.

反応混合物中の触媒濃度は、その活性や反応条件等にもよるが、反応混合物(触媒+液相)の容量あたりの重量として、通常1〜100g/L、好ましくは5〜100g/L、より好ましくは10〜100g/Lである。なお、反応開始時は、例えば触媒を溶媒に分散させてなる触媒分散液を反応器に仕込み、ここに上記の如く原材料の供給を開始すると共に、反応混合物の抜き出しを開始すればよい。また、反応器としては、過酸化水素の分解を防ぐ観点から、グラスライニングが施されたものやステンレススチール製のものを使用するのがよい。   Although the catalyst concentration in the reaction mixture depends on the activity and reaction conditions, the weight per volume of the reaction mixture (catalyst + liquid phase) is usually 1 to 100 g / L, preferably 5 to 100 g / L. Preferably it is 10-100 g / L. At the start of the reaction, for example, a catalyst dispersion obtained by dispersing the catalyst in a solvent may be charged into the reactor, and supply of raw materials may be started here, and extraction of the reaction mixture may be started. Further, as the reactor, from the viewpoint of preventing decomposition of hydrogen peroxide, it is preferable to use a glass-lined one or a stainless steel one.

そして、本発明では、上記連続式アンモキシム化反応において、反応器内に触媒が分散した反応混合物の循環流を形成し、この中に、シクロヘキサノン、過酸化水素及びアンモニアをそれぞれシクロヘキサノン供給口、過酸化水素供給口及びアンモニア供給口から供給する。その際、各供給口の位置関係は、シクロヘキサノン供給口を基準として、上記循環流の下流側に、すなわち流れ方向に向かって、過酸化水素供給口及びアンモニア供給口がこの順に配置されるようにする。このように、反応器内に触媒が分散した反応混合物の循環流を形成し、この中に各原料を所定の位置関係で供給することにより、シクロヘキサノンの縮合反応の如き副反応を抑制することができ、シクロヘキサノンオキシムの選択率を高めることができる。   In the present invention, in the continuous ammoximation reaction, a circulation flow of the reaction mixture in which the catalyst is dispersed in the reactor is formed, and in this, cyclohexanone, hydrogen peroxide and ammonia are respectively supplied to the cyclohexanone supply port, the peroxide. Supply from hydrogen supply port and ammonia supply port. At this time, the positional relationship between the supply ports is such that the hydrogen peroxide supply port and the ammonia supply port are arranged in this order on the downstream side of the circulating flow, that is, in the flow direction, with respect to the cyclohexanone supply port. To do. Thus, by forming a circulation flow of the reaction mixture in which the catalyst is dispersed in the reactor and supplying each raw material in a predetermined positional relationship, side reactions such as cyclohexanone condensation reaction can be suppressed. The selectivity of cyclohexanone oxime can be increased.

図1は、本発明による連続式アンモキシム化反応に用いられる反応装置の例を、模式的に示す断面図である。すなわち、ループ型(ドーナッツ型)の反応器1内には、白抜き矢印で示される如き反応混合物の循環流が、ポンプ等により形成される。そして、この循環流の中に、シクロヘキサノン2’が、供給管2を通ってその先端部の供給口2aから供給され、その下流側で、過酸化水素3’が、供給管3を通ってその先端部の供給口3aから供給され、さらにその下流側で、アンモニア4’が、供給管4を通ってその先端部の供給口4aから供給される。また、反応器1に設けられた抜き出し口1aからは、これら供給物と略同量の反応混合物1’が抜き出される。なお、供給口2a、3a及び4aの上流・下流の関係は相対的なものであり、例えば、過酸化水素供給口3aを基準とすれば、その下流側にアンモニア供給口4aが配置され、さらにその下流側にシクロヘキサノン供給口2aが配置されていると見ることができ、また、アンモニア供給口4aを基準とすれば、その下流側にシクロヘキサノン供給口2aが配置され、さらにその下流側に過酸化水素供給口3aが配置されていると見ることができる。   FIG. 1 is a cross-sectional view schematically showing an example of a reaction apparatus used for a continuous ammoximation reaction according to the present invention. That is, in the loop type (donut type) reactor 1, a circulation flow of the reaction mixture as shown by the white arrow is formed by a pump or the like. Then, in this circulating flow, cyclohexanone 2 ′ is supplied from the supply port 2a at the tip through the supply pipe 2, and on the downstream side, hydrogen peroxide 3 ′ passes through the supply pipe 3 and The ammonia 4 ′ is supplied from the supply port 3a at the distal end and further supplied downstream from the supply port 4a through the supply pipe 4. Further, from the outlet 1a provided in the reactor 1, a reaction mixture 1 'having the same amount as that of these feeds is withdrawn. The upstream / downstream relationship between the supply ports 2a, 3a, and 4a is relative. For example, if the hydrogen peroxide supply port 3a is used as a reference, the ammonia supply port 4a is disposed downstream of the supply port 2a. It can be seen that the cyclohexanone supply port 2a is disposed on the downstream side, and if the ammonia supply port 4a is used as a reference, the cyclohexanone supply port 2a is disposed on the downstream side, and further the peroxide is disposed on the downstream side. It can be seen that the hydrogen supply port 3a is arranged.

図2は、本発明による連続式アンモキシム化反応に用いられる反応装置の別の例を、模式的に示す縦断面図である。この例では、攪拌槽型の反応器1を用い、その中に白抜き矢印に示される如き反応混合物の循環流を形成するために、円筒形の隔壁5が攪拌翼6を囲むように設けられている。すなわち、攪拌翼6の回転により、隔壁5の内側、すなわち反応器1内の水平方向中央部では、反応混合物の下降流が形成され、隔壁5の外側、すなわち反応器1内の水平方向周縁部では、反応混合物の上昇流が形成され、全体として、これら下降流及び上昇流からなる反応混合物の循環流が形成される。そして、図1と同様に、この循環流の中に、シクロヘキサノン2’,2’が、供給管2,2を通ってその先端部の供給口2a,2aから供給され、その下流側の液深の浅い箇所で、過酸化水素3’,3’が、供給管3,3を通ってその先端部の供給口3a,3aから供給され、さらにその下流側の液深の深い箇所で、アンモニア4’,4’が、供給管4,4を通ってその先端部の供給口4a,4aから供給される。また、反応器1に設けられた抜き出し口1aからは、これら供給物と略同量の反応混合物1’が抜き出される。   FIG. 2 is a longitudinal sectional view schematically showing another example of the reaction apparatus used in the continuous ammoximation reaction according to the present invention. In this example, a stirring tank type reactor 1 is used, and a cylindrical partition wall 5 is provided so as to surround the stirring blade 6 in order to form a circulation flow of the reaction mixture as indicated by an outline arrow therein. ing. That is, due to the rotation of the stirring blade 6, a downward flow of the reaction mixture is formed inside the partition wall 5, that is, in the horizontal central portion in the reactor 1, and outside the partition wall 5, that is, in the horizontal peripheral edge portion in the reactor 1. Then, an upward flow of the reaction mixture is formed, and as a whole, a circulation flow of the reaction mixture composed of the downward flow and the upward flow is formed. As in FIG. 1, cyclohexanone 2 ′ and 2 ′ are supplied from the supply ports 2 a and 2 a through the supply pipes 2 and 2 into the circulating flow, and the liquid depth downstream thereof. The hydrogen peroxide 3 ', 3' is supplied from the supply ports 3a, 3a at the tip of the hydrogen peroxide 3 ', 3' through the supply pipes 3, 3 at a shallow part, and the ammonia 4 at a deep part at the downstream side. ', 4' is supplied from the supply ports 4a, 4a at the front end thereof through the supply pipes 4, 4. Further, from the outlet 1a provided in the reactor 1, a reaction mixture 1 'having the same amount as that of these feeds is withdrawn.

なお、図1では、供給口2a、3a及び4aを1個ずつ設ける例を示し、図2では、供給口2a、3a及び4aを2個ずつ設ける例を示したが、その数は任意であり、例えばスパージャーを用いることもできる。また、図1では、反応混合物の抜き出し口1aを、過酸化水素供給口3aの下流側で、アンモニア供給口4aの上流側に1個設ける例を示し、図2では、反応混合物の抜き出し口1aを、アンモニア供給口4aの下流側で、シクロヘキサノン供給口2aの上流側に1個設ける例を示したが、その位置と数は任意であり、適宜調整すればよい。さらに、図1及び図2には示されていないが、溶媒や他の成分の供給口を別に設ける場合は、適当な位置に1個ないし複数個設ければよい。   1 shows an example in which one supply port 2a, 3a, and 4a is provided, and FIG. 2 shows an example in which two supply ports 2a, 3a, and 4a are provided, but the number is arbitrary. For example, a sparger can be used. FIG. 1 shows an example in which one reaction mixture outlet 1a is provided on the downstream side of the hydrogen peroxide supply port 3a and upstream of the ammonia supply port 4a. In FIG. 2, the reaction mixture outlet 1a is provided. However, the position and the number thereof are arbitrary and may be adjusted as appropriate, although one is provided downstream of the ammonia supply port 4a and upstream of the cyclohexanone supply port 2a. Further, although not shown in FIGS. 1 and 2, when a solvent or other component supply port is separately provided, one or a plurality of supply ports may be provided at appropriate positions.

シクロヘキサノンオキシムの選択率をさらに向上させるためには、反応混合物の液相におけるアンモニアの濃度が1重量%以上となるようにするのが望ましい。こうすることで、シクロヘキサノンの転化率も向上させることができる。このアンモニアの濃度は、好ましくは1.5重量%以上であり、また、通常10重量%以下、好ましくは5重量%以下である。   In order to further improve the selectivity of cyclohexanone oxime, it is desirable that the ammonia concentration in the liquid phase of the reaction mixture be 1% by weight or more. By doing so, the conversion of cyclohexanone can also be improved. The ammonia concentration is preferably 1.5% by weight or more, and usually 10% by weight or less, preferably 5% by weight or less.

また、反応混合物の循環流に対するシクロヘキサノン供給口、過酸化水素供給口及びアンモニア供給口の位置関係は、先に述べたとおりであるが、さらに、反応混合物の液深方向、すなわち鉛直方向に対する位置関係としては、図2に示される如く、シクロヘキサノン供給口、過酸化水素供給口及びアンモニア供給口のうち、アンモニア供給口を最下部に設け、過酸化水素供給口を最上部に設けるのが好ましい。このとき、シクロヘキサノン供給口は、例えば図2に示される如く、アンモニア供給口及び過酸化水素供給口の間の中間の位置に設ければよい。   The positional relationship of the cyclohexanone supply port, the hydrogen peroxide supply port, and the ammonia supply port with respect to the circulation flow of the reaction mixture is as described above, and further, the positional relationship of the reaction mixture with respect to the liquid depth direction, that is, the vertical direction. As shown in FIG. 2, among the cyclohexanone supply port, the hydrogen peroxide supply port, and the ammonia supply port, it is preferable to provide the ammonia supply port at the bottom and provide the hydrogen peroxide supply at the top. At this time, the cyclohexanone supply port may be provided at an intermediate position between the ammonia supply port and the hydrogen peroxide supply port, for example, as shown in FIG.

得られた反応混合物の後処理操作については、公知の方法を適宜採用することができ、例えば、特許文献3に記載の如く、反応混合物の液相を濃縮した後、この濃縮物からシクロヘキサノンオキシムを有機溶媒で抽出し、次いで、この抽出液を再度濃縮することにより、シクロヘキサノンオキシムを分離することができる。   For the post-treatment operation of the obtained reaction mixture, a known method can be appropriately employed. For example, as described in Patent Document 3, after concentrating the liquid phase of the reaction mixture, cyclohexanone oxime is removed from this concentrate. Cyclohexanone oxime can be separated by extracting with an organic solvent and then concentrating the extract again.

以下、本発明の実施例を示すが、本発明はこれによって限定されるものではない。例中、含有量ないし使用量を表す%及び部は、特記ないかぎり重量基準である。また、シクロヘキサノン及びシクロヘキサノンオキシムの分析はガスクロマトグラフィーにより行い、この分析結果に基づいてシクロヘキサノンの転化率、シクロヘキサノンオキシムの選択率及びシクロヘキサノンオキシムの収率を算出した。   Examples of the present invention will be described below, but the present invention is not limited thereto. In the examples, “%” and “part” representing the content or amount used are based on weight unless otherwise specified. Cyclohexanone and cyclohexanone oxime were analyzed by gas chromatography, and the conversion of cyclohexanone, the selectivity of cyclohexanone oxime, and the yield of cyclohexanone oxime were calculated based on the analysis results.

実施例1
この例で用いた反応装置は、図2に概略で示されるとおりである。すなわち、SUS316製の攪拌槽型反応器1に、シクロヘキサノン2’を6.83部、60%過酸化水素水3’を4.44部、及びアンモニア4’を2.23部の割合で、それぞれ供給口2a、3a及び4aから供給し、さらに含水t−ブチルアルコール(水12%)を23.6部の割合で供給しながら、抜き出し口1aからフィルターを介して反応混合物の液相1’を抜き出すことにより、温度85℃、圧力0.35MPa(絶対圧)、滞留時間1.5時間の条件で連続式反応を行った。この間、反応器1内の反応混合物中には、30g/Lの濃度でチタノシリケート(Polimeri Europa社製)を存在させた。反応開始から20時間後に抜き出した反応混合物の液相1’を分析した結果、シクロヘキサノンの転化率は99.8%、シクロヘキサノンオキシムの選択率は99.4%であり、シクロヘキサノンオキシムの収率は99.2%であった。また、アンモニアの濃度は2%であった。
Example 1
The reactor used in this example is as shown schematically in FIG. That is, in a stirred tank reactor 1 made of SUS316, 6.83 parts of cyclohexanone 2 ′, 4.44 parts of 60% hydrogen peroxide 3 ′, and 2.23 parts of ammonia 4 ′ were respectively used. While supplying from the supply ports 2a, 3a and 4a and further supplying 23.6 parts of water-containing t-butyl alcohol (water 12%), the liquid phase 1 ′ of the reaction mixture was passed through the filter from the discharge port 1a. By extracting, a continuous reaction was performed under conditions of a temperature of 85 ° C., a pressure of 0.35 MPa (absolute pressure), and a residence time of 1.5 hours. During this time, titanosilicate (manufactured by Polymeri Europa) was present in the reaction mixture in the reactor 1 at a concentration of 30 g / L. As a result of analyzing the liquid phase 1 ′ of the reaction mixture extracted 20 hours after the start of the reaction, the conversion of cyclohexanone was 99.8%, the selectivity of cyclohexanone oxime was 99.4%, and the yield of cyclohexanone oxime was 99. 2%. The ammonia concentration was 2%.

本発明に用いられる反応装置の例を、模式的に示す断面図である。It is sectional drawing which shows typically the example of the reaction apparatus used for this invention. 本発明に用いられる反応装置の別の例を、模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically another example of the reaction apparatus used for this invention.

符号の説明Explanation of symbols

1……反応器、
2……シクロヘキサノン供給管、
3……過酸化水素供給管、
4……アンモニア供給管、
1a…反応混合物抜き出し口、
2a…シクロヘキサノン供給口、
3a…過酸化水素供給口、
4a…アンモニア供給口、
1’…反応混合物、
2’…シクロヘキサノン、
3’…過酸化水素、
4’…アンモニア、
5……隔壁、
6……攪拌翼。
1 …… Reactor,
2 …… Cyclohexanone supply pipe,
3 ... Hydrogen peroxide supply pipe,
4 ... Ammonia supply pipe,
1a: Reaction mixture outlet,
2a ... cyclohexanone supply port,
3a ... Hydrogen peroxide supply port,
4a ... ammonia supply port,
1 '... reaction mixture,
2 '... cyclohexanone,
3 '... hydrogen peroxide,
4 '... ammonia,
5 ...
6: Stirring blade.

Claims (3)

反応器内にチタノシリケート触媒が分散した反応混合物を存在させ、この中にシクロヘキサノン、過酸化水素及びアンモニアをそれぞれシクロヘキサノン供給口、過酸化水素供給口及びアンモニア供給口から供給して、連続式反応によりシクロヘキサノンオキシムを製造する方法であって、上記反応混合物は循環流を形成しており、かつ、シクロヘキサノン供給口を基準として、該循環流の下流側に、過酸化水素供給口及びアンモニア供給口がこの順に設けられていることを特徴とする方法。   A reaction mixture in which a titanosilicate catalyst is dispersed is present in the reactor, and cyclohexanone, hydrogen peroxide, and ammonia are supplied from the cyclohexanone supply port, the hydrogen peroxide supply port, and the ammonia supply port to the continuous reaction. The reaction mixture forms a circulating flow, and a hydrogen peroxide supply port and an ammonia supply port are provided downstream of the circulation flow with respect to the cyclohexanone supply port. A method characterized by being provided in this order. 前記反応混合物の液相中のアンモニア濃度が1重量%以上である請求項1に記載の方法。   The process according to claim 1, wherein the ammonia concentration in the liquid phase of the reaction mixture is 1% by weight or more. シクロヘキサノン供給口、過酸化水素供給口及びアンモニア供給口のうち、アンモニア供給口が最下部に設けられ、最上部に過酸化水素供給口が設けられている請求項1又は2に記載の方法。
The method according to claim 1 or 2, wherein among the cyclohexanone supply port, the hydrogen peroxide supply port, and the ammonia supply port, the ammonia supply port is provided at the lowermost portion and the hydrogen peroxide supply port is provided at the uppermost portion.
JP2005364436A 2004-12-22 2005-12-19 Method for producing cyclohexanone oxime Expired - Fee Related JP4577205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005364436A JP4577205B2 (en) 2004-12-22 2005-12-19 Method for producing cyclohexanone oxime

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004370727 2004-12-22
JP2005364436A JP4577205B2 (en) 2004-12-22 2005-12-19 Method for producing cyclohexanone oxime

Publications (2)

Publication Number Publication Date
JP2006199685A true JP2006199685A (en) 2006-08-03
JP4577205B2 JP4577205B2 (en) 2010-11-10

Family

ID=36958000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005364436A Expired - Fee Related JP4577205B2 (en) 2004-12-22 2005-12-19 Method for producing cyclohexanone oxime

Country Status (1)

Country Link
JP (1) JP4577205B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103551087A (en) * 2013-11-08 2014-02-05 神马实业股份有限公司 Ammoximation reaction system for preparing cyclohexanone-oxime
CN103551085A (en) * 2013-11-08 2014-02-05 神马实业股份有限公司 Catalyst separation device for cyclohexanone ammoximation reaction
JP2014523863A (en) * 2011-05-09 2014-09-18 ヴェルサリス ソシエタ ペル アチオニ Amoximation reactor for the production of cyclohexanone oxime
CN114230482A (en) * 2021-09-09 2022-03-25 浙江吉瑞通新材料有限公司 Method for producing cyclohexanone oxime by cyclohexanone ammoximation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046123U (en) * 1983-09-07 1985-04-01 石川島播磨重工業株式会社 Liquid reaction equipment including solid-liquid multiphase fluid, etc.
JPS63130575A (en) * 1986-11-14 1988-06-02 モンテデイペ・ソチエタ・ペル・アツイオニ Catalytic method for producing oxime
JPH0692922A (en) * 1991-01-23 1994-04-05 Enichem Anic Spa Multistage process for liquid phase ammooximation of carbonyl compound
JPH10113551A (en) * 1996-10-15 1998-05-06 Kuraray Co Ltd Continuous reaction apparatus and production method using thereof
JPH10506837A (en) * 1994-10-07 1998-07-07 バイエル・アクチエンゲゼルシヤフト Sludge phase reactor and its use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046123U (en) * 1983-09-07 1985-04-01 石川島播磨重工業株式会社 Liquid reaction equipment including solid-liquid multiphase fluid, etc.
JPS63130575A (en) * 1986-11-14 1988-06-02 モンテデイペ・ソチエタ・ペル・アツイオニ Catalytic method for producing oxime
JPH0692922A (en) * 1991-01-23 1994-04-05 Enichem Anic Spa Multistage process for liquid phase ammooximation of carbonyl compound
JPH10506837A (en) * 1994-10-07 1998-07-07 バイエル・アクチエンゲゼルシヤフト Sludge phase reactor and its use
JPH10113551A (en) * 1996-10-15 1998-05-06 Kuraray Co Ltd Continuous reaction apparatus and production method using thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014523863A (en) * 2011-05-09 2014-09-18 ヴェルサリス ソシエタ ペル アチオニ Amoximation reactor for the production of cyclohexanone oxime
CN103551087A (en) * 2013-11-08 2014-02-05 神马实业股份有限公司 Ammoximation reaction system for preparing cyclohexanone-oxime
CN103551085A (en) * 2013-11-08 2014-02-05 神马实业股份有限公司 Catalyst separation device for cyclohexanone ammoximation reaction
CN103551087B (en) * 2013-11-08 2015-11-18 神马实业股份有限公司 A kind of Ammoximation reaction system for the preparation of cyclohexanone oxime
CN114230482A (en) * 2021-09-09 2022-03-25 浙江吉瑞通新材料有限公司 Method for producing cyclohexanone oxime by cyclohexanone ammoximation

Also Published As

Publication number Publication date
JP4577205B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP4552435B2 (en) Oxime production method
KR101179090B1 (en) Process for producing cyclohexanone oxime
JP6058638B2 (en) Amoximation reactor for the production of cyclohexanone oxime
JP2003081930A (en) Aftertreatment method of oximization reaction mixture
JP4577205B2 (en) Method for producing cyclohexanone oxime
TW200930691A (en) Process for the manufacture of amines by hydrogenation of nitrile compounds
JP4534428B2 (en) Method for producing cyclohexanone oxime
EP1674448B1 (en) Process for producing cyclohexanone oxime
EP1674450B1 (en) Process for producing cyclohexanone oxime
US20030229253A1 (en) High yield cyclohexyl hydroperoxide decompostition process
JP2003327562A (en) Method for producing alkyl nitrite
JP2521574B2 (en) Method for producing hydrogen peroxide and apparatus therefor
JP4633337B2 (en) Method for producing cyclohexanone oxime
RU2530896C2 (en) Method of obtaining alkylhydroperoxide
KR100754755B1 (en) Process for the production of aromatic amines
JP4577077B2 (en) Method for producing cyclohexanone oxime
EP3677566B1 (en) Method for preparing isophorone diamine by means of hydrogenation reduction of isophorone nitrile imine
CN210736621U (en) Heterogeneous cyclohexanone oxime preparation facilities
JP2007203207A (en) Sparger, reactor using the same, and method for producing oxime
WO2012141059A1 (en) Production process of propylene oxide and production apparatus therefor
JP2006206476A (en) Method for producing cycloalkanone oxime
JP7284692B2 (en) Method for producing aromatic alcohol
JP2003261515A (en) Method for producing alkyl nitrite
JP2005097204A (en) Method for producing organic peroxide
Ratchananusorn et al. Process Intensification

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4577205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees