JPH10112337A - Wet solar cell - Google Patents

Wet solar cell

Info

Publication number
JPH10112337A
JPH10112337A JP8329968A JP32996896A JPH10112337A JP H10112337 A JPH10112337 A JP H10112337A JP 8329968 A JP8329968 A JP 8329968A JP 32996896 A JP32996896 A JP 32996896A JP H10112337 A JPH10112337 A JP H10112337A
Authority
JP
Japan
Prior art keywords
titanium
oxide film
solar cell
substrate
semiconductor electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8329968A
Other languages
Japanese (ja)
Inventor
Hitoshi Ishizawa
均 石沢
Akira Tanaka
彰 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8329968A priority Critical patent/JPH10112337A/en
Publication of JPH10112337A publication Critical patent/JPH10112337A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce electric resistance on the interface between a pigment sensitizing semiconductor electrode and an electromotive force taking out electrode and the internal resistance in the semiconductor electrode, and enhance photoelectric transfer efficiency by increasing utilization efficiency of irradiation light energy in a wet solar cell having the pigment sensitizing semiconductor electrode. SOLUTION: A conducting substrate 5 for taking out electromotive force is oxidized, and pigment is carried on an oxidized film to produce a pigment sensitizing semiconductor electrode 4 integrated with the conducting substrate. As the oxidizing method, anodic oxidation is used, hydrothermal treatment is applied to the anodically oxidized film to make the oxidized film porous. Thereby, a large amount of pigment is adsorbed and utilization efficiency of irradiation light energy is enhanced. A wet solar cell is assembled by interposing an electrolyte layer 3 between the pigment sensitizing semiconductor electrode 4 and a transparent conducting film 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光エネルギーを電気エ
ネルギーに直接変換する湿式太陽電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wet solar cell for directly converting light energy into electric energy.

【0002】[0002]

【従来の技術】従来、光エネルギーを電気エネルギーに
直接変換する方法としては、シリコン半導体や色素を用
いた光化学電池が知られている。中でも半導体シリコン
のpn接合を用いた太陽電池はよく知られており、すで
に微弱電力消費の分野や独立電源さらには宇宙用電源と
して利用されている。しかしながらシリコン太陽電池は
理論変換効率が低く、しかも実用上、変換効率が劣化す
るという問題がある。また、シリコン単結晶はもちろん
アモルファスシリコンを製造するに当たっても多大なエ
ネルギーを必要とするので、電池を作るのに費やしたエ
ネルギ−を回収するには、数十年という長期間にわたっ
て発電を続ける必要がある。半導体電極を色素増感した
光化学電池(湿式太陽電池)は古くから研究されている
が、このタイプの光化学電池は変換効率が低い問題点が
あった。しかし、最近、半導体電極の表面積を大きくし
て多量の色素を吸着させ、変換効率を飛躍的に高くする
ことができるようになった。このような色素を吸着させ
た半導体電極を色素増感半導体電極と呼んでいる。
2. Description of the Related Art Conventionally, as a method for directly converting light energy into electric energy, a photochemical cell using a silicon semiconductor or a dye is known. Above all, a solar cell using a pn junction of semiconductor silicon is well known, and is already used as a field of weak power consumption, an independent power supply, and a space power supply. However, the silicon solar cell has a problem that the theoretical conversion efficiency is low and the conversion efficiency is deteriorated in practical use. In addition, a large amount of energy is required to produce amorphous silicon as well as silicon single crystal, so it is necessary to continue power generation for a long period of several decades in order to recover the energy used to make batteries. is there. Photochemical cells (wet solar cells) in which a semiconductor electrode is dye-sensitized have been studied for a long time, but this type of photochemical cell has a problem of low conversion efficiency. However, recently, the surface area of the semiconductor electrode has been increased to allow a large amount of dye to be adsorbed, and the conversion efficiency has been dramatically increased. The semiconductor electrode on which such a dye is adsorbed is called a dye-sensitized semiconductor electrode.

【0003】図3は、色素増感半導体電極を用いた従来
の光化学電池の概略構成を示す断面図である。その構成
は、2枚の透明基板1に各々透明導電膜2を付着させ、
透明導電膜2の間に、電解質層3と色素増感半導体電極
4を挟持したものであり、半導体電極としてチタニア
(TiO2)を用いている。ところが、半導体電極はその
ままでは、キャリア(電荷担体)の濃度が金属に比べて
非常に小さいために、電子の授受をスムーズに行わせる
ことが非常に困難であった。
FIG. 3 is a cross-sectional view showing a schematic structure of a conventional photochemical cell using a dye-sensitized semiconductor electrode. The structure is such that a transparent conductive film 2 is attached to each of two transparent substrates 1,
An electrolyte layer 3 and a dye-sensitized semiconductor electrode 4 are sandwiched between transparent conductive films 2, and titania (TiO 2 ) is used as a semiconductor electrode. However, since the concentration of carriers (charge carriers) is much lower than that of a metal when the semiconductor electrode is left as it is, it has been extremely difficult to smoothly transfer electrons.

【0004】そこで、最近の色素増感半導体電極は、チ
タニア微粒子と色素との界面における電子の授受がうま
く行われるように、両者の化学結合などの点で様々な工
夫がなされている。
[0004] Various dye-sensitized semiconductor electrodes have recently been devised in terms of chemical bonding between them so that electrons can be properly transferred at the interface between the titania fine particles and the dye.

【0005】[0005]

【発明が解決しようとする課題】しかし、湿式太陽電池
の光電変換効率に対しては、導電膜とその表面に形成さ
れた酸化チタン膜の間、及び酸化チタン膜を構成するチ
タニア微粒子間における電気抵抗が、大きく影響する。
従って、導電膜と酸化チタン膜との界面、及びチタニア
微粒子同士の界面に生じる内部抵抗をできるだけ減らす
必要がある。しかし、従来の色素増感半導体電極は、チ
タニア微粒子を分散させた溶液を透明導電膜付きの透明
基板上に塗布し、乾燥後に高温焼結して得られた酸化チ
タン膜を用いていたために、界面における電子の授受に
ついては改善する余地がなかった。
However, with respect to the photoelectric conversion efficiency of a wet type solar cell, the electric power between the conductive film and the titanium oxide film formed on the surface thereof and between the titania fine particles constituting the titanium oxide film is limited. Resistance has a significant effect.
Therefore, it is necessary to reduce the internal resistance generated at the interface between the conductive film and the titanium oxide film and between the titania fine particles as much as possible. However, the conventional dye-sensitized semiconductor electrode is a titanium oxide film obtained by applying a solution in which titania fine particles are dispersed on a transparent substrate with a transparent conductive film, and then drying and sintering at a high temperature. There was no room for improvement in the transfer of electrons at the interface.

【0006】また、酸化チタン膜の色素担持性能は、酸
化チタン膜の表面粗さで決まるが、従来の製造工程では
表面粗さをコントロールする余地もなかった。本発明の
目的は、電子の授受がスムーズに行われ、且つ照射光の
利用効率が高い湿式太陽電池を提供することにある。
[0006] The dye-carrying performance of the titanium oxide film is determined by the surface roughness of the titanium oxide film, but there is no room for controlling the surface roughness in the conventional manufacturing process. An object of the present invention is to provide a wet-type solar cell in which electrons are smoothly exchanged and which has high use efficiency of irradiation light.

【0007】[0007]

【課題を解決するための手段】本発明者らは、色素増感
半導体電極と色素増感半導体電極に接して設けられた導
電膜(一方の電極)を一体化させることにより、その界
面の電子の授受をスムーズに行わせることを見出した。
すなわち本発明は、「透明導電膜付き透明基板と、該透
明基板と対極をなす導電性基板との間に色素を担持させ
た半導体電極と電解質層とがあり、光電変換によって前
記透明導電膜と前記導電性基板との間に電気エネルギー
を発生する湿式電池において、前記半導体電極は、前記
導電性基板を構成する金属の少なくともその一部分を酸
化することによって得られる酸化膜であることを特徴と
する」ものである(請求項1)。
Means for Solving the Problems The present inventors have integrated a dye-sensitized semiconductor electrode and a conductive film (one electrode) provided in contact with the dye-sensitized semiconductor electrode, so that an electron at the interface is formed. Was found to be able to send and receive information smoothly.
That is, the present invention provides a `` transparent substrate with a transparent conductive film, a semiconductor electrode and an electrolyte layer carrying a dye between the transparent substrate and a conductive substrate forming a counter electrode, and the transparent conductive film is subjected to photoelectric conversion. In a wet battery that generates electric energy between the conductive substrate and the conductive substrate, the semiconductor electrode is an oxide film obtained by oxidizing at least a part of a metal that forms the conductive substrate. (Claim 1).

【0008】また、前記導電性基板を構成する金属は、
チタン、ニオブ、タンタル、ジルココニウムから選択さ
れ(請求項2)、前記半導体電極を構成する酸化膜は、
上記金属を陽極酸化させて、多孔質構造をもつようにし
たものである(請求項3)。また、前記導電性基板は、
サンドブラスト処理により粗面化されたチタン基板であ
り、前記半導体電極は、多孔質構造を有するチタン陽極
酸化膜である(請求項5)。
Further, the metal constituting the conductive substrate may be:
An oxide film selected from titanium, niobium, tantalum, and zirconium (claim 2), and constituting the semiconductor electrode,
The metal is anodized to have a porous structure (claim 3). Further, the conductive substrate,
The semiconductor substrate is a titanium substrate roughened by sandblasting, and the semiconductor electrode is a titanium anodic oxide film having a porous structure.

【0009】さらに、前記導電性基板は、少なくともそ
の一部分にチタン粉末の溶射によって形成されたチタン
層を有し、前記半導体電極は、前記チタン層の少なくと
もその一部分を陽極酸化することによって得られるチタ
ン陽極酸化膜である(請求項6)。
Further, the conductive substrate has a titanium layer formed by spraying titanium powder on at least a part thereof, and the semiconductor electrode is obtained by anodizing at least a part of the titanium layer. An anodic oxide film (claim 6).

【0010】[0010]

【発明の実施の形態】本発明の半導体電極は、チタン、
ニオブ、タンタル、ジルコニウムから選択された金属を
酸化したものであるから、光電変換作用をもつ金属酸化
物と電極として使用される金属とは一体となっている。
金属の酸化処理には、酸化雰囲気中で金属を加熱した
り、電解液中でのイオン化を利用する方法があるが、以
下の理由により特に陽極酸化法が好ましい。陽極酸化膜
は、金属基板の表面を酸化して形成しているので、基板
と酸化膜の密着性は極めて良好であり、この界面におけ
る電気抵抗は非常に小さいという特長がある。又、比較
的低エネルギーで酸化膜が形成されるにもかかわらず、
陽極酸化膜を構成する粒子同士が強く結合しているの
で、陽極酸化膜内部の電気抵抗を小さくすることができ
る。陽極酸化膜を形成するのにかかる時間は数分程度と
短く、また特殊な装置を必要とせず、室温の水溶液中で
作製できるので、成膜に必要なエネルギ−消費量は非常
に少ない。従って、陽極酸化膜を湿式太陽電池に利用す
ることは、変換効率を向上させるには非常に有利であ
る。本発明で行う陽極酸化は、電解質中で上記の金属を
陽極、任意の金属を陰極とし、電界をかけることによ
り、陽極側の金属の表面上に厚さ数μm の酸化皮膜を形
成する技術である。陽極酸化に用いる電解液としては、
リン酸、硫酸あるいはこれらの混酸、グリセロリン酸塩
と金属酢酸塩を溶解した水溶液などが好ましい。グリセ
ロリン酸塩としてはグリセロリン酸ナトリウム、グリセ
ロリン酸カルシウムなどがあるが、水に非常に溶けやす
いことからグリセロリン酸ナトリウムが最も好ましい。
金属酢酸塩ならば何でも良いが、特にアルカリ金属(リ
チウム、ナトリウム、カリウム、ルビジウム、セシウ
ム)の酢酸塩、アルカリ土類金属(マグネシウム、カル
シウム、ストロンチウム、バリウム)の酢酸塩、さらに
酢酸ランタンなどはグリセロリン酸塩の水溶液に非常に
よく溶け、しかも高い電圧まで安定に陽極酸化できるの
で最も好ましい。これらの電解液を用いて例えばチタン
を陽極酸化すると、リン酸やグリセロリン酸塩からリン
イオンあるいはリン酸イオンが、金属酢酸塩から金属イ
オンが取り込まれたチタン陽極酸化膜が形成される。こ
れらの電解液を用いて陽極酸化を始める前には、あらか
じめ最高到達電圧を設定しておく。陽極酸化を開始する
と電圧は徐々に上昇し、その最高電圧に到達すると電流
が流れなくなり陽極酸化が終了するようにする。陽極酸
化にかかる時間は、電流密度を高くして速く昇圧するほ
ど短時間で終了させることができるが、およそ5〜10
分程度と比較的短くする。膜の厚さは電圧に比例するの
で、陽極酸化膜の単位面積当たりの表面積を増大させる
には、高電圧で陽極酸化して膜厚を大きくするとよい。
しかし、膜厚が大きすぎると安定して陽極酸化ができな
くなるので、 500V程度が限界である。電圧が 100Vを
越えたあたりから、陽極酸化膜の表面で火花放電が発生
し、酸化皮膜が局所的に高い温度に加熱される。このよ
うな膜に対する加熱が無数に繰り返された結果、陽極酸
化膜全体が結晶化され、結晶性の高い陽極酸化膜が形成
される。また、陽極酸化は他のセラミック膜の製造方法
に比べて成膜速度が速く、大面積であっても均一な厚さ
に成膜できるという利点がある。しかも基板表面に激し
い凹凸が形成されていたり、基板が複雑な形状をしてい
ても成膜できるので、大面積のセラミック膜の成膜方法
としては工業的に有用な方法である。さらに、湿式太陽
電池の変換効率をさらに向上させるために、本発明で
は、半導体電極の表面に色素を吸着させた色素増感半導
体電極を用いる。色素増感半導体電極の単位面積当たり
の色素の吸着量及び光の吸収量を多くするには、電極表
面に微細な凹凸を付けて、見掛けの表面積をできるだけ
大きくすることが有効となる。金属の基板は高電圧で陽
極酸化すると、表面で発生する火花放電によって多数の
放電痕が形成され、多孔質になることがわかっている。
しかし、このような放電痕の直径は数μm 程度と大きい
ため、陽極酸化膜の表面積を大きくするのにはあまり寄
与しない。膜の表面積を増大させるには膜に数10nm程度
の非常に微細な気孔を形成して多孔質にすることが、き
わめて効果的である。このような多孔質構造とするため
には、先ず、陽極酸化の際に火花放電による加熱によっ
て電解液から陽極酸化膜へイオンの取り込みを行わせ、
次に、陽極酸化膜に取り込まれた液体に可溶な物質(イ
オン)を溶出させればよい。その可溶性物質が溶出した
あとには細孔が無数形成され、陽極酸化膜は多孔質にな
り、表面積は著しく増大する。溶出方法としては、オー
トクレーブのような密閉容器中の液体又は蒸気の中で陽
極酸化膜を 100-500℃の範囲で加熱する、いわゆる水熱
法が有効である。加熱温度が 100℃より低いと、可溶性
物質はほとんど溶出しない。また、オートクレ−ブを 5
00℃より高い温度に加熱することは、装置が非常に大が
かりになり一般的でない。液体としては一般に純水が用
いられるが、それだけに限定されるものではなく、陽極
酸化膜から可溶性物質の溶出を促進させるために、酸性
又はアルカリ性にすることもある。また、液体を攪拌し
ながら加熱処理すると溶出が促進される。さらに、陽極
酸化しようとする金属基板の表面をあらかじめ粗くして
おくと、単位面積当たりの表面積をより一層増大させる
ことができる。基板表面を粗面化するには、サンドブラ
ストあるいはグリットブラストによる方法が好ましい。
この方法で表面に突き刺さったサンドやグリットは、フ
ッ酸溶液などでエッチングすることによってすべて取り
除いておくことが必要である。また、セラミックス、金
属、プラスチックなど任意の素材の基板に、アーク溶
射、フレーム溶射、プラズマ溶射などによって、チタ
ン、ニオブ、タンタル、ジルコニウム等の粉末を固着さ
せれば、粗面化された金属層を形成できる。これを陽極
酸化すれば、ブラスト処理と同様な効果が得られる。以
下、具体例により本発明を詳細に説明する。湿式太陽電
池に用いられる半導体電極としては、先述のようにチタ
ン、ニオブ、タンタル、ジルコニウムの酸化物がある
が、酸化チタンは光励起された表面の正孔が非常に高い
酸化電位をもつことから特に注目されている。そこで、
以下の実施の形態では、チタン及び酸化チタンを用いた
湿式太陽電池について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The semiconductor electrode of the present invention comprises titanium,
Since it is obtained by oxidizing a metal selected from niobium, tantalum and zirconium, a metal oxide having a photoelectric conversion action and a metal used as an electrode are integrated.
Examples of the metal oxidation treatment include a method of heating the metal in an oxidizing atmosphere and a method of utilizing ionization in an electrolytic solution. The anodic oxidation method is particularly preferable for the following reasons. Since the anodic oxide film is formed by oxidizing the surface of the metal substrate, the adhesion between the substrate and the oxide film is extremely good, and the electric resistance at this interface is very small. Also, despite the oxide film being formed with relatively low energy,
Since the particles constituting the anodic oxide film are strongly bonded to each other, the electric resistance inside the anodic oxide film can be reduced. The time required to form the anodic oxide film is as short as several minutes, and the anodic oxide film can be formed in an aqueous solution at room temperature without requiring any special equipment, so that the energy consumption required for film formation is very small. Therefore, using an anodic oxide film for a wet solar cell is very advantageous for improving the conversion efficiency. The anodic oxidation performed in the present invention is a technique of forming an oxide film having a thickness of several μm on the surface of the metal on the anode side by applying an electric field with the above metal as an anode and any metal as a cathode in an electrolyte. is there. As the electrolyte used for anodization,
Phosphoric acid, sulfuric acid or a mixed acid thereof, or an aqueous solution in which glycerophosphate and metal acetate are dissolved are preferred. Examples of the glycerophosphate include sodium glycerophosphate and calcium glycerophosphate, and sodium glycerophosphate is most preferable because it is very soluble in water.
Any metal acetate can be used, but especially alkali metal (lithium, sodium, potassium, rubidium, cesium) acetate, alkaline earth metal (magnesium, calcium, strontium, barium) acetate, and lanthanum acetate are glyceroline. It is most preferable because it can be very well dissolved in an aqueous solution of an acid salt and can be stably anodized up to a high voltage. When titanium is anodized, for example, using these electrolytes, a titanium anodic oxide film is formed in which phosphorus ions or phosphate ions are taken in from phosphoric acid or glycerophosphate and metal ions are taken in from metal acetate. Before starting anodic oxidation using these electrolytes, the highest attainable voltage is set in advance. When the anodization is started, the voltage gradually increases. When the voltage reaches the maximum voltage, no current flows and the anodization is terminated. The time required for the anodic oxidation can be completed in a shorter time as the current density is increased and the pressure is increased more quickly.
Minutes and relatively short. Since the thickness of the film is proportional to the voltage, in order to increase the surface area per unit area of the anodic oxide film, it is preferable to increase the film thickness by anodizing at a high voltage.
However, if the film thickness is too large, anodic oxidation cannot be performed stably, so that about 500 V is the limit. When the voltage exceeds about 100 V, spark discharge occurs on the surface of the anodic oxide film, and the oxide film is locally heated to a high temperature. As a result of repeatedly heating the film innumerably, the entire anodic oxide film is crystallized, and an anodic oxide film having high crystallinity is formed. Further, anodic oxidation has the advantage that the film formation rate is faster than other methods of manufacturing a ceramic film, and that a uniform thickness can be formed even in a large area. In addition, since a film can be formed even when severe unevenness is formed on the substrate surface or the substrate has a complicated shape, it is an industrially useful method for forming a large-area ceramic film. Further, in order to further improve the conversion efficiency of the wet solar cell, in the present invention, a dye-sensitized semiconductor electrode having a dye adsorbed on the surface of the semiconductor electrode is used. In order to increase the amount of dye adsorbed and the amount of light absorbed per unit area of the dye-sensitized semiconductor electrode, it is effective to form fine irregularities on the electrode surface and increase the apparent surface area as much as possible. It has been known that when a metal substrate is anodized at a high voltage, a large number of discharge marks are formed by spark discharge generated on the surface, and the substrate becomes porous.
However, since the diameter of such a discharge trace is as large as about several μm, it does not contribute much to increasing the surface area of the anodic oxide film. In order to increase the surface area of the film, it is extremely effective to form very fine pores of about several tens nm in the film to make the film porous. In order to have such a porous structure, first, at the time of anodic oxidation, the ions are taken into the anodic oxide film from the electrolyte by heating by spark discharge,
Next, substances (ions) soluble in the liquid taken into the anodic oxide film may be eluted. After the soluble substance elutes, numerous pores are formed, the anodic oxide film becomes porous, and the surface area is significantly increased. As the elution method, a so-called hydrothermal method in which the anodic oxide film is heated in a range of 100 to 500 ° C. in a liquid or vapor in a closed vessel such as an autoclave is effective. If the heating temperature is lower than 100 ° C, the soluble substance hardly elutes. Also, set the autoclave to 5
Heating to a temperature higher than 00 ° C. is unusual because the equipment is very bulky. In general, pure water is used as the liquid, but the liquid is not limited to pure water, and may be made acidic or alkaline in order to promote elution of the soluble substance from the anodic oxide film. When the liquid is heated while being stirred, the elution is promoted. Further, if the surface of the metal substrate to be anodized is roughened in advance, the surface area per unit area can be further increased. In order to roughen the substrate surface, a method using sand blast or grit blast is preferable.
It is necessary to remove all the sand and grit pierced on the surface by this method by etching with a hydrofluoric acid solution or the like. If a powder of titanium, niobium, tantalum, zirconium, or the like is fixed to a substrate of any material such as ceramics, metal, and plastic by arc spraying, flame spraying, or plasma spraying, the roughened metal layer can be formed. Can be formed. If this is anodized, the same effect as the blasting can be obtained. Hereinafter, the present invention will be described in detail with reference to specific examples. Semiconductor electrodes used for wet solar cells include titanium, niobium, tantalum and zirconium oxides, as described above. Titanium oxide is particularly preferred because holes on the photoexcited surface have a very high oxidation potential. Attention has been paid. Therefore,
In the following embodiments, a wet solar cell using titanium and titanium oxide will be described.

【0011】尚、本実施の形態では、湿式太陽電池を構
成する基板として直径20mmの円板を用いたが、この寸
法、形状に限られるものではない。 〔第1の実施の形態〕図1は、本発明の第1の実施形態
に係る湿式太陽電池の概略構成を示す断面図である。そ
の構成は、透明基板1、透明導電膜2、電解質層3、色
素増感半導体電極4及び導電性基板5を順次積層したも
ので、透明導電膜2及び導電性基板5の間から電力を取
り出す。透明基板1としてガラス基板を用い、透明導電
膜2としてITO膜を用い、ITO膜の形成にはスパッ
タリング法を用いた。また、導電性基板5としてチタン
基板を用い、色素増感半導体電極4は、チタン基板を陽
極酸化して形成されるチタン陽極酸化膜に色素を担持さ
せたものである。チタン基板の表面にチタン陽極酸化膜
を形成させる際の陽極酸化の条件は、濃度 0.02mol/lの
β−グリセロリン酸ナトリウム及び濃度0.08mol/l の酢
酸ストロンチウムからなる40℃の電解質水溶液を用い
て、直流電圧 400V、電流密度 50mA/cm2に設定し
た。形成されたチタン陽極酸化膜中には、PとSrが含
まれており、これらのPとSrは、チタン陽極酸化膜が
形成されたチタン基板をオートクレーブ中に入れて、 3
00℃の高圧水中で2時間加熱処理する水熱法によって溶
出させた。その結果、チタン陽極酸化膜は、粒径が約40
nmの酸化チタン微粒子同士の間に微小な気孔が形成され
た多孔質構造になった。この多孔質のチタン陽極酸化膜
をローダミンB水溶液に24時間浸漬し、陽極酸化膜を構
成する酸化チタン微粒子上に色素を吸着させることによ
り、色素増感半導体電極4を作製した。最後に、透明導
電膜2と色素増感半導体電極4との間に、テトライソプ
ロピルヨージドとヨウ素を炭酸エチレンとアセトニトリ
ルの混合溶液に溶解した電解液をしみ込ませることによ
って電解質層3を作製し、図1に示す構造の湿式太陽電
池が完成した。本実施形態の湿式太陽電池に 500Wのキ
セノンランプからの光を照射したときの起電力を測定し
たところ、電流は 0.32mA、電圧は0.33Vであった。
In this embodiment, a disk having a diameter of 20 mm is used as a substrate constituting a wet-type solar cell, but the size and shape are not limited. [First Embodiment] FIG. 1 is a sectional view showing a schematic configuration of a wet solar cell according to a first embodiment of the present invention. The structure is such that a transparent substrate 1, a transparent conductive film 2, an electrolyte layer 3, a dye-sensitized semiconductor electrode 4, and a conductive substrate 5 are sequentially laminated, and power is extracted from between the transparent conductive film 2 and the conductive substrate 5. . A glass substrate was used as the transparent substrate 1, an ITO film was used as the transparent conductive film 2, and a sputtering method was used to form the ITO film. In addition, a titanium substrate is used as the conductive substrate 5, and the dye-sensitized semiconductor electrode 4 is one in which a dye is carried on a titanium anodic oxide film formed by anodizing the titanium substrate. The anodic oxidation conditions for forming the titanium anodic oxide film on the surface of the titanium substrate were determined using a 40 ° C. electrolyte aqueous solution composed of sodium β-glycerophosphate at a concentration of 0.02 mol / l and strontium acetate at a concentration of 0.08 mol / l. , A DC voltage of 400 V, and a current density of 50 mA / cm 2 . P and Sr are contained in the formed titanium anodic oxide film. These P and Sr are introduced into an autoclave by placing the titanium substrate on which the titanium anodic oxide film is formed in an autoclave.
Elution was carried out by a hydrothermal method in which heat treatment was performed in high-pressure water at 00 ° C. for 2 hours. As a result, the titanium anodic oxide film has a particle size of about 40
A porous structure was obtained in which fine pores were formed between titanium oxide fine particles of nm. This porous titanium anodic oxide film was immersed in an aqueous rhodamine B solution for 24 hours, and a dye was adsorbed on titanium oxide fine particles constituting the anodic oxide film, whereby a dye-sensitized semiconductor electrode 4 was produced. Lastly, between the transparent conductive film 2 and the dye-sensitized semiconductor electrode 4, an electrolyte solution obtained by dissolving tetraisopropyl iodide and iodine in a mixed solution of ethylene carbonate and acetonitrile was impregnated to form an electrolyte layer 3. The wet solar cell having the structure shown in FIG. 1 was completed. When the electromotive force when the wet solar cell of this embodiment was irradiated with light from a 500 W xenon lamp was measured, the current was 0.32 mA and the voltage was 0.33 V.

【0012】〔第2の実施の形態〕本実施例の湿式太陽
電池は、チタン基板表面に凹凸を設けた以外は、上記第
1の実施形態と同じである。チタン基板を#36のアルミ
ナ粒子でブラスト処理した後に、30%フッ酸溶液中でエ
ッチングすることにより、基板に突き刺さっていたアル
ミナ粒子を取り除き、基板の表面に凹凸を形成した。第
1の実施形態と同様に、陽極酸化、水熱処理色素吸着、
電解質層形成の工程を経て、湿式太陽電池を組み立て
た。本実施形態の湿式太陽電池に 500Wのキセノンラン
プからの光を照射したときの起電力を測定したところ、
電流は 0.47mA、電圧は0.35Vであり、第1の実施形態
の測定値に比べて電流値も電圧値も大きかった。
[Second Embodiment] The wet solar cell of the present embodiment is the same as the first embodiment except that the surface of the titanium substrate is provided with irregularities. After blasting the titanium substrate with # 36 alumina particles, the substrate was etched in a 30% hydrofluoric acid solution to remove the alumina particles sticking into the substrate, thereby forming irregularities on the surface of the substrate. As in the first embodiment, anodization, hydrothermal dye adsorption,
After a process of forming an electrolyte layer, a wet solar cell was assembled. When the electromotive force when the wet solar cell of this embodiment was irradiated with light from a 500 W xenon lamp was measured,
The current was 0.47 mA, and the voltage was 0.35 V. Both the current value and the voltage value were higher than the measured values in the first embodiment.

【0013】〔第3の実施の形態〕図2は、本発明の第
3の実施形態に係る湿式太陽電池の概略構成を示す断面
図である。その構成は、透明基板1、透明導電膜2、電
解質層3、色素増感半導体電極4、チタン層6及び基板
7を順次積層したもので、チタン層6と基板7を併せて
導電性基板5としている。従って、透明導電膜2及びチ
タン層6の間から電力を取り出す。透明基板1としてガ
ラス基板を用い、透明導電膜2としてITO膜を用い、
ITO膜の形成にはスパッタリング法を用いた。
[Third Embodiment] FIG. 2 is a sectional view showing a schematic configuration of a wet solar cell according to a third embodiment of the present invention. The structure is such that a transparent substrate 1, a transparent conductive film 2, an electrolyte layer 3, a dye-sensitized semiconductor electrode 4, a titanium layer 6 and a substrate 7 are sequentially laminated, and the titanium layer 6 and the substrate 7 are combined to form a conductive substrate 5. And Therefore, electric power is extracted from between the transparent conductive film 2 and the titanium layer 6. A glass substrate is used as the transparent substrate 1, an ITO film is used as the transparent conductive film 2,
The sputtering method was used to form the ITO film.

【0014】また、基板7の材質としてステンレススチ
ールを用い、色素増感半導体電極4を構成する半導体電
極は、溶射により形成されたチタン層を陽極酸化して形
成されるチタン陽極酸化膜である。この場合、チタン層
の厚さ全部を陽極酸化膜とするのではなく、陽極酸化さ
れないチタン層を一部残して、取り出し電極として利用
する。
A semiconductor electrode constituting the dye-sensitized semiconductor electrode 4 is a titanium anodic oxide film formed by anodizing a titanium layer formed by thermal spraying using stainless steel as a material of the substrate 7. In this case, the entire thickness of the titanium layer is not used as an anodic oxide film, but a part of the titanium layer that is not anodized is left and used as an extraction electrode.

【0015】本実施の形態が上記第1及び第2の実施形
態と異なる点は、基板7と陽極酸化膜を形成するための
金属層は別種であること、陽極酸化を施すための金属層
は溶射によって基板7の上に形成されたものであること
の2点である。本実施の形態では、ステンレススチール
製の基板に粒径が10〜45μm のチタン粒子をプラズマ溶
射し、膜厚が約50μm 、表面粗さがRmax で36μm のチ
タン層6を形成した。尚、プラズマ溶射によるチタン層
の厚さは50μm に限らず、より厚く形成してもよい。
The present embodiment is different from the first and second embodiments in that the metal layer for forming the anodic oxide film with the substrate 7 is different, and the metal layer for performing anodic oxidation is different from that of the first and second embodiments. The second point is that the substrate is formed on the substrate 7 by thermal spraying. In the present embodiment, titanium particles having a particle size of 10 to 45 μm are plasma-sprayed on a stainless steel substrate to form a titanium layer 6 having a thickness of about 50 μm and a surface roughness Rmax of 36 μm. The thickness of the titanium layer formed by plasma spraying is not limited to 50 μm, but may be thicker.

【0016】また、基板7が導電性を有している場合に
は、チタン層全部を陽極酸化してもよい。チタン層6表
面に陽極酸化膜を形成させる際の条件は、上記第1及び
第2の実施形態と同様である。すなわち、濃度 0.02mol
/lのβ−グリセロリン酸ナトリウム及び濃度0.08mol/l
の酢酸ストロンチウムからなる40℃の電解質水溶液を用
いて、直流電圧 400V、電流密度 50mA/cm2に設定し
た。形成されたチタン陽極酸化膜中には、PとSrが含
まれており、これらのPとSrは、チタン陽極酸化膜が
形成された導電性基板5をオートクレーブ中に入れて 3
00℃の高圧水中で2時間加熱処理することによって溶出
させた。その結果、チタン陽極酸化膜は、粒径が約40nm
の酸化チタン微粒子の間に微小な気孔が形成された多孔
質構造になった。この多孔質のチタン陽極酸化膜をロー
ダミンB水溶液に24時間浸漬し、陽極酸化膜を構成する
酸化チタン微粒子上に色素を吸着させることにより、色
素増感半導体電極4を作製した。最後に、透明導電膜2
と色素増感半導体電極4との間にヨウ素電解質溶液をし
み込ませることによって電解質層3を形成させ、周囲を
樹脂で封止し、図3に示す構造の湿式太陽電池を完成さ
せた。本実施形態の湿式太陽電池に 500Wのキセノンラ
ンプからの光を照射したときの起電力を測定したとこ
ろ、電流は 0.54mA、電圧は0.35Vであった。 〔第4の実施の形態〕本実施の形態が上記第1の実施形
態と異なる点は、水熱処理の条件と色素の種類である。
チタン基板の表面に陽極酸化膜を形成させる際の条件
は、上記の各実施形態と同様である。すなわち、濃度
0.02mol/lのβ−グリセロリン酸ナトリウム及び濃度0.0
8mol/l の酢酸ストロンチウムからなる40℃の電解質水
溶液を用いて、直流電圧 400V、電流密度 50mA/cm2
に設定した。形成されたチタン陽極酸化膜中には、Pと
Srが含まれており、これらのPとSrは、チタン陽極
酸化膜が形成された図1に示す導電性基板5をオートク
レーブ中に入れて 180℃の高圧水中で4時間加熱処理す
ることによって溶出させた。その結果、チタン陽極酸化
膜は、粒径が約30nmの酸化チタン微粒子の間に微小な気
孔が形成された多孔質構造になった。この多孔質のチタ
ン陽極酸化膜を 100℃で真空乾燥した後、直ちにエオシ
ンYを含むエタノール溶液に24時間浸漬し、陽極酸化膜
を構成する酸化チタン微粒子上に色素を吸着させること
により、色素増感半導体電極4を作製した。
When the substrate 7 has conductivity, the entire titanium layer may be anodized. The conditions for forming the anodic oxide film on the surface of the titanium layer 6 are the same as those in the first and second embodiments. That is, concentration 0.02mol
/ l sodium β-glycerophosphate and concentration 0.08 mol / l
A DC voltage of 400 V and a current density of 50 mA / cm 2 were set using an aqueous electrolyte solution of strontium acetate at 40 ° C. P and Sr are contained in the formed titanium anodic oxide film. These P and Sr are introduced into the autoclave by putting the conductive substrate 5 on which the titanium anodic oxide film is formed into an autoclave.
It was eluted by heat treatment in high-pressure water at 00 ° C for 2 hours. As a result, the titanium anodic oxide film has a particle size of about 40 nm.
It became a porous structure in which fine pores were formed between the titanium oxide fine particles. This porous titanium anodic oxide film was immersed in an aqueous rhodamine B solution for 24 hours, and a dye was adsorbed on titanium oxide fine particles constituting the anodic oxide film, whereby a dye-sensitized semiconductor electrode 4 was produced. Finally, the transparent conductive film 2
An electrolyte layer 3 was formed by impregnating an iodine electrolyte solution between the electrode and the dye-sensitized semiconductor electrode 4, and the periphery was sealed with a resin to complete a wet solar cell having the structure shown in FIG. When the electromotive force when the wet solar cell of this embodiment was irradiated with light from a 500 W xenon lamp was measured, the current was 0.54 mA and the voltage was 0.35 V. [Fourth Embodiment] This embodiment is different from the first embodiment in the conditions of hydrothermal treatment and the type of dye.
The conditions for forming the anodic oxide film on the surface of the titanium substrate are the same as in the above embodiments. That is, the concentration
0.02 mol / l β-glycerophosphate sodium and concentration 0.0
Using a 40 ° C. electrolyte aqueous solution comprising 8 mol / l strontium acetate, a DC voltage of 400 V and a current density of 50 mA / cm 2
Set to. P and Sr are contained in the formed titanium anodic oxide film. These P and Sr are introduced into the autoclave by placing the conductive substrate 5 shown in FIG. It was eluted by heat treatment in high-pressure water at ℃ for 4 hours. As a result, the titanium anodic oxide film had a porous structure in which fine pores were formed between titanium oxide fine particles having a particle diameter of about 30 nm. Immediately after vacuum drying this porous titanium anodic oxide film at 100 ° C., it is immersed in an ethanol solution containing eosin Y for 24 hours, and the dye is adsorbed on the titanium oxide fine particles constituting the anodic oxide film, thereby increasing the dye. A semiconductor sensitive electrode 4 was produced.

【0017】最後に、透明導電膜2と色素増感半導体電
極4との間に、テトライソプロピルヨージドとヨウ素を
炭酸エチレンとアセトニトリルの混合溶液に溶解した電
解液をしみ込ませることによって電解質層3を作製し、
図1に示す構造の湿式太陽電池が完成させた。本実施形
態の湿式太陽電池に、420nm 以下の波長の光をカットす
るフィルターを透して 500Wのキセノンランプからの光
を照射したときの起電力を測定したところ、電流は 0.7
8mA、電圧は0.65Vであった。この起電力測定を1時間
続けても、本実施形態の湿式太陽電池は安定した発電が
認められた。なお、本実施形態では、導電性基板5とし
てチタン板を用いたが、サンドブラスト処理したチタン
板にも、チタン粉末の溶射によって形成されたチタン層
を有する基板にも適用できる。
Finally, the electrolyte layer 3 is impregnated between the transparent conductive film 2 and the dye-sensitized semiconductor electrode 4 by impregnating an electrolytic solution in which tetraisopropyl iodide and iodine are dissolved in a mixed solution of ethylene carbonate and acetonitrile. Made,
A wet solar cell having the structure shown in FIG. 1 was completed. When the electromotive force of the wet solar cell of this embodiment when irradiated with light from a 500 W xenon lamp through a filter that cuts light having a wavelength of 420 nm or less was measured, the current was 0.7
8 mA, voltage was 0.65V. Even if this electromotive force measurement was continued for one hour, stable generation of electricity was recognized in the wet solar cell of this embodiment. In the present embodiment, a titanium plate is used as the conductive substrate 5. However, the present invention can be applied to a titanium plate subjected to sandblasting and a substrate having a titanium layer formed by spraying titanium powder.

【0018】[0018]

【発明の効果】以上の通り、本発明の色素増感半導体電
極は、導電性基板を構成する金属を陽極酸化して形成さ
れた酸化膜を用いるので、導電性基板と酸化膜とは強固
に結合された一体構造をとり、その界面での電気抵抗を
低減できる。また、陽極酸化及び水熱処理による加熱効
果により、陽極酸化膜を構成する微粒子間の電気抵抗を
低減できる。さらに、陽極酸化膜に微細な気孔を無数形
成させた多孔質構造とすることにより表面積を飛躍的に
増大させ、これに色素を吸着させることにより、照射光
の利用効率を高めることができる。従って、本発明の色
素増感半導体電極を用いた湿式太陽電池は、電子の授受
がスムーズに行われ、且つ照射光を十分に利用できるの
で、エネルギー変換効率が向上する。
As described above, the dye-sensitized semiconductor electrode of the present invention uses an oxide film formed by anodizing the metal constituting the conductive substrate, so that the conductive substrate and the oxide film are firmly bonded. A combined integral structure is provided to reduce the electrical resistance at the interface. Further, the electrical resistance between the particles constituting the anodic oxide film can be reduced by the heating effect of the anodic oxidation and the hydrothermal treatment. Further, the porous structure in which micropores are formed innumerably in the anodic oxide film dramatically increases the surface area. By adsorbing a dye on the porous structure, the utilization efficiency of irradiation light can be increased. Therefore, in the wet solar cell using the dye-sensitized semiconductor electrode of the present invention, electrons can be smoothly exchanged and the irradiation light can be sufficiently used, so that the energy conversion efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1及び第2の実施形態に係る湿式太
陽電池の概略構成を示す断面図である。
FIG. 1 is a cross-sectional view illustrating a schematic configuration of a wet solar cell according to first and second embodiments of the present invention.

【図2】本発明の第3の実施形態に係る湿式太陽電池の
概略構成を示す断面図である。
FIG. 2 is a cross-sectional view illustrating a schematic configuration of a wet solar cell according to a third embodiment of the present invention.

【図3】従来の湿式太陽電池の概略構成を示す断面図で
ある。
FIG. 3 is a cross-sectional view illustrating a schematic configuration of a conventional wet solar cell.

【符号の説明】[Explanation of symbols]

1・・・・・透明基板 2・・・・・透明導電膜 3・・・・・電解質層 4・・・・・色素増感半導体電極 5・・・・・導電性基板 6・・・・・チタン層 7・・・・・基板 1 ... Transparent substrate 2 ... Transparent conductive film 3 ... Electrolyte layer 4 ... Dye-sensitized semiconductor electrode 5 ... Conductive substrate 6 ...・ Titanium layer 7 ・ ・ ・ ・ ・ Substrate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 透明導電膜付き透明基板と、該透明基板
と対極をなす導電性基板との間に色素を担持させた半導
体電極と電解質層とがあり、光電変換によって前記透明
導電膜と前記導電性基板との間に電気エネルギーを発生
する湿式太陽電池において、 前記半導体電極は、前記導電性基板を構成する金属の少
なくともその一部分を酸化することによって得られる酸
化膜であることを特徴とする湿式太陽電池。
1. A transparent substrate with a transparent conductive film, a semiconductor electrode carrying a dye between a transparent substrate and a conductive substrate serving as a counter electrode, and an electrolyte layer. In a wet-type solar cell that generates electric energy between itself and a conductive substrate, the semiconductor electrode is an oxide film obtained by oxidizing at least a part of a metal that forms the conductive substrate. Wet solar cells.
【請求項2】 前記導電性基板を構成する金属は、チタ
ン、ニオブ、タンタル、ジルコニウムから選ばれた1種
類の金属であることを特徴とする、請求項1に記載の湿
式太陽電池。
2. The wet solar cell according to claim 1, wherein the metal constituting the conductive substrate is one kind of metal selected from titanium, niobium, tantalum, and zirconium.
【請求項3】 前記半導体電極を構成する酸化膜は、前
記金属を陽極酸化することによって得られる金属陽極酸
化膜であり、該金属陽極酸化膜は多孔質構造を有するこ
とを特徴とする、請求項1に記載の湿式太陽電池。
3. The oxide film forming the semiconductor electrode is a metal anodic oxide film obtained by anodizing the metal, and the metal anodic oxide film has a porous structure. Item 2. A wet type solar cell according to Item 1.
【請求項4】 前記多孔質構造は、陽極酸化によって該
陽極酸化膜に含有された、液体に可溶な物質を、水熱処
理によって溶出させることにより形成されたことを特徴
とする、請求項3に記載の湿式太陽電池。
4. The liquid crystal display device according to claim 3, wherein the porous structure is formed by eluting a liquid-soluble substance contained in the anodic oxide film by anodic oxidation by hydrothermal treatment. The wet-type solar cell according to 1.
【請求項5】 前記導電性基板は、チタンの基板であ
り、該チタン基板は、サンドブラスト処理による粗面を
有し、 前記半導体電極は、チタンの陽極酸化膜であり、該陽極
酸化膜は、多孔質構造を有することを特徴とする、請求
項1に記載の湿式太陽電池。
5. The conductive substrate is a titanium substrate, the titanium substrate has a rough surface by sandblasting, the semiconductor electrode is a titanium anodic oxide film, and the anodic oxide film is The wet solar cell according to claim 1, wherein the wet solar cell has a porous structure.
【請求項6】 透明導電膜付き透明基板と、該透明基板
と対極をなす導電性基板との間に色素を担持させた半導
体電極と電解質層とがあり、光電変換によって前記透明
導電膜と前記導電性基板との間に電気エネルギーを発生
する湿式太陽電池において、 前記導電性基板は、少なくともその一部分にチタン粉末
の溶射によって形成されたチタン層を有し、 前記半導体電極は、前記チタン層の少なくともその一部
分を陽極酸化することによって得られるチタン陽極酸化
膜である、ことを特徴とする湿式太陽電池。
6. A transparent substrate with a transparent conductive film, a semiconductor electrode carrying a dye between a transparent substrate and a conductive substrate serving as a counter electrode, and an electrolyte layer. In a wet solar cell that generates electric energy between the conductive substrate and the conductive substrate, the conductive substrate has a titanium layer formed by spraying titanium powder on at least a portion thereof, and the semiconductor electrode includes a titanium layer formed of a titanium layer. A wet solar cell, which is a titanium anodic oxide film obtained by anodizing at least a part thereof.
JP8329968A 1996-08-09 1996-12-10 Wet solar cell Pending JPH10112337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8329968A JPH10112337A (en) 1996-08-09 1996-12-10 Wet solar cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21085796 1996-08-09
JP8-210857 1996-08-09
JP8329968A JPH10112337A (en) 1996-08-09 1996-12-10 Wet solar cell

Publications (1)

Publication Number Publication Date
JPH10112337A true JPH10112337A (en) 1998-04-28

Family

ID=26518304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8329968A Pending JPH10112337A (en) 1996-08-09 1996-12-10 Wet solar cell

Country Status (1)

Country Link
JP (1) JPH10112337A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144772A (en) * 1997-11-06 1999-05-28 Fuji Xerox Co Ltd Semiconductor electrode, its manufacture, and photocell using the same
JP2002246620A (en) * 2001-02-13 2002-08-30 Fuji Photo Film Co Ltd Photoelectric conversion element and photocell and method of manufacturing them
US6649824B1 (en) 1999-09-22 2003-11-18 Canon Kabushiki Kaisha Photoelectric conversion device and method of production thereof
JP2004319872A (en) * 2003-04-18 2004-11-11 Tdk Corp Dye-sensitized photoelectric conversion device
JP2005039013A (en) * 2003-07-18 2005-02-10 Bridgestone Corp Method of depositing porous metal compound thin film, and organic dye-sensitized solar cell
WO2005020335A1 (en) * 2003-08-26 2005-03-03 Nippon Oil Corporation Photoelectric conversion element
JP2005222782A (en) * 2004-02-04 2005-08-18 Bridgestone Corp Forming method of porous thin film, dye-sensitized solar cell, and porous thin film photocatalyst
JP2005259971A (en) * 2004-03-11 2005-09-22 Nichia Chem Ind Ltd Semiconductor light emitting element
WO2005112183A1 (en) * 2004-05-13 2005-11-24 Sony Corporation Photoelectric conversion element and semiconductor electrode
JP2006120418A (en) * 2004-10-20 2006-05-11 Norio Shimizu Dye-sensitized solar cell
JP2006127782A (en) * 2004-10-26 2006-05-18 Nippon Oil Corp Metal-metal oxide composite electrode, manufacturing method therefor, and photoelectric conversion device
WO2006051644A1 (en) * 2004-11-09 2006-05-18 Nippon Oil Corporation Dye-sensitized solar cell
JP2006134827A (en) * 2004-11-09 2006-05-25 Nippon Oil Corp Electrode and dye-sensitized solar cell
JP2006302907A (en) * 2006-06-12 2006-11-02 Sharp Corp Photo electrode, dye-sensitized solar cell using it, and dye-sensitized solar cell module
US7157788B2 (en) 2001-02-21 2007-01-02 Showa Denko K.K. Metal oxide dispersion for dye-sensitized solar cells, photoactive electrode and dye-sensitized solar cell
JP2007169735A (en) * 2005-12-22 2007-07-05 Nippon Oil Corp Method of manufacturing porous titanium-titanium oxide composite
JP2007172917A (en) * 2005-12-20 2007-07-05 Fujikura Ltd Photoelectric transducer
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
WO2010119687A1 (en) * 2009-04-15 2010-10-21 昭和電工株式会社 Method for producing transparent conductive material
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
DE112011100454T5 (en) 2010-02-05 2012-11-29 Panasonic Corporation Photoelectric conversion element
US8581095B2 (en) 2004-08-04 2013-11-12 Sharp Kabushiki Kaisha Photoelectrode, and dye-sensitized solar cell and dye-sensitized solar cell module using the same
JP2014038811A (en) * 2012-08-20 2014-02-27 Sekisui Chem Co Ltd Method for producing porous film, porous film, and dye sensitized solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
KR20150007386A (en) * 2013-07-10 2015-01-21 한양대학교 에리카산학협력단 Solar cell and method of manufacturing the same
EP2843675A2 (en) 2004-01-22 2015-03-04 Showa Denko K.K. Metal oxide dispersion, metal oxide electrode film, and dye sensitized solar cell

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11144772A (en) * 1997-11-06 1999-05-28 Fuji Xerox Co Ltd Semiconductor electrode, its manufacture, and photocell using the same
US7087831B2 (en) 1999-09-22 2006-08-08 Canon Kabushiki Kaisha Photoelectric conversion device and method of production thereof
US6649824B1 (en) 1999-09-22 2003-11-18 Canon Kabushiki Kaisha Photoelectric conversion device and method of production thereof
JP2002246620A (en) * 2001-02-13 2002-08-30 Fuji Photo Film Co Ltd Photoelectric conversion element and photocell and method of manufacturing them
US7544536B2 (en) 2001-02-21 2009-06-09 Showa Denko K.K. Metal oxide dispersion for dye-sensitized solar cells, photoactive electrode and dye-sensitized solar cell
US7157788B2 (en) 2001-02-21 2007-01-02 Showa Denko K.K. Metal oxide dispersion for dye-sensitized solar cells, photoactive electrode and dye-sensitized solar cell
JP2004319872A (en) * 2003-04-18 2004-11-11 Tdk Corp Dye-sensitized photoelectric conversion device
JP2005039013A (en) * 2003-07-18 2005-02-10 Bridgestone Corp Method of depositing porous metal compound thin film, and organic dye-sensitized solar cell
WO2005020335A1 (en) * 2003-08-26 2005-03-03 Nippon Oil Corporation Photoelectric conversion element
EP2843675A2 (en) 2004-01-22 2015-03-04 Showa Denko K.K. Metal oxide dispersion, metal oxide electrode film, and dye sensitized solar cell
JP2005222782A (en) * 2004-02-04 2005-08-18 Bridgestone Corp Forming method of porous thin film, dye-sensitized solar cell, and porous thin film photocatalyst
JP4725701B2 (en) * 2004-02-04 2011-07-13 株式会社ブリヂストン Method for forming porous thin film
JP2005259971A (en) * 2004-03-11 2005-09-22 Nichia Chem Ind Ltd Semiconductor light emitting element
JP4635458B2 (en) * 2004-03-11 2011-02-23 日亜化学工業株式会社 Semiconductor light emitting device
JP2005327515A (en) * 2004-05-13 2005-11-24 Sony Corp Photoelectric conversion element and semiconductor electrode
JP4635473B2 (en) * 2004-05-13 2011-02-23 ソニー株式会社 Method for manufacturing photoelectric conversion element and method for manufacturing semiconductor electrode
WO2005112183A1 (en) * 2004-05-13 2005-11-24 Sony Corporation Photoelectric conversion element and semiconductor electrode
US8581095B2 (en) 2004-08-04 2013-11-12 Sharp Kabushiki Kaisha Photoelectrode, and dye-sensitized solar cell and dye-sensitized solar cell module using the same
JP2006120418A (en) * 2004-10-20 2006-05-11 Norio Shimizu Dye-sensitized solar cell
JP2006127782A (en) * 2004-10-26 2006-05-18 Nippon Oil Corp Metal-metal oxide composite electrode, manufacturing method therefor, and photoelectric conversion device
WO2006051644A1 (en) * 2004-11-09 2006-05-18 Nippon Oil Corporation Dye-sensitized solar cell
JP2006134827A (en) * 2004-11-09 2006-05-25 Nippon Oil Corp Electrode and dye-sensitized solar cell
JP2007172917A (en) * 2005-12-20 2007-07-05 Fujikura Ltd Photoelectric transducer
JP4690884B2 (en) * 2005-12-22 2011-06-01 Jx日鉱日石エネルギー株式会社 Method for producing titanium-porous titanium oxide composite
JP2007169735A (en) * 2005-12-22 2007-07-05 Nippon Oil Corp Method of manufacturing porous titanium-titanium oxide composite
JP2006302907A (en) * 2006-06-12 2006-11-02 Sharp Corp Photo electrode, dye-sensitized solar cell using it, and dye-sensitized solar cell module
JP4601582B2 (en) * 2006-06-12 2010-12-22 シャープ株式会社 Photoelectrode, dye-sensitized solar cell and dye-sensitized solar cell module using the same
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
WO2010119687A1 (en) * 2009-04-15 2010-10-21 昭和電工株式会社 Method for producing transparent conductive material
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
DE112011100454T5 (en) 2010-02-05 2012-11-29 Panasonic Corporation Photoelectric conversion element
JP2014038811A (en) * 2012-08-20 2014-02-27 Sekisui Chem Co Ltd Method for producing porous film, porous film, and dye sensitized solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
KR20150007386A (en) * 2013-07-10 2015-01-21 한양대학교 에리카산학협력단 Solar cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH10112337A (en) Wet solar cell
JPH11288745A (en) Flexible wet solar battery and its manufacture
US5591544A (en) Current collector device
KR100931134B1 (en) Dye-Sensitized Solar Cell Using Titanium Oxide Nanotubes and Its Manufacturing Method
JP2000231942A (en) Pigment sensitization solar battery
TWI622178B (en) Pigment-sensitized solar cell with light collecting device
JP2000030767A (en) Manufacture of wet solar battery
CN103855421B (en) Self-charging film lithium ion battery
JP4966525B2 (en) Dye-sensitized solar cell, its photoelectrode substrate, and method for producing the photoelectrode substrate
CN101226829B (en) Tantalum ruthenium mixing type electrolytic capacitor and preparation method thereof
JP2000150005A (en) Manufacture of coloring material sensitizing solar battery
CN105568340A (en) Preparation method for manganese-ion-doped lead dioxide anode material used for super capacitor
WO2005122321A1 (en) Dye sensitized solar cell and process for producing the same
TW200805687A (en) Dye-sensitized solar cell and method of manufacturing the same
US20050236038A1 (en) Photoelectrode substrate of dye sensitizing solar, battery, and method for producing same
KR100379999B1 (en) Electrode, secondary battery and method of producing the same
JP2000200627A (en) Pigment sensitized solar battery and its manufacture
CN100521008C (en) High-capacity super capacitor and method for producing the same
JP2007095772A (en) Electric double-layer capacitor
JPH11307141A (en) Wet type solar battery and manufacture thereof
JP2000173680A (en) Coloring matter sensitizing solar battery and manufacture thereof
KR100282671B1 (en) ENERGY STORAGE DEVICE AND METHODS OF MANUFACTURE
JP2000178792A (en) Production of oxide film
JP5689202B1 (en) Dye-sensitized solar cell provided with a condensing device
JP2015142131A (en) Dye-sensitized solar battery provided with light condensing device