JPH10110232A - Al-mg-si alloy sheet and its production - Google Patents

Al-mg-si alloy sheet and its production

Info

Publication number
JPH10110232A
JPH10110232A JP26823996A JP26823996A JPH10110232A JP H10110232 A JPH10110232 A JP H10110232A JP 26823996 A JP26823996 A JP 26823996A JP 26823996 A JP26823996 A JP 26823996A JP H10110232 A JPH10110232 A JP H10110232A
Authority
JP
Japan
Prior art keywords
less
rolling
plate
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26823996A
Other languages
Japanese (ja)
Other versions
JP3734317B2 (en
Inventor
Shigeru Kuramoto
繁 倉本
Tetsushi Kakio
哲史 垣生
Minoru Hayashi
稔 林
Yoichiro Totsugi
洋一郎 戸次
Koichi Hashiguchi
耕一 橋口
Masao Yukimoto
正雄 行本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Kawasaki Steel Corp filed Critical Furukawa Electric Co Ltd
Priority to JP26823996A priority Critical patent/JP3734317B2/en
Publication of JPH10110232A publication Critical patent/JPH10110232A/en
Application granted granted Critical
Publication of JP3734317B2 publication Critical patent/JP3734317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce an Al-Mg-Si alloy sheet which is the sheet obtd. by subjecting the directly cast and rolled sheet of an Al-Mg-Si alloy to cold rolling as well and having a small secular change and high age hardenability by the control of the conditions in casting and rolling, cold rolling, heat treatment or the like. SOLUTION: This Al-Mg-Si alloy is the one obtd. by subjecting the directly cast and rolled sheet of an Al alloy having a compsn. contg., as essential elements, by mass, 0.2 to 3.0% Si and 0.2 to 3.0% Mg, one or >= two kinds among 0.01 to 0.5% Mn, 0.01 to 0.5% Cr, 0.01 to 0.5% Zr and 0.001 to 0.5% Ti, furthermore contg. one or >= two kinds among 0 to 2.5% Cu, 0 to 0.2% Sn and 0 to 2% Zn, in which the content of Fe is regulated to <=1.0%, and the balance Al with inevitable impurities to cold rolling as well. In this case, the maximum grain size in the metallic structure of this sheet is regulated to <=100μm, and the maximum length of continuous Mg2 Si compounds in the surface layer part is regulated to <=50μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、経時変化の少ない
焼付硬化性に優れたAl-Mg-Si系合金板とその製造方法に
関するものであり、さらに具体的には自動車部品、家電
製品等の曲げ成形、プレス成形等に用いる成形用に好適
なAl-Mg-Si系合金の圧延板を、従来技術と比べて廉価な
製造コストで製造できる直接鋳造圧延と冷間圧延により
製造するAl-Mg-Si系合金板とその製造方法に関するもの
である。なお本明細書において、Al合金の添加元素の
含有量は、全てmass%を意味するものであるが、こ
れを単に%と記している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al-Mg-Si alloy sheet having little change over time and excellent in bake hardenability, and a method for producing the same. Al-Mg-Si, a rolled plate of Al-Mg-Si alloy suitable for forming used in bending, press forming, etc., can be manufactured at a lower manufacturing cost compared to the prior art by direct casting and cold rolling. The present invention relates to a -Si alloy sheet and a method for producing the same. In this specification, the content of the additional element in the Al alloy means mass%, but this is simply described as%.

【0002】[0002]

【従来の技術】自動車の外板、家電用のシャーシ等は、
耐食性及び延性に優れ、かつ加熱により時効硬化するAl
-Mg-Si系合金板を、所定の形状に成形し、しかる後塗装
・焼付け加熱して時効硬化させ、製品にする場合が多
い。しかしながら、従来の製造方法で製造されたAl-Mg-
Si系合金板は、溶体化処理後室温に放置(自然時効)に
より、G.P.ゾーンが析出し、その焼付け加熱時に強度向
上に寄与するβ' と称されるMg2Si の中間相またはそれ
に準ずる強化相の析出を阻害してしまうため、溶体化処
理後長時間経過してしまった材料では、塗装・焼付け加
熱後の強度が十分に得られなかった。更に、G.P.ゾーン
の析出に伴って強度が上昇し、延性が著しく低下すると
いう問題も同時に生じていた。
2. Description of the Related Art Automobile exterior panels, chassis for home electric appliances, etc.
Al with excellent corrosion resistance and ductility, and age hardened by heating
In many cases, a -Mg-Si alloy sheet is formed into a predetermined shape, and then painted, baked and heated to age harden it into a product. However, Al-Mg- produced by the conventional production method
Reinforced Si based alloy sheet, by standing at room temperature after the solution treatment (natural aging), and GP zone precipitation, the baking heating time equivalent to beta 'referred Mg 2 Si intermediate phase or of contributing to improving the strength in Since the precipitation of a phase is hindered, a material that has passed a long time after the solution treatment did not have sufficient strength after coating and baking heating. Further, the problem that the strength is increased with the precipitation of the GP zone and the ductility is remarkably reduced also occurred.

【0003】この問題を解決する方法として、特公平05
-7460 に示されているような溶体化処理後の予備時効処
理、また特開平04-259358 に示されているような復元処
理、またそれらを組み合わせた処理などが考案されてい
る。しかし、これらの処理により、延性を損なうことな
く塗装・焼付け時の強度上昇を増加させることが可能に
なるものの、工程が増えることにより製造コストが高く
なる問題がある。従来の成形用Al-Mg-Si系合金圧延板及
びその成形品は、前記の改良の製造方法も含めて以下の
ごとく製造されている。即ち、これらは、まず所定の合
金組成の鋳塊を製造し、これを面削及び均質化処理し、
続いて熱間圧延、冷間圧延(必要に応じて焼鈍)、溶体
化処理、前記の予備時効処理又は復元処理、成形、時効
硬化処理(塗装・焼付け加熱)して製造されている。こ
のように従来の製造方法は、工程が非常に長く、また大
型設備も必要とする等により、製造コストは高くなり、
必ずしも工業的な生産に向いているとはいえない状況に
ある。
As a method for solving this problem, Japanese Patent Publication No.
A pre-aging treatment after solution treatment as shown in JP-A-7460, a restoration treatment as shown in JP-A-04-259358, and a combination thereof are devised. However, these treatments can increase the increase in strength at the time of painting and baking without impairing ductility, but there is a problem in that the number of steps increases the production cost. Conventional Al-Mg-Si alloy rolled sheets for molding and molded articles thereof are produced as described below, including the above-mentioned improved production method. In other words, these first produce an ingot of a predetermined alloy composition, this is subjected to facing and homogenization treatment,
Subsequently, it is manufactured by hot rolling, cold rolling (annealing as necessary), solution treatment, the above-mentioned preliminary aging treatment or restoration treatment, molding, and age hardening treatment (painting and baking heating). As described above, the conventional manufacturing method requires a very long process and also requires large-scale equipment, so that the manufacturing cost increases,
It is not always suitable for industrial production.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、室温
放置による自然時効時に析出するG.P ゾーンを抑制し、
塗装・焼付け加熱時に速やかに強化相が析出して高い焼
付け硬化が得られるような、経時変化が小さい成形用Al
-Mg-Si系合金板を、工程が極めて短いこと等により低コ
ストで製造できる直接鋳造圧延法と従来の冷間圧延法を
組み合わせることによって得ることである。また本発明
の他の課題は、この好ましい製造条件を見出すことであ
る。なお、ここでいう直接鋳造圧延法とは、図1、図2
に示すごとく、双ロール1、2間にノズル3より溶湯4
を連続的に供給し、溶湯の鋳造凝固の直後に、前記双ロ
ール1、2で圧延して、溶湯から直接に長尺の圧延板、
そのコイルとするものである。この方法は、連続鋳造板
のみを得る方法とは異なり一般にはハンター法、直接圧
延法等と呼ばれているものであるが、本明細書において
は直接鋳造圧延法ということとする。この製造方法は、
従来別工程で行われている鋳塊又は鋳板とする工程、均
質化処理工程、熱間及び冷間圧延工程等を一工程で行う
もので、多くの工程が省略できる利点がある。
SUMMARY OF THE INVENTION An object of the present invention is to suppress the GP zone that precipitates during natural aging by leaving at room temperature,
Al for molding with little change over time so that the strengthening phase precipitates quickly at the time of painting and baking and high bake hardening is obtained.
An object of the present invention is to obtain a -Mg-Si alloy sheet by combining a direct casting rolling method and a conventional cold rolling method, which can be manufactured at low cost due to extremely short steps. It is another object of the present invention to find such preferable manufacturing conditions. Here, the direct casting and rolling method referred to herein is the one shown in FIGS.
As shown in FIG.
Continuously, and immediately after the casting and solidification of the molten metal, it is rolled by the twin rolls 1 and 2 so that a long rolled plate is directly formed from the molten metal,
The coil is to be used. This method is generally called a hunter method, a direct rolling method or the like, which is different from a method of obtaining only a continuous cast plate, but is referred to as a direct casting rolling method in this specification. This manufacturing method
Conventionally, a process for forming an ingot or a cast plate, a homogenization process, a hot and cold rolling process, and the like are performed in one process, and there is an advantage that many processes can be omitted.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
の請求項1の発明は、必須元素としてSi 0.2〜3.0%(mas
s%、以下同じ) 、Mg 0.2〜3.0%を含み、Mn 0.01 〜0.5
%、Cr 0.01 〜0.5%、Zr0.01 〜0.5%、Ti 0.001〜0.5%の
1種若しくは2種以上を含み、更にCu 0〜 2.5% 、Sn 0
〜0.2%、Zn 0〜 2.0% の1種若しくは2種以上を含み、
Feを1.0%以下に規制し、残部がAlと不可避的不純物から
なるAl合金の直接鋳造圧延板を、更に冷間圧延した板で
あって、その板の金属組織の最大結晶粒径が100 μm 以
下であり、且つ表層部の連続したMg2Si 化合物の最大長
さが50μm 以下であることを特徴とするAl-Mg-Si系合金
板であり、
Means for Solving the Problems According to the invention of claim 1 for solving the above-mentioned problems, the present invention relates to a method for manufacturing a semiconductor device comprising the steps of:
s%, the same applies hereinafter), Mg 0.2-3.0%, Mn 0.01-0.5
%, Cr 0.01 to 0.5%, Zr 0.01 to 0.5%, Ti 0.001 to 0.5%, or one or more of Cu 0 to 2.5%, Sn 0
0.2%, Zn 0-2.0%
Fe is controlled to 1.0% or less, the balance is a direct casting rolled plate of Al alloy consisting of Al and unavoidable impurities, further cold-rolled plate, the maximum crystal grain size of the metal structure of the plate is 100 μm An Al-Mg-Si alloy plate, wherein the maximum length of the continuous Mg 2 Si compound in the surface layer portion is 50 μm or less,

【0006】また、請求項2の発明は、必須元素として
Si 0.2〜3.0%、Mg 0.2〜3.0%を含み、Mn 0.01 〜0.5%、
Cr 0.01 〜0.5%、Zr 0.01 〜0.5%、Ti 0.001〜0.5%の1
種若しくは2種以上を含み、更にCu 0〜 2.5% 、Sn 0〜
0.2%、Zn 0〜 2.0% の1種若しくは2種以上を含み、Fe
を1.0%以下に規制し、残部がAlと不可避的不純物からな
るAl合金溶湯を、双ロールによる直接鋳造圧延装置を用
いて、圧下荷重P(ton)を下記の式を満足する条件で、
板厚4mm 以下の板に直接鋳造圧延し、更にその後、15%
以上70% 未満の圧延率で冷間圧延し、続いて400 ℃〜材
料の溶融温度の範囲で溶体化処理を行い、溶体化後の冷
却を2 ℃/s以上の冷却速度で175 ℃以下に急冷し、その
後180 〜320 ℃に再加熱して0 〜25分の保持を行い、そ
の板の金属組織の最大結晶粒径を100 μm 以下、且つ表
層部の連続したMg2Si 化合物の最大長さを50μm 以下と
することを特徴とするAl-Mg-Si系合金板の製造方法であ
り、 :P ≧5.8 ×10-6・ t ・ w ・ D1/2・ v ・ exp {1600/(T+273)}・(R/100)-0.5 ただし、 t:出側板厚(mm)、w:出側板幅(mm)、D:ロール直径(mm)、 v:ロール周速(mpm) 、T:出側板の表面温度( ℃) 、R:冷
延率(%)
[0006] The invention according to claim 2 is characterized in that:
Contains Si 0.2-3.0%, Mg 0.2-3.0%, Mn 0.01-0.5%,
Cr 0.01 to 0.5%, Zr 0.01 to 0.5%, Ti 0.001 to 0.5%
Species or two or more species, Cu 0-2.5%, Sn 0-
0.2%, Zn 0-2.0%
1.0% or less, the remainder is Al alloy melt consisting of Al and unavoidable impurities, using a direct casting and rolling device with twin rolls, under the condition that the rolling load P (ton) satisfies the following formula,
Casting and rolling directly to a plate with a thickness of 4 mm or less, and then 15%
Cold rolling at a rolling rate of less than 70% or more, followed by solution treatment in the range of 400 ° C to the melting temperature of the material, and cooling after solution cooling to 175 ° C or less at a cooling rate of 2 ° C / s or more It is quenched and then reheated to 180-320 ° C and held for 0-25 minutes.The maximum grain size of the metal structure of the plate is 100 μm or less, and the maximum length of the continuous Mg 2 Si compound in the surface layer. A method for producing an Al-Mg-Si alloy sheet characterized by having a thickness of 50 μm or less, wherein: P ≧ 5.8 × 10 −6 .t.w.D 1/2 .v .exp {1600 / ( (T + 273)} ・ (R / 100) -0.5 , where: t: exit side plate thickness (mm), w: exit side plate width (mm), D: roll diameter (mm), v: roll peripheral speed (mpm), T: Surface temperature of outlet plate (° C), R: Cold rolling reduction (%)

【0007】請求項3の発明は、前記請求項2に記載の
Al合金溶湯及び圧延条件と同様の条件で、板厚4mm 以下
の板に直接鋳造圧延し、更にその後、15% 以上70% 未満
の圧延率で冷間圧延し、続いて400 ℃〜材料の溶融温度
の範囲で溶体化処理を行い、溶体化後の冷却を2 ℃/s以
上の冷却速度で40〜175 ℃の範囲まで急冷し、前記温度
でコイル状に巻き取り、その板の金属組織の最大結晶粒
径を100 μm 以下、且つ表層部の連続したMg2Si 化合物
の最大長さを50μm 以下とすることを特徴とするAl-Mg-
Si系合金板の製造方法である。
[0007] The invention according to claim 3 is the invention according to claim 2.
Under the same conditions as the molten aluminum alloy and the rolling conditions, it was directly cast and rolled into a plate with a thickness of 4 mm or less, then cold rolled at a rolling ratio of 15% or more and less than 70%, and subsequently melted at 400 ° C to the material. Solution treatment is performed in the temperature range, cooling after solution cooling is quenched at a cooling rate of 2 ° C / s or more to a range of 40 to 175 ° C, coiled at the above temperature, and the metal structure of the plate is cooled. Al-Mg- characterized in that the maximum crystal grain size is 100 μm or less and the maximum length of the continuous Mg 2 Si compound in the surface layer is 50 μm or less.
This is a method for producing a Si-based alloy plate.

【0008】また、請求項4の発明は、必須元素として
Si 0.2〜3.0%、Mg 0.2〜3.0%を含み、Mn 0.01 〜0.5%、
Cr 0.01 〜0.5%、Zr 0.01 〜0.5%、Ti 0.001〜0.5%の1
種若しくは2種以上を含み、更にCu 0〜 2.5% 、Sn 0〜
0.2%、Zn 0〜 2.0% の1種若しくは2種以上を含み、Fe
を1.0%以下に規制し、残部がAlと不可避的不純物からな
るAl合金溶湯を、双ロールによる直接鋳造圧延装置を用
いて、圧下荷重P(ton)を下記の式を満足する条件で、
板厚4mm 以下の板に直接鋳造圧延し、更にその後、70%
以上の圧延率で冷間圧延し、続いて400 ℃〜材料の溶融
温度の範囲で溶体化処理を行い、溶体化後の冷却を2 ℃
/s以上の冷却速度で175 ℃以下に急冷し、その後180 〜
320 ℃に再加熱して0 〜25分の保持を行い、その板の金
属組織の最大結晶粒径を100 μm 以下、且つ表層部の連
続したMg2Si 化合物の最大長さを50μm 以下とすること
を特徴とするAl-Mg-Si系合金板の製造方法であり、 :P ≧2.9 ×10-6・ t ・ w ・ D1/2・ v ・ exp {1600/(T+273)}・(R/100)-0.5 ただし、 t:出側板厚(mm)、w:出側板幅(mm)、D:ロール直径(mm)、 v:ロール周速(mpm) 、T:出側板の表面温度( ℃) 、R:冷
延率(%)
[0008] The invention according to claim 4 is characterized in that as an essential element
Contains Si 0.2-3.0%, Mg 0.2-3.0%, Mn 0.01-0.5%,
Cr 0.01 to 0.5%, Zr 0.01 to 0.5%, Ti 0.001 to 0.5%
Species or two or more species, Cu 0-2.5%, Sn 0-
0.2%, Zn 0-2.0%
1.0% or less, the remainder is Al alloy melt consisting of Al and unavoidable impurities, using a direct casting and rolling device with twin rolls, under the condition that the rolling load P (ton) satisfies the following formula,
Casting and rolling directly to a plate with a thickness of 4 mm or less, and then 70%
Cold-rolled at the above rolling ratio, followed by solution treatment in the range of 400 ° C to the melting temperature of the material, and cooling after solution cooling is performed at 2 ° C.
at 175 ° C or less at a cooling rate of
Reheat to 320 ° C and hold for 0 to 25 minutes to reduce the maximum crystal grain size of the metal structure of the plate to 100 μm or less and the maximum length of the continuous Mg 2 Si compound on the surface layer to 50 μm or less A method for producing an Al-Mg-Si alloy plate, characterized by: P ≧ 2.9 × 10 −6 t ・ w ・ D 1/2 (R / 100) -0.5 However, t: Outgoing plate thickness (mm), w: Outgoing plate width (mm), D: Roll diameter (mm), v: Roll peripheral speed (mpm), T: Surface of outgoing plate Temperature (° C), R: Cold rolling rate (%)

【0009】請求項5の発明は、前記請求項4に記載の
Al合金溶湯及び圧延条件と同様の条件で、板厚4mm 以下
の板に直接鋳造圧延し、更にその後、70% 以上の圧延率
で冷間圧延し、続いて400 ℃〜材料の溶融温度の範囲で
溶体化処理を行い、溶体化後の冷却を2 ℃/s以上の冷却
速度で40〜175 ℃の範囲まで急冷し、前記温度でコイル
状に巻き取り、その板の金属組織の最大結晶粒径を100
μm 以下、且つ表層部の連続したMg2Si 化合物の最大長
さを50μm 以下とすることを特徴とするAl-Mg-Si系合金
板の製造方法である。
According to a fifth aspect of the present invention, there is provided the method as set forth in the fourth aspect.
Under the same conditions as the Al alloy melt and rolling conditions, it is directly cast and rolled into a plate having a thickness of 4 mm or less, and then cold-rolled at a rolling rate of 70% or more, and then in the range of 400 ° C to the melting temperature of the material. In the solution treatment, the solution is cooled rapidly at a cooling rate of 2 ° C./s or more to a range of 40 to 175 ° C., coiled at the above temperature, and the maximum crystal grain of the metal structure of the plate is obtained. Diameter 100
A method for producing an Al-Mg-Si alloy sheet, wherein the maximum length of a Mg 2 Si compound having a thickness of not more than μm and a continuous surface layer portion is not more than 50 μm.

【0010】更に、請求項6の発明は、板厚4mm 以下の
板に直接鋳造圧延し、これをコイル状に巻き取った後、
580 ℃以下の温度で2 〜24時間保持の均質化処理(加熱
・冷却速度30〜100 ℃/ 時間)を行い、その後冷間圧延
することを特徴とする前記請求項2〜5に記載のAl-Mg-
Si系合金板の製造方法である。
[0010] Further, according to the invention of claim 6, after directly casting and rolling into a plate having a plate thickness of 4 mm or less, winding this into a coil shape,
6. The aluminum alloy according to claim 2, wherein a homogenization treatment (heating / cooling rate: 30 to 100 [deg.] C./hour) is performed at a temperature of 580 [deg.] C. or less for 2 to 24 hours, and then cold rolling is performed. -Mg-
This is a method for producing a Si-based alloy plate.

【0011】[0011]

【発明の実施の形態】前記各請求項の発明のうち、請求
項1の発明は、直接鋳造圧延法と冷間圧延によって得ら
れた板に関するものであり、請求項2〜6の発明は、前
記板の製造方法に関するものである。以下、前記各発明
について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Among the above-mentioned inventions, the invention of claim 1 relates to a plate obtained by direct casting and cold rolling and the invention of claims 2 to 6 The present invention relates to a method for manufacturing the plate. Hereinafter, the respective inventions will be described in detail.

【0012】(1)請求項1の発明について まず、本発明に係わる板の合金組成を前記のごとく限定
した理由について説明する。Siは、塗装・焼付け加熱時
にMgと共にβ' と称されるMg2Si の中間相またはそれに
準ずる強化相として析出し強度を向上させる。その添加
量を0.2 〜3.0%と限定したのは、0.2%未満ではその効果
が小さく、3.0%を越えると溶体化処理後の延性が低下す
るためである。Mgは,溶体化処理後にはマトリックス中
に固溶しており、延性の向上に寄与する。また、上述の
ように塗装・焼付け加熱時にSiと共に強化相として析出
し強度を向上させる。その添加量を0.2 〜3.0%と限定し
たのは、0.2%未満ではその効果が小さく、3.0%を越える
と溶体化処理後の延性が低下するためである。以上のよ
うにSi、Mgは塗装・焼付け加熱時に強化相として析出
し、強度を向上させる。この両元素の存在比が異なると
その焼付け硬化性も異なり、Si、Mgの重量比がSi>0.6Mg
% の場合、Mg2Si 量に対し過剰Siとなり、より優れた焼
付け硬化性が得られる。なお、塗装・焼付け加熱時の時
効挙動をコントロールするために、Ag、Cdなどを少量添
加しても、本発明の効果を損なうことはない。
(1) Regarding the invention of claim 1 First, the reason why the alloy composition of the plate according to the present invention is limited as described above will be described. Si precipitates as an intermediate phase of Mg 2 Si called β ′ together with Mg or a strengthening phase equivalent thereto during heating during painting and baking to improve the strength. The reason for limiting the addition amount to 0.2 to 3.0% is that if it is less than 0.2%, the effect is small, and if it exceeds 3.0%, the ductility after the solution treatment decreases. Mg forms a solid solution in the matrix after the solution treatment and contributes to improvement of ductility. In addition, as described above, during painting and baking heating, it precipitates as a reinforcing phase together with Si and improves the strength. The reason for limiting the addition amount to 0.2 to 3.0% is that if it is less than 0.2%, the effect is small, and if it exceeds 3.0%, the ductility after the solution treatment decreases. As described above, Si and Mg precipitate as a strengthening phase at the time of coating and baking heating, and improve the strength. If the abundance ratio of these two elements is different, their bake hardenability is also different, and the weight ratio of Si and Mg is Si> 0.6Mg
%, The amount of Si becomes excessive with respect to the amount of Mg 2 Si, and more excellent bake hardenability is obtained. In addition, even if a small amount of Ag, Cd, or the like is added to control the aging behavior at the time of coating and baking heating, the effect of the present invention is not impaired.

【0013】Mn、Cr、Zr、Tiは、それぞれ結晶粒の微細
化あるいはマトリックス強度を向上させるために添加さ
れる。その添加は、必要に応じてMn 0.01 〜0.5%、Cr
0.01〜0.5%、Zr 0.01 〜0.5%、Ti 0.001〜0.5%の1種若
しくは2種以上である。それぞれ下限未満では効果が少
なく、上限を越えると溶体化処理後の延性が低下する。
また、Cu、Sn、Znは、塗装・焼付け加熱時に析出し強度
を向上させる。またSnの添加は表面品質を改善する効果
もある。その添加は、必要に応じて、Cu 0〜2.5%、Sn 0
〜0.2%、Zn 0〜2.0%の1種若しくは2種以上である。こ
こで、各元素が0%とは、添加しない場合もあることを
意味する。また添加する場合で、各元素をそれぞれ、2.
5%以下、0.2%以下、2.0%以下と限定したのは、これらを
越えると耐食性が低下する、および焼き入れ感受性が高
くなる等の弊害を生じるためである。Feは、通常Alの不
純物として含まれるものである。しかし、FeはSiと化合
物を作りやすく、1.0%を越えて含まれると塗装・焼付け
の際の加熱時の強度向上を阻害する。なお、鋳造組織の
微細化材として通常添加されるB などは、0.1%以下の添
加であれば、特に本発明の効果を損なうことはない。
Mn, Cr, Zr, and Ti are added to refine the crystal grains or improve the matrix strength. The addition of Mn 0.01-0.5%, Cr
One or more of 0.01 to 0.5%, Zr 0.01 to 0.5%, and Ti 0.001 to 0.5%. If each is less than the lower limit, the effect is small, and if it exceeds the upper limit, the ductility after the solution treatment is reduced.
Further, Cu, Sn, and Zn precipitate during heating during painting and baking to improve the strength. The addition of Sn also has the effect of improving the surface quality. The addition is, if necessary, Cu 0-2.5%, Sn 0
0.20.2%, Zn 0-2.0%. Here, 0% of each element means that it may not be added in some cases. Also, when adding, each element is 2.
The reason why the content is limited to 5% or less, 0.2% or less, and 2.0% or less is that if the content exceeds these limits, adverse effects such as a decrease in corrosion resistance and an increase in quenching sensitivity are caused. Fe is usually contained as an impurity of Al. However, Fe is easy to form a compound with Si, and if it exceeds 1.0%, it hinders improvement in strength during heating during painting and baking. It should be noted that B or the like, which is usually added as a material for refining the cast structure, does not particularly impair the effects of the present invention as long as it is added in an amount of 0.1% or less.

【0014】次に、本発明の圧延板の金属組織における
最大結晶粒径を100 μm 以下としたのは、100 μm を越
える場合は、成形用材料として十分な延性が得られな
い、成形後に肌荒れが生じる等、成形材料として好まし
くないからである。また、本発明に係わる圧延板の表層
部の金属組織において、連続したMg2Si 化合物の最大長
さが50μm 以下としたのは、前記の最大長さが50μm を
越えるようなMgやSiを含む粗大な主溶質系化合物が、塗
装・焼付け前にすでに析出しているような場合には、固
溶量が不足しており、塗装・焼付け加熱時の強度向上が
十分でなくなるからである。なお、本発明に係わる圧延
板の板厚は、0.7〜3mm程度である。本発明に係わ
るAl-Mg-Si系合金板の内容は以上のとおりであである
が、かかる圧延板は、後に記す実施例でも明らかなごと
く、塗装・焼付け加熱前の伸びが27%以上で成形性に
優れ、また成形後の塗装・焼付け時の加熱において、強
度(YS)の向上が加熱前に比し、100MPa以上高
くなり、前述のような各種用途の成形材料に適してい
る。
Next, the reason why the maximum crystal grain size in the metal structure of the rolled sheet of the present invention is set to 100 μm or less is that if it exceeds 100 μm, sufficient ductility cannot be obtained as a molding material, and that the surface becomes rough after forming. This is not preferable as a molding material, for example. Further, in the metallographic structure of the surface layer of the rolled sheet according to the present invention, the reason why the maximum length of the continuous Mg 2 Si compound is set to 50 μm or less includes Mg or Si whose maximum length exceeds 50 μm. This is because when the coarse main solute-based compound is already precipitated before painting / baking, the amount of solid solution is insufficient, and the strength at the time of painting / baking heating is not sufficiently improved. The thickness of the rolled plate according to the present invention is about 0.7 to 3 mm. The content of the Al-Mg-Si alloy sheet according to the present invention is as described above. As is clear from the examples described later, such a rolled sheet has an elongation of 27% or more before painting and baking heating. The moldability is excellent, and the strength (YS) is improved by 100 MPa or more in the heating at the time of painting and baking after molding as compared to before heating, and is suitable for molding materials for various uses as described above.

【0015】(2)請求項2、3の発明について 請求項2、3の発明は、前記請求項1の発明に係わる圧
延板の製造方法に関するもので、直接鋳造圧延した後、
これを冷間圧延や熱処理して製造するものである。本発
明のこの直接鋳造圧延法を、具体的に図で説明すると、
図1及び図2に示すような双ロールによる直接鋳造圧延
装置を用いて、前記請求項1に記載のAl合金溶湯4を
ノズル3を通して、双ロール1、2間に連続的に供給
し、ノズル3の先端Bから双ロール1、2の最接近点A
間で、鋳造・凝固させ、A点近傍で圧延を行うものであ
る。なお図2において、C点は溶湯の最終凝固点であ
る。本発明は、このように製造した直接鋳造圧延板に、
更に冷間圧延および溶体化処理を施した後に急冷し、引
き続き再加熱処理(請求項2)または高温コイル巻き取
り(請求項3)を行うものである。
(2) Regarding the Inventions of Claims 2 and 3 The inventions of Claims 2 and 3 relate to the method of manufacturing a rolled sheet according to the invention of Claim 1 above.
This is manufactured by cold rolling or heat treatment. This direct casting and rolling method of the present invention will be described specifically with reference to the drawings.
The Al alloy melt 4 according to claim 1 is continuously supplied between the twin rolls 1 and 2 through the nozzle 3 by using a direct casting and rolling device using twin rolls as shown in FIGS. 1 and 2. From the tip B of 3 to the closest point A of the twin rolls 1 and 2
In the meantime, casting and solidification are performed, and rolling is performed near point A. In FIG. 2, point C is the final solidification point of the molten metal. The present invention relates to a directly cast rolled plate manufactured in this way,
Furthermore, after performing cold rolling and solution treatment, it is quenched, and then reheat treatment (claim 2) or high-temperature coil winding (claim 3) is performed.

【0016】これらの製造方法は、従来法のDC鋳造での
凝固、熱間圧延での塑性加工という金属組織を制御する
ために必要な処理を、一回の双ロールによる直接鋳造圧
延で実現させることを特徴としており、この双ロールで
の直接鋳造圧延条件を適切に定めることが非常に重要と
なる。そのような条件を見いだすために、双ロール直接
鋳造圧延の条件と金属組織および機械的特性との関係に
ついて精力的に基礎的観点からの検討を行い、その結果
双ロールにかかる圧下荷重P(ton)を次の式、 :P ≧5.8 ×10-6・ t ・ w ・ D1/2・ v ・ exp {1600/(T+273)}・(R/100)-0.5 ただし、 t:出側板厚(mm)、w:出側板幅(mm)、D:ロール直径(mm)、 v:ロール周速(mpm) 、T:出側板の表面温度( ℃) 、R:冷
延率(%) を満足する条件で、板厚4mm 以下の板に直接鋳造圧延し
た後、15% 以上70% 未満の冷間圧延、続いて400 ℃〜材
料の溶融温度の範囲で溶体化処理を行い、溶体化後の冷
却を2 ℃/s以上の冷却速度で175 ℃以下に急冷すること
により、従来法と同等の性能を有するAl-Mg-Si系合金板
を製造することが可能であることを見いだした。ここで
圧下荷重P(ton)を、 :P ≧5.8 ×10-6・ t ・ w ・ D1/2・ v ・ exp {1600/(T+273)}・(R/100)-0.5 としたのは、これより小さい圧下荷重では、凝固終了か
らの塑性変形量が不足し、晶出相の分断が十分に行われ
ず、従来法で製造した場合に比べ伸びが低下してしまう
ためであり、最終冷延率が小さい場合ほど大きな圧下が
必要となる。なおこの条件式は、後工程の冷延時の圧下
率が、15% 以上70% 未満の場合である。なお、直接鋳造
圧延後の冷却速度については、特に制限は設けないが、
その後の溶体化処理の効果を十分に発揮させるためには
なるべく速い速度で冷却するのが望ましい。
In these production methods, the processes required to control the metal structure, such as solidification by DC casting and plastic working by hot rolling, are realized by a single twin roll direct casting and rolling. It is very important to appropriately determine the conditions for direct casting and rolling with the twin rolls. In order to find such conditions, the relationship between the conditions of twin roll direct casting and rolling and the metal structure and mechanical properties was energetically studied from a basic viewpoint, and as a result, the rolling load P (ton ) To the following equation: P ≥ 5.8 × 10 -6 · t · w · D 1/2 · v · exp {1600 / (T + 273)} · (R / 100) -0.5 where t: exit side plate Thickness (mm), w: Outer width (mm), D: Roll diameter (mm), v: Roll peripheral speed (mpm), T: Surface temperature of outlet side (° C), R: Cold rolling rate (%) After directly casting and rolling into a plate with a thickness of 4 mm or less under conditions that satisfy the conditions, cold rolling of 15% or more and less than 70%, followed by solution treatment in the range of 400 ° C to the melting temperature of the material, It has been found that it is possible to manufacture an Al-Mg-Si alloy sheet having the same performance as the conventional method by rapidly cooling the subsequent cooling to 175 ° C or less at a cooling rate of 2 ° C / s or more. . Here, the rolling load P (ton) is set as: P ≧ 5.8 × 10 -6・ t ・ w ・ D1 / 2・ v ・ exp {1600 / (T + 273)} ・ (R / 100) -0.5 This is because, with a rolling load smaller than this, the amount of plastic deformation from the end of solidification is insufficient, the crystallization phase is not sufficiently separated, and the elongation is reduced as compared with the case of manufacturing by the conventional method, The smaller the final cold rolling reduction, the greater the reduction required. Note that this conditional expression is for the case where the rolling reduction during the cold rolling in the subsequent step is 15% or more and less than 70%. The cooling rate after direct casting and rolling is not particularly limited,
In order to sufficiently exert the effect of the subsequent solution treatment, it is desirable to cool at a rate as high as possible.

【0017】冷延率を15% 以上としたのは、これ以下の
場合には凝固時に生じた組織の粉砕が十分に行われず、
延性の低下を招くからであり、上限を70% 未満としたの
は、70% を越える冷延率の場合には、直接鋳造圧延時の
圧下荷重の条件式が上述のものとは異なるためである。
また、溶体化処理温度を400 ℃以上としたのはMgやSiを
固溶させるためであり、2 ℃/s以上の冷却速度で175 ℃
以下の温度まで急冷するのは、冷却前に固溶しているS
i、Mg等の添加元素の析出を極力生じさせずに過飽和に
固溶させ、この後の塗装・焼付け加熱時に微細な強化相
を析出させて強度を向上させることが第1の目的である
が、2 ℃/s未満の冷却速度または175 ℃以上の温度への
冷却では冷却中に粗大な化合物が析出してくるため、伸
びの低下も招いてしまうからである。
The reason why the cold rolling rate is set to 15% or more is that if it is less than 15%, the pulverization of the structure generated at the time of solidification is not sufficiently performed.
The reason why the ductility is reduced is that the upper limit is set to less than 70% because, in the case of a cold rolling reduction exceeding 70%, the conditional expression of the rolling load during direct casting and rolling is different from that described above. is there.
The solution treatment temperature was set to 400 ° C or higher to dissolve Mg and Si in a solid solution. At a cooling rate of 2 ° C / s or more, the temperature was set to 175 ° C.
Rapid cooling to the following temperature is due to the solid solution before cooling.
The primary purpose is to improve the strength by dissolving supersaturated solid solution without causing precipitation of additional elements such as i and Mg as much as possible, and precipitating a fine reinforcing phase at the time of subsequent coating and baking heating. If the cooling rate is lower than 2 ° C./s or the temperature is higher than 175 ° C., coarse compounds are precipitated during the cooling, so that the elongation is reduced.

【0018】本発明の請求項2、3に記載の製造方法に
おいては、上述の溶体化処理後に、2 ℃/s以上の冷却速
度で175 ℃以下に急冷し、その後180 〜320 ℃に再加熱
して0 〜25分の保持を行う(請求項2:復元処理)か、
あるいは上述の溶体化処理後に、2 ℃/s以上の冷却速度
で40〜175 ℃の範囲まで急冷し、前記温度でコイル状に
巻き取り(請求項3:高温コイル巻き取り)を必要とす
る。これは、上述の工程によっても、従来の工程で得ら
れる板材とほぼ同等の性能の板材を製造することは可能
であるものの、従来法と同様に自然時効によりG.P.ゾー
ンが析出し、塗装・焼付け加熱後の強度が十分に得られ
なかったり、強度が上昇して成形性が著しく低下すると
いう問題が生じるからである。双ロールによる直接鋳造
圧延による場合も、従来法と同様に上述の復元処理ある
いは高温コイル巻き取りにより、自然時効によるG.P.ゾ
ーン生成を抑制する必要がある。
In the production method according to the second and third aspects of the present invention, after the above-mentioned solution treatment, it is rapidly cooled to 175 ° C. or less at a cooling rate of 2 ° C./s or more, and then reheated to 180 to 320 ° C. To hold for 0 to 25 minutes (claim 2: restoration processing)
Alternatively, after the above-mentioned solution treatment, it is necessary to rapidly cool to a range of 40 to 175 ° C. at a cooling rate of 2 ° C./s or more, and wind up in a coil shape at the above temperature (Claim 3: High temperature coil winding). Although it is possible to produce a plate with almost the same performance as the plate obtained in the conventional process by the above-mentioned process, the GP zone is precipitated by natural aging as in the conventional method, and painting and baking is performed. This is because there is a problem that the strength after heating cannot be sufficiently obtained, or the strength is increased and the moldability is significantly reduced. Also in the case of direct casting and rolling by twin rolls, it is necessary to suppress the generation of the GP zone due to natural aging by the above-described restoration treatment or high-temperature coil winding as in the conventional method.

【0019】請求項2の製造方法は、前記の如く溶体化
処理後、175 ℃以下の温度に急冷し、引き続き再加熱処
理(復元処理)を行うが、この処理は、180 〜320 ℃に
再加熱して0 〜25分の保持を行い、その後室温まで放冷
するものである。ここで0 分の保持とは、保持しないこ
と即ち180 〜320 ℃の温度に到達したら、保持すること
なく冷却することも含む意味である。この再加熱処理
は、通常連続焼鈍炉(CAL)で実施するのが好まし
い。また、請求項3の製造方法は、前記の如く溶体化処
理後、40〜175 ℃の温度に急冷し、この温度範囲でコイ
ルに巻き取り(高温コイル巻き取り)を行い、その後室
温に放置等の処理を行うものであるが、この高温コイル
巻き取り後の処理は、巻き取りコイルをそのまま室温に
放置して放冷してもよいし、巻き取り温度(40〜175
℃)で炉中に36時間以内保持し、その後放冷してもよ
い。また、更に高温コイル巻き取り後、しばらく室温に
放置し、続いて40〜175 ℃の炉中に36時間以内保持
し、その後放冷してもよい。これらの高温巻き取り後の
処理は、Al-Mg-Si系合金材について従来から知られてい
る方法が、必要に応じて適用される。なお、この復元処
理及び高温コイル巻き取り処理の熱処理条件に範囲があ
るのは、下限未満でも又上限を越えても所定の性能が得
られないからである。また、溶体化処理続いて急冷から
復元処理実施までの室温放置時間については特に制限す
る必要はなく、数カ月以上放置した後に復元処理を行っ
てもその効果が損なわれることはない。
According to a second aspect of the present invention, after the solution treatment, the solution is rapidly cooled to a temperature of 175 ° C. or less, and then reheated (restored). Heating is carried out to maintain the temperature for 0 to 25 minutes, and then the mixture is allowed to cool to room temperature. Here, holding for 0 minutes means not to hold, that is, to cooling without holding when the temperature reaches 180 to 320 ° C. This reheating treatment is usually preferably performed in a continuous annealing furnace (CAL). According to a third aspect of the present invention, after the solution treatment as described above, the solution is rapidly cooled to a temperature of 40 to 175 ° C., wound around a coil in this temperature range (high-temperature coil winding), and then left at room temperature. In the processing after winding the high-temperature coil, the winding coil may be left at room temperature and allowed to cool, or the winding temperature (40 to 175).
C) in a furnace for up to 36 hours and then allowed to cool. Further, after winding the coil at a high temperature, the coil may be left at room temperature for a while, then kept in a furnace at 40 to 175 ° C. for 36 hours, and then allowed to cool. For the treatment after the high-temperature winding, a conventionally known method for the Al-Mg-Si alloy material is applied as necessary. The reason why there is a range in the heat treatment conditions of the restoration processing and the high-temperature coil winding processing is that a predetermined performance cannot be obtained even if the heat treatment is less than the lower limit or exceeds the upper limit. Further, there is no particular restriction on the room temperature standing time from the quenching to the execution of the restoring treatment after the solution treatment, and the effect is not impaired even if the restoring treatment is performed after leaving for several months or more.

【0020】(3)請求項4、5の発明について 請求項4、5の発明は、前記請求項1の発明に係わる圧
延板の別の製造方法に関するものである。即ち、前記請
求項2、3に記載の製造方法において、直接鋳造圧延後
の冷間圧延率が70% を越える場合であり、この場合には
双ロールにかかる圧下荷重P(ton)を式、 :P ≧2.9 ×10-6・ t ・ w ・ D1/2・ v ・ exp {1600/(T+273)}・(R/100)-0.5 ただし、 t:出側板厚(mm)、w:出側板幅(mm)、D:ロール直径(mm)、 v:ロール周速(mpm) 、T:出側板の表面温度( ℃) 、R:冷
延率(%) とし、請求項2、3に記載の場合に比べて、圧下荷重に
関する条件を変化させている。これは冷間圧延率が70%
を越えると、冷延中に晶出相の分断が行われるようにな
るため、直接鋳造圧延時の圧下荷重を請求項2、3の場
合ほど大きくする必要がないからである。また、最終冷
延率が小さい場合ほど大きな圧下が必要となるのは、請
求項2、3の場合と同様である。冷間圧延後の溶体化処
理、急冷、復元処理(請求項4)若しくは高温コイル巻
き取り(請求項5)の条件、意義、効果等は、前記の請
求項2、3で説明したことと同様である。
(3) Regarding the Inventions of Claims 4 and 5 The inventions of Claims 4 and 5 relate to another method of manufacturing a rolled plate according to the invention of Claim 1. That is, in the production method according to claims 2 and 3, the cold rolling reduction after direct casting and rolling exceeds 70%. In this case, the rolling load P (ton) applied to the twin rolls is represented by the following formula: : P ≧ 2.9 × 10 -6・ t ・ w ・ D 1/2・ v ・ exp {1600 / (T + 273)} ・ (R / 100) -0.5 where t: Outer side plate thickness (mm), w : Outlet plate width (mm), D: Roll diameter (mm), v: Roll peripheral speed (mpm), T: Surface temperature of the outlet plate (° C), R: Cold rolling rate (%), Claim 2, As compared with the case described in No. 3, the condition relating to the rolling load is changed. It has a cold rolling rate of 70%
Is exceeded, the crystallization phase is separated during the cold rolling, so that it is not necessary to increase the rolling load during direct casting and rolling as in the second and third aspects. Further, as the final cold rolling reduction is smaller, a larger reduction is required as in the case of the second and third aspects. The conditions, significance, effects, etc. of the solution treatment, quenching, restoration treatment (Claim 4) or high-temperature coil winding (Claim 5) after cold rolling are the same as those described in Claims 2 and 3. It is.

【0021】(4)請求項6の発明について 請求項6の発明は、請求項2〜5に記載の製造方法にお
いて、直接鋳造圧延してコイルに巻き取り、これを均質
化処理し、続いて冷間圧延を実施する製造方法である。
このような均質化処理は、直接鋳造圧延板の凝固偏析の
解消および遷移元素を含む分散相粒子の析出を目的とし
て行うものであり、これにより延性の改善や強度の向上
をはかることができる。この均質化処理条件を、580 ℃
以下の温度で2 〜24時間保持(加熱・冷却速度30〜100
℃/ 時間)としたのは、上記目的の特性を得るためであ
る。
(4) Regarding the invention of claim 6 According to the invention of claim 6, in the production method according to claims 2 to 5, the steel is directly cast and rolled and wound into a coil, and the coil is homogenized. This is a manufacturing method for performing cold rolling.
Such a homogenization treatment is carried out for the purpose of eliminating solidification segregation of a directly cast and rolled sheet and precipitating dispersed phase particles containing a transition element, whereby it is possible to improve ductility and strength. The homogenization conditions were set at 580 ° C
Keep at the following temperature for 2 to 24 hours (heating / cooling rate 30 to 100 hours)
° C / hour) in order to obtain the above-mentioned desired characteristics.

【0022】以上説明したように、本発明により、経時
変化の小さい焼付け硬化性に優れるAl-Mg-Si系合金板を
低コストで製造することが可能となる。従来法と同様に
自然時効を抑制するための復元処理あるいは高温巻き取
りが必要となるものの、その前段階までの造塊、面削、
均質化処理、熱間圧延、冷間圧延等の工程が大幅に簡略
化されるため、トータルの製造コストは大幅に低減され
る。
As described above, according to the present invention, it is possible to manufacture an Al-Mg-Si alloy sheet having a small change over time and excellent in bake hardenability at low cost. As with the conventional method, restoration processing or high-temperature winding to suppress natural aging is required, but ingot making, face milling,
Since the steps of homogenization, hot rolling, cold rolling and the like are greatly simplified, the total production cost is greatly reduced.

【0023】[0023]

【実施例】次に、本発明を実施例(本発明例)を、比較
例とともに、さらに詳細に説明する。表1に示す組成の
Al-Mg-Si系合金溶湯を、図1、図2に示す横型の双ロー
ルによる直接鋳造圧延装置で板とし、これを更に冷間圧
延して、厚さ0.7 〜3mm の板材を製造した。この製造条
件の詳細を表2に示す。
Next, the present invention will be described in more detail with reference to Examples (Examples of the present invention) and Comparative Examples. Of the composition shown in Table 1
The molten Al-Mg-Si alloy was made into a plate by a direct casting and rolling device using a horizontal twin roll shown in FIGS. 1 and 2, and the plate was further cold-rolled to produce a plate having a thickness of 0.7 to 3 mm. Table 2 shows the details of the manufacturing conditions.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】このように製造された板材について、板の
金属組織における最大結晶粒径を光学顕微鏡で測定し
た。また、表層部の連続したMg2Si 化合物の最大長さ
を、走査型電子顕微鏡を用いて反射電子像の観察を行っ
て、測定した。また、製造後1、5、20、60 日間、室温に放
置した後、引張試験を実施した。さらに塗装・焼付け加
熱をシミュレートした 175℃で60分の加熱を施した後に
も引張試験をおこなった。引張試験はJIS5号引張試験片
により、引張強さ、耐力、伸びを測定した。これらの結
果を表3に示す。
With respect to the plate material thus manufactured, the maximum crystal grain size in the metal structure of the plate was measured with an optical microscope. The maximum length of the continuous Mg 2 Si compound on the surface layer was measured by observing a reflected electron image using a scanning electron microscope. Further, after standing at room temperature for 1, 5, 20, and 60 days after production, a tensile test was performed. Tensile tests were also performed after heating at 175 ° C for 60 minutes, which simulated painting and baking heating. In the tensile test, tensile strength, proof stress, and elongation were measured using a JIS No. 5 tensile test piece. Table 3 shows the results.

【0027】[0027]

【表3】 [Table 3]

【0028】表3より明らかなように、本発明の圧延板
及びその製造方法(A-G) では、塗装・焼付けの際の加熱
による耐力上昇が大きく(100MPa以上)、加熱前の延性
(伸び)も優れ(27% 以上)、さらにこれらの特性の室
温放置による安定性に優れていることがわかる。これに
対して、本発明で規定した組成をはずれるか又は本発明
の製造条件を外れる比較例(H-N) は、加熱前後の耐力上
昇が小さく、または加熱前の延性(伸び)の点でも劣っ
ていることがわかる。
As is evident from Table 3, in the rolled sheet of the present invention and the method for producing the same (AG), the yield strength by heating during coating and baking is large (100 MPa or more), and the ductility (elongation) before heating is also high. It can be seen that they are excellent (27% or more), and that these characteristics are excellent in stability when left at room temperature. On the other hand, Comparative Example (HN), which deviates from the composition specified in the present invention or deviates from the production conditions of the present invention, has a small increase in proof stress before and after heating, or is inferior in terms of ductility (elongation) before heating. You can see that there is.

【0029】[0029]

【発明の効果】このように本発明に係わるAl-Mg-Si系合
金板及びその製造方法によれば、自然時効時のG.P.ゾー
ンの析出を抑制し、塗装・焼付けの際の加熱で速やかに
強化相が析出し、経時変化が小さく高い時効硬化性を有
するAl-Mg-Si系合金板を低コストで得ることができるも
ので、工業上顕著な効果を奏するものである。
As described above, according to the Al-Mg-Si-based alloy sheet and the method for producing the same according to the present invention, the precipitation of the GP zone during natural aging is suppressed, and the coating is quickly heated by baking. An Al-Mg-Si-based alloy sheet having a precipitation hardening phase, a small change with time, and a high age hardening property can be obtained at low cost, and has an industrially remarkable effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】横型双ロールによる直接鋳造圧延装置(断面)
の概略説明図である。
FIG. 1 Direct casting and rolling equipment (cross section) using horizontal twin rolls
FIG.

【図2】図1のD部を拡大した詳細図である。FIG. 2 is an enlarged detail view of a portion D in FIG. 1;

【符号の説明】 1 上ロール 2 下ロール 3 ノズル 4 金属溶湯 5 直接鋳造圧延板 A 双ロールのセンターライン(ロールの最接近点) B ノズルの先端 C 溶湯の最終凝固点[Description of Signs] 1 Upper Roll 2 Lower Roll 3 Nozzle 4 Molten Metal 5 Direct Cast Rolled Plate A Center Line of Twin Roll (Closest Point of Roll) B Tip of Nozzle C Final Solidification Point of Molten Metal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 685 C22F 1/00 685 686 686B 691 691B 692 692A 692B 694 694A (72)発明者 垣生 哲史 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 林 稔 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 戸次 洋一郎 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 橋口 耕一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 行本 正雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification symbol FI C22F 1/00 685 C22F 1/00 685 686 686B 691 691B 692 692A 692B 694 694A (72) Inventor Tetsushi Kakiu Marunouchi 2 Chiyoda-ku, Tokyo 6-1-1, Furukawa Electric Co., Ltd. (72) Inventor Minoru Hayashi 2-6-1, Marunouchi, Chiyoda-ku, Tokyo In-house Furukawa Electric Co., Ltd. (72) Inventor Yoichiro Toji 2 Marunouchi, Chiyoda-ku, Tokyo 6-1-1 Furukawa Electric Co., Ltd. (72) Inventor Koichi Hashiguchi 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Engineering Co., Ltd. (72) Inventor Masao Yukimoto, Chiba-shi, Chiba 1 Kawasaki-cho, Ward, Kawasaki Steel Corp.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 必須元素としてSi 0.2〜3.0%(mass%、以
下同じ) 、Mg 0.2〜3.0%を含み、Mn 0.01 〜0.5%、Cr
0.01 〜0.5%、Zr 0.01 〜0.5%、Ti 0.001〜0.5%の1種
若しくは2種以上を含み、更にCu 0〜 2.5% 、Sn 0〜0.
2%、Zn 0〜 2.0% の1種若しくは2種以上を含み、Feを
1.0%以下に規制し、残部がAlと不可避的不純物からなる
Al合金の直接鋳造圧延板を、更に冷間圧延した板であっ
て、その板の金属組織の最大結晶粒径が100 μm 以下で
あり、且つ表層部の連続したMg2Si 化合物の最大長さが
50μm 以下であることを特徴とするAl-Mg-Si系合金板。
Claims 1. An essential element containing Si 0.2 to 3.0% (mass%, the same applies hereinafter), Mg 0.2 to 3.0%, Mn 0.01 to 0.5%, Cr
Contains one or more of 0.01 to 0.5%, Zr 0.01 to 0.5%, Ti 0.001 to 0.5%, Cu 0 to 2.5%, Sn 0 to 0.
2%, Zn 0-2.0%
Restricted to 1.0% or less, the balance consists of Al and inevitable impurities
A directly cast and rolled sheet of an Al alloy, further cold-rolled, wherein the maximum grain size of the metal structure of the sheet is 100 μm or less, and the maximum length of a continuous Mg 2 Si compound in the surface layer portion. But
An Al-Mg-Si-based alloy plate having a thickness of 50 µm or less.
【請求項2】 必須元素としてSi 0.2〜3.0%、Mg 0.2〜
3.0%を含み、Mn 0.01 〜0.5%、Cr 0.01 〜0.5%、Zr 0.0
1 〜0.5%、Ti 0.001〜0.5%の1種若しくは2種以上を含
み、更にCu 0〜 2.5% 、Sn 0〜0.2%、Zn 0〜 2.0% の1
種若しくは2種以上を含み、Feを1.0%以下に規制し、残
部がAlと不可避的不純物からなるAl合金溶湯を、双ロー
ルによる直接鋳造圧延装置を用いて、圧下荷重P(ton)を
下記の式を満足する条件で、板厚4mm 以下の板に直接
鋳造圧延し、更にその後、15%以上70% 未満の圧延率で
冷間圧延し、続いて400 ℃〜材料の溶融温度の範囲で溶
体化処理を行い、溶体化後の冷却を2 ℃/s以上の冷却速
度で175 ℃以下に急冷し、その後180 〜320 ℃に再加熱
して0 〜25分の保持を行い、その板の金属組織の最大結
晶粒径を100 μm 以下、且つ表層部の連続したMg2Si 化
合物の最大長さを50μm 以下とすることを特徴とするAl
-Mg-Si系合金板の製造方法。 :P ≧5.8 ×10-6・ t ・ w ・ D1/2・ v ・ exp {1600/(T+273)}・(R/100)-0.5 ただし、 t:出側板厚(mm)、w:出側板幅(mm)、D:ロール直径(mm)、 v:ロール周速(mpm) 、T:出側板の表面温度( ℃) 、R:冷
延率(%)
(2) Si 0.2 to 3.0% as an essential element, Mg 0.2 to
Including 3.0%, Mn 0.01-0.5%, Cr 0.01-0.5%, Zr 0.0
1 to 0.5%, one or more of Ti 0.001 to 0.5%, and one of Cu 0 to 2.5%, Sn 0 to 0.2%, Zn 0 to 2.0%
Including the seed or two or more, Fe is regulated to 1.0% or less, the balance of Al alloy melt consisting of Al and unavoidable impurities, using a twin-roll direct casting and rolling equipment, the rolling load P (ton) below Under the condition satisfying the following formula, directly cast and rolled into a plate having a thickness of 4 mm or less, and then cold-rolled at a rolling ratio of 15% or more and less than 70%, and then in the range of 400 ° C to the melting temperature of the material After solution treatment, the solution was cooled rapidly to 175 ° C or less at a cooling rate of 2 ° C / s or more, then reheated to 180-320 ° C and held for 0-25 minutes. Al characterized in that the maximum crystal grain size of the metal structure is 100 μm or less, and the maximum length of the continuous Mg 2 Si compound in the surface layer is 50 μm or less.
-Manufacturing method of Mg-Si alloy sheet. : P ≧ 5.8 × 10 -6・ t ・ w ・ D 1/2・ v ・ exp {1600 / (T + 273)} ・ (R / 100) -0.5 where t: Outer side plate thickness (mm), w : Outlet plate width (mm), D: Roll diameter (mm), v: Roll peripheral speed (mpm), T: Surface temperature of outlet plate (° C), R: Cold rolling rate (%)
【請求項3】 請求項2に記載のAl合金溶湯及び圧延条
件と同様の条件で、板厚4mm 以下の板に直接鋳造圧延
し、更にその後、15% 以上70% 未満の圧延率で冷間圧延
し、続いて400 ℃〜材料の溶融温度の範囲で溶体化処理
を行い、溶体化後の冷却を2 ℃/s以上の冷却速度で40〜
175 ℃の範囲まで急冷し、前記温度でコイル状に巻き取
り、その板の金属組織の最大結晶粒径を100 μm 以下、
且つ表層部の連続したMg2Si 化合物の最大長さを50μm
以下とすることを特徴とするAl-Mg-Si系合金板の製造方
法。
3. Casting and rolling directly into a plate having a thickness of 4 mm or less under the same conditions as those of the molten aluminum alloy and the rolling conditions according to claim 2, and then cold rolling at a rolling reduction of 15% or more and less than 70%. Rolling, followed by solution treatment at a temperature in the range of 400 ° C to the melting temperature of the material, and cooling after solution cooling is performed at a cooling rate of 2 ° C / s or more at 40 to 40 ° C.
It is quenched to a temperature of 175 ° C and wound up in a coil at the above temperature, and the maximum crystal grain size of the metal structure of the plate is 100 μm or less,
And the maximum length of the continuous Mg 2 Si compound on the surface layer is 50 μm
A method for producing an Al-Mg-Si-based alloy sheet, comprising:
【請求項4】 必須元素としてSi 0.2〜3.0%、Mg 0.2〜
3.0%を含み、Mn 0.01 〜0.5%、Cr 0.01 〜0.5%、Zr 0.0
1 〜0.5%、Ti 0.001〜0.5%の1種若しくは2種以上を含
み、更にCu 0〜 2.5% 、Sn 0〜0.2%、Zn 0〜 2.0% の1
種若しくは2種以上を含み、Feを1.0%以下に規制し、残
部がAlと不可避的不純物からなるAl合金溶湯を、双ロー
ルによる直接鋳造圧延装置を用いて、圧下荷重P(ton)を
下記の式を満足する条件で、板厚4mm 以下の板に直接
鋳造圧延し、更にその後、70%以上の圧延率で冷間圧延
し、続いて400 ℃〜材料の溶融温度の範囲で溶体化処理
を行い、溶体化後の冷却を2 ℃/s以上の冷却速度で175
℃以下に急冷し、その後180 〜320 ℃に再加熱して0 〜
25分の保持を行い、その板の金属組織の最大結晶粒径を
100 μm 以下、且つ表層部の連続したMg2Si 化合物の最
大長さを50μm 以下とすることを特徴とするAl-Mg-Si系
合金板の製造方法。 :P ≧2.9 ×10-6・ t ・ w ・ D1/2・ v ・ exp {1600/(T+273)}・(R/100)-0.5 ただし、 t:出側板厚(mm)、w:出側板幅(mm)、D:ロール直径(mm)、 v:ロール周速(mpm) 、T:出側板の表面温度( ℃) 、R:冷
延率(%)
4. Si 0.2-3.0% as essential elements, Mg 0.2-
Including 3.0%, Mn 0.01-0.5%, Cr 0.01-0.5%, Zr 0.0
1 to 0.5%, one or more of Ti 0.001 to 0.5%, and one of Cu 0 to 2.5%, Sn 0 to 0.2%, Zn 0 to 2.0%
Including the seed or two or more, Fe is regulated to 1.0% or less, the balance of Al alloy melt consisting of Al and unavoidable impurities, using a twin-roll direct casting and rolling equipment, the rolling load P (ton) below Casting and rolling directly into a plate with a thickness of 4 mm or less under the conditions satisfying the following formula, and then cold rolling at a rolling rate of 70% or more, and then solution treatment in the range of 400 ° C to the melting temperature of the material And cooling after solution cooling at a cooling rate of 2 ° C / s or more for 175
Cool rapidly to below ℃, then reheat to 180-320 ℃
Hold for 25 minutes, and determine the maximum crystal grain size of the metal structure of the plate.
100 [mu] m or less, and Al-Mg-Si-based method for producing alloy sheet, wherein the maximum length of consecutive Mg 2 Si compounds of the surface layer portion and 50μm or less. : P ≧ 2.9 × 10 -6・ t ・ w ・ D 1/2・ v ・ exp {1600 / (T + 273)} ・ (R / 100) -0.5 where t: Outer side plate thickness (mm), w : Outlet plate width (mm), D: Roll diameter (mm), v: Roll peripheral speed (mpm), T: Surface temperature of outlet plate (° C), R: Cold rolling rate (%)
【請求項5】 請求項4に記載のAl合金溶湯及び圧延条
件と同様の条件で、板厚4mm 以下の板に直接鋳造圧延
し、更にその後、70% 以上の圧延率で冷間圧延し、続い
て400 ℃〜材料の溶融温度の範囲で溶体化処理を行い、
溶体化後の冷却を2 ℃/s以上の冷却速度で40〜175 ℃の
範囲まで急冷し、前記温度でコイル状に巻き取り、その
板の金属組織の最大結晶粒径を100 μm 以下、且つ表層
部の連続したMg2Si 化合物の最大長さを50μm 以下とす
ることを特徴とするAl-Mg-Si系合金板の製造方法。
5. Casting and rolling directly into a sheet having a thickness of 4 mm or less under the same conditions as the molten aluminum alloy and rolling conditions according to claim 4, and then cold rolling at a rolling rate of 70% or more, Subsequently, solution treatment is performed in the range of 400 ° C to the melting temperature of the material,
Cooling after solution cooling is quenched at a cooling rate of 2 ° C / s or more to a range of 40 to 175 ° C, coiled at the above temperature, and the maximum crystal grain size of the metal structure of the plate is 100 μm or less, and A method for producing an Al-Mg-Si alloy sheet, wherein the maximum length of a continuous Mg 2 Si compound in a surface portion is 50 μm or less.
【請求項6】 板厚4mm 以下の板に直接鋳造圧延し、こ
れをコイル状に巻き取った後、580 ℃以下の温度で2 〜
24時間保持の均質化処理(加熱・冷却速度30〜100 ℃/
時間)を行い、その後冷間圧延することを特徴とする請
求項2〜5に記載のAl-Mg-Si系合金板の製造方法。
6. Casting and rolling directly into a plate having a thickness of 4 mm or less, winding this into a coil shape, and then heating at a temperature of 580 ° C. or less for 2 to 4 mm.
Homogenization treatment for 24 hours (heating / cooling rate 30 ~ 100 ℃ /
Time), and then cold rolling is performed. The method for producing an Al-Mg-Si alloy sheet according to claim 2, wherein:
JP26823996A 1996-10-09 1996-10-09 Method for producing Al-Mg-Si alloy plate Expired - Fee Related JP3734317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26823996A JP3734317B2 (en) 1996-10-09 1996-10-09 Method for producing Al-Mg-Si alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26823996A JP3734317B2 (en) 1996-10-09 1996-10-09 Method for producing Al-Mg-Si alloy plate

Publications (2)

Publication Number Publication Date
JPH10110232A true JPH10110232A (en) 1998-04-28
JP3734317B2 JP3734317B2 (en) 2006-01-11

Family

ID=17455842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26823996A Expired - Fee Related JP3734317B2 (en) 1996-10-09 1996-10-09 Method for producing Al-Mg-Si alloy plate

Country Status (1)

Country Link
JP (1) JP3734317B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060181A1 (en) * 1998-05-15 1999-11-25 The Furukawa Electric Co., Ltd. Aluminum plate for automobile and method for producing the same
WO2000043560A1 (en) * 1999-01-22 2000-07-27 Aluminium Lend Gmbh Aluminum-magnesium-silicon alloy
JP2001294965A (en) * 2000-04-12 2001-10-26 Toyota Motor Corp Aluminum alloy sheet excellent in crushability and method for producing part using the same
WO2005056859A1 (en) * 2003-12-11 2005-06-23 Nippon Light Metal Company, Ltd. METHOD FOR PRODUCING Al-Mg-Si ALLOY EXCELLENT IN BAKE-HARDENABILITY AND HEMMABILITY
EP1564308A1 (en) * 2004-02-11 2005-08-17 ALUMINIUM RHEINFELDEN GmbH Casting of an aluminium alloy
KR100688764B1 (en) * 2004-03-31 2007-03-02 가부시키가이샤 고베 세이코쇼 Aluminum alloy plate, process for producing the same, and battery case made of aluminum alloy
WO2018183721A1 (en) * 2017-03-30 2018-10-04 NanoAL LLC High-performance 6000-series aluminum alloy structures
JP2020164946A (en) * 2019-03-29 2020-10-08 日本軽金属株式会社 Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME, AND MOLDING Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME
JP2020164948A (en) * 2019-03-29 2020-10-08 日本軽金属株式会社 Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME, AND MOLDING Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME
CN114101608A (en) * 2020-08-26 2022-03-01 宝山钢铁股份有限公司 Novel 6XXX aluminum alloy plate strip for thin-strip continuous casting and preparation method thereof
WO2022131210A1 (en) * 2020-12-15 2022-06-23 株式会社Uacj Aluminum alloy disc blank for magnetic disc, and magnetic disc

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060181A1 (en) * 1998-05-15 1999-11-25 The Furukawa Electric Co., Ltd. Aluminum plate for automobile and method for producing the same
US6325870B1 (en) 1998-05-15 2001-12-04 The Furukawa Electric Co., Ltd. Aluminum plate for automobile and method for producing the same
US6863747B2 (en) * 1998-05-15 2005-03-08 Furukawa-Sky Aluminum Corp. Aluminum sheet material for automobile and method of producing the same
WO2000043560A1 (en) * 1999-01-22 2000-07-27 Aluminium Lend Gmbh Aluminum-magnesium-silicon alloy
JP2001294965A (en) * 2000-04-12 2001-10-26 Toyota Motor Corp Aluminum alloy sheet excellent in crushability and method for producing part using the same
JPWO2005056859A1 (en) * 2003-12-11 2008-04-17 日本軽金属株式会社 Method for producing Al-Mg-Si alloy plate excellent in bake hardness and hemmability
WO2005056859A1 (en) * 2003-12-11 2005-06-23 Nippon Light Metal Company, Ltd. METHOD FOR PRODUCING Al-Mg-Si ALLOY EXCELLENT IN BAKE-HARDENABILITY AND HEMMABILITY
JP4577218B2 (en) * 2003-12-11 2010-11-10 日本軽金属株式会社 Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
EP1564308A1 (en) * 2004-02-11 2005-08-17 ALUMINIUM RHEINFELDEN GmbH Casting of an aluminium alloy
KR100688764B1 (en) * 2004-03-31 2007-03-02 가부시키가이샤 고베 세이코쇼 Aluminum alloy plate, process for producing the same, and battery case made of aluminum alloy
WO2018183721A1 (en) * 2017-03-30 2018-10-04 NanoAL LLC High-performance 6000-series aluminum alloy structures
US11885002B2 (en) 2017-03-30 2024-01-30 NanoAL LLC High-performance 6000-series aluminum alloy structures
JP2020164946A (en) * 2019-03-29 2020-10-08 日本軽金属株式会社 Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME, AND MOLDING Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME
JP2020164948A (en) * 2019-03-29 2020-10-08 日本軽金属株式会社 Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME, AND MOLDING Al-Mg-Si-BASED ALUMINUM ALLOY COLD-ROLLED SHEET AND METHOD OF MANUFACTURING THE SAME
CN114101608A (en) * 2020-08-26 2022-03-01 宝山钢铁股份有限公司 Novel 6XXX aluminum alloy plate strip for thin-strip continuous casting and preparation method thereof
WO2022131210A1 (en) * 2020-12-15 2022-06-23 株式会社Uacj Aluminum alloy disc blank for magnetic disc, and magnetic disc

Also Published As

Publication number Publication date
JP3734317B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
US5266130A (en) Process for manufacturing aluminum alloy material having excellent shape fixability and bake hardenability
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
JPH07145441A (en) Superplastic aluminum alloy and its production
JPH10110232A (en) Al-mg-si alloy sheet and its production
CN1902331A (en) Beta-titanium alloy, method for producing a hot-rolled product based on said alloy and the uses thereof
JPH07252571A (en) Automobile aluminum alloy sheet and its production
JPS62207851A (en) Rolled aluminum alloy sheet for forming and its production
JP2844411B2 (en) Aluminum alloy sheet for superplastic forming capable of cold preforming and method for producing the same
JPH0747808B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP3703919B2 (en) Method for producing directly cast and rolled sheet of Al-Mg-Si alloy
JPS58171547A (en) Aluminum alloy material for forming with superior bendability and its manufacture
JPH05306440A (en) Manufacture of aluminum alloy sheet for forming excellent baking hardenability
JPH05112839A (en) Aluminum alloy sheet for forming excellent in low temperature baking hardenability and its manufacture
JP3098637B2 (en) Aluminum alloy sheet for high speed forming and method for producing the same
JP4011270B2 (en) Method for producing Al-Mg-Si-based aluminum alloy extruded material and processing method thereof
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
JPH0941062A (en) Alum.-magnesium-silicon type alum. alloy sheet material for automotive body sheet small in secular change and excellent in baking hardenability and its production
JPH05230605A (en) Manufacture of aluminum alloy for baking and hardening formation
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
JPH0565586A (en) Aluminum alloy rooled sheet for forming and its production
JPH10130769A (en) Al alloy sheet for high speed forming, its production, and high speed forming method
JPH05125506A (en) Manufacture of baking hardenability aluminum alloy plate for forming
JPH02290952A (en) Production of al-cu-mg-li aluminum alloy material for structural use
JPH09176806A (en) Production of aluminum-magnesium-silicon base aluminum alloy sheet material excellent in baking hardenability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20030422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030422

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees