JPH10112984A - Dead time compensation circuit of inverter - Google Patents

Dead time compensation circuit of inverter

Info

Publication number
JPH10112984A
JPH10112984A JP8262650A JP26265096A JPH10112984A JP H10112984 A JPH10112984 A JP H10112984A JP 8262650 A JP8262650 A JP 8262650A JP 26265096 A JP26265096 A JP 26265096A JP H10112984 A JPH10112984 A JP H10112984A
Authority
JP
Japan
Prior art keywords
current
inverter
circuit
dead time
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8262650A
Other languages
Japanese (ja)
Other versions
JP3580048B2 (en
Inventor
Koji Hino
浩二 日野
Koya Yoshioka
康哉 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP26265096A priority Critical patent/JP3580048B2/en
Publication of JPH10112984A publication Critical patent/JPH10112984A/en
Application granted granted Critical
Publication of JP3580048B2 publication Critical patent/JP3580048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suitably compensate the dead time of an inverter connected with a system via a transformer. SOLUTION: After a reactive current command value IQ* and an exciting current part IEX are added with an adder, and its result and an active current command value IP* are converted to a 3-phase AC current signal, it is inputted in a current polarity detector 14. In other case, the active current command value IP* and the reactive current command value IQ* are converted to a 3-phase AC current signal, and the result obtained by adding the signal and the exciting current part IEX with a second adder is inputted in the detector 14. The current polarity detection phase leads the conventional phase, so that a control signal correction part ±Δλ is added to a control signal λ with adequate timing. In other case, a reverse hysteresis setting apparatus is added to the current polarity detector in which the conventional current signal is inputted, and the current polarity detection time point is advanced by a constant value. Thereby the dead time of an inverter whose output is constant is compensated only by a little addition (the reverse hysteresis setting apparatus).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、電圧形パルス幅変調
制御インバータを構成する上下アームの短絡防止用に設
けたデッドタイムが及ぼす悪影響を補償するインバータ
のデッドタイム補償回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter dead time compensating circuit for compensating an adverse effect of a dead time provided for preventing a short circuit between upper and lower arms of a voltage-type pulse width modulation control inverter.

【0002】[0002]

【従来の技術】図5は直流を交流に変換するインバータ
の1相分を示した回路図であって、ゲートターンオフサ
イリスタ(以下ではGTOと略記する)とフリーホイー
リングダイオードとの逆並列接続でなる上側アーム5U
と、同じ構成の下側アーム5Xとを直列に接続して、直
流電源(コンデンサ6)に接続する。上側アーム5Uと
下側アーム5Xとを交互にオン・オフさせることによ
り、両者の結合点であるA点に負荷を接続すれば、出力
電流IL が流れる。ところで、上側アーム5Uと下側ア
ーム5Xとが極めて短時間でも同時オンすると、直流電
源が短絡されて両アームに過大な短絡電流が流れ、素子
を破壊する恐れがある。これが所謂ア−ム短絡である。
そこで上側アーム5Uと下側アーム5Xが共にオフとな
る時間を設けることにより、アーム短絡の確実な防止を
図っている。この両アームが同時オフの期間をデッドタ
イムと称し、Td と表示する。
2. Description of the Related Art FIG. 5 is a circuit diagram showing one phase of an inverter for converting a direct current to an alternating current, which is an anti-parallel connection of a gate turn-off thyristor (hereinafter abbreviated as GTO) and a freewheeling diode. Upper arm 5U
And the lower arm 5X having the same configuration are connected in series and connected to a DC power supply (capacitor 6). By alternately turning on and off the upper arm 5U and the lower arm 5X, a load is connected to a point A, which is a connection point between them, and an output current IL flows. By the way, if the upper arm 5U and the lower arm 5X are simultaneously turned on for a very short time, the DC power supply is short-circuited, an excessive short-circuit current flows through both arms, and there is a possibility that the elements may be destroyed. This is a so-called arm short circuit.
Therefore, by providing a time period during which both the upper arm 5U and the lower arm 5X are turned off, it is possible to reliably prevent an arm short circuit. The period when both arms are off at the same time is called dead time, and is indicated as Td .

【0003】図6は図5に図示のインバータに従来のデ
ッドタイムを設けた場合の各部の動作を示した動作波形
図であって、図6は制御信号λとキャリア波Cの変
化、図6は目標とするA点電圧の変化、図6は上側
アームのGTO5Uのゲート信号の変化、図6は下側
アームのGTO5Xのゲート信号の変化、図6は出力
電流極性が正(IL >0)のときの実際のA点電圧の変
化、図6は出力電流極性が負(IL <0)のときの実
際のA点電圧の変化、をそれぞれが示している。即ち、
L >0のときのA点電圧は目標値に比べてB1 だけ異
なり(図6参照)、これが負電圧を増大させる。また
L <0のときのA点電圧は目標値に比べてB2 だけ異
なり(図6参照)、これが正電圧を増大させる。
FIG. 6 is an operation waveform diagram showing the operation of each section when a conventional dead time is provided in the inverter shown in FIG. 5, and FIG. 6 shows changes in the control signal λ and the carrier wave C. 6 shows a change in the voltage at the target point A, FIG. 6 shows a change in the gate signal of the GTO 5U in the upper arm, FIG. 6 shows a change in the gate signal of the GTO 5X in the lower arm, and FIG. 6 shows that the output current polarity is positive (I L > 0). 6) shows the actual change in the voltage at the point A, and FIG. 6 shows the change in the actual point A voltage when the output current polarity is negative ( IL <0). That is,
The voltage at the point A when I L > 0 is different from the target value by B 1 (see FIG. 6), and this increases the negative voltage. Further, the voltage at the point A when I L <0 is different from the target value by B 2 (see FIG. 6), and this increases the positive voltage.

【0004】図7は図5に図示のインバータに従来のデ
ッドタイムを設けた場合の出力電圧・電流の変化を示し
た波形図であって、図7は出力電圧の波形、図7は
出力電流の波形を示しているが、いずれも実線は目標波
形を表し、破線はデッドタイムTd の影響を受けた波形
を表している。この図7で明らかなように、出力電流I
L の極性が負のときは出力電圧は正側にバイアスされ、
出力電流IL の極性が正のときは出力電圧は負側にバイ
アスされるので、電流が零点を通過する時点(即ち電流
極性が切り替わる時点)で出力電圧に不連続点を生じ
る。そのためこの時点で電流制御が不連続になり、電流
は零点通過時に歪みを生じる。
FIG. 7 is a waveform diagram showing changes in output voltage and current when a conventional dead time is provided in the inverter shown in FIG. 5, FIG. 7 shows a waveform of the output voltage, and FIG. In each case, the solid line represents the target waveform, and the broken line represents the waveform affected by the dead time Td . As apparent from FIG. 7, the output current I
When the polarity of L is negative, the output voltage is biased to the positive side,
Since the polarity of the output current I L is positive when the output voltage is biased to the negative side, resulting in discontinuities in the output voltage at the time (i.e. the time the current polarity is switched) a current passes through the zero point. Therefore, the current control is discontinuous at this point, and the current is distorted when passing through the zero point.

【0005】前述の現象は、インバータの単位時間当た
りのスイッチング回数が少ない場合には無視できるけれ
ども、パルス幅変調制御インバータのようにスイッチン
グ周波数が高いと、全時間に占めるデッドタイムの割合
が大きくなるので、出力電圧の変動が大きく影響して、
制御性能を低下させることになる。そこでスイッチング
周波数が高いPWMインバータなどではデッドタイムを
補償する回路を設けている。
The above-mentioned phenomenon can be ignored when the number of switching operations per unit time of the inverter is small. However, when the switching frequency is high as in a pulse width modulation control inverter, the ratio of dead time to the entire time increases. Therefore, the fluctuation of the output voltage greatly affects
Control performance will be degraded. Therefore, a circuit for compensating for a dead time is provided in a PWM inverter or the like having a high switching frequency.

【0006】図8はインバータのデッドタイムを補償す
る回路の従来例を示した回路図であるが、最近のインバ
ータはその制御性能を向上させるためにベクトル制御が
一般的である。従って以下では、相互に直交する有効電
流と無効電流とに分解されているものとして説明する。
図8の従来例回路では、有効電流指令値IP * と無効電
流指令値IQ * から逆ベクトルドレア11と2相/3相
変換器12とで三相交流の電流指令値I* を演算し、こ
の電流指令値I* と電流検出値Iとの偏差を電流調節器
13へ入力させ、この電流調節器13からは入力偏差を
零にする制御信号λを得る。
FIG. 8 is a circuit diagram showing a conventional example of a circuit for compensating a dead time of an inverter. In recent inverters, vector control is generally used to improve the control performance. Therefore, the following description will be made assuming that the current is divided into an effective current and a reactive current which are orthogonal to each other.
In conventional circuit of FIG. 8, the active current command value I P * and the reactive current command value I Q * from the reverse vector de Rare 11 and calculating a current command value of the three-phase AC I * by a two-phase / 3-phase converter 12 Then, the deviation between the current command value I * and the current detection value I is input to the current controller 13, and a control signal λ that makes the input deviation zero is obtained from the current controller 13.

【0007】一方で、前記の電流指令値I* をコンパレ
ータで構成している電流極性検出器14へ入力して零点
通過毎に+1または−1を出力させる。電流極性検出器
14の出力を、補正量Δλをゲインとする増幅器15へ
入力させることにより、増幅器15からは制御信号補正
分±Δλが得られる。加算器16は制御信号λとこの±
Δλとを加算し、その加算結果を新たな制御信号として
PWM変調器18へ与える。PWM変調器18はキャリ
ア波発生器17からのキャリア波Cも入力し、パルス幅
変調により得られるパルス列がインバータを構成する各
スイッチング素子をオン・オフさせる。
On the other hand, the current command value I * is input to a current polarity detector 14 composed of a comparator, and +1 or -1 is output each time a zero point is passed. By inputting the output of the current polarity detector 14 to the amplifier 15 having a gain of the correction amount Δλ, a control signal correction ± Δλ is obtained from the amplifier 15. The adder 16 controls the control signal λ and
Δλ and the result of the addition is provided to the PWM modulator 18 as a new control signal. The PWM modulator 18 also receives the carrier wave C from the carrier wave generator 17, and a pulse train obtained by pulse width modulation turns on and off each switching element constituting the inverter.

【0008】図9は図8に図示のデッドタイムの影響を
補償した従来例回路の動作を示した動作波形図であっ
て、左側は電流極性が正,即ちIL >0の場合を示し、
右側は電流極性が負,即ちIL <0の場合を示してい
る。図9は制御信号λ(一点鎖線)と制御信号補正分
±Δλ(破線)およびキャリア波C(実線)の変化、図
9は目標とするA点電圧の変化、図9は電流極性検
出器14の出力の変化、図9は上側アームのGTO5
Uのゲート信号の変化、図9は下側アームのGTO5
Xのゲート信号の変化、図9は実際のA点電圧の変
化、をそれぞれが示している。
FIG. 9 is an operation waveform diagram showing the operation of the conventional circuit in which the influence of the dead time shown in FIG. 8 is compensated. The left side shows the case where the current polarity is positive, that is, I L > 0.
The right side shows the case where the current polarity is negative, that is, I L <0. FIG. 9 shows changes in the control signal λ (dot-dash line), control signal correction ± Δλ (dashed line) and carrier wave C (solid line), FIG. 9 shows a change in target point A voltage, and FIG. 9 shows a current polarity detector 14. FIG. 9 shows GTO5 of the upper arm.
Change of gate signal of U, FIG. 9 shows GTO5 of lower arm
FIG. 9 shows a change in the gate signal of X, and FIG. 9 shows a change in the actual voltage at the point A.

【0009】IL >0の場合(図9の左側)は、制御信
号λに補正分±Δλを加算することにより、電流極性検
出器14は前後の動作時間がそれぞれTd / 2ずれる。
その結果、A点出力電圧の波形の幅D(図9参照)と
A点電圧目標値の幅D(図9参照)とは同じになる。
L <0の場合(図9の右側)は前述とは逆に、制御信
号λから補正分±Δλを減算することにより、電流極性
検出器14は前後の動作時間がそれぞれTd / 2だけず
れ、A点出力電圧の波形の幅D(図9参照)とA点電
圧目標値の幅D(図9参照)とは同じになる。
If I L > 0 (left side in FIG. 9), the current polarity detector 14 is shifted by T d / 2 by adding the correction ± Δλ to the control signal λ.
As a result, the width D of the waveform of the point A output voltage (see FIG. 9) and the width D of the point A voltage target value (see FIG. 9) become the same.
In the case of I L <0 (right side in FIG. 9), the current polarity detector 14 subtracts the correction amount ± Δλ from the control signal λ, and the current operation before and after the current is T d / 2. As a result, the width D of the waveform of the output voltage at the point A (see FIG. 9) is equal to the width D of the target value of the voltage at the point A (see FIG. 9).

【0010】図10は図8に図示のデッドタイムの影響
を補償した従来例回路の出力電圧・電流の変化を示した
波形図であって、図10は出力電圧の波形、図10
は出力電流の波形を示しているが、実線は目標波形を表
し、破線はデッドタイムTdの影響を受けた波形を表
し、一点鎖線は制御信号補正分±Δλの波形を表してい
る。この図10に図示のように、出力電流IL の極性
が負のときは、デッドタイムTd の影響を受けた波形
(破線)からΔλによる補正波形(一点鎖線)を減算す
ることで、出力電圧は目標波形(実線)に一致する。出
力電流IL の極性が正のときは、デッドタイムTd の影
響を受けた波形(破線)にΔλによる補正波形(一点鎖
線)を加算することで、前述と同様に出力電圧は目標波
形(実線)に一致する。その結果、電流が零点を通過す
る時点(即ち電流極性が切り替わる時点)で出力電圧に
不連続点を生じない。よってこの時点で電流制御が不連
続になるのを回避できるので、電流が零点を通過する際
に歪みを生じる恐れがない。
FIG. 10 is a waveform diagram showing changes in output voltage and current of the conventional circuit in which the influence of the dead time shown in FIG. 8 is compensated. FIG. 10 shows the waveform of the output voltage.
Represents the waveform of the output current, the solid line represents the target waveform, the broken line represents the waveform affected by the dead time Td , and the dashed line represents the waveform of the control signal correction ± Δλ. This, as shown FIG 10, when the polarity of the output current I L is negative, by subtracting the correction waveform (dashed line) by Δλ from the waveform affected by the dead time T d (dashed line), the output The voltage matches the target waveform (solid line). When the polarity of the output current I L is positive, by adding the correction waveform (dashed line) by Δλ waveform affected by the dead time T d (dashed line), in the same way as described above the output voltage target waveform ( (Solid line). As a result, no discontinuity occurs in the output voltage when the current passes through the zero point (ie, when the current polarity switches). Therefore, it is possible to avoid discontinuity of the current control at this time, and there is no possibility that distortion occurs when the current passes through the zero point.

【0011】[0011]

【発明が解決しようとする課題】電力系統では、系統の
無効電力を適切に制御する必要がある。従来は同期回転
機を使用していたが、軸受やブラシなどの保守に手間が
かかるので、電力用コンデンサをスイッチで開閉する静
止型に切り替わった。しかしコンデンサを使うために無
効電力を連続的に調整することができない不都合がある
し、スイッチの接点が消耗するなど、保守・点検の作業
は依然として必要である。そこで、電力系統にインバー
タを接続すれば、このインバータで系統の無効電力を連
続的に調整できるし、保守・点検作業は従来よりも大幅
に軽減できるので、このような静止型無効電力調整装置
が多用されるようになった。この静止型無効電力調整装
置として使用するインバータも、デッドタイムTd の影
響を回避するために、前述した制御信号補正分±Δλを
出力電流IL の極性に対応して制御信号λに加算または
減算する回路を備えている。
In a power system, it is necessary to appropriately control the reactive power of the system. In the past, a synchronous rotating machine was used, but since maintenance of bearings and brushes was troublesome, the type was switched to a stationary type in which a power capacitor was opened and closed with a switch. However, there is a disadvantage that the reactive power cannot be continuously adjusted due to the use of the capacitor, and maintenance and inspection work is still necessary, for example, the contacts of the switch are worn out. Therefore, if an inverter is connected to the power system, the reactive power of the system can be continuously adjusted by the inverter, and maintenance and inspection work can be significantly reduced. Became heavily used. The inverter for use as a static var adjuster also, in order to avoid the influence of the dead time T d, the addition to the control signal λ corresponding to the polarity of the output current I L of the control signal correction amount ± [Delta] [lambda] described above or It has a circuit for subtraction.

【0012】図11は電力系統にインバータを接続した
場合を単線で示した主回路接続図であって、2は電力系
統、3は連系インピーダンス、4は変圧器、5はインバ
ータ、6はコンデンサで7はインバータ電流検出器であ
る。電力系統2の電圧区分は一般に特別高圧であるか
ら、インバータ5は変圧器4を介して電力系統2に接続
する。このときインバータ5は連系インピーダンス3を
流れる電流を制御対象にしているから、電流指令値I*
は変圧器4の一次側電流であり、実際電流Iはインバー
タ5に流れる電流であって変圧器4の二次側を流れる電
流である。従って両電流には変圧器4の励磁電流分の偏
差がある。
FIG. 11 is a main circuit connection diagram showing a case where an inverter is connected to a power system by a single line, wherein 2 is a power system, 3 is a connection impedance, 4 is a transformer, 5 is an inverter, and 6 is a capacitor. 7 is an inverter current detector. The inverter 5 is connected to the power system 2 via the transformer 4 because the voltage distribution of the power system 2 is generally extra high voltage. At this time, since the inverter 5 controls the current flowing through the interconnection impedance 3 as a control target, the current command value I *
Is the primary side current of the transformer 4, and the actual current I is the current flowing through the inverter 5 and the current flowing through the secondary side of the transformer 4. Therefore, the two currents have a deviation corresponding to the exciting current of the transformer 4.

【0013】図12は変圧器一次側電流と二次側電流の
差異を示したベクトル図であって、IP * は無効電力調
整装置の発生損失分に相当する有効電流指令値であっ
て、系統から受電している。IQ * は無効電流指令値、
EXは変圧器4の励磁電流分である。このベクトル図か
ら明らかなように、電流指令値I* はIP * とIQ *
ベクトル和で求められ、その位相角はθ1 であるが、イ
ンバータ5の本体に流れる電流検出値IはIP * とIQ
* とIEXのベクトル和であり、その位相角はθ2であ
る。ここでθ1 >θ2 であるから、インバータ5の本体
に流れる実際の電流Iは電流指令値I* に比べて進み位
相となる。これは出力電流指令が進み無効電流の場合も
同様である。
FIG. 12 is a vector diagram showing a difference between the primary current and the secondary current of the transformer, wherein I P * is an effective current command value corresponding to a loss generated by the reactive power adjusting device. Power is being received from the grid. IQ * is the reactive current command value,
I EX is an exciting current component of the transformer 4. As is apparent from this vector diagram, the current command value I * is obtained by the vector sum of I P * and I Q * , and the phase angle is θ 1 , but the detected current value I flowing through the main body of the inverter 5 is IP * and IQ
This is the vector sum of * and I EX , and its phase angle is θ 2 . Here, since θ 1 > θ 2 , the actual current I flowing through the main body of the inverter 5 has an advanced phase as compared with the current command value I * . The same applies to the case where the output current command is advanced and the reactive current is a reactive current.

【0014】図13は図12に図示のベクトル図を波形
で示した波形図であって、図13はIP * (破線)と
Q * (太い実線)とから得られる電流指令値I* (細
い実線)の波形を示し、図13はIP * (破線)とI
Q * (太い実線)及びIEX(一点鎖線)とから得られる
実際の電流I(細い実線)の波形を示している。これら
の図12,図13から分かるように、変圧器4を介して
インバータ5を電力系統2に接続しているため、デッド
タイムTd の影響を回避するための制御信号補正分±Δ
λを得る際に検出する電流指令値I* の零点通過時点
が、実際の電流の零点通過時点よりも進み位相になって
しまう不都合がある。
[0014] Figure 13 is a waveform diagram showing the waveform of the vector diagram shown in FIG. 12, 13 I P * (dashed line) and I Q * obtained from (thick solid line) and the current command value I * FIG. 13 shows the waveforms of I P * (broken line) and I (dashed solid line).
The waveform of the actual current I (thin solid line) obtained from Q * (thick solid line) and I EX (dot-dash line) is shown. As can be seen from FIGS. 12 and 13, since the inverter 5 is connected to the power system 2 via the transformer 4, the control signal correction amount ± ΔD for avoiding the influence of the dead time Td is provided.
There is an inconvenience that the time point when the current command value I * detected when obtaining λ passes through the zero point is advanced in phase from the time point when the actual current passes through the zero point.

【0015】図14は出力電流が大きい場合のベクトル
図であって、電流指令値I* の位相角がθ3 、出力電流
Iの位相角がθ4 である。また、図15は出力電流が小
さい場合のベクトル図であって、電流指令値I* の位相
角がθ5 、出力電流Iの位相角がθ6 である。電流が大
きい場合の両位相角の差である(θ3 −θ4 )と、電流
が小さい場合の両位相角の差である(θ5 −θ6 )とを
比較すると、前者よりも後者の方が大きい。即ち出力電
流が変化すると、電流指令値に対してインバータ5に流
れる電流の進み位相角も変化してしまう不都合がある。
これらが原因になって、現状のデッドタイム補償回路で
は、制御信号補正分±Δλが適切な位相で与えられない
ので、電流制御の制御精度が低下してしまって、系統側
に余分な高調波を出してしまうなどの不具合を生じてい
る。
FIG. 14 is a vector diagram when the output current is large. The phase angle of the current command value I * is θ 3 , and the phase angle of the output current I is θ 4 . FIG. 15 is a vector diagram when the output current is small. The phase angle of the current command value I * is θ 5 , and the phase angle of the output current I is θ 6 . Comparing the difference between the two phase angles when the current is large (θ 3 −θ 4 ) and the difference between the two phase angles when the current is small (θ 5 −θ 6 ), Is bigger. That is, when the output current changes, there is a disadvantage that the leading phase angle of the current flowing through the inverter 5 with respect to the current command value also changes.
Due to these factors, in the current dead time compensation circuit, the control signal correction amount ± Δλ is not given in an appropriate phase, so that the control accuracy of the current control is reduced and extra harmonics are added to the system side. The problem such as giving out.

【0016】そこでこの発明の目的は、変圧器を介して
系統に接続しているインバータのデッドタイムを適切に
補償できるようにすることにある。
An object of the present invention is to make it possible to appropriately compensate for the dead time of an inverter connected to a system via a transformer.

【0017】[0017]

【課題を解決するための手段】前記の目的を達成するた
めに、この発明のインバータのデッドタイム補償回路
は、キャリア波と制御信号との大小関係に対応して上側
アームと下側アームとを交互にオン・オフさせて電力変
換を行う際に、前記上下アームの同時オンを防止するデ
ッドタイムを有する電圧形インバータを、変圧器を介し
て電力系統に接続し、この電力系統から検出する当該電
圧形インバータの出力電流信号,又は当該電圧形インバ
ータの電流指令信号を入力してその極性を検出する電流
極性検出器と、前記制御信号に対応した補償量を演算す
る補償量演算器と、この補償量を前記電流極性に対応し
て前記制御信号に加算又は減算する回路を備えているイ
ンバータのデッドタイム補償回路における前記電流極性
検出器への入力信号の位相を、前記変圧器の励磁電流に
対応して補正する励磁電流分補正回路を備えるものとす
る。
In order to achieve the above object, a dead time compensating circuit for an inverter according to the present invention includes an upper arm and a lower arm corresponding to a magnitude relationship between a carrier wave and a control signal. When performing power conversion by alternately turning on and off, a voltage type inverter having a dead time for preventing simultaneous turning on of the upper and lower arms is connected to a power system via a transformer, and the power source is detected from the power system. A current polarity detector for inputting an output current signal of the voltage type inverter or a current command signal of the voltage type inverter and detecting the polarity thereof; a compensation amount calculator for calculating a compensation amount corresponding to the control signal; An input signal to the current polarity detector in a dead time compensation circuit of an inverter including a circuit for adding or subtracting a compensation amount to or from the control signal in accordance with the current polarity Phase, is intended to comprise an excitation current component correction circuit for correcting in response to the exciting current of the transformer.

【0018】この励磁電流分補正回路は、相互に直交す
る有効電流成分と無効電流成分のうちの無効電流成分に
前記変圧器の励磁電流分を加算し、この加算演算結果と
前記有効電流成分とを三相交流電流信号に変換した後、
前記電流極性検出器へ入力させるものとする。または、
有効電流成分と無効電流成分を三相交流電流信号に変換
した後、前記変圧器の励磁電流分を加算し、この加算演
算結果を前記電流極性検出器へ入力させるものとする。
The exciting current component correction circuit adds the exciting current component of the transformer to the reactive current component of the active current component and the reactive current component that are orthogonal to each other. After converting to a three-phase AC current signal,
It is to be input to the current polarity detector. Or
After converting the active current component and the reactive current component into a three-phase AC current signal, the exciting current of the transformer is added, and the result of the addition operation is input to the current polarity detector.

【0019】または、前記電流極性検出器をコンパレー
タで構成し、当該電流極性検出器で検出する入力信号の
極性を、予め定めた進み位相で検出させる逆ヒステリシ
ス設定器を前記電流極性検出器に付加するものとする。
Alternatively, the current polarity detector is constituted by a comparator, and a reverse hysteresis setting device for detecting the polarity of the input signal detected by the current polarity detector at a predetermined advance phase is added to the current polarity detector. It shall be.

【0020】[0020]

【発明の実施の形態】電力系統に変圧器を介してインバ
ータを接続する場合のインバータの制御は系統側で検出
する電流(即ち変圧器一次側電流)を使用する。ところ
がインバータ本体に流れる電流(即ち変圧器二次側電
流)には変圧器の励磁電流が含まれるので、前者の電流
と後者の電流には位相差がある。ところでインバータの
デッドタイムを補償するには、電流極性を検出し、この
極性に対応して制御信号の補正量Δλを制御信号λに加
算または減算する必要がある。ところが電流の位相差に
対応して電流の零点通過時点が変動するので、補正量Δ
λを加減算するタイミングがずれ、インバータの制御精
度が低下する。そこで本発明では、電流指令値の無効電
流分に変圧器の励磁電流分を加算し、これと有効電流分
とのベクトル和で得られる電流を前記電流極性検出器へ
入力させる。あるいは三相交流電流指令値に励磁電流分
を加算した結果を前記電流極性検出器へ入力させる。ま
たは電流極性検出器が検出する電流零点を、励磁電流で
変化する位相分だけすらす逆ヒステリシス設定器を前記
電流極性検出器に付加することで、励磁電流の影響を排
除するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the case where an inverter is connected to a power system via a transformer, control of the inverter uses a current detected on the system side (ie, a transformer primary side current). However, the current flowing through the inverter body (that is, the secondary current of the transformer) includes the exciting current of the transformer, so that the former current and the latter have a phase difference. Incidentally, in order to compensate for the dead time of the inverter, it is necessary to detect the current polarity and add or subtract the correction amount Δλ of the control signal to or from the control signal λ in accordance with the polarity. However, since the time point at which the current passes through the zero point varies in accordance with the phase difference of the current, the correction amount Δ
The timing for adding and subtracting λ is shifted, and the control accuracy of the inverter is reduced. Therefore, in the present invention, the exciting current of the transformer is added to the reactive current of the current command value, and the current obtained as the vector sum of this and the active current is input to the current polarity detector. Alternatively, a result obtained by adding the exciting current component to the three-phase AC current command value is input to the current polarity detector. Alternatively, an influence of the exciting current is eliminated by adding a reverse hysteresis setting device to the current polarity detector, which shifts the current zero point detected by the current polarity detector by a phase that changes with the exciting current.

【0021】[0021]

【実施例】図1は本発明の第1実施例を表した回路図で
あるが、この第1実施例回路は図8で既述の従来例回路
に励磁電流分補正回路20を付加して構成したものであ
る。従って励磁電流分補正回路20以外の各部について
の説明は省略する。前述したように、従来の回路では電
流極性検出器14へ入力する電流には変圧器4の励磁電
流分IEXが考慮されていないので、制御信号λへの制御
信号補正分±Δλの加算が正確なタイミングで行われな
かった。そこで当該第1発明では、励磁電流分補正回路
20から電流極性検出器14へは励磁電流分IEXを補正
した電流信号が与えられる。
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. The circuit of the first embodiment is obtained by adding an exciting current compensation circuit 20 to the conventional circuit described in FIG. It is composed. Therefore, the description of each part other than the excitation current correction circuit 20 will be omitted. As described above, in the conventional circuit, the current input to the current polarity detector 14 does not consider the exciting current I EX of the transformer 4, so that the control signal correction amount ± Δλ is added to the control signal λ. It was not done at the right time. Therefore, in the first invention, a current signal in which the exciting current IEX is corrected is supplied from the exciting current correcting circuit 20 to the current polarity detector 14.

【0022】図2は本発明の第2実施例を表した回路図
であるが、この第2実施例回路は図8で既述の従来例回
路に励磁電流分補正回路30を付加して構成したもので
ある。従って励磁電流分補正回路30以外の各部につい
ての説明は省略する。励磁電流分補正回路30は第1加
算器31,補正回路用逆ベクトルドレア32,および補
正回路用2相/3相変換器33で構成している。なお、
当該インバータ5はベクトル制御のために有効電流成分
と無効電流成分とに分解されているものとし、第1座標
変換回路の図示は省略する。
FIG. 2 is a circuit diagram showing a second embodiment of the present invention. The circuit of the second embodiment is configured by adding an exciting current compensation circuit 30 to the conventional circuit described in FIG. It was done. Therefore, the description of each part other than the exciting current correction circuit 30 will be omitted. The excitation current correction circuit 30 includes a first adder 31, an inverse vector drain 32 for the correction circuit, and a two-phase / three-phase converter 33 for the correction circuit. In addition,
It is assumed that the inverter 5 is separated into an active current component and a reactive current component for vector control, and the illustration of the first coordinate conversion circuit is omitted.

【0023】本発明では、第1加算器31が無効電流指
令値IQ * と励磁電流分IEXとを加算する。この加算演
算結果と有効電流指令値IP * とを、補正回路用逆ベク
トルドレア32と補正回路用2相/3相変換器33で三
相交流電流信号に変換して電流極性検出器14へ与えれ
ば、電流極性検出器14と増幅器15とで得られる制御
信号補正分±Δλを、正しいタイミングで制御信号λに
加減算することができる。
[0023] In the present invention, the first adder 31 adds the excitation current component I EX and reactive current command value I Q *. The result of the addition operation and the effective current command value I P * are converted into a three-phase AC current signal by the inverse vector drain 32 for the correction circuit and the two-phase / three-phase converter 33 for the correction circuit to the current polarity detector 14. If given, the control signal correction ± Δλ obtained by the current polarity detector 14 and the amplifier 15 can be added to or subtracted from the control signal λ at the correct timing.

【0024】図3は本発明の第3実施例を表した回路図
であるが、この第3実施例回路は図8で既述の従来例回
路に励磁電流分補正回路40を付加して構成したもので
ある。従って励磁電流分補正回路40以外の各部につい
ての説明は省略する。励磁電流分補正回路40は補正回
路用逆ベクトルドレア32,補正回路用2相/3相変換
器33,および第2加算器41で構成している。なお、
当該インバータ5はベクトル制御のために有効電流成分
と無効電流成分とに分解されているものとし、第1座標
変換回路の図示は省略する。
FIG. 3 is a circuit diagram showing a third embodiment of the present invention. This third embodiment is configured by adding an exciting current component correction circuit 40 to the conventional circuit described in FIG. It was done. Accordingly, the description of each part other than the exciting current component correction circuit 40 will be omitted. The excitation current component correction circuit 40 includes a correction circuit inverse vector drain 32, a correction circuit two-phase / three-phase converter 33, and a second adder 41. In addition,
It is assumed that the inverter 5 is separated into an active current component and a reactive current component for vector control, and the illustration of the first coordinate conversion circuit is omitted.

【0025】本発明では、有効電流指令値IP * と無効
電流指令値IQ * を補正回路用逆ベクトルトレア32と
補正回路用2相/3相変換器33で三相交流電流信号に
変換し、第2加算器41はこれと励磁電流分IEXとを加
算し、この加算演算結果を電流極性検出器14へ与え
る。よって増幅器15が出力する制御信号補正分±Δλ
は正しいタイミングで制御信号λに加減算される。
[0025] In the present invention, converted into the active current instruction value I P * and the reactive current command value I Q * to three-phase alternating current signal in the reverse correction circuit vector Torea 32 and the correction circuit 2-phase / 3-phase converter 33 Then, the second adder 41 adds this to the exciting current I EX , and supplies the result of the addition to the current polarity detector 14. Therefore, the control signal correction output from the amplifier 15 ± Δλ
Is added to and subtracted from the control signal λ at the correct timing.

【0026】図4は本発明の第4実施例を表した回路図
であるが、この第4実施例回路は図8で既述の従来例回
路の電流極性検出器14の代わりに、電流極性検出器5
1と逆ヒステリシス設定器52とを組み合わせた回路を
備える構成にしたものである。従ってこれら電流極性検
出器51と逆ヒステリシス設定器52を除いた残余の部
分についての説明は省略する。本発明では、電流極性検
出器51に逆ヒステリシス設定器52を付加し、この逆
ヒステリシス設定器52が一定の進み位相を設定するこ
とにより、電流極性検出器51へ入力する電流の位相が
インバータ5に流れる実際電流の位相にほぼ一致した時
点で、当該電流極性検出器51を動作させるので、デッ
ドタイムの影響を補正することができる。
FIG. 4 is a circuit diagram showing a fourth embodiment of the present invention. The circuit of the fourth embodiment is different from the conventional circuit shown in FIG. Detector 5
1 and a circuit in which an inverse hysteresis setting device 52 is combined. Therefore, the description of the remaining portions excluding the current polarity detector 51 and the reverse hysteresis setting device 52 will be omitted. In the present invention, the reverse polarity hysteresis setting device 52 is added to the current polarity detector 51, and the reverse hysteresis setting device 52 sets a constant advance phase. The current polarity detector 51 is operated at a time when the phase substantially coincides with the phase of the actual current flowing through the circuit, so that the influence of the dead time can be corrected.

【0027】図16は第4実施例回路で電流変化率が大
きい電流が通流する際の位相進め量を表した動作波形図
であり、図17は第4実施例回路で電流変化率が小さい
電流が通流する際の位相進め量を表した動作波形図であ
る。これら図16,図17で明らかなように、この第4
実施例回路では逆ヒステリシス設定値が一定のため、通
流する電流の変化率の大小で位相進め量が変動する欠点
がある。よって本発明はインバータ5の出力が一定して
いるような場合に適用することが望ましい。
FIG. 16 is an operation waveform diagram showing the amount of phase advance when a current having a large current change rate flows in the circuit of the fourth embodiment, and FIG. 17 shows a small current change rate in the circuit of the fourth embodiment. FIG. 9 is an operation waveform diagram illustrating a phase advance amount when a current flows. As apparent from FIGS. 16 and 17, the fourth
In the circuit of the embodiment, since the reverse hysteresis set value is constant, there is a disadvantage that the amount of phase advance varies depending on the change rate of the flowing current. Therefore, the present invention is desirably applied to a case where the output of the inverter 5 is constant.

【0028】[0028]

【発明の効果】電力系統に変圧器を介して接続している
インバータに従来のデッドタイム補償回路を適用する
と、変圧器励磁電流の影響で、制御信号にデッドタイム
を補償するための補正分の加算を、適切なタイミングで
行うことができなかった。第1,第2,第3の各発明で
は、変圧器励磁電流分が考慮された電流信号を電流極性
検出器へ入力させる構成にしているので、電流極性切替
え時点が実際の電流に合った進み角になる。従って電流
の大小にかかわらず、デッドタイム補償用の補正分が適
切なタイミングで加算されるので、インバータの電流制
御の制御精度が低下する恐れが無く、系統に余分な高調
波を出すことを回避出来る効果が得られる。また第4の
発明は、電流極性切替え時点を一定の進み角に設定する
ので、電流変化率の大小に対応することはできないが、
従来のデッドタイム補償回路の電流極性検出器に一定の
進み角を設定する逆ヒステリシス設定器を付加するのみ
で良いことから、一定出力で運転するインバータに適用
することができる。
When a conventional dead time compensating circuit is applied to an inverter connected to a power system via a transformer, the correction signal for compensating for the dead time in the control signal is affected by the transformer exciting current. Addition could not be performed at the right time. In each of the first, second, and third inventions, a current signal in which the transformer excitation current is considered is input to the current polarity detector, so that the current polarity switching time advances in accordance with the actual current. Become a corner. Therefore, regardless of the magnitude of the current, the correction amount for dead time compensation is added at an appropriate timing, so there is no risk of the control accuracy of the current control of the inverter being reduced, and it is possible to avoid generating extra harmonics in the system. The effect that can be obtained is obtained. In the fourth invention, the current polarity switching point is set to a constant lead angle, so that it is not possible to cope with the magnitude of the current change rate.
Since it is only necessary to add a reverse hysteresis setting device for setting a constant lead angle to the current polarity detector of the conventional dead time compensating circuit, the present invention can be applied to an inverter operating at a constant output.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を表した回路図FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施例を表した回路図FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

【図3】本発明の第3実施例を表した回路図FIG. 3 is a circuit diagram showing a third embodiment of the present invention.

【図4】本発明の第4実施例を表した回路図FIG. 4 is a circuit diagram showing a fourth embodiment of the present invention.

【図5】直流を交流に変換するインバータの1相分を示
した回路図
FIG. 5 is a circuit diagram showing one phase of an inverter that converts DC to AC.

【図6】図5に図示のインバータに従来のデッドタイム
を設けた場合の各部の動作を示した動作波形図
6 is an operation waveform diagram showing the operation of each unit when a conventional dead time is provided in the inverter shown in FIG. 5;

【図7】図5に図示のインバータに従来のデッドタイム
を設けた場合の出力電圧・電流の変化を示した波形図
FIG. 7 is a waveform diagram showing changes in output voltage and current when a conventional dead time is provided in the inverter shown in FIG. 5;

【図8】インバータのデッドタイムを補償する回路の従
来例を示した回路図
FIG. 8 is a circuit diagram showing a conventional example of a circuit for compensating a dead time of an inverter.

【図9】図8に図示のデッドタイムの影響を補償した従
来例回路の動作を示した動作波形図
FIG. 9 is an operation waveform diagram showing an operation of the conventional circuit in which the influence of the dead time shown in FIG. 8 is compensated.

【図10】図8に図示のデッドタイムの影響を補償した
従来例回路の出力電圧・電流の変化を示した波形図
FIG. 10 is a waveform diagram showing changes in output voltage and current of the conventional circuit in which the influence of the dead time shown in FIG. 8 is compensated.

【図11】電力系統にインバータを接続した場合を単線
で示した主回路接続図
FIG. 11 is a main circuit connection diagram showing a case where an inverter is connected to a power system by a single line;

【図12】変圧器一次側電流と二次側電流の差異を示し
たベクトル図
FIG. 12 is a vector diagram showing a difference between a transformer primary current and a secondary current.

【図13】図12に図示のベクトル図を波形で示した波
形図
FIG. 13 is a waveform diagram showing the vector diagram shown in FIG. 12 in a waveform.

【図14】出力電流が大きい場合のベクトル図FIG. 14 is a vector diagram when the output current is large.

【図15】出力電流が小さい場合のベクトル図FIG. 15 is a vector diagram when the output current is small.

【図16】第4実施例回路で電流変化率が大きい電流が
通流する際の位相進め量を表した動作波形図
FIG. 16 is an operation waveform diagram showing a phase advance amount when a current having a large current change rate flows in the circuit of the fourth embodiment.

【図17】第4実施例回路で電流変化率が小さい電流が
通流する際の位相進め量を表した動作波形図
FIG. 17 is an operation waveform diagram showing a phase advance amount when a current having a small current change rate flows in the circuit of the fourth embodiment.

【符号の説明】[Explanation of symbols]

2 電力系統 3 連系インピーダンス 4 変圧器 5 インバータ 5U 上側アーム 5X 下側アーム 6 コンデンサ 7 インバータ電流検出器 11 逆ベクトルドレア 12 2相/3相変換器 13 電流調節器 14,51 電流極性検出器 15 増幅器 16 加算器 17 キャリア波発生器 18 PWM変調器 20,30,40 励磁電流分補正回路 31 第1加算器 32 補正回路用逆ベクトルドレア 33 補正回路用2相/3相変換器 41 第2加算器 52 逆ヒステリシス設定器 2 Power system 3 Interconnection impedance 4 Transformer 5 Inverter 5U Upper arm 5X Lower arm 6 Capacitor 7 Inverter current detector 11 Reverse vector drain 12 Two-phase / 3-phase converter 13 Current regulator 14, 51 Current polarity detector 15 Amplifier 16 Adder 17 Carrier Wave Generator 18 PWM Modulator 20, 30, 40 Excitation Current Correction Circuit 31 First Adder 32 Reverse Vector Dreaer for Correction Circuit 33 2-Phase / 3-Phase Converter for Correction Circuit 41 Second Addition Device 52 Reverse hysteresis setting device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】キャリア波と制御信号との大小関係に対応
して上側アームと下側アームとを交互にオン・オフさせ
て電力変換を行う際に、前記上下アームの同時オンを防
止するデッドタイムを有する電圧形インバータを、変圧
器を介して電力系統に接続し、この電力系統から検出す
る当該電圧形インバータの出力電流信号,又は当該電圧
形インバータの電流指令信号を入力してその極性を検出
する電流極性検出器と、前記制御信号に対応した補償量
を演算する補償量演算器と、この補償量を前記電流極性
に対応して前記制御信号に加算又は減算する回路を備え
ているインバータのデッドタイム補償回路において、 前記電流極性検出器へ入力する信号の位相を、前記変圧
器の励磁電流に対応して補正する励磁電流分補正回路を
備えていることを特徴とするインバータのデッドタイム
補償回路。
A dead end for preventing simultaneous turning on of the upper and lower arms when power conversion is performed by alternately turning on and off an upper arm and a lower arm in accordance with a magnitude relationship between a carrier wave and a control signal. A voltage type inverter having a time is connected to a power system via a transformer, and an output current signal of the voltage type inverter detected from the power system or a current command signal of the voltage type inverter is input to change the polarity. An inverter including a current polarity detector for detecting, a compensation amount calculator for calculating a compensation amount corresponding to the control signal, and a circuit for adding or subtracting the compensation amount to or from the control signal in accordance with the current polarity The dead time compensating circuit according to claim 1, further comprising an exciting current compensating circuit for compensating a phase of a signal input to the current polarity detector in accordance with an exciting current of the transformer. Inverter dead time compensation circuit.
【請求項2】請求項1に記載のインバータのデッドタイ
ム補償回路において、 前記励磁電流分補正回路は、前記電流極性検出器への入
力信号を、相互に直交する有効電流成分と無効電流成分
に分解する第1座標変換回路と、この第1座標変換回路
から得られる前記無効電流成分に前記変圧器の励磁電流
分を加算する第1加算器と、この第1加算器の演算結果
と前記有効電流成分を三相交流電流信号に変換する第2
座標変換回路と、を備えていることを特徴とするインバ
ータのデッドタイム補償回路。
2. The inverter dead time compensating circuit according to claim 1, wherein said exciting current compensating circuit converts an input signal to said current polarity detector into an active current component and a reactive current component orthogonal to each other. A first coordinate conversion circuit for decomposing; a first adder for adding an exciting current of the transformer to the reactive current component obtained from the first coordinate conversion circuit; a calculation result of the first adder and the validity Second for converting the current component into a three-phase AC current signal
A dead time compensation circuit for an inverter, comprising: a coordinate conversion circuit.
【請求項3】請求項1に記載のインバータのデッドタイ
ム補償回路において、 前記励磁電流分補正回路は、前記電流極性検出器へ入力
する信号を、相互に直交する有効電流成分と無効電流成
分に分解する第1座標変換回路と、これら有効電流成分
と無効電流成分を三相交流電流信号に変換する第2座標
変換回路と、この第2座標変換回路の出力に前記変圧器
の励磁電流分を加算する第2加算器と、を備えているこ
とを特徴とするインバータのデッドタイム補償回路。
3. The inverter dead time compensating circuit according to claim 1, wherein the exciting current component correcting circuit converts a signal input to the current polarity detector into an active current component and a reactive current component orthogonal to each other. A first coordinate conversion circuit for decomposing, a second coordinate conversion circuit for converting the active current component and the reactive current component into a three-phase alternating current signal, and an output of the second coordinate conversion circuit which includes an exciting current of the transformer. A dead time compensating circuit for an inverter, comprising: a second adder for adding.
【請求項4】キャリア波と制御信号との大小関係に対応
して上側アームと下側アームとを交互にオン・オフさせ
て電力変換を行う際に、前記上下アームの同時オンを防
止するデッドタイムを有する電圧形インバータを、変圧
器を介して電力系統に接続し、この電力系統から検出す
る当該電圧形インバータの出力電流信号,又は当該電圧
形インバータの電流指令信号を入力してその極性を検出
する電流極性検出器と、前記制御信号に対応した補償量
を演算する補償量演算器と、この補償量を前記電流極性
に対応して前記制御信号に加算又は減算する回路を備え
ているインバータのデッドタイム補償回路において、 前記電流極性検出器をコンパレータで構成し、当該電流
極性検出器で検出する入力信号の極性を、予め定めた進
み位相で検出させる逆ヒステリシス設定器を前記電流極
性検出器に付加することを特徴とするインバータのデッ
ドタイム補償回路。
4. A dead time for preventing simultaneous turning on of the upper and lower arms when power conversion is performed by alternately turning on and off the upper arm and the lower arm in accordance with the magnitude relationship between the carrier wave and the control signal. A voltage type inverter having a time is connected to a power system via a transformer, and an output current signal of the voltage type inverter detected from the power system or a current command signal of the voltage type inverter is input to change the polarity. An inverter including a current polarity detector for detecting, a compensation amount calculator for calculating a compensation amount corresponding to the control signal, and a circuit for adding or subtracting the compensation amount to or from the control signal in accordance with the current polarity In the dead time compensation circuit, the current polarity detector is constituted by a comparator, and the polarity of the input signal detected by the current polarity detector is detected at a predetermined advance phase. A dead time compensation circuit for an inverter, wherein an inverse hysteresis setting device is added to the current polarity detector.
JP26265096A 1996-10-03 1996-10-03 Inverter dead time compensation circuit Expired - Lifetime JP3580048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26265096A JP3580048B2 (en) 1996-10-03 1996-10-03 Inverter dead time compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26265096A JP3580048B2 (en) 1996-10-03 1996-10-03 Inverter dead time compensation circuit

Publications (2)

Publication Number Publication Date
JPH10112984A true JPH10112984A (en) 1998-04-28
JP3580048B2 JP3580048B2 (en) 2004-10-20

Family

ID=17378731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26265096A Expired - Lifetime JP3580048B2 (en) 1996-10-03 1996-10-03 Inverter dead time compensation circuit

Country Status (1)

Country Link
JP (1) JP3580048B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7570502B2 (en) 2003-07-24 2009-08-04 The Kansai Electric Power Co., Inc. Inverter apparatus comprising switching elements
JP2012175845A (en) * 2011-02-23 2012-09-10 Hitachi Ltd Controller of parallel multiplex power conversion device
CN103414368A (en) * 2013-07-25 2013-11-27 西安交通大学 Dead-zone compensation method of three-phase inverter
CN103607105A (en) * 2013-11-01 2014-02-26 四川长虹电器股份有限公司 Dead zone compensation control method and system thereof
US9673736B2 (en) 2014-09-05 2017-06-06 Mitsubishi Electric Corporation Power conversion system and power conversion device
CN112492892A (en) * 2019-06-20 2021-03-12 东芝三菱电机产业系统株式会社 Power conversion device
CN117578902A (en) * 2023-11-23 2024-02-20 南京航空航天大学 Inverter circuit control method for realizing self-adaptive dead time optimization

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7570502B2 (en) 2003-07-24 2009-08-04 The Kansai Electric Power Co., Inc. Inverter apparatus comprising switching elements
JP2012175845A (en) * 2011-02-23 2012-09-10 Hitachi Ltd Controller of parallel multiplex power conversion device
CN103414368A (en) * 2013-07-25 2013-11-27 西安交通大学 Dead-zone compensation method of three-phase inverter
CN103607105A (en) * 2013-11-01 2014-02-26 四川长虹电器股份有限公司 Dead zone compensation control method and system thereof
US9673736B2 (en) 2014-09-05 2017-06-06 Mitsubishi Electric Corporation Power conversion system and power conversion device
CN112492892A (en) * 2019-06-20 2021-03-12 东芝三菱电机产业系统株式会社 Power conversion device
CN112492892B (en) * 2019-06-20 2023-08-04 东芝三菱电机产业系统株式会社 Power conversion device
CN117578902A (en) * 2023-11-23 2024-02-20 南京航空航天大学 Inverter circuit control method for realizing self-adaptive dead time optimization

Also Published As

Publication number Publication date
JP3580048B2 (en) 2004-10-20

Similar Documents

Publication Publication Date Title
KR0179872B1 (en) A dead time compensating method of an inverter for a motor drive
JP2526992B2 (en) AC output converter parallel operation system
US11218079B2 (en) Power conversion device
JP2008206372A (en) Ac power supply
JP3580048B2 (en) Inverter dead time compensation circuit
JP5147624B2 (en) Inverter device
JP2708648B2 (en) Parallel operation control device
JP3112386B2 (en) Reactive power generator
JPH10225142A (en) Dead time compensation circuit for inverter
JPH1127951A (en) Pwm inverter controller
JP3738883B2 (en) Voltage type PWM inverter dead time compensation device
JP3222489B2 (en) Control method of three-phase three-wire neutral point-clamped inverter
JP3070314B2 (en) Inverter output voltage compensation circuit
JP2006074898A (en) Dead time compensation method of voltage type inverter and dead time compensator
JPH10201099A (en) Active filter
JP3489446B2 (en) Inverter device
JPH06351255A (en) Control circuit for pwm control inverter
JPS58154390A (en) Controller for linear synchronous motor
JP3261998B2 (en) Inverter control device
JPH06233546A (en) Pwm control method of voltage-type inverter
JP4279520B2 (en) Control device for self-excited power converter
KR19980057561U (en) Dead time compensation device of inverter
JP2024022201A (en) Inverter device and motor drive device
JP3166932B2 (en) Control device for PWM type voltage source inverter
JPH05260752A (en) Controlling device for converter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term