JPH10110703A - Oil pressure control device - Google Patents

Oil pressure control device

Info

Publication number
JPH10110703A
JPH10110703A JP8262006A JP26200696A JPH10110703A JP H10110703 A JPH10110703 A JP H10110703A JP 8262006 A JP8262006 A JP 8262006A JP 26200696 A JP26200696 A JP 26200696A JP H10110703 A JPH10110703 A JP H10110703A
Authority
JP
Japan
Prior art keywords
pressure
hydraulic
control device
frequency component
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8262006A
Other languages
Japanese (ja)
Inventor
Tsutomu Udagawa
勉 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP8262006A priority Critical patent/JPH10110703A/en
Publication of JPH10110703A publication Critical patent/JPH10110703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control And Safety Of Cranes (AREA)
  • Jib Cranes (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of pulsation of a motor owing to a pressure fluctuation during the stop and the starting of a motor, in an oil pressure control device for a motor for revolution of a crane. SOLUTION: Two lines 6A and 6B through which a hydraulic motor 2 for revolution and a direction control valve 1 for revolution are interconnected are interconnected through an electromagnetic switch valve 9. Pressure sensors 10A and 10B are arranged in the two lines 6A and 6B and connected to a control device 11. The control device 11 fetches a high frequency component signal H1 for a pressure fluctuation from pressure signals P1 and P2 outputted from the pressure sensors 10A and 10B. When the high frequency component signal H1 is generated, the electromagnetic switch valve 9 is controlled such that the lines 6A and 6B are intercommunicated. This constitution prevents the generation of an uncomfortable feeling or a impact due to a pressure fluctuation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アクチュエータの
停止時および起動時の衝撃を減少させるようにした油圧
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic control device for reducing an impact at the time of stopping and starting an actuator.

【0002】[0002]

【従来の技術】従来より、例えば操作レバーの操作量に
応じて流体圧アクチュエータの駆動に際し、アクチュエ
ータの停止時の衝撃を防止するための装置が種々提案さ
れている。例えば、実開平5−40601号公報には、
図10に示すように、油圧ポンプ31と、油圧モータ3
3と、油圧ポンプ31から吐出される圧油の流れを切換
えるコントロールバルブ32と、コントロールバルブ3
2を切り換える操作レバー37と、油圧モータ33に接
続された2本の管路34,35を連通可能な電磁切換弁
43と、管路34,35の圧力を検出する圧力センサ4
1,42と、圧力センサ41,42の検出結果に基づい
て電磁切換弁43を切り換える制御部44とを備えた油
圧制御装置が提案されている。
2. Description of the Related Art Conventionally, various devices have been proposed for preventing a shock when an actuator is stopped when driving a fluid pressure actuator in accordance with an operation amount of an operation lever, for example. For example, in Japanese Utility Model Laid-Open Publication No. 5-40601,
As shown in FIG. 10, the hydraulic pump 31 and the hydraulic motor 3
3, a control valve 32 for switching the flow of pressure oil discharged from the hydraulic pump 31, and a control valve 3
2, an electromagnetic switching valve 43 capable of communicating two pipes 34, 35 connected to a hydraulic motor 33, and a pressure sensor 4 for detecting the pressure in the pipes 34, 35.
There has been proposed a hydraulic control apparatus including a control unit 44 for switching the electromagnetic switching valve 43 based on the detection results of the pressure sensors 41 and 42.

【0003】この油圧制御装置は以下のように作用す
る。操作レバー37をA側に操作すると、コントロール
バルブ32がa位置に切り換わり、管路34に圧力P1
が発生して油圧モータ33が一方向に回転する。この状
態において、操作レバー37を中立位置に操作すると、
コントロールバルブ32がc位置に切り換わり、管路3
4の圧力P1は減少するが管路35の圧力P2が上昇す
る。そして、この圧力P2の上昇速度が基準値を超える
と、制御部44が電磁切換弁43を開き、管路34と管
路35とが連通され、両管路34,35の圧力差を小さ
くする。さらに、油圧モータ33により駆動される慣性
体の停止運動により油圧モータ33が逆転され、管路3
4の圧力P1が上昇する場合も、その上昇速度が基準値
を越えると、制御部44が電磁切換弁43を開いて管路
34と管路35とを連通して両管路34,35の圧力差
を小さくする。これにより、油圧モータ33の停止時
に、管路34,35の圧力が急峻に立ち上がって、装置
に衝撃が生じることを防止することができる。
[0003] This hydraulic control device operates as follows. When the operation lever 37 is operated to the side A, the control valve 32 is switched to the position a, and the pressure P1
Occurs, and the hydraulic motor 33 rotates in one direction. In this state, when the operation lever 37 is operated to the neutral position,
The control valve 32 is switched to the position c, and the line 3
4 decreases, but the pressure P2 in the conduit 35 increases. Then, when the rising speed of the pressure P2 exceeds the reference value, the control unit 44 opens the electromagnetic switching valve 43, and the line 34 and the line 35 are communicated, and the pressure difference between the two lines 34, 35 is reduced. . Further, the hydraulic motor 33 is reversed by the stop motion of the inertial body driven by the hydraulic motor 33, and the pipeline 3
Also, when the pressure P1 of 4 rises, if the rate of rise exceeds the reference value, the control unit 44 opens the electromagnetic switching valve 43 to communicate the pipes 34 and 35, and the two pipes 34, 35 Reduce pressure differential. Thereby, when the hydraulic motor 33 is stopped, it is possible to prevent the pressure in the pipelines 34 and 35 from rising sharply and causing an impact on the device.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記実
開平5−40601号公報に記載された装置において
は、油圧モータ33の停止時における管路34,35の
圧力P1,P2の急激な上昇を抑えることができるもの
の、圧力変動に基づく脈動を防止することができない。
すなわち、起動時、減速時など油圧モータなどのアクチ
ュエータに駆動力が作用する場合は、圧油の圧縮性およ
びアクチュエータの慣性などにより、アクチュエータに
接続される管路に作用する圧力は、図6に示すように短
時間で増減を繰り返して振動を生じつつ、定常状態に収
束するものである。したがって、このような圧力変動が
除去されないと、アクチュエータの起動時あるいは停止
時にアクチュエータが脈動し、オペレータに不快感を与
えるのみならず、起動時、減速時に装置に衝撃が生じ、
装置の操作性が悪化してしまうものである。
However, in the device described in Japanese Utility Model Application Laid-Open No. H5-40601, when the hydraulic motor 33 is stopped, the pressures P1 and P2 in the pipelines 34 and 35 are prevented from sharply increasing. However, pulsation due to pressure fluctuation cannot be prevented.
That is, when a driving force acts on an actuator such as a hydraulic motor at startup or deceleration, the pressure acting on the pipeline connected to the actuator due to the compressibility of the pressure oil and the inertia of the actuator is as shown in FIG. As shown in the figure, the vibrations are repeatedly generated and reduced in a short time, and converge to a steady state. Therefore, if such pressure fluctuations are not removed, the actuator pulsates when the actuator is started or stopped, not only giving an unpleasant feeling to the operator, but also causing an impact on the device at the time of starting and deceleration,
The operability of the device is deteriorated.

【0005】一方、このような圧力の変動は、アクチュ
エータの質量、油圧システムの構成により一義的に定ま
るものであり、さらに圧力変動の振動成分のうち高周波
成分が装置に衝撃などを生じさせる原因となるものであ
る。
On the other hand, such pressure fluctuations are uniquely determined by the mass of the actuator and the configuration of the hydraulic system. Further, the high-frequency components of the vibration components of the pressure fluctuations cause a shock or the like in the device. It becomes.

【0006】本発明の目的は、アクチュエータの停止
時、起動時などのアクチュエータに接続された管路に生
じる圧力変動を除去することができる油圧制御装置を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a hydraulic control device capable of eliminating pressure fluctuations occurring in a pipeline connected to an actuator when the actuator is stopped or started.

【0007】[0007]

【課題を解決するための手段】一実施の形態を示す図1
および図2を参照して説明すると、油圧ポンプ3と、油
圧ポンプ3から吐出される圧油により駆動するアクチュ
エータ2と、油圧ポンプ3からアクチュエータ2に供給
される圧油の流れを制御する制御弁1と、制御弁1を切
換える操作レバー5とを備えた油圧制御装置に適用さ
れ、アクチュエータ2の出入口ポートにそれぞれ接続す
る2本の管路6A,6Bを連通および遮断する電磁切換
弁9と、2本の管路6A,6B内の圧油の圧力をそれぞ
れ検出して圧力信号P1,P2を出力する圧力検出器1
0A,10Bと、各圧力検出器10A,10Bにより検
出される圧力信号P1,P2の変動値の周波数のうち所
定以上の高周波成分に基づいて、高周波成分が生じてい
るときは2本の管路6A,6Bを連通するように電磁切
換弁9を制御する制御手段11とを備えたことにより上
記目的を達成する。請求項2の発明は、圧力信号P1、
P2の変動値の周波数は、オペレータが操作可能な周波
数である。
FIG. 1 shows an embodiment of the present invention.
Referring to FIG. 2, a hydraulic pump 3, an actuator 2 driven by hydraulic oil discharged from the hydraulic pump 3, and a control valve for controlling the flow of hydraulic oil supplied from the hydraulic pump 3 to the actuator 2 An electromagnetic switching valve 9 which is applied to a hydraulic control device having an operating lever 5 for switching the control valve 1 and which communicates and shuts off two pipe lines 6A and 6B respectively connected to the inlet / outlet ports of the actuator 2; Pressure detector 1 that detects the pressure of the pressure oil in two pipe lines 6A and 6B and outputs pressure signals P1 and P2, respectively.
0A, 10B and two pipelines when a high-frequency component is generated based on a high-frequency component of a predetermined value or more among the frequencies of the fluctuation values of the pressure signals P1, P2 detected by the pressure detectors 10A, 10B. The above object is attained by providing the control means 11 for controlling the electromagnetic switching valve 9 so as to communicate the 6A and 6B. The pressure signal P1,
The frequency of the fluctuation value of P2 is a frequency that can be operated by the operator.

【0008】本発明によれば、圧力検出器10A,10
Bにより検出される圧力信号P1,P2の変動値のう
ち、衝撃などの原因となる高周波成分が生じている場
合、電磁切換弁9は2本の管路6A,6Bを連通するよ
うに制御される。これにより、圧力信号P1,P2の変
動値における高周波成分に基づくアクチュエータの衝撃
や脈動が除去される。
According to the present invention, the pressure detectors 10A, 10A
When a high-frequency component causing a shock or the like is generated among the fluctuation values of the pressure signals P1 and P2 detected by B, the electromagnetic switching valve 9 is controlled so as to communicate the two pipelines 6A and 6B. You. Thereby, the impact and pulsation of the actuator based on the high-frequency components in the fluctuation values of the pressure signals P1 and P2 are removed.

【0009】なお、本発明の構成を説明する上記課題を
解決するための手段の項では、本発明を分かり易くする
ために発明の実施の形態の図を用いたが、これにより本
発明が実施の形態に限定されるものではない。
In the meantime, in the section of the means for solving the above-mentioned problem which explains the constitution of the present invention, the drawings of the embodiments of the present invention are used in order to make the present invention easy to understand. However, the present invention is not limited to this.

【0010】[0010]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態について説明する。図1は本発明の実施の形態に
係る油圧制御装置の構成を示す回路図、図2は後述する
制御部の詳細な構成を示す図、図3は本実施の形態に係
る油圧制御装置が用いられるクレーンの構成を示す側面
図である。図3に示すように、移動式クレーンは、走行
体61と、走行体61上に搭載された旋回可能な旋回体
62と、旋回体62に起伏可能に支持されたブーム63
と、ブーム63の先端に設けられたシーブ64と、シー
ブ64を経由したワイヤロープに接続されたフック65
とからなる。フック65には吊り荷66が吊り下げられ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram illustrating a configuration of a hydraulic control device according to an embodiment of the present invention, FIG. 2 is a diagram illustrating a detailed configuration of a control unit described later, and FIG. 3 is used by the hydraulic control device according to the present embodiment. 1 is a side view showing a configuration of a crane to be used. As shown in FIG. 3, the mobile crane includes a traveling body 61, a revolving revolving body 62 mounted on the traveling body 61, and a boom 63 supported up and down by the revolving body 62.
A sheave 64 provided at the tip of the boom 63; and a hook 65 connected to a wire rope via the sheave 64.
Consists of A suspended load 66 is suspended from the hook 65.

【0011】この移動式クレーンの旋回体62の旋回用
の油圧回路は、図1に示すように、原動機13によって
駆動される油圧ポンプ3と、油圧ポンプ3から吐出され
る圧油によって駆動する旋回用油圧モータ2と、油圧ポ
ンプ3から旋回用油圧モータ2に供給される圧油の流れ
を制御する旋回用方向制御弁1と、オペレータが旋回指
令を入力する操作レバー5と、操作レバー5により操作
されるパイロット弁12A,12Bと、パイロット弁1
2A,12Bに圧油を供給するパイロット油圧源7と、
作動油タンク8と、リリーフ弁4と、旋回用油圧モータ
2の出入口ポートに接続された2本の管路6A,6B
と、2本の管路6A,6Bを絞りを介して連通および遮
断する電磁切換弁9と、管路6A,6Bの圧油の油圧を
測定して圧力信号P1,P2を出力する圧力センサ10
A,10Bと、電磁切換弁9の開閉を制御する制御部1
1とからなる。旋回用方向制御弁1と作動油タンク8と
の間の管路には、圧力制御弁14が設けられている。圧
力制御弁14は、旋回用方向制御弁1のセンターバイパ
ス通路の圧力、すなわちブリードオフされる圧油を制御
するものであり、旋回用方向制御弁1が中立のときには
ポンプからの圧油を作動油タンク8へ戻し、旋回用方向
制御弁1が操作されるときはその操作量に応じて徐々に
センターバイパス通路流量を少なくするものである。
As shown in FIG. 1, a hydraulic circuit for turning the revolving unit 62 of the mobile crane includes a hydraulic pump 3 driven by a prime mover 13 and a swivel driven by pressure oil discharged from the hydraulic pump 3. Directional control valve 1 for controlling the flow of pressurized oil supplied from hydraulic pump 3 to slewing hydraulic motor 2, operating lever 5 for the operator to input a slewing command, and operating lever 5 The pilot valves 12A and 12B to be operated and the pilot valve 1
A pilot hydraulic pressure source 7 for supplying pressure oil to 2A and 12B;
Hydraulic oil tank 8, relief valve 4, and two pipelines 6A, 6B connected to the inlet / outlet port of turning hydraulic motor 2.
An electromagnetic switching valve 9 for communicating and shutting off the two pipes 6A and 6B via throttles, and a pressure sensor 10 for measuring the oil pressure of the pressure oil in the pipes 6A and 6B and outputting pressure signals P1 and P2.
A, 10B and a control unit 1 for controlling opening and closing of the electromagnetic switching valve 9
It consists of 1. A pressure control valve 14 is provided in a pipeline between the turning direction control valve 1 and the hydraulic oil tank 8. The pressure control valve 14 controls the pressure in the center bypass passage of the turning direction control valve 1, that is, the pressure oil that is bleed off. When the turning direction control valve 1 is neutral, the pressure oil from the pump is actuated. When the turning direction control valve 1 is operated after returning to the oil tank 8, the flow rate of the center bypass passage is gradually reduced according to the operation amount.

【0012】図2に示すように、制御部11は、圧力信
号P1,P2の差分信号S1を算出する差分器20と、
差分信号S1から1Hz以上の高周波成分信号H1を取
り出すハイパスフィルタ21と、高周波成分信号H1に
ゲインKを乗じる乗算器22と、ゲインKが乗じられた
高周波成分信号K・H1の絶対値を算出する絶対値算出
器23とからなる。
As shown in FIG. 2, the control unit 11 includes a difference unit 20 for calculating a difference signal S1 between the pressure signals P1 and P2,
A high-pass filter 21 that extracts a high-frequency component signal H1 of 1 Hz or more from the difference signal S1, a multiplier 22 that multiplies the high-frequency component signal H1 by a gain K, and calculates an absolute value of the high-frequency component signal K · H1 multiplied by the gain K And an absolute value calculator 23.

【0013】ここで、圧力の振動現象について説明す
る。図4(a),(b)は圧力振動の説明図である。図
4(a)では構成を簡素化するため、油圧モータ2を油
圧シリンダに置き換えてある。旋回用方向制御弁1から
流量Qの圧油が油圧シリンダ内に流入すると、油圧シリ
ンダ内の圧力Pは圧油の圧縮性により流量Qを受けて上
昇する。そして圧力Pにより推力Fが生じ、物体mはこ
の推力により加速度運動を起こす。物体mの速度はこの
加速度を積分したものとなり、その速度により油圧シリ
ンダ内の容積が増し、油を圧縮する割合が低下し圧力P
が下がる。そしてこれらの繰り返しにより振動現象が発
生する。この現象を振動モデルで表すと図4(b)のよ
うになり、バネとマス(質量)で構成される一般的なバ
ネ−マス系と同様と考えられる。
Here, the pressure oscillation phenomenon will be described. FIGS. 4A and 4B are explanatory diagrams of pressure oscillation. In FIG. 4A, the hydraulic motor 2 is replaced with a hydraulic cylinder in order to simplify the configuration. When pressure oil having a flow rate Q flows from the turning direction control valve 1 into the hydraulic cylinder, the pressure P in the hydraulic cylinder increases upon receiving the flow rate Q due to the compressibility of the pressure oil. Then, a thrust F is generated by the pressure P, and the object m causes an acceleration motion by the thrust. The speed of the object m is obtained by integrating this acceleration, and the speed increases the volume in the hydraulic cylinder, the rate of compressing the oil decreases, and the pressure P
Goes down. Then, a vibration phenomenon occurs due to the repetition of these. This phenomenon is represented by a vibration model as shown in FIG. 4B, which is considered to be the same as a general spring-mass system including a spring and a mass (mass).

【0014】次に、この現象を旋回用油圧モータ2に当
てはめて説明する。旋回用方向制御弁1は操作レバー5
の入力通りに圧油を旋回用油圧モータ2に供給する。旋
回用油圧モータ2には実際には減速機・軸受・摺動面な
ど(図示しない)が運動時に摩擦抵抗として作用するた
め、静的には図5に示すような右上がりの圧力波形とな
る。また、上述した振動現象が加わり旋回用油圧モータ
2に圧油を供給する管路6A,6Bの高負荷側における
圧力波形は図6のようなものとなる。これらの圧力変動
は旋回用油圧モータ2の加速度に影響し、オペレータに
不快感を与えるばかりではなく、起動・減速時にショッ
クを与える原因となる。
Next, this phenomenon will be described with reference to the hydraulic motor 2 for turning. The turning direction control valve 1 includes an operation lever 5
Is supplied to the turning hydraulic motor 2 according to the input. Actually, a reduction gear, a bearing, a sliding surface (not shown), etc. (not shown) act as frictional resistance during movement in the turning hydraulic motor 2, so that the pressure waveform statically rises to the right as shown in FIG. . FIG. 6 shows a pressure waveform on the high load side of the pipelines 6A and 6B for supplying the hydraulic oil to the turning hydraulic motor 2 with the above-described vibration phenomenon. These pressure fluctuations affect the acceleration of the turning hydraulic motor 2 and cause not only discomfort to the operator but also a shock at the time of starting and deceleration.

【0015】一方、オペレータは通常、安全確保のため
比較的ゆっくり旋回操作を行う。また、非常時などの危
険回避時などにおいてもレバー入力の応答周波数が1H
z程度あればよいとすると、オペレータの必要とする圧
力制御の応答周波数は1Hz程度以下で十分であり、そ
れ以上の周波数成分はオペレータの制御範囲外と考える
ことができる。
On the other hand, the operator normally performs the turning operation relatively slowly to ensure safety. Also, the response frequency of the lever input is 1H even during danger avoidance such as in an emergency.
If it is sufficient to have about z, the response frequency of pressure control required by the operator is sufficient to be about 1 Hz or less, and a frequency component higher than 1 Hz can be considered to be outside the control range of the operator.

【0016】そこで、本実施の形態では、図3に示す制
御部11のハイパスフィルタ21により、圧力信号の1
Hz以下の成分を除去し、ハイパスフィルタ21により
フィルタリングされた高周波成分H1に基づいて、電磁
切換弁9を開閉するようにしたものである。
Therefore, in the present embodiment, the high-pass filter 21 of the control unit 11 shown in FIG.
The component below Hz is removed, and the electromagnetic switching valve 9 is opened and closed based on the high-frequency component H1 filtered by the high-pass filter 21.

【0017】以下、本実施の形態の動作について説明す
る。操作レバー5を操作して、旋回用方向制御弁1をa
位置あるいはb位置に切換えると、油圧ポンプ3から旋
回用油圧モータ2に圧油が供給され、旋回用油圧モータ
2は回転する。また、操作レバー5を操作して旋回用方
向制御弁1をc位置に切換えると、油圧ポンプ3からの
圧油は遮断されるため、旋回用油圧モータ2は停止す
る。そして、このような、操作レバー5の作動時、すな
わち、旋回用油圧モータ2の起動時あるいは停止時にお
いては、管路6A,6B内の圧油の圧力が変動し、圧力
センサ10A,10Bにより検出される圧力信号P1,
P2に、図6に示すような1Hz以上の高周波成分信号
H1が発生する。この際、圧力信号P1,P2は制御部
11の差分器20に入力されて差分信号S1が算出さ
れ、さらにハイパスフィルタ21に入力されて、差分信
号のうち1Hzを越える高周波成分信号H1がフィルタ
リングされて取り出される。この高周波成分信号H1を
図7に示す。高周波成分信号H1はさらに乗算器22に
おいてゲインKが乗じられ、絶対値算出器23において
絶対値信号|K・H1|が求められる。そしてこの絶対
値信号|K・H1|に基づいて電磁切換弁9が開閉され
る。
Hereinafter, the operation of the present embodiment will be described. Operate the operation lever 5 to turn the turning direction control valve 1 to a
When the position is switched to the position or the position b, pressure oil is supplied from the hydraulic pump 3 to the turning hydraulic motor 2, and the turning hydraulic motor 2 rotates. When the operation lever 5 is operated to switch the turning direction control valve 1 to the position c, the hydraulic oil from the hydraulic pump 3 is shut off, and the turning hydraulic motor 2 stops. When the operation lever 5 is operated, that is, when the turning hydraulic motor 2 is started or stopped, the pressure of the pressure oil in the pipelines 6A and 6B fluctuates, and the pressure sensors 10A and 10B change the pressure. The detected pressure signal P1,
At P2, a high-frequency component signal H1 of 1 Hz or more as shown in FIG. 6 is generated. At this time, the pressure signals P1 and P2 are input to the differentiator 20 of the control unit 11 to calculate the differential signal S1, and further input to the high-pass filter 21, where the high-frequency component signal H1 exceeding 1 Hz among the differential signals is filtered. Taken out. This high frequency component signal H1 is shown in FIG. The high frequency component signal H1 is further multiplied by a gain K in a multiplier 22, and an absolute value signal | K · H1 | is obtained in an absolute value calculator 23. The electromagnetic switching valve 9 is opened and closed based on the absolute value signal | K · H1 |.

【0018】図7に示す高周波成分信号H1に基づく電
磁切換弁9の開閉状態を図8に示す。図8に示すよう
に、電磁切換弁9は高周波成分信号H1の変動に応じて
開閉する。すなわち、管路6A,6Bの圧力が高周波で
変動している場合において、高周波成分信号H1の変動
に応じて電磁切換弁9は開閉を繰り返す。このため、圧
力変動の高周波成分に基づく旋回用油圧モータ2の加速
度の変動は、電磁切換弁9の開閉により減衰されること
となる。したがって、旋回用油圧モータ2の脈動を無く
してオペレータに不快感を与えることが防止されるとと
もに、旋回用油圧モータ2の起動時あるいは停止時の圧
力変動に基づく衝撃を除去することができる。
FIG. 8 shows the open / close state of the electromagnetic switching valve 9 based on the high frequency component signal H1 shown in FIG. As shown in FIG. 8, the electromagnetic switching valve 9 opens and closes according to the fluctuation of the high frequency component signal H1. That is, when the pressure in the pipelines 6A and 6B fluctuates at a high frequency, the electromagnetic switching valve 9 repeatedly opens and closes according to the fluctuation of the high frequency component signal H1. Therefore, the fluctuation of the acceleration of the turning hydraulic motor 2 based on the high frequency component of the pressure fluctuation is attenuated by the opening and closing of the electromagnetic switching valve 9. Therefore, it is possible to prevent the pulsation of the turning hydraulic motor 2 from giving an uncomfortable feeling to the operator, and it is possible to eliminate an impact based on the pressure fluctuation at the time of starting or stopping the turning hydraulic motor 2.

【0019】また、絶対値算出器23により高周波成分
信号H1の絶対値を算出し、この絶対値に基づいて電磁
切換弁9を開閉しているため、起動時あるいは停止時に
拘わりなく、圧力変動に基づく衝撃を除去することがで
きる。
Further, since the absolute value of the high frequency component signal H1 is calculated by the absolute value calculator 23, and the electromagnetic switching valve 9 is opened and closed based on the absolute value, the pressure change is not affected irrespective of starting or stopping. Impact can be eliminated.

【0020】なお、上記実施の形態においては、クレー
ンの上部旋回体62を駆動する旋回用油圧モータ2を駆
動する油圧回路に本発明を適用した例について説明した
が、これに限定されるものではなく、油圧により駆動さ
れるアクチュエータが用いられる油圧回路であれば、い
かなるものにも本発明を適用することができる。
In the above-described embodiment, an example in which the present invention is applied to the hydraulic circuit for driving the turning hydraulic motor 2 for driving the upper turning body 62 of the crane has been described. However, the present invention is not limited to this. Instead, the present invention can be applied to any hydraulic circuit using an actuator driven by hydraulic pressure.

【0021】また、上記実施の形態においては、制御部
11にハイパスフィルタ21を設けているが、図9に示
すように、制御部11外にハイパスフィルタ21Aを設
けてもよい。この場合、図9においては、便宜上1つの
ハイパスフィルタ21Aのみを設けているが、実際に
は、圧力センサ10A,10Bのそれぞれにハイパスフ
ィルタが設けられるものである。
In the above embodiment, the control unit 11 is provided with the high-pass filter 21. However, as shown in FIG. 9, a high-pass filter 21A may be provided outside the control unit 11. In this case, in FIG. 9, only one high-pass filter 21A is provided for convenience, but in practice, a high-pass filter is provided for each of the pressure sensors 10A and 10B.

【0022】以上の実施の形態と請求項との対応におい
て、旋回用油圧モータ2がアクチュエータを、圧力セン
サ10A,10Bが圧力検出器を、制御部11が制御手
段をそれぞれ構成する。
In the correspondence between the above-described embodiment and the claims, the turning hydraulic motor 2 constitutes an actuator, the pressure sensors 10A and 10B constitute pressure detectors, and the control section 11 constitutes control means.

【0023】[0023]

【発明の効果】以上詳細に説明したように、本発明によ
れば、アクチュエータの起動時あるいは停止時の圧力変
動の高周波成分がアクチュエータの出入口管路を連通さ
せることにより除去されるため、アクチュエータの脈動
を無くしてオペレータに不快感を与えることを防止する
ことができるとともに、アクチュエータの起動時あるい
は停止時の圧力変動に基づく衝撃を除去することができ
る。とくに、アクチュエータ出入口管路のそれぞれの圧
力を電気信号として検出してアクチュエータ出入口管路
を開閉するようにしたため、遮断する高周波成分を任意
に変更することが容易にできる。すなわち、油圧的に同
様なことを実現する場合には、絞りと油溜めの容量とか
ら構成される一次遅れ系の切換回路が必要とされるが、
その場合に遮断周波数を変更するには、絞りや油溜め容
量を変更しなくてはならず、遮断周波数調整は難しい。
これに対して、本発明は、遮断周波数の調整を電気的に
容易に行うことができる。
As described above in detail, according to the present invention, the high-frequency component of the pressure fluctuation at the time of starting or stopping the actuator is removed by connecting the inlet / outlet pipe of the actuator. The pulsation can be eliminated to prevent the operator from feeling uncomfortable, and the impact based on the pressure fluctuation at the time of starting or stopping the actuator can be eliminated. In particular, since the respective pressures of the actuator entrance / exit lines are detected as electric signals to open / close the actuator entrance / exit lines, the high-frequency component to be cut off can be easily changed arbitrarily. That is, in order to realize the same hydraulically, a switching circuit of a first-order lag system including the throttle and the capacity of the oil reservoir is required,
In that case, in order to change the cutoff frequency, it is necessary to change the throttle and the oil reservoir capacity, and it is difficult to adjust the cutoff frequency.
On the other hand, according to the present invention, the cutoff frequency can be easily adjusted electrically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る油圧回路図FIG. 1 is a hydraulic circuit diagram according to an embodiment of the present invention.

【図2】制御部の詳細な構成を示す油圧回路図FIG. 2 is a hydraulic circuit diagram showing a detailed configuration of a control unit.

【図3】本発明が適用されるクレーンの全体構成図FIG. 3 is an overall configuration diagram of a crane to which the present invention is applied.

【図4】圧力振動を説明するための図FIG. 4 is a diagram for explaining pressure oscillation.

【図5】油圧モータ駆動時における圧力の静的特性図FIG. 5 is a diagram showing static characteristics of pressure when a hydraulic motor is driven.

【図6】油圧モータ駆動時における圧力の動的特性図FIG. 6 is a dynamic characteristic diagram of pressure when a hydraulic motor is driven.

【図7】高周波成分信号を示すグラフFIG. 7 is a graph showing a high-frequency component signal.

【図8】高周波成分信号の絶対値を示すグラフFIG. 8 is a graph showing an absolute value of a high-frequency component signal.

【図9】本実施の形態の変形例を示す油圧回路図FIG. 9 is a hydraulic circuit diagram showing a modification of the present embodiment.

【図10】従来の油圧制御装置の回路図FIG. 10 is a circuit diagram of a conventional hydraulic control device.

【符号の説明】[Explanation of symbols]

1 旋回用方向制御弁 2 旋回用油圧モータ 3 油圧ポンプ 4 圧力制御弁 5 操作レバー 6A,6B 管路 7 パイロット油圧源 8 作動油タンク 9 電磁切換弁 10A,10B 圧力センサ 11 制御装置 20 差分器 21 ハイパスフィルタ 22 乗算器 23 絶対値算出器 REFERENCE SIGNS LIST 1 direction control valve for turning 2 hydraulic motor for turning 3 hydraulic pump 4 pressure control valve 5 operating lever 6A, 6B pipeline 7 pilot hydraulic source 8 hydraulic oil tank 9 electromagnetic switching valve 10A, 10B pressure sensor 11 control device 20 differentiator 21 High-pass filter 22 Multiplier 23 Absolute value calculator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 油圧ポンプと、 該油圧ポンプから吐出される圧油により駆動するアクチ
ュエータと、 前記油圧ポンプから前記アクチュエータに供給される圧
油の流れを制御する制御弁と、 前記制御弁を切換える操作レバーとを備えた油圧制御装
置において、 前記アクチュエータの出入口ポートにそれぞれ接続する
2本の管路を連通および遮断する電磁切換弁と、 前記2本の管路内の圧油の圧力をそれぞれ検出して圧力
信号を出力する圧力検出器と、 前記各圧力検出器により検出される圧力信号の変動値の
周波数のうち、所定以上の高周波成分に基づいて、該高
周波成分が生じているときは前記2本の管路を連通する
ように前記電磁切換弁を制御する制御手段とを備えたこ
とを特徴とする油圧制御装置。
1. A hydraulic pump, an actuator driven by hydraulic oil discharged from the hydraulic pump, a control valve for controlling a flow of hydraulic oil supplied from the hydraulic pump to the actuator, and switching the control valve. A hydraulic control device comprising an operation lever, an electromagnetic switching valve for communicating and shutting off two pipes respectively connected to the inlet / outlet ports of the actuator, and detecting pressure of pressure oil in the two pipes, respectively. And a pressure detector that outputs a pressure signal, and based on a high frequency component that is equal to or greater than a predetermined value among the frequencies of the fluctuation values of the pressure signal detected by the pressure detectors, the high frequency component is generated. Control means for controlling the solenoid-operated directional control valve so as to communicate the two pipelines.
【請求項2】 前記周波数は、オペレータが操作可能な
周波数であることを特徴とする請求項1記載の油圧制御
装置。
2. The hydraulic control device according to claim 1, wherein the frequency is a frequency that can be operated by an operator.
JP8262006A 1996-10-02 1996-10-02 Oil pressure control device Pending JPH10110703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8262006A JPH10110703A (en) 1996-10-02 1996-10-02 Oil pressure control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8262006A JPH10110703A (en) 1996-10-02 1996-10-02 Oil pressure control device

Publications (1)

Publication Number Publication Date
JPH10110703A true JPH10110703A (en) 1998-04-28

Family

ID=17369711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8262006A Pending JPH10110703A (en) 1996-10-02 1996-10-02 Oil pressure control device

Country Status (1)

Country Link
JP (1) JPH10110703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052413A1 (en) * 1998-11-27 2000-11-15 Hitachi Construction Machinery Co., Ltd. Revolution control device
CN102992212A (en) * 2012-11-27 2013-03-27 三一重工股份有限公司 Impact-resistant hydraulic device, variable amplitude winch hydraulic system and crane
CN106015201A (en) * 2016-08-11 2016-10-12 徐州重型机械有限公司 Rotary control device and hydraulic control system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121178A (en) * 1976-04-02 1977-10-12 Hitachi Ltd Hydraulic pressure control
JPH045342A (en) * 1990-04-23 1992-01-09 Hitachi Constr Mach Co Ltd Hydraulic driving gear for civil engineering construction machine
JPH0517205U (en) * 1991-08-22 1993-03-05 東芝機械株式会社 Actuator drive hydraulic circuit
JPH06185501A (en) * 1992-10-13 1994-07-05 Hitachi Constr Mach Co Ltd Oscillation limiter of hydraulic working machine
JPH073041Y2 (en) * 1988-01-22 1995-01-30 日立建機株式会社 Pressure control valve
JPH084704A (en) * 1994-06-15 1996-01-09 Toshiba Mach Co Ltd Oil pressure driving circuit
JPH0813546A (en) * 1994-06-30 1996-01-16 Shin Caterpillar Mitsubishi Ltd Cylinder damping device in construction machinery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52121178A (en) * 1976-04-02 1977-10-12 Hitachi Ltd Hydraulic pressure control
JPH073041Y2 (en) * 1988-01-22 1995-01-30 日立建機株式会社 Pressure control valve
JPH045342A (en) * 1990-04-23 1992-01-09 Hitachi Constr Mach Co Ltd Hydraulic driving gear for civil engineering construction machine
JPH0517205U (en) * 1991-08-22 1993-03-05 東芝機械株式会社 Actuator drive hydraulic circuit
JPH06185501A (en) * 1992-10-13 1994-07-05 Hitachi Constr Mach Co Ltd Oscillation limiter of hydraulic working machine
JPH084704A (en) * 1994-06-15 1996-01-09 Toshiba Mach Co Ltd Oil pressure driving circuit
JPH0813546A (en) * 1994-06-30 1996-01-16 Shin Caterpillar Mitsubishi Ltd Cylinder damping device in construction machinery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052413A1 (en) * 1998-11-27 2000-11-15 Hitachi Construction Machinery Co., Ltd. Revolution control device
US6339929B1 (en) 1998-11-27 2002-01-22 Hitachi Construction Machinery Co., Ltd. Swivel control apparatus
EP1052413A4 (en) * 1998-11-27 2006-01-04 Hitachi Construction Machinery Revolution control device
CN102992212A (en) * 2012-11-27 2013-03-27 三一重工股份有限公司 Impact-resistant hydraulic device, variable amplitude winch hydraulic system and crane
CN106015201A (en) * 2016-08-11 2016-10-12 徐州重型机械有限公司 Rotary control device and hydraulic control system
CN106015201B (en) * 2016-08-11 2018-04-17 徐州重型机械有限公司 rotation control device and hydraulic control system

Similar Documents

Publication Publication Date Title
KR100383740B1 (en) Revolution control device
US4571941A (en) Hydraulic power system
JP5086079B2 (en) Steering assist system
JPH04296203A (en) Hydraulic driving device
JPH10110703A (en) Oil pressure control device
JP2000310201A (en) Actuator control circuit for hydraulic working machine
JPH10110704A (en) Oil pressure control device
JPH06330535A (en) Variation suppressing apparatus for hydraulic machine
JP2002265187A (en) Revolution control device
KR100594851B1 (en) Hydraulic breaking circuit
JP2690353B2 (en) Make-up device for hydraulic circuit using load sensing system
JP3023541B2 (en) Brake circuit for swing motor of construction machinery
JPH11292474A (en) Hydraulic control device
JP3083152B2 (en) Hydraulic drive for construction machinery
JPS6314230B2 (en)
JP4560863B2 (en) Hydraulic device
JP6857152B2 (en) Work machine hydraulic circuit
JP4017812B2 (en) Hydraulic circuit and crane with counterbalance valve
JP2001328795A (en) Crane revolution control device
JPH03290532A (en) Hydraulic drive unit for civil engineering and building equipment
JP2531264Y2 (en) Inertial control system for hydraulic equipment
JP2004278746A (en) Hydraulic operating device of construction machinery
JP3980128B2 (en) Swing control device for work equipment
JPH045342A (en) Hydraulic driving gear for civil engineering construction machine
JPS60125455A (en) Controller for closed hydraulic circuit including variable-capacity motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051207

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060120