JP4149039B2 - Reaction method and reaction apparatus - Google Patents

Reaction method and reaction apparatus Download PDF

Info

Publication number
JP4149039B2
JP4149039B2 JP17985398A JP17985398A JP4149039B2 JP 4149039 B2 JP4149039 B2 JP 4149039B2 JP 17985398 A JP17985398 A JP 17985398A JP 17985398 A JP17985398 A JP 17985398A JP 4149039 B2 JP4149039 B2 JP 4149039B2
Authority
JP
Japan
Prior art keywords
reaction
filter
catalyst
raw material
reaction mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17985398A
Other languages
Japanese (ja)
Other versions
JPH11240855A (en
Inventor
康雄 畔田
和則 渡辺
進 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP17985398A priority Critical patent/JP4149039B2/en
Publication of JPH11240855A publication Critical patent/JPH11240855A/en
Application granted granted Critical
Publication of JP4149039B2 publication Critical patent/JP4149039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Filtration Of Liquid (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、反応方法及び反応装置に関する。さらに詳しくは、少なくとも、液状原料供給口及び反応混合物取出口を備えた反応容器、反応混合物を循環するための循環ポンプ並びに濾過器から構成されるループ型反応装置を使用して液状原料を懸濁触媒の存在下に加圧下で反応させる反応方法において、液状原料が1,9−ノナンジアール及び/又は2−メチル−1,8−オクタンジアールを、エゼクタを設けた反応容器を使用して反応させ、得られた反応混合物を線速度1〜10m/秒で循環させつつ、細孔径が0.01〜1.0μmの濾過器で反応生成物と懸濁触媒とをクロスフロー式濾過で分離し、反応生成物は系外へ抜き出すことを連続的に行う反応方法とそれに用いられる反応装置に関する。
【0002】
【従来の技術】
従来、固体触媒を用いて反応を行う液−固反応あるいは気−液−固反応が多く知られている。これらの反応において、反応混合物と触媒は通常濾過機又は遠心分離機などで分離され、分離された触媒は溶媒で洗浄あるいは調整して循環再使用されている。しかしながら、このような操作は極めて煩雑であり、とくに、反応系が高圧で行われる場合、上述したような既存の分離装置で触媒を分離しようとすると、分離する前に系を常圧又は常圧付近にして実施する必要があり、しかも分離後の触媒を高圧の反応容器にもどすには特殊な供給装置が必要である。
【0003】
【発明が解決しようとする課題】
煩雑な操作を必要としない合理的なプロセスを構築することは、工業的規模で生産を実施する場合、不可欠な技術課題であり、これを解決するものとして、特開平5−76779号公報に、濾過器をカルボン酸で予備処理して、エーテルカルボン酸と懸濁触媒を十字流濾過で分離する触媒の分離方法が開示されている。この方法によれば、従来のように、触媒を分離するのに濾過機又は遠心分離機などの回分式の分離手段によらず、固体触媒を含む反応混合物から固体触媒を連続的に分離することができ、分離した触媒はそのまま再使用できるので、合理的な方法であるといえる。
【0004】
しかしながら、ここに開示された方法で加圧下に反応を行うと、反応条件によっては濾過器がすぐに目詰まりを起こし、連続反応に耐えない場合があることが判明した。通常、工業規模での化学反応は連続的に加圧下で行うことが多く、濾過器の目詰まりは工業化の死命を制するといっても過言ではない。また、懸濁触媒として貴金属を使用する場合は如何に触媒の回収率をあげるかが工業化の分かれ目になることが多い。したがって、本発明の目的は、液状原料を懸濁触媒の存在下に加圧下で反応を行い、懸濁触媒と反応混合物とを濾過により分離する反応方法において、濾過器の目詰まりの少ない反応方法及び反応装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、鋭意検討を重ね、液状原料を使用して懸濁触媒の存在下で加圧反応を行う場合、反応装置内を循環する液状混合物の線速度と濾過器の細孔径を選ぶことにより、上記課題が解決されることを見出し、本発明を完成させるに至った。
【0006】
すなわち、本発明は、少なくとも、液状原料供給口及び反応混合物取出口を備えた反応容器、反応混合物を循環するための循環ポンプ並びに濾過器から構成されるループ型反応装置を使用して液状原料を懸濁触媒の存在下に加圧下で反応させる反応方法において、液状原料の1,9−ノナンジアール及び/又は2−メチル−1,8−オクタンジアールを、エゼクタを設けた反応容器を使用して反応させ、得られた反応混合物を線速度1〜10m/秒で循環させつつ、細孔径が0.01〜1.0μmの濾過器で反応生成物と懸濁触媒とをクロスフロー式濾過で分離し、反応生成物は系外へ抜き出すことを連続的に行うことを特徴とする反応方法である。
【0007】
また、本発明のもう一つの発明は、少なくとも、液状原料供給口及び、反応混合物取出口及びエゼクタを備えた反応容器、反応混合物を循環するための循環ポンプ並びに濾過器から構成され、液状原料の1,9−ノナンジアール及び/又は2−メチル−1,8−オクタンジアールを反応させるためのループ型反応装置である。
【0008】
【発明の実施の形態】
本発明に使用する反応容器は、液状原料供給口、反応混合物取出口及びエゼクタを備えていれば如何なる形状の反応容器でもよく、水添反応、還元アミノ化反応などガスを使用する反応を行う場合は、別途ガスの供給口を設ければよい。
【0009】
ガスが液状原料とよく溶解するように、また混合状態を良好にするために反応容器にパドル翼やタービン翼を備えた撹拌機を設置するのが好ましい。また、液状原料供給口を備えた反応容器にエゼクタを設けるとガスの分散が良好となる。攪拌機及びエゼクタの両方を設けてもよい。反応容器の形状はとくに限定されるものではないが、状のものが製作しやすく、また耐圧にも優れるので好ましい。
【0010】
本発明において、反応混合物と懸濁触媒とは濾過器で分離されるが、濾過器の細孔径があまり小さいと反応生成物が抜けにくく、またあまり大きいと懸濁触媒が抜けるので、本発明において濾過器の細孔径は0.1〜1.0μmのものを使用する必要がある。濾過器の材質としては耐腐食性に優れるものが好ましいのは勿論であるが、耐圧性に優れていることが必要である。このような観点から、円筒状の濾過器が好ましく、材質的にはセラミック製のもの、酸化ジルコニウムなどの焼結金属製のものが好ましい。とくに、耐摩耗性の点でセラミック製の濾過器が好ましい。
【0011】
本発明の反応方法及び反応装置で対象とする反応としては例えば、水素添加反応、アミノ化反応、アルキル化反応、ニトリル化反応、酸化反応、塩素化反応、カルボニル化反応などに適用することができる。反応に用いられる液状原料としては、医薬、農薬、香料、染料などの化学反応に用いられる有機化合物があげられる。一例をあげれば、ヘキセン、ブタジエン、アセトン、メチルエチルケトン、ベンゼン、ジクロロベンゼン、トルイジン、フェノール、アニリン、ニトロベンゼン、ニトロベンゼンスルホン酸、ニトロT酸、pーアミノジフェニルアミン、pーニトロフェノール、ゲラニオール、脂肪酸、脂肪酸ニトリル、ラウリルアルコール、pーキシレン、イソプロパノール、ブタノール、2,3ーブチレングリコール、1,9ーノナンジアール、2ーメチルー1,8ーオクタンジアール、又はこれらの混合物を例示することができる。
【0012】
なかでも、1,9ーノナンジアール、2ーメチルー1,8ーオクタンジアール、又はこれらの混合物のようなジアルデヒド類は不安定であり、閉鎖系で行うのが望ましく、貴金属触媒を使用することが多いので、本発明の反応方法に好適である。
【0013】
本発明に使用される触媒は、液状原料と混合した場合、懸濁状になる固体触媒である。このような固体触媒を例示すると、ニッケル、コバルト、銅、銀、白金、クロム、パラジウム、マンガン、鉄、チタン、トリウム、マグネシウム、亜鉛、タングステン、モリブデン、レニウム及びジルコニウムなどの金属のうち少なくとも一種以上の金属触媒またはその変性触媒、ラネ−触媒及びシリカ、アルミナ、ケイソウ土、マグネシウム、酸化亜鉛などに担持させた触媒をあげることができる。
【0014】
反応を実施するにあたって、適宜溶媒を使用してもよい。溶媒は通常種々の反応に一般的に使用される溶媒であるが、このような例としては、メタノ−ル、エタノ−ル、プロパノール、ブタノ−ル、アミルアルコール、ヘキサノ−ル、2−エチルヘキサノ−ル、オクタノ−ル、エチレングリコ−ルなどのアルコ−ル類、ヘキサン、オクタン、デカン、流動パラフィン、シクロヘキサンなどの脂肪族炭化水素類などをあげることができる。触媒調製に用いる溶媒と反応に用いる溶媒とが同じ種類のものであるのが好ましいことはもちろんである。なかでも、水が生成する縮合反応のような場合、溶媒は水に溶解しないものが望ましく、かかる点ではイソアミルアルコール及びブタノールを使用するのが好ましい。アルコールを生成する縮合反応の場合は低級アルコールを使用するのがよい。
【0015】
本発明は、少なくとも、液状原料供給口及び反応混合物取出口を備えた反応容器、反応混合物を循環するための循環ポンプ並びに濾過器から構成されたループ型反応装置であり、かかる反応装置を用いて、所定の操作条件下において反応を行う反応方法である。反応容器から抜き出された反応混合物は反応装置内で所定の線速度で循環させつつ、細孔径が0.1〜1.0μmの濾過器でクロスフロー式濾過で反応生成物と懸濁触媒とを分離し、反応生成物は反応系外へ抜き出す。反応方式は連続式でも回分式でもよいが、とくに連続式の場合に本発明の効果がよく発揮される。
【0016】
本発明において、反応は加圧下で行われるが、圧力としては10〜200kg/cm2・Gから選ばれる。反応温度は使用する溶媒及び圧力により決められる。反応生成物は懸濁触媒及び未反応物と反応混合物を形成し、該反応混合物は循環ポンプにより反応系内を循環するが、本発明においては濾過器の細孔径と関係して線速度が重要である。線速度があまり小さいと濾過器の目詰まりが生じ、線速度があまり大きいと循環ポンプ、冷却器等に負荷がかかるので、線速度は1〜10m/秒、好ましくは1.5〜6m/秒で実施される。反応容器における液面は適宜調節すればよいが、通常は容器の60%〜80%で実施することが多い。
【0017】
本発明においては、懸濁触媒を含む反応混合物から懸濁触媒を分離するのに、クロスフロー式濾過を行う。したがって、懸濁触媒を含む反応混合物は膜面に沿って流れ、濾過器を流れる触媒を含まない反応混合物の流れとはほぼ直角になるので、懸濁触媒が濾過器の接触面へ沈降するのを防ぐことができ、また、濾過器の表面孔径よりも小さい触媒粒子が濾過器の細孔内に沈積し、実質的に濾過器の孔径が小さくなることによる濾過効果が倍加する。
【0018】
上述した本発明の、液状原料を懸濁触媒の存在下に反応を行い、懸濁触媒と反応混合物とをクロスフロー式濾過で分離する反応方法により、濾過器の目詰まりの少ない反応方法を提供することができるが、長時間連続運転する場合、濾過器の目詰まりは皆無ではないので、濾過器は適宜再生して使用するのが好ましい。濾過器の再生時期の目安としては、反応混合物の取出量が若干低下した時点とすればよい。また、濾過器前後の差圧を検出して、所定の値に達した後、再生を実施してもよい。
【0019】
濾過器を再生するには、濾過器を複数基準備しておき、別の濾過器に切り替え、休止中の濾過器をガス又は液により、逆洗洗浄を行うのが普通であるが、本願発明のように、懸濁触媒を使用し、細孔径が0.01〜1.0μmの濾過器で触媒と反応混合液を加圧下で分離する場合、ガス又は液による逆洗洗浄で濾過器の目詰まりをなくすのは非常に困難である。しかしながら、このような場合、濾過器に脈動を与えることにより、濾過器の目詰まりを容易に解消することができる。
【0020】
濾過器に脈動を与えるには、例えば、超音波などが利用可能であるが、濾過器を切り替え、休止中の濾過器に、反応系で使用する溶媒をプランジャーポンプで供給すれば、濾過器に容易に脈動を与えることができ、好ましい。プランジャーポンプは液状原料を供給するポンプを利用することができるので、かかる点でも好ましい。プランジャーポンプの種類は限定されず、脈動の周期もとくに限定されない。
【0021】
以下、本発明を図により具体的に説明する。図1は本発明の反応方法に使用される反応装置の一例を示すフローチャートである。1は液状原料を供給するためのポンプであり、2は液状原料供給ラインである。3は反応容器、4はエゼクタ、5はガス供給ラインである。まず、一次仕込みとして、2から液状原料及び溶媒に溶解された懸濁状の固体触媒を所定の液面まで反応容器3に仕込む。所定の圧力及び温度に達した後、循環ポンプ6を作動し、液状原料及びスラリ−状の固体触媒からなる液状物を冷却器7を通し、所定の線速度で循環させる。
【0022】
定常に到達したら、水素などのガスをガス供給ライン5から仕込み、反応を開始する。反応容器にエゼクタを設けると、循環された液状反応混合物の速度をあげて反応容器内へガスを吹き込むことができ、供給されるガスとともに反応容器内の流動状態をさらによくし、ガスの分散が良好になり、ガスの吸収効率を高くすることができる。冷却器は図1又は図2のように、反応容器の外部に設けてもよいが、ジャケット形式で反応容器に直接設置してもよい。冷却器7は必要に応じて加熱器としても使用される。冷却器又は加熱器は他の媒体と熱交換を行うようにするのが熱的に有利であり、効率的である。図2は反応容器3に攪拌機10を設けた例である。
【0023】
所定の反応率に達した後、液状原料及びガスを連続的に供給しながら、濾過器8の濾液が流出する側のバルブを開き、クロスフロー式に懸濁触媒を濾過しつつ、反応混合物を系外へ抜き出す。上述したように、本発明においては懸濁触媒の濾過をクロスフロー式で行うので、濾過器の接触面へ懸濁触媒が沈降するのを防ぐことができ、効果が倍加する。分離された触媒はそのまま反応容器3へ循環される。また、分離された反応混合物は、反応生成物及び未反応物の他、若干の固体触媒が含まれることがあるので、必要に応じフィルタ9を通して次の工程へ供給する。若干の触媒の損失は反応液の状態をチェックすることにより、適宜補給すればよい。
【0024】
図1又は図2において、11は濾過器8を再生するための溶媒供給ラインである。濾過器を再生する場合、別の濾過器に切り替えておき、休止中の濾過器に液状原料供給ポンプ(プランジャーポンプ)を使用して、濾過器の反応混合物の抜き出し側から反応系内側へ溶媒を供給する。このとき、同時にプランジャーポンプから濾過器へ脈動を与えることができ、懸濁触媒が目詰まりした濾過器は50%以上再生される。
【0025】
【実施例】
以下、実施例により本発明をさらに具体的に説明する。
実施例1
エゼクタを備えた反応容器を使用し、図1のようにループ型反応装置を構成し、固体触媒としてニッケルーケイソウ土触媒を使用して、1,9ーノナンジアール及び2ーメチルー1,8ーオクタンジアールの連続還元アミノ化反応を行った。反応原料として、1,9ーノナンジアール及び2ーメチルー1,8ーオクタンジアールの8:2の混合物、溶媒としてイソアミルアルコール及び上記固体触媒を反応容器に仕込み、定常時の反応容器内液状混合物1200kg、触媒濃度1wt%、反応圧力80atm、温度150℃になるように、1,9ーノナンジアール及び2ーメチルー1,8ーオクタンジアールの混合物を217kg/hr、イソアミルアルコールを616kg/hr、液体アンモニアを355kg/hr及び水素を63Nm3 /hrで連続的に供給して反応を行い、反応混合物を線速度5m/秒で140℃に設定した冷却器を通して循環した。
【0026】
濾過器として、内径1cm、高さ10cm、細孔径0.5μmのセラミック製の円筒を直列に10本、並列に10本設置したものを使用した。濾過器からは、イソアミルアルコール52wt%、アンモニア26wt%、H2 O4wt%と、0.05wt%の触媒を含む1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミン混合物17wt%からなる清澄な液が20kg/minで得られた。30日間の連続運転を行ったが、安定に運転可能で濾過器の目詰まりは認められなかった。清澄液には、1,9ーノナンジアール及び2ーメチルー1,8ーオクタンジアールは検出されなかった。該清澄液を2m2 のフィルタ−に通してさらに触媒を分離したが、反応系外へ流出した触媒は極めてわずかであった。
【0027】
実施例2
溶媒をブタノールに換え、反応混合物の線速度を2m/秒とする以外は実施例1と同様に実施した結果、実施例1とほぼ同様の結果を得た。
【0028】
実施例
パドル翼を備えた反応容器を使用し、図2のようにループ型反応装置を構成し、固体触媒としてニッケルーケイソウ土触媒を使用して、1,9ーノナンジアール及び2ーメチルー1,8ーオクタンジアールの連続還元アミノ化反応を行った。反応原料として、1,9ーノナンジアール及び2ーメチルー1,8ーオクタンジアールの8:2の混合物、溶媒としてメタノール及び上記固体触媒を反応容器に仕込み、定常時の反応容器内液状混合物1200kg、触媒濃度1wt%、反応圧力60atm、温度150℃になるように、1,9ーノナンジアール及び2ーメチルー1,8ーオクタンジアールの混合物を217kg/hr、メタノールを616kg/hr、液体アンモニアを355kg/hr及び水素を63Nm/hrで連続的に供給して反応を行い、反応混合物を線速度5m/秒で140℃に設定した冷却器を通して循環した。
【0029】
濾過器として、内径1cm、高さ10cm、細孔径0.5μmのSUS316製の焼結金属を直列に10本、並列に10本設置したものを使用した。濾過器からは、メタノール52wt%、アンモニア26wt%、H2 O4wt%と、0.05wt%の触媒を含む1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミン混合物17wt%からなる清澄な液が20kg/minで得られた。30日間の連続運転を行ったが、安定に運転可能で濾過器の目詰まりは認められなかった。清澄液には、1,9ーノナンジアール及び2ーメチルー1,8ーオクタンジアールは検出されなかった。該清澄液を2m2 のフィルタ−に通してさらに触媒を分離したが、反応系外へ流出した触媒は極めてわずかであった。
【0030】
実施例4
図2に示す2枚のパドル翼を有する撹拌槽を反応容器とし、図2のように構成された反応装置により、濾過器として、内径1cm、高さ10cm、細孔径0.5μmのSUS316製の焼結金属を直列に10本、並列に10本設置したものを使用し、反応混合物の線速度を2m/秒とした以外は実施例1と同様に操作したところ、同様に安定運転可能であった。濾過器からは0.01wt%の触媒を含む清澄な液が得られた。
【0031】
実施例5
実施例1の条件で240時間連続運転し、反応混合物の取出量が運転開始時の30%に低下した時点で濾過器を切り替えた。休止中の濾過器にプランジャーポンプ(IWAKI製CHEMEED PUMP)でイソアミルアルコールを0.1m3/m2・hrの割合で供給した。15分後、該濾過器を反応系に再使用したところ、反応混合物の取出量は運転開始時の取出量の60%以上に回復した。濾過時間と透過速度の回復率の関係を図3に示す。
【0032】
比較例1
線速度を0.5m/秒とする以外は実施例1と同様にして操作したところ、短時間で濾過器が目詰まりした。
【0033】
【発明の効果】
本発明により、液状原料を懸濁触媒の存在下で加圧反応を行う場合、反応装置内を循環する液状混合物の線速度と濾過器の細孔径を選び、クロスフロー式濾過を行うことにより、濾過器の目詰まりを少なくすることができ、煩雑な触媒分離回収操作を必要とせず、連続的に効率よく反応を実施することができる。また、濾過器に脈動を与えることにより、容易に濾過器を再生することができる。
【図面の簡単な説明】
【図1】本発明の反応方法の一例を示すフローチャートである。
【図2】本発明の反応方法の別の例を示すフローチャートである。
【図3】濾過時間と透過速度の回復率の関係を示す運転経過図である。
【符号の説明】
1 液状原料供給ポンプ
2 液状原料供給ライン
3 反応容器
4 エゼクタ
5 ガス供給ライン
6 循環ポンプ
7 加熱器又は冷却器
8 濾過器
9 フィルタ−
10 撹拌機
11 再生用溶媒供給ライン
[0001]
[Industrial application fields]
The present invention relates to a reaction method and a reaction apparatus. More specifically, the liquid raw material is suspended by using a loop reactor comprising at least a reaction vessel having a liquid raw material supply port and a reaction mixture outlet, a circulation pump for circulating the reaction mixture, and a filter. In the reaction method of reacting under pressure in the presence of a catalyst, the liquid raw material is reacted with 1,9-nonane dial and / or 2-methyl-1,8-octane dial using a reaction vessel provided with an ejector. Then, while circulating the obtained reaction mixture at a linear velocity of 1 to 10 m / sec, the reaction product and the suspended catalyst were separated by a cross-flow filtration with a filter having a pore diameter of 0.01 to 1.0 μm, The present invention relates to a reaction method for continuously extracting reaction products out of the system and a reaction apparatus used therefor .
[0002]
[Prior art]
Conventionally, many liquid-solid reactions or gas-liquid-solid reactions in which a reaction is performed using a solid catalyst are known. In these reactions, the reaction mixture and the catalyst are usually separated by a filter or a centrifuge, and the separated catalyst is recycled or reused after washing or adjusting with a solvent. However, such an operation is extremely complicated. Particularly, when the reaction system is performed at a high pressure, if the catalyst is to be separated by the existing separation apparatus as described above, the system is at atmospheric pressure or atmospheric pressure before separation. In addition, a special supply device is required to return the separated catalyst to a high-pressure reaction vessel.
[0003]
[Problems to be solved by the invention]
Building a rational process that does not require a complicated operation is an indispensable technical problem when production is carried out on an industrial scale. To solve this problem, Japanese Patent Laid-Open No. 5-76779 discloses A catalyst separation method is disclosed in which the filter is pretreated with carboxylic acid and the ether carboxylic acid and the suspended catalyst are separated by cross-flow filtration. According to this method, the solid catalyst is continuously separated from the reaction mixture containing the solid catalyst without using a batch separation means such as a filter or a centrifuge to separate the catalyst as in the prior art. Since the separated catalyst can be reused as it is, it can be said that this is a rational method.
[0004]
However, it has been found that when the reaction is carried out under pressure by the method disclosed herein, the filter may be clogged immediately depending on the reaction conditions and may not withstand continuous reaction. Usually, chemical reactions on an industrial scale are often carried out continuously under pressure, and it is no exaggeration to say that clogging of a filter controls the death of industrialization. Further, when a noble metal is used as a suspension catalyst, how to increase the recovery rate of the catalyst is often a part of industrialization. Accordingly, an object of the present invention is to provide a reaction method in which a liquid raw material is reacted under pressure in the presence of a suspension catalyst and the suspension catalyst and the reaction mixture are separated by filtration. And providing a reactor.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies, and when performing a pressure reaction in the presence of a suspension catalyst using a liquid raw material, select a linear velocity of the liquid mixture circulating in the reactor and a pore diameter of the filter. As a result, the inventors have found that the above problems can be solved, and have completed the present invention.
[0006]
That is, the present invention uses at least a reaction vessel provided with a liquid raw material supply port and a reaction mixture outlet, a circulation pump for circulating the reaction mixture, and a loop type reaction apparatus composed of a filter to produce a liquid raw material. In the reaction method of reacting under pressure in the presence of a suspended catalyst, the liquid raw material 1,9-nonanediar and / or 2-methyl-1,8-octanediar is used using a reaction vessel provided with an ejector. The reaction product is circulated at a linear velocity of 1 to 10 m / second while the reaction mixture is circulated at a linear speed of 1 to 10 m / sec. However , the reaction product is continuously extracted out of the system.
[0007]
It is another aspect of the present invention, at least, the liquid material supply port and a reaction vessel equipped with an outlet and ejector preparative reaction mixture consists circulation pump and filter for circulating the reaction mixture, the liquid material It is a loop reactor for reacting 1,9-nonane dial and / or 2-methyl-1,8-octane dial .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The reaction vessel used in the present invention may be any type of reaction vessel provided with a liquid raw material supply port, a reaction mixture outlet, and an ejector. When performing a reaction using a gas such as a hydrogenation reaction or a reductive amination reaction. May be provided with a separate gas supply port.
[0009]
It is preferable to install a stirrer equipped with paddle blades and turbine blades in the reaction vessel so that the gas dissolves well with the liquid raw material and to improve the mixing state. Also, providing an ejector into a reaction vessel equipped with a liquid material supply port gas dispersion of that Do good. Both a stirrer and an ejector may be provided. The shape of the reaction vessel is not specifically limited, easy to manufacture those tubes like, also preferred because excellent in withstand voltage.
[0010]
In the present invention, the reaction mixture and the suspended catalyst are separated by a filter. However, if the pore diameter of the filter is too small, the reaction product is difficult to escape, and if it is too large, the suspended catalyst is removed. It is necessary to use a filter having a pore diameter of 0.1 to 1.0 μm. Of course, the material of the filter is preferably excellent in corrosion resistance, but is required to have excellent pressure resistance. From such a viewpoint, a cylindrical filter is preferable, and a material made of ceramic and a sintered metal such as zirconium oxide are preferable. In particular, a filter made of ceramic is preferable in terms of wear resistance.
[0011]
The reaction targeted by the reaction method and reaction apparatus of the present invention can be applied to, for example, hydrogenation reaction, amination reaction, alkylation reaction, nitrification reaction, oxidation reaction, chlorination reaction, carbonylation reaction, etc. . Examples of the liquid raw material used in the reaction include organic compounds used in chemical reactions such as pharmaceuticals, agricultural chemicals, fragrances, and dyes. Examples include hexene, butadiene, acetone, methyl ethyl ketone, benzene, dichlorobenzene, toluidine, phenol, aniline, nitrobenzene, nitrobenzene sulfonic acid, nitro T acid, p-aminodiphenylamine, p-nitrophenol, geraniol, fatty acid, fatty acid nitrile. Lauryl alcohol, p-xylene, isopropanol, butanol, 2,3-butylene glycol, 1,9-nonane dial, 2-methyl-1,8-octane dial, or a mixture thereof.
[0012]
Among them, dialdehydes such as 1,9-nonane dial, 2-methyl-1,8-octane dial, or a mixture thereof are unstable and are preferably used in a closed system, and often use a noble metal catalyst. Therefore, it is suitable for the reaction method of the present invention.
[0013]
The catalyst used in the present invention is a solid catalyst that becomes suspended when mixed with a liquid raw material. Examples of such solid catalysts include at least one or more of metals such as nickel, cobalt, copper, silver, platinum, chromium, palladium, manganese, iron, titanium, thorium, magnesium, zinc, tungsten, molybdenum, rhenium, and zirconium. And a catalyst supported on silica, alumina, diatomaceous earth, magnesium, zinc oxide and the like.
[0014]
In carrying out the reaction, a solvent may be appropriately used. The solvent is usually a solvent generally used for various reactions. Examples of such solvents include methanol, ethanol, propanol, butanol, amyl alcohol, hexanole, and 2-ethylhexanol. Examples thereof include alcohols such as benzene, octane and ethylene glycol, and aliphatic hydrocarbons such as hexane, octane, decane, liquid paraffin and cyclohexane. Of course, it is preferable that the solvent used for preparing the catalyst and the solvent used for the reaction are of the same type. In particular, in the case of a condensation reaction in which water is generated, it is desirable that the solvent does not dissolve in water. In this respect, it is preferable to use isoamyl alcohol and butanol. In the case of a condensation reaction for producing an alcohol, it is preferable to use a lower alcohol.
[0015]
The present invention is a loop reactor comprising at least a reaction vessel provided with a liquid raw material supply port and a reaction mixture outlet, a circulation pump for circulating the reaction mixture, and a filter. , A reaction method in which a reaction is carried out under predetermined operating conditions. While the reaction mixture extracted from the reaction vessel is circulated in the reaction apparatus at a predetermined linear velocity, the reaction product, the suspended catalyst, and the catalyst are cross-flow filtered through a filter having a pore diameter of 0.1 to 1.0 μm. And the reaction product is withdrawn out of the reaction system. The reaction system may be a continuous system or a batch system, but the effect of the present invention is exhibited particularly well in the case of a continuous system.
[0016]
In the present invention, the reaction is carried out under pressure, and the pressure is selected from 10 to 200 kg / cm 2 · G. The reaction temperature is determined by the solvent used and the pressure. The reaction product forms a reaction mixture with the suspended catalyst and the unreacted material, and the reaction mixture is circulated in the reaction system by a circulation pump. In the present invention, the linear velocity is important in relation to the pore diameter of the filter. It is. If the linear velocity is too low, the filter will be clogged. If the linear velocity is too high, a load will be applied to the circulation pump, cooler, etc., so the linear velocity is 1 to 10 m / second, preferably 1.5 to 6 m / second. Will be implemented. The liquid level in the reaction vessel may be adjusted as appropriate, but is usually carried out at 60% to 80% of the vessel.
[0017]
In the present invention, cross-flow filtration is performed to separate the suspended catalyst from the reaction mixture containing the suspended catalyst. Therefore, the reaction mixture containing the suspended catalyst flows along the membrane surface and is almost perpendicular to the flow of the reaction mixture without catalyst flowing through the filter, so that the suspended catalyst settles to the contact surface of the filter. In addition, catalyst particles smaller than the surface pore diameter of the filter are deposited in the pores of the filter, and the filtration effect due to the substantial reduction in the pore diameter of the filter is doubled.
[0018]
The above-described reaction method in which the liquid raw material is reacted in the presence of the suspension catalyst and the suspension catalyst and the reaction mixture are separated by cross-flow filtration provides a reaction method with less clogging of the filter. However, in the case of continuous operation for a long time, the filter is not clogged at all, and it is preferable to regenerate and use the filter appropriately. As a guideline for the regeneration timing of the filter, it may be the time when the amount of the reaction mixture taken out slightly decreases. In addition, regeneration may be performed after detecting a differential pressure across the filter and reaching a predetermined value.
[0019]
In order to regenerate the filter, it is common to prepare a plurality of filters, switch to another filter, and backwash the resting filter with gas or liquid. When using a suspended catalyst and separating the catalyst and the reaction mixture under pressure with a filter having a pore size of 0.01 to 1.0 μm, the back of the filter is washed by backwashing with gas or liquid. It is very difficult to eliminate clogging. However, in such a case, clogging of the filter can be easily eliminated by pulsating the filter.
[0020]
In order to give pulsation to the filter, for example, ultrasonic waves can be used. However, if the filter is switched and the solvent used in the reaction system is supplied to the resting filter by a plunger pump, the filter is used. This is preferable because it can easily give pulsation. Since the plunger pump can use the pump which supplies a liquid raw material, it is preferable also in this point. The kind of plunger pump is not limited, and the period of pulsation is not particularly limited.
[0021]
Hereinafter, the present invention will be specifically described with reference to the drawings. FIG. 1 is a flowchart showing an example of a reaction apparatus used in the reaction method of the present invention. 1 is a pump for supplying a liquid raw material, and 2 is a liquid raw material supply line. 3 is a reaction vessel, 4 is an ejector, and 5 is a gas supply line . First, as a primary charge, a suspension solid catalyst dissolved in a liquid raw material and a solvent is charged from 2 to a reaction vessel 3 to a predetermined liquid level. After reaching the predetermined pressure and temperature, the circulation pump 6 is operated to circulate the liquid material composed of the liquid raw material and the slurry-like solid catalyst through the cooler 7 at a predetermined linear velocity.
[0022]
When the steady state is reached, a gas such as hydrogen is charged from the gas supply line 5 to start the reaction. When an ejector is provided in the reaction vessel, gas can be blown into the reaction vessel by increasing the speed of the circulated liquid reaction mixture, and the flow state in the reaction vessel is further improved together with the supplied gas. As a result, gas absorption efficiency can be increased. The cooler may be provided outside the reaction vessel as shown in FIG. 1 or 2, but may be directly installed in the reaction vessel in a jacket form. The cooler 7 is also used as a heater as required. It is thermally advantageous and efficient to allow the cooler or heater to exchange heat with other media. FIG. 2 shows an example in which a stirrer 10 is provided in the reaction vessel 3.
[0023]
After reaching the predetermined reaction rate, while continuously supplying the liquid raw material and gas, the valve on the side of the filter 8 where the filtrate flows out is opened, and the suspension catalyst is filtered in a cross-flow manner. Pull out of the system. As described above, in the present invention, since the suspension catalyst is filtered by the cross flow method, the suspension catalyst can be prevented from settling on the contact surface of the filter, and the effect is doubled. The separated catalyst is circulated to the reaction vessel 3 as it is. Further, the separated reaction mixture may contain some solid catalyst in addition to the reaction product and unreacted material, and is supplied to the next step through the filter 9 as necessary. Some catalyst loss may be appropriately replenished by checking the state of the reaction solution.
[0024]
In FIG. 1 or 2, reference numeral 11 denotes a solvent supply line for regenerating the filter 8. When regenerating the filter, switch to another filter, use a liquid feed pump (plunger pump) for the filter that is not in use, and remove the solvent from the reaction mixture extraction side of the filter to the inside of the reaction system. Supply. At this time, the pulsation can be given from the plunger pump to the filter at the same time, and the filter clogged with the suspended catalyst is regenerated by 50% or more.
[0025]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
Using a reaction vessel equipped with an ejector, a loop reactor is constructed as shown in FIG. 1, using nickel-diatomaceous earth catalyst as a solid catalyst, 1,9-nonane dial and 2-methyl-1,8-octane dial The continuous reductive amination reaction was performed. As a reaction raw material, an 8: 2 mixture of 1,9-nonane dial and 2-methyl-1,8-octane dial, isoamyl alcohol and the above solid catalyst as a solvent are charged into a reaction vessel, 1200 kg of a liquid mixture in the reaction vessel at normal time, catalyst A mixture of 1,9-nonane dial and 2-methyl-1,8-octane dial is 217 kg / hr, isoamyl alcohol is 616 kg / hr, liquid ammonia is 355 kg / hr so that the concentration is 1 wt%, the reaction pressure is 80 atm, and the temperature is 150 ° C. And hydrogen was continuously fed at 63 Nm 3 / hr, and the reaction mixture was circulated through a condenser set at 140 ° C. at a linear speed of 5 m / sec.
[0026]
A filter in which 10 ceramic cylinders having an inner diameter of 1 cm, a height of 10 cm, and a pore diameter of 0.5 μm were installed in series and 10 in parallel was used. From the filter, a clarification comprising 52% by weight of isoamyl alcohol, 26% by weight of ammonia, 4% by weight of H 2 O and 17% by weight of a mixture of 1,9-nonanediamine and 2-methyl-1,8-octanediamine containing 0.05% by weight of catalyst. Liquid was obtained at 20 kg / min. Although continuous operation was performed for 30 days, stable operation was possible and no clogging of the filter was observed. In the clarified liquid, 1,9-nonane dial and 2-methyl-1,8-octane dial were not detected. The clarified liquid was passed through a 2 m 2 filter to further separate the catalyst, but very little catalyst flowed out of the reaction system.
[0027]
Example 2
As a result of carrying out in the same manner as in Example 1 except that the solvent was changed to butanol and the linear velocity of the reaction mixture was set to 2 m / sec, a result almost similar to that in Example 1 was obtained.
[0028]
Example 3
Using a reaction vessel equipped with paddle blades, a loop reactor was constructed as shown in FIG. 2, and a nickel-diatomaceous earth catalyst was used as the solid catalyst, and 1,9-nonane dial and 2-methyl-1,8-octane R's continuous reductive amination reaction was carried out. As a reaction raw material, an 8: 2 mixture of 1,9-nonane dial and 2-methyl-1,8-octane dial, methanol and the above solid catalyst as a solvent are charged into a reaction vessel, 1200 kg of a liquid mixture in a steady state in a reaction vessel, catalyst concentration The mixture of 1,9-nonane dial and 2-methyl-1,8-octane dial is 217 kg / hr, methanol is 616 kg / hr, liquid ammonia is 355 kg / hr and hydrogen so that the reaction pressure is 1 wt%, the reaction pressure is 60 atm, and the temperature is 150 ° C. Was continuously fed at 63 Nm 3 / hr, and the reaction mixture was circulated through a cooler set at 140 ° C. at a linear speed of 5 m / sec.
[0029]
A filter in which 10 SUS316 sintered metals having an inner diameter of 1 cm, a height of 10 cm, and a pore diameter of 0.5 μm were installed in series and 10 in parallel was used. From the filter, a clear solution consisting of 52 wt% methanol, 26 wt% ammonia, 4 wt% H 2 O and 17 wt% 1,9-nonanediamine and 2-methyl-1,8-octanediamine mixture containing 0.05 wt% catalyst. A liquid was obtained at 20 kg / min. Although continuous operation was performed for 30 days, stable operation was possible and no clogging of the filter was observed. In the clarified liquid, 1,9-nonane dial and 2-methyl-1,8-octane dial were not detected. The clarified liquid was passed through a 2 m 2 filter to further separate the catalyst, but very little catalyst flowed out of the reaction system.
[0030]
Example 4
A stirring vessel having two paddle blades shown in FIG. 2 is used as a reaction vessel, and a filter made of SUS316 having an inner diameter of 1 cm, a height of 10 cm, and a pore diameter of 0.5 μm is used as a filter by the reaction apparatus configured as shown in FIG. The same operation as in Example 1 was performed except that 10 sintered metals in series and 10 in parallel were used and the linear velocity of the reaction mixture was set to 2 m / sec. It was. A clear liquid containing 0.01 wt% of catalyst was obtained from the filter.
[0031]
Example 5
The operation was continued for 240 hours under the conditions of Example 1, and the filter was switched when the amount of the reaction mixture removed dropped to 30% at the start of operation. Isoamyl alcohol was supplied to the resting filter at a rate of 0.1 m 3 / m 2 · hr with a plunger pump (CHEMED PUMP manufactured by IWAKI). After 15 minutes, when the filter was reused in the reaction system, the removal amount of the reaction mixture recovered to 60% or more of the removal amount at the start of operation. The relationship between the filtration time and the recovery rate of the permeation rate is shown in FIG.
[0032]
Comparative Example 1
When the operation was performed in the same manner as in Example 1 except that the linear velocity was 0.5 m / sec, the filter was clogged in a short time.
[0033]
【The invention's effect】
According to the present invention, when the liquid raw material is subjected to a pressure reaction in the presence of a suspension catalyst, the linear velocity of the liquid mixture circulating in the reaction apparatus and the pore diameter of the filter are selected, and cross-flow filtration is performed. Clogging of the filter can be reduced, and a complicated catalyst separation and recovery operation is not required, and the reaction can be carried out continuously and efficiently. Moreover, the filter can be easily regenerated by giving pulsation to the filter.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an example of the reaction method of the present invention.
FIG. 2 is a flowchart showing another example of the reaction method of the present invention.
FIG. 3 is an operation progress chart showing the relationship between filtration time and permeation rate recovery rate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Liquid raw material supply pump 2 Liquid raw material supply line 3 Reaction container 4 Ejector 5 Gas supply line 6 Circulation pump 7 Heater or cooler 8 Filter 9 Filter
10 Stirrer 11 Regeneration solvent supply line

Claims (7)

少なくとも、液状原料供給口及び反応混合物取出口を備えた反応容器、反応混合物を循環するための循環ポンプ並びに濾過器から構成されるループ型反応装置を使用して液状原料を懸濁触媒の存在下に加圧下で反応させる反応方法において、液状原料の1,9−ノナンジアール及び/又は2−メチル−1,8−オクタンジアールを、エゼクタを設けた反応容器を使用して反応させ、得られた反応混合物を線速度1〜10m/秒で循環させつつ、細孔径が0.01〜1.0μmの濾過器で反応生成物と懸濁触媒とをクロスフロー式濾過で分離し、反応生成物は系外へ抜き出すことを連続的に行うことを特徴とする反応方法。In the presence of a suspension catalyst, the liquid raw material is used by using a loop reactor comprising at least a reaction vessel having a liquid raw material supply port and a reaction mixture outlet, a circulation pump for circulating the reaction mixture, and a filter. In the reaction method of reacting under pressure, the liquid raw material 1,9-nonane dial and / or 2-methyl-1,8-octane dial was reacted using a reaction vessel provided with an ejector. While circulating the reaction mixture at a linear velocity of 1 to 10 m / sec, the reaction product and the suspended catalyst are separated by a cross-flow filtration with a filter having a pore diameter of 0.01 to 1.0 μm. A reaction method characterized by continuously performing extraction outside the system. 該濾過器が脈動を与えることにより再生された濾過器である請求項1の反応方法。  The reaction method according to claim 1, wherein the filter is a filter regenerated by applying a pulsation. 該反応容器が状の反応容器である請求項1又は請求項2の反応方法。The method of reaction according to claim 1 or claim 2 wherein the reaction vessel is a tube-like reaction vessel. 該濾過器が円筒状の濾過器である請求項1〜3いずれかの反応方法。  The reaction method according to claim 1, wherein the filter is a cylindrical filter. 該濾過器がセラミック製の濾過器である請求項1〜4いずれかの反応方法。  The reaction method according to claim 1, wherein the filter is a ceramic filter. 該懸濁触媒が貴金属触媒である請求項1〜いずれかの反応方法。Claim 1-5 any reactive methods該懸Pollution catalyst is a noble metal catalyst. 少なくとも、液状原料供給口、反応混合物取出口及びエゼクタを備えた反応容器、反応混合物を循環するための循環ポンプ並びに濾過器から構成され、液状原料の1,9−ノナンジアール及び/又は2−メチル−1,8−オクタンジアールを反応させるためのループ型反応装置。It comprises at least a liquid raw material supply port, a reaction vessel having a reaction mixture outlet and an ejector , a circulation pump for circulating the reaction mixture, and a filter, and 1,9-nonanediar and / or 2-methyl- A loop reactor for reacting 1,8-octane dial .
JP17985398A 1997-12-26 1998-06-26 Reaction method and reaction apparatus Expired - Lifetime JP4149039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17985398A JP4149039B2 (en) 1997-12-26 1998-06-26 Reaction method and reaction apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-359642 1997-12-26
JP35964297 1997-12-26
JP17985398A JP4149039B2 (en) 1997-12-26 1998-06-26 Reaction method and reaction apparatus

Publications (2)

Publication Number Publication Date
JPH11240855A JPH11240855A (en) 1999-09-07
JP4149039B2 true JP4149039B2 (en) 2008-09-10

Family

ID=26499582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17985398A Expired - Lifetime JP4149039B2 (en) 1997-12-26 1998-06-26 Reaction method and reaction apparatus

Country Status (1)

Country Link
JP (1) JP4149039B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291015B1 (en) * 2008-11-25 2013-07-30 주식회사 엘지화학 Reactor for the hydroformylation of olefin and method for the hydroformylation using the same
KR102380543B1 (en) 2017-11-30 2022-03-29 쇼와 덴코 가부시키가이샤 Method for preparing 1,2,3,4-tetrachlorobutane
CN114011417A (en) * 2021-12-06 2022-02-08 甘肃银光聚银化工有限公司 Method for recovering Ni/diatomite catalyst

Also Published As

Publication number Publication date
JPH11240855A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
CN102413908B (en) The method of conditioning catalysts by membrane filtration
JP5823384B2 (en) Method for separating a liquid from a multiphase mixture
CN106866429B (en) The production of serialization catalytic hydrogenation and catalyst regeneration device and method
EP1318128B1 (en) Process for the selective hydrogenation of olefinically unsubstituted carbonyl compounds
RU2245320C2 (en) Method for hydrogenation of acetone to isopropanol
US7091383B2 (en) Method for the production of amines
JP2005515250A (en) Continuous process for hydrogenating nitrile or nitro compounds to amines
CN101291902A (en) Method for continuous hydrogenation or hydrogenating amination
JP4149039B2 (en) Reaction method and reaction apparatus
JP2002145824A (en) Method for hydrogenating terephthalic acid
JP3311359B2 (en) Filtration method of three-phase reaction mixture
JP3323213B2 (en) Reaction method of suspension catalyst system
US5348657A (en) Process for the separation of catalyst-free working solution from the hydrogenation circuit of the anthraquinone process for the production of hydrogen peroxide
US20090054702A1 (en) Hydrogenation process
JP4372249B2 (en) Method for continuous catalytic reduction of organic compounds
US4182919A (en) Process for reaction in catalyst suspension system
EP2634168B1 (en) Crossflow type filtering operation method using ceramic filter
JPH10113551A (en) Continuous reaction apparatus and production method using thereof
CN220328608U (en) Device for preparing methyl isoamyl ketone
DE102005010213A1 (en) Catalytically active membrane pore flow reactor for the conversion of organic compounds
JP7493942B2 (en) Method for producing bis(2-hydroxy-2-propyl)benzene
CN116571172A (en) Apparatus and method for preparing methyl isoamyl ketone
JPS6147446A (en) Preparation of aniline
KR101595670B1 (en) Process and apparatus for production and filtration of aminoalcohols using a continuous stirred tank slurry reactor
SU992507A1 (en) Process for preparing ethylene alcohols c4-c10

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

EXPY Cancellation because of completion of term