JPH10108690A - Measurement of oxygen permeability coefficient in membrane material - Google Patents

Measurement of oxygen permeability coefficient in membrane material

Info

Publication number
JPH10108690A
JPH10108690A JP27998696A JP27998696A JPH10108690A JP H10108690 A JPH10108690 A JP H10108690A JP 27998696 A JP27998696 A JP 27998696A JP 27998696 A JP27998696 A JP 27998696A JP H10108690 A JPH10108690 A JP H10108690A
Authority
JP
Japan
Prior art keywords
medium
test sample
oxygen permeability
sample
permeability coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27998696A
Other languages
Japanese (ja)
Other versions
JP2818866B2 (en
Inventor
Masuhiro Tsukada
益裕 塚田
Akira Shirata
昭 白田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORIN SUISANSYO SANSHI KONCHU
NORIN SUISANSYO SANSHI KONCHU NOGYO GIJUTSU KENKYUSHO
Original Assignee
NORIN SUISANSYO SANSHI KONCHU
NORIN SUISANSYO SANSHI KONCHU NOGYO GIJUTSU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORIN SUISANSYO SANSHI KONCHU, NORIN SUISANSYO SANSHI KONCHU NOGYO GIJUTSU KENKYUSHO filed Critical NORIN SUISANSYO SANSHI KONCHU
Priority to JP27998696A priority Critical patent/JP2818866B2/en
Publication of JPH10108690A publication Critical patent/JPH10108690A/en
Application granted granted Critical
Publication of JP2818866B2 publication Critical patent/JP2818866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring an oxygen permeability coefficient easily, economically, efficiently and in high accuracy. SOLUTION: Microorganisms are cultured for a given time in such a state as to lay a membrane material sample to be tested on the surface of a flat plate-like nutrient medium suspended with the microorganisms, and the proliferation level of the microorganisms right under the sample is compared with that in the case with no sample to determine the aimed oxygen permeability coefficient of the test sample.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンタクトレン
ズ、人工皮膚、あるいは家庭用野菜ラップ等膜素材等に
おける酸素透過係数の測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring an oxygen permeability coefficient of a film material such as a contact lens, artificial skin, or a household vegetable wrap.

【0002】[0002]

【従来の技術】膜素材は各種産業分野で多岐にわたり利
用されている。膜機能を活用した利用技術の多様化がめ
ざましい。膜素材における気体、イオン等の低分子物質
の透過に関連した利用形態は次のように様々である。エ
レクトロニクス工業では無菌水の製造に水溶質分離膜が
使用され、食品工業ではワインなどの製造に無菌濾過膜
が、ジュースの濃縮用に限外濾過膜が使用され、化学工
業では薬品溶液の粒子の除去用として精密濾過膜が使用
され、発酵工業では無菌水、無菌空気の調製用に限外濾
過膜が利用される等、各産業分野で幅広く利用が図られ
ている。その他、気体透過性や気体の選択透過性を活用
した医用分野での利用としての酸素選択透過膜(酸素富
化膜)の利用も盛んになっている。
2. Description of the Related Art Membrane materials are widely used in various industrial fields. The diversification of utilization technologies utilizing membrane functions is remarkable. There are various utilization forms related to the permeation of low molecular substances such as gas and ions in the membrane material as follows. In the electronics industry, water-soluble separation membranes are used to produce sterile water, in the food industry, sterile filtration membranes are used to produce wine, etc., ultrafiltration membranes are used to concentrate juices, and in the chemical industry, particles of chemical solution particles are used. Microfiltration membranes are used for removal, and ultrafiltration membranes are used for the preparation of sterile water and sterile air in the fermentation industry, and are widely used in various industrial fields. In addition, the use of oxygen selectively permeable membranes (oxygen-enriched membranes) for use in the medical field utilizing gas permeability and gas selective permeability is also active.

【0003】気体の透過機能を活し気体の膜分離を可能
とする新材料も次々に開発されている。気体分離膜にお
ける気体透過係数は、膜の単位透過面積、単位時間、単
位厚さ当たりの透過気体量を0℃、1気圧の標準状態で
表されるのが一般的である。
[0003] New materials have been developed one after another, which make use of the gas permeation function to enable membrane separation of gas. The gas permeation coefficient of a gas separation membrane is generally expressed in terms of the permeated gas amount per unit per unit area, per unit time and per unit thickness of the membrane in a standard state of 0 ° C. and 1 atm.

【0004】酸素透過性に優れた素材は、血液バッグを
始めとする医用材料として先端的な分野で利用できる。
また酸素透過性に優れた素材は、視力補正用のコンタク
トレンズにも利用される。この視力補正用のコンタクト
レンズは、角膜上皮に酸素を補給するために高度な酸素
透過機能が必要とされる。コンタクトレンズ素材の酸素
透過係数が劣悪になると、角膜の代謝系に阻害が起こ
り、グリコーゲンが消失し、乳酸が蓄積し、まれには角
膜上皮の膨潤浮腫さえおこる危険性が指摘されている。
[0004] Materials having excellent oxygen permeability can be used in advanced fields as medical materials such as blood bags.
Materials having excellent oxygen permeability are also used for contact lenses for correcting vision. This contact lens for vision correction requires an advanced oxygen transmission function to supply oxygen to the corneal epithelium. It has been pointed out that when the oxygen permeability coefficient of the contact lens material becomes poor, inhibition of the corneal metabolic system occurs, glycogen disappears, lactic acid accumulates, and in rare cases, even swelling and edema of the corneal epithelium occurs.

【0005】コンタクトレンズ素材膜を対象とする酸素
透過係数を測定する主要な方法は、 1)ガスクロマトグラフィーによる分析、2)電極法、
3)ポーラログラフィー法の3種類があるものの、各方
法にはそれぞれ以下のような問題がある。
[0005] The main methods for measuring the oxygen permeability coefficient of a contact lens material film are: 1) analysis by gas chromatography, 2) electrode method,
3) Although there are three types of polarography methods, each method has the following problems.

【0006】1)ガスクロマトグラフィー法:試料膜を
隔て高圧側と真空側とチャンバーを装備し、高圧側より
被検試料を通して低圧側に透過する気体の濃度をガスク
ロマトグラフィーで分析する方法である。測定システム
としては、ガス透過率測定装置、透過ガスを検出するガ
スクロマトグラフィー、など高性能で大規模な測定装置
が必要である。また、測定には化学的な知識と技能が必
要である。精度良く酸素透過係数を測定するには測定技
術の熟練が必要である。低圧側の圧力は、高圧側より流
れ込むガスにより次第に上昇してしまうため低圧側の圧
力上昇が一定の幅以内での気体透過が可能であるに過ぎ
ない。また、基準セル寸法では、透過面積と試料膜の寸
法をそれぞれ15.2cm2、60mmφに設定する必
要があり試料の形状に厳しい制約がある。膜厚の上限は
1mmと設定されている。したがって簡易で経済的とは
いい難く、またサンプル形状が任意の膜素材の酸素透過
係数の測定には十分な対応ができない。
[0006] 1) Gas chromatography method: A method in which a high pressure side, a vacuum side, and a chamber are provided with a sample membrane separated, and the concentration of gas permeating from a high pressure side to a low pressure side through a test sample is analyzed by gas chromatography. . As the measuring system, a high-performance and large-scale measuring device such as a gas permeability measuring device and a gas chromatography for detecting a permeated gas is required. Measurement requires chemical knowledge and skills. To measure the oxygen permeability coefficient with high accuracy requires skill in measurement techniques. Since the pressure on the low pressure side gradually increases due to the gas flowing from the high pressure side, gas permeation is only possible within a certain range of the pressure increase on the low pressure side. In the reference cell dimensions, the transmission area and the dimensions of the sample film need to be set to 15.2 cm 2 and 60 mmφ, respectively, and there are severe restrictions on the shape of the sample. The upper limit of the film thickness is set to 1 mm. Therefore, it is difficult to say that it is simple and economical, and it is not possible to sufficiently measure the oxygen permeability coefficient of a film material having an arbitrary sample shape.

【0007】2)電極法:電極部と固定用リングとにス
ペーサーと試料とを挟み込んで、35℃、0.9%の食
塩水中で試料膜を透過する溶存酸素を酸素電極で測定す
るものである。電極からの正常電流値を測定することで
酸素透過係数が測定できる。同一素材で厚さの異なるサ
ンプル5枚を対象にして、3組分の素材を測定しなけれ
ばならず簡易な酸素透過係数測定とはいい難い。このよ
うに試料調整上の制約があり、必ずしも容易な測定方法
とはいえない。
2) Electrode method: A method in which a spacer and a sample are sandwiched between an electrode portion and a fixing ring, and dissolved oxygen permeating the sample membrane in a 0.9% saline solution at 35 ° C. is measured with an oxygen electrode. is there. By measuring the normal current value from the electrode, the oxygen permeability coefficient can be measured. Since three sets of materials must be measured for five samples of the same material but different thicknesses, it is difficult to measure oxygen permeability coefficient simply. As described above, there are restrictions on sample preparation, and it is not always an easy measurement method.

【0008】3)ポーラログラフィー法:試料膜を窒素
と水蒸気の混合気体側と酸素と水蒸気の混合気体側とに
隔てる。試料膜を通して酸素が窒素と水蒸気側に透過す
る。この透過酸素をポーラログラフィー酸素電極で計測
するものである。精度の高い測定装置が必要となり、測
定上の技術や熟練が必要である。
3) Polarography: The sample film is separated into a mixed gas side of nitrogen and water vapor and a mixed gas side of oxygen and water vapor. Oxygen permeates through the sample membrane to the nitrogen and water vapor sides. This transmitted oxygen is measured by a polarographic oxygen electrode. A highly accurate measurement device is required, and measurement techniques and skills are required.

【0009】以上のとおり、コンタクトレンズの酸素透
過係数を測定するには、サンプルのサイズが制約されて
おり、酸素透過係数の測定には熟練した技能と経験が必
要とされ、簡易にしかも精度良く測定できる技術の出現
が強く望まれてきた。
As described above, the size of a sample is limited to measure the oxygen permeability coefficient of a contact lens, and the measurement of the oxygen permeability coefficient requires skill and experience, and is simple and accurate. The emergence of a measurable technology has been strongly desired.

【0010】また、ソフトコンタクトレンズの着装状態
を詳細に見ると、コンタクトレンズが角膜に接する側
(以下裏面と略記)は涙液で満たされており、角膜とは
反対の側(以下表面と略記)は水蒸気を含んだ空気相に
接している。すなわち、コンタクトレンズは角膜の上皮
に直接接するように装着され、涙液を介して酸素が角膜
上皮に補給される。コンタクトレンズ素材であるポリメ
タクリル酸メチルはハードコンタクトレンズに用いられ
ており吸湿性は良好ではないが、瞬きをする際にコンタ
クトレンズと角膜との間の涙液が交換する。これにより
酸素が角膜に補給される。従って、吸湿性に欠けるハー
ドコンタクトレンズに対して、含水状態において使用す
るソフトコンタクトレンズ素材の酸素透過性を論ずるに
は、一方の面の大気相の湿度が他方の面の大気相の湿度
と異なる環境下にコンタクトレンズを置いた場合の酸素
透過係数を論議する必要があるが、従来は測定上の技術
的な困難さからコンタクトレンズ裏面、表面側の湿度差
を考慮した酸素透過係数の評価は可能ではなかった。
Further, when the wearing state of the soft contact lens is viewed in detail, the side where the contact lens contacts the cornea (hereinafter abbreviated as “back surface”) is filled with tear fluid, and the side opposite to the cornea (hereinafter abbreviated as “front surface”). ) Is in contact with the air phase containing water vapor. That is, the contact lens is worn so as to be in direct contact with the corneal epithelium, and oxygen is supplied to the corneal epithelium via tear fluid. Polymethyl methacrylate, which is a contact lens material, is used for hard contact lenses and does not have good hygroscopicity. However, when blinking, tear fluid between the contact lens and the cornea is exchanged. This replenishes the cornea with oxygen. Therefore, in order to discuss the oxygen permeability of a soft contact lens material used in a water-containing state for a hard contact lens lacking in hygroscopicity, the humidity of the air phase on one surface is different from the humidity of the air phase on the other surface. Although it is necessary to discuss the oxygen permeability coefficient when a contact lens is placed in an environment, it has been difficult to evaluate the oxygen permeability coefficient considering the humidity difference between the back and front sides of the contact lens due to technical difficulties in measurement. It was not possible.

【0011】コンタクトレンズや人工皮膚あるいは家庭
用野菜ラップ等膜素材の気体透過性を論議するには従来
の気体透過係数の測定方法では十分な情報が得られな
い。即ち、膜素材の内側は高湿度環境の状態にあり、外
側は低湿度環境になっているため、内外表面層における
膜素材の吸湿率の違いが気体の透過に影響を及ぼす。そ
のため、内外での湿度差を考慮した酸素透過係数測定法
の開発が望まれている。
In order to discuss the gas permeability of a membrane material such as a contact lens, artificial skin or household vegetable wrap, sufficient information cannot be obtained by the conventional method of measuring the gas permeability coefficient. That is, since the inside of the film material is in a high humidity environment and the outside is in a low humidity environment, the difference in the moisture absorption of the film material between the inner and outer surface layers affects gas transmission. Therefore, it is desired to develop a method for measuring the oxygen permeability coefficient in consideration of the difference in humidity between inside and outside.

【0012】本発明では、被検試料の一方を微生物培養
地に接するようにセットする。表面側に接する気体相の
湿度は、除湿程度が異なる無菌空気を連続的に送風する
ことで任意の水蒸気を含んだ気体相を準備することがで
きる。このように、試料の一方が気体相と接し他方が液
体相と接する場合の酸素透過係数を測定することは実用
上極めて重要である。また、従来の測定技術ではコンタ
クトレンズ固有の酸素透過係数を測定するにとどまり、
角膜に関する実用に近い酸素補給に関する評価(EO
P;Equivalent oxygen perce
ntage)の重要性を考えると、こうした測定が可能
な装置が必要であった。それにも拘らず、評価が困難で
あったのは目的に合致する測定装置の開発が進んでいな
いためである。実用に近い酸素補給に関する簡易な評価
法の出現が望まれている。
In the present invention, one of the test samples is set so as to be in contact with the microorganism culture site. As for the humidity of the gas phase in contact with the surface side, a gas phase containing arbitrary water vapor can be prepared by continuously blowing sterile air having different dehumidification degrees. Thus, it is extremely important in practical use to measure the oxygen permeability coefficient when one of the samples is in contact with the gas phase and the other is in contact with the liquid phase. In addition, the conventional measurement technique only measures the oxygen transmission coefficient specific to the contact lens,
Evaluation of practical oxygen supplementation for the cornea (EO
P; Equivalent oxygen percentage
Considering the importance of the tag, a device capable of such a measurement was required. Nevertheless, the reason why the evaluation was difficult is that the development of a measuring device that meets the purpose has not been advanced. The emergence of a simple evaluation method for practical oxygen supplementation is desired.

【0013】さらに、従来の測定においては該して大型
で精密な測定装置が必要であり、一回の測定で1サンプ
ルの酸素透過係数の評価しか可能でなく、サンプルの取
り付け方や測定方法で測定結果がバラツク等の再現性に
問題があった。従って、少量のサンプルであっても経済
的に効率よく酸素透過係数を測定する技術の出現が望ま
れてきた。
In addition, the conventional measurement requires a large and precise measuring device, and it is only possible to evaluate the oxygen permeability coefficient of one sample by one measurement. There was a problem in the reproducibility of measurement results such as variations. Therefore, it has been desired to develop a technique for economically and efficiently measuring the oxygen permeability coefficient even with a small amount of sample.

【0014】[0014]

【発明が解決しようとする課題】本発明は、こうした従
来技術の問題点を解決し、膜素材における酸素透過係数
を簡便に経済的に効率よく、しかも精度良く測定できる
方法を提供することをその課題とする。また、本発明
は、膜素材の表面、裏面側での湿度差を考慮した膜組成
における酸素透過係数測定方法を提供することを別の課
題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and provides a method for simply, economically, efficiently and accurately measuring the oxygen permeability coefficient of a membrane material. Make it an issue. Another object of the present invention is to provide a method for measuring an oxygen permeability coefficient in a film composition in consideration of a humidity difference between the front and back surfaces of a film material.

【0015】[0015]

【課題を解決するための手段】本発明者らは好気性の微
生物が増殖するには十分な酸素が必要であることに着目
し、細菌培地に接触する被検試料直下の培地における細
菌の増殖量が被検試料の酸素透過係数と密接に関係する
ことから、細菌の増殖量を評価することによって被検試
料の酸素透過係数を簡単に評価できることを見出し、本
発明を完成するに至った。即ち、本発明によれば、微生
物を懸濁させた平板状の栄養培地の表面に被検試料を置
いた状態で微生物を一定時間培養し、被検試料直下の微
生物増殖量と被検試料が無い培地の微生物増殖量とを比
較することにより、該被検試料の酸素透過係数を求める
ことを特徴とする膜素材における酸素透過係数の測定方
法が提供される。
Means for Solving the Problems The present inventors have focused on the fact that aerobic microorganisms need sufficient oxygen to grow, and have studied the growth of bacteria in a medium immediately below a test sample that comes into contact with a bacterial medium. Since the amount is closely related to the oxygen permeability coefficient of the test sample, it has been found that the oxygen permeability coefficient of the test sample can be easily evaluated by evaluating the amount of bacterial growth, and the present invention has been completed. That is, according to the present invention, the microorganisms are cultured for a certain period of time with the test sample placed on the surface of a plate-shaped nutrient medium in which the microorganisms are suspended, and the amount of microorganism growth immediately below the test sample and the test sample are determined. There is provided a method for measuring the oxygen permeability coefficient of a membrane material, wherein the method is to determine the oxygen permeability coefficient of the test sample by comparing the growth rate of the microorganism with a medium without the medium.

【0016】本発明の方法では、微生物が使用される
が、人間や動物に感染しないこと、測定者にとって安全
であることの観点から、好気性の微生物、特に好気性の
植物病原細菌の使用が好ましい。好気性の微生物であれ
ばどのようなものであっても利用することができる。こ
のような好気性の微生物は、一般の細胞培養とは違って
37℃の恒温での培養は不必要である。本発明の方法に
おいて培養温度は凡そ20〜30℃あれば十分であるた
め、微生物に植物病原細菌を用いるメリットは大きい。
In the method of the present invention, microorganisms are used. However, from the viewpoints of not infecting humans and animals and being safe for a measurer, the use of aerobic microorganisms, especially aerobic phytopathogenic bacteria, is preferred. preferable. Any aerobic microorganism can be used. Such aerobic microorganisms need not be cultured at a constant temperature of 37 ° C., unlike general cell culture. In the method of the present invention, a culture temperature of about 20 to 30 ° C. is sufficient, so that the merit of using a plant pathogenic bacterium as a microorganism is great.

【0017】本発明の方法において、培地としては細菌
が増殖できる栄養培地ならばどのような培地でも利用で
きるが、キングB培地(以下、KB培地と略記)、ジャ
ガイモ煎汁・グルコース培地、半合成脇本培地などが好
ましい。また、本発明の方法では、培地として固形平板
培地として用いるが、固化剤としては細菌の増殖を阻害
することがなく、透明度の高いものであればいずれの固
化剤でも利用でき、寒天、ジュランガム、ゼラチンが特
に好ましい。
In the method of the present invention, any medium can be used as long as it is a nutrient medium in which bacteria can be grown. King B medium (hereinafter abbreviated as KB medium), potato decoction / glucose medium, semi-synthetic medium, etc. Wakimoto's medium is preferred. In addition, in the method of the present invention, a solid plate medium is used as a medium, but the solidifying agent does not inhibit the growth of bacteria and can be used with any solidifying agent as long as it has high transparency, agar, duran gum, Gelatin is particularly preferred.

【0018】好気性微生物を培地と混合して培養する
と、微生物が増殖する前には濁りが無く透き通っていた
培地は菌体の増殖に伴い、1〜2日で白濁し培地の透明
度(以下、培地透明度と略記)は低下する。培地表面に
酸素透過性に優れた被検試料を置いた場合、被検試料直
下でも細菌の増殖は容易なため、細菌の増殖と共に培地
は濁り、培地を透過する光量が減少する。しかし、被検
試料が酸素を通さない場合は、試料直下では細菌が増殖
できないために培地は透明のままである。従って、培地
の透明度と細菌の増殖度とは逆の関係があるので、培地
透明度と被検試料直下の培地透明度とを比較すれば被検
試料の酸素透過係数が簡単に評価できることになる。
When an aerobic microorganism is mixed with a medium and cultured, the medium, which is not turbid and is transparent before the microorganism grows, becomes cloudy in 1 to 2 days as the cells grow, and the clarity of the culture (hereinafter, referred to as (Abbreviated as medium clarity). When a test sample having excellent oxygen permeability is placed on the surface of the culture medium, bacteria can easily grow immediately below the test sample. Therefore, the culture medium becomes cloudy with the growth of bacteria, and the amount of light transmitted through the culture medium decreases. However, when the test sample is impermeable to oxygen, the culture medium remains transparent because bacteria cannot grow below the sample. Therefore, since the transparency of the culture medium is inversely related to the growth rate of the bacteria, the oxygen permeability coefficient of the test sample can be easily evaluated by comparing the transparency of the culture medium with the transparency of the culture medium immediately below the test sample.

【0019】本発明は、被検試料を微生物培養用の培地
に接触させておき、被検試料直下の培地透明度を計測す
ることで、酸素透過係数の測定を行う。被検試料の裏面
は液体状の培地、すなわち、水分含有の培地面に接し、
表面は乾燥あるいは任意の湿度を含む気体相に接してい
る。本発明は、このように被検試料の酸素透過係数を微
生物の増殖状態を培地透明度の違いから測定するもので
あり、特別な設備を用いることなく、簡易に評価できる
点に特徴がある。
In the present invention, the oxygen permeability coefficient is measured by bringing a test sample into contact with a culture medium for culturing microorganisms and measuring the transparency of the culture medium immediately below the test sample. The back surface of the test sample is in contact with the liquid medium, that is, the surface of the water-containing medium,
The surface is in contact with a dry or gas phase containing any humidity. The present invention is to measure the oxygen permeability coefficient of a test sample in terms of the growth state of microorganisms from the difference in culture medium transparency, and is characterized in that it can be easily evaluated without using special equipment.

【0020】本発明ではシャーレに微生物を懸濁させた
培地に被検試料の小片を同時に多数セットすることが可
能なので、酸素透過係数の評価を多種の試料について行
う場合には特に効率的で経済的となる。
In the present invention, since a large number of small pieces of a test sample can be simultaneously set in a medium in which microorganisms are suspended in a petri dish, it is particularly efficient and economical when the oxygen permeability coefficient is evaluated for various kinds of samples. Become a target.

【0021】また、本発明においては、被検試料の一方
側は微生物培養用の培地に接しており、他方側は任意の
湿度を含む気体相と接するような状態で測定を行うこと
ができる。被検試料の表面を高湿度の気体相に接するよ
うにするには、微生物培養容器を密封すれば100%の
湿度の気体相が得られる。また、除湿調整装置により任
意の湿度を含む無菌処理済みの空気を微生物培養容器に
連続的に送り込むと培養容器の湿度を制御させることが
できる。
In the present invention, the measurement can be performed in a state where one side of the test sample is in contact with a culture medium for culturing microorganisms and the other side is in contact with a gas phase containing arbitrary humidity. In order to bring the surface of the test sample into contact with the gas phase of high humidity, a gas phase of 100% humidity can be obtained by sealing the microorganism culturing vessel. Further, the humidity of the culture container can be controlled by continuously feeding the sterilized air containing any humidity into the microorganism culture container by the dehumidification adjusting device.

【0022】本発明によるこのような酸素透過係数の測
定方法はバイオマテリアルの気体透過評価に大変有効で
ある。例えば、生体組織に触れる人工皮膚の下部は熱傷
による体液滲出液で湿潤状態にあるが、上部は乾燥した
大気相(空気相)に触れており乾燥した状態にある。本
発明による酸素透過係数の評価方法ではこうした状況下
にある人工皮膚素材の酸素透過係数をも適切に評価でき
る。
The method for measuring the oxygen permeability coefficient according to the present invention is very effective for evaluating gas permeability of biomaterials. For example, the lower part of the artificial skin that touches the living tissue is in a wet state with bodily fluid exudate due to a burn, while the upper part is in a dry state because it is in contact with a dry atmospheric phase (air phase). The method for evaluating the oxygen permeability coefficient according to the present invention can also appropriately evaluate the oxygen permeability coefficient of the artificial skin material under such circumstances.

【0023】本発明の方法で用いる好気性植物病原細菌
としては、トマトかいよう病菌、レタス腐敗病菌、アブ
ラナ科野菜黒腐病菌が例示できる。また、胞子を作って
増殖する植物病原糸状菌としては、稲の病原糸状菌で黒
い胞子を形成し、生物検定にも多く利用されているイネ
ゴマ葉枯病菌、ならびに、Fusarium属菌の中で
も胞子を多量に形成するクワ芽枯病菌soluni
が例示できる。本発明に用いることができる植物病菌と
その学名の一例を下記に示す。Corynebacterium michiganese pv.michiganese トマトかいよう病菌Pseudomonas cichorii 各種腐敗病菌(レタス)Xanthomonas campestris pv.campestris アブラナ科野菜黒腐病菌 植物病原糸状菌:Biporaris leersiae イネごま葉枯病菌Fusarium solani f.sp. mori クワ芽枯病菌
Examples of aerobic plant pathogenic bacteria used in the method of the present invention include tomato canker, lettuce rot, and cruciferous vegetable black rot. As the phytopathogenic fungi to grow making spores, forming a black spores pathogenic fungi of rice, Inegoma leaf blotch fungus, which is frequently used in bioassays, as well as the spores among Fusarium spp Mulberry blight fungus F. soluni
Can be exemplified. Examples of plant pathogens and their scientific names that can be used in the present invention are shown below. .. Corynebacterium michiganese pv michiganese tomato canker Pseudomonas cichorii various Rot (lettuce) Xanthomonas campestris pv campestris cruciferous vegetables black rot fungus plant pathogenic fungi: Biporaris leersiae rice sesame leaf blight fungus Fusarium solani f.sp. mori mulberry bud blight

【0024】培地透明度は、微生物を懸濁させた栄養培
地上に被検試料をセットした後、一定時間培養した後に
測定する。被検試料が不透明であれば培地から剥がし、
透明であればそのまま反対側に黒または白い紙を置いた
状態で、培地を透過する透過光を写真に撮り、画像処理
することによって培地透明度を評価することができる。
また、低倍率の顕微鏡で培地を透過する光量をこれに連
動した写真の露出時間を測定することによっても簡単に
評価できる。
The clarity of the medium is measured after a test sample is set on a nutrient medium in which microorganisms are suspended and cultured for a certain period of time. If the test sample is opaque, remove it from the culture medium,
If the medium is transparent, the transmitted light passing through the medium is photographed in a state where black or white paper is placed on the opposite side, and the transparency of the medium can be evaluated by image processing.
In addition, the amount of light transmitted through the medium can be easily evaluated by measuring the exposure time of a photograph linked thereto with a low magnification microscope.

【0025】試料に接触する細菌培地の透明度と被検試
料の酸素透過係数との関係は、細菌増殖阻害度と酸素透
過係数との検量線を作成しておけば、任意の被検試料に
おいても細菌増殖阻害度から被検試料の酸素透過係数が
明らかになる。また、標準膜を2〜3枚用意し、対照と
して置くことにより微生物濃度や培養条件による増殖阻
害の差を補正できる。被検試料の厚さと細菌増殖阻害度
の検量線を作成することにより、膜厚が薄くでも、厚く
ても簡単に補正でき、容易に各厚さごとの酸素透過係数
を評価することができる。本発明で被検試料の酸素透過
係数を測定するには、従来法のようにサンプルのサイズ
を厳密に規制する必要が無いので、小片でもよいし任意
の形態であっても良い。また、試料は従来法と全く異な
り酸素透過係数測定装置の治具で力を加えてしっかりと
取り付ける必要がないので、被検試料は、膜、粉末、水
を含んだゲル状物、繊維状物、塊状物等色々な形態のも
のでも同様に利用できる。こうした試料の中で、特に本
発明の威力を発揮するのは、力を加えると変形し易いゲ
ルを対象にした場合である。
The relationship between the transparency of the bacterial culture in contact with the sample and the oxygen permeability coefficient of the test sample can be determined for any test sample by preparing a calibration curve between the degree of bacterial growth inhibition and the oxygen permeability coefficient. The degree of bacterial growth inhibition reveals the oxygen permeability coefficient of the test sample. Also, by preparing two or three standard membranes and placing them as a control, it is possible to correct the difference in growth inhibition due to the microorganism concentration and culture conditions. By preparing a calibration curve of the thickness of the test sample and the degree of inhibition of bacterial growth, the thickness can be easily corrected whether the film thickness is small or large, and the oxygen permeability coefficient for each thickness can be easily evaluated. In the present invention, in order to measure the oxygen permeability coefficient of the test sample, it is not necessary to strictly control the size of the sample as in the conventional method, so that the sample may be in small pieces or in any form. Also, unlike the conventional method, the sample does not need to be firmly attached by applying force with a jig of the oxygen permeability coefficient measuring device, so the test sample is a film, powder, gel containing water, fibrous material, etc. Various forms such as a lump and a lump can be similarly used. Among such samples, the power of the present invention is particularly exhibited when the gel is easily deformed when a force is applied.

【0026】被検試料の表面に凹凸があって培地表面が
デコボコになって透明度が不均一になる場合は、水を一
滴滴下し、上に透明膜を置いて平らにすることによって
測定できる。従来、酸素透過係数の測定装置は各種ある
が、1回の測定には1サンプルのデータしか得られない
が、本発明によると、微生物を懸濁した栄養培地表面に
被検試料の小片を複数セットすることで一度に多数の測
定が可能となる。
When the surface of the test sample has irregularities and the surface of the medium becomes uneven and the transparency becomes uneven, the measurement can be made by dropping a drop of water, placing a transparent film on top and flattening. Conventionally, there are various devices for measuring the oxygen permeability coefficient, but only one sample data can be obtained in one measurement. However, according to the present invention, a plurality of small pieces of the test sample are placed on the surface of a nutrient medium in which microorganisms are suspended. By setting, many measurements can be performed at once.

【0027】[0027]

【実施例】以下、実施例により本発明を説明する。な
お、実施例中の評価は次の方法によった。 A.細菌増殖阻害度の評価方法 加熱溶解後55℃に保持した半合成脇本培地あるいはキ
ングB培地15mlと、検定菌(濃度109〜1010
/ml)2mlを混合してシャーレに流し込んで平板状
に固めた。この菌液混合平板培地上に円板あるいは正方
形(1cm2)に切った被検試料の切片を置き、ピンセ
ットで注意深く培地に被検試料全体が接触するように置
床させた。2日間20〜25℃に保った後、被検試料直
下の培地における細菌増殖阻害度を下記の判定基準によ
り4段階で評価した。 +++:強い(菌はほとんど増殖せず、培地透明度は高く透明ガラスの感じ) ++:やや強い +:弱い(菌はわずかに増殖するため、培地透明度は透明ガラスとすりガ ラスの中間程度) ±:軽微(菌の増殖は1/5程度であり、培地透明度はすりガラス程度) −:菌は良く増殖し、培地は不透明 なお、被検試料が透明であれば培地表面にセットしてあ
る試料直下の培地透明度を被検試料を剥がすことなくそ
のまま透過法により評価することができる。被検試料が
不透明なものであれば、細菌を含む培地で一定時間培養
した後、不透明な被検試料を剥がし、被検試料直下の培
地透明度を評価することで細菌の増殖量を評価できる。
The present invention will be described below with reference to examples. The evaluation in the examples was based on the following method. A. Evaluation method of bacterial growth inhibition degree After heating and dissolving, 15 ml of semi-synthetic wakimoto medium or King B medium kept at 55 ° C. and 2 ml of test bacteria (concentration of 10 9 to 10 10 cells / ml) were mixed, poured into a Petri dish, and plated. Hardened. A section of the test sample cut into a disk or a square (1 cm 2 ) was placed on the plate medium mixed with the bacterial solution, and carefully placed on the medium with forceps so as to bring the entire test sample into contact with the medium. After maintaining the temperature at 20 to 25 ° C. for 2 days, the degree of bacterial growth inhibition in the medium immediately below the test sample was evaluated in four steps according to the following criteria. ++: Strong (microorganisms hardly grow, medium transparency is high and the appearance of transparent glass) ++: Slightly strong +: Weak (microorganisms grow slightly, so medium transparency is about the middle between transparent glass and ground glass) ± : Slight (growth of bacteria is about 1/5, and medium transparency is about ground glass)-: Bacteria grow well and medium is opaque. If the test sample is transparent, immediately below the sample set on the surface of the medium Of the medium can be directly evaluated by a transmission method without removing the test sample. If the test sample is opaque, after culturing in a medium containing bacteria for a certain period of time, the opaque test sample is peeled off, and the amount of bacterial growth can be evaluated by evaluating the transparency of the medium immediately below the test sample.

【0028】B.微生物に対する抗菌活性の評価方法 あらかじめシャーレの底に被検試料を置き、その上から
加熱溶解55℃に保持していたPSA培地と検定菌の胞
子液(濃度105〜106/ml)2mlの混合液を静か
に流し込んで平板状に固め、上記Aの評価方法と同様に
観察した。試料直上部において菌の増殖が阻害された場
合、試料は抗菌活性を有すると判定した。
B. Method for evaluating antimicrobial activity against microorganisms A test sample was placed on the bottom of a Petri dish in advance, and 2 ml of a PSA medium and a spore solution (concentration of 10 5 to 10 6 / ml) of the test bacteria, which had been heated and dissolved at 55 ° C., were placed thereon. The mixture was gently poured and solidified into a plate shape, and observed in the same manner as in the evaluation method of A above. A sample was determined to have antibacterial activity when bacterial growth was inhibited immediately above the sample.

【0029】C.培地透明度 微生物を懸濁させた培地に酸素を全く通さない透明な膜
試料および被検試料をセットして一定時間培養した後、
連動する顕微鏡で培地を観察する。各試料における露出
計の表示値を測定し、培地透明度を次式(1)により算
出した。 培地透明度(%)=(1−(b−a)/(c−a))×100 (1) 但し、aは酸素を実質的に通さない透明な膜試料(例え
ばポリ塩化ビニリデン)における露出計表示値、あるい
は培養前の培地の露出計表示値、bは被検試料直下の露
出計表示値、cは膜試料がなく細菌が増殖した培地の露
出計表示値を意味する。
C. Medium transparency After setting a transparent membrane sample and test sample that do not pass oxygen at all to the medium in which the microorganisms are suspended, and culturing for a certain period of time,
Observe the medium with the interlocking microscope. The indicated value of the light meter in each sample was measured, and the culture medium transparency was calculated by the following equation (1). Medium transparency (%) = (1− (ba) / (ca)) × 100 (1) where a is an exposure meter for a transparent membrane sample (eg, polyvinylidene chloride) that does not substantially pass oxygen. The indicated value or the indicated value of the light meter of the medium before culture, b indicates the indicated value of the light meter immediately below the test sample, and c indicates the indicated value of the light meter of the medium in which the bacteria were grown without the membrane sample.

【0030】実施例1 酸素透過係数が既知の被検試料をトマトかいよう病細菌
を含む培地にセットし、被検試料直下の培地における細
菌の増殖阻害度を評価した。培地には、キングB培地を
用いた。抗菌性評価の結果はセット後25℃に2日間保
ったものである。得られた結果を表1に示した。なお、
文献(最新医用材料開発利用便覧、1986)より引用
した酸素透過係数の単位は、cc/m2・hr・atm
である。
Example 1 A test sample having a known oxygen permeability coefficient was set in a medium containing tomato canker bacterial, and the degree of bacterial growth inhibition in the medium immediately below the test sample was evaluated. King B medium was used as the medium. The results of the antibacterial evaluation are those maintained at 25 ° C. for 2 days after setting. Table 1 shows the obtained results. In addition,
The unit of the oxygen permeability coefficient quoted from the literature (the latest medical materials development and utilization handbook, 1986) is cc / m 2 · hr · atm.
It is.

【0031】[0031]

【表1】 * 単位:cm/m2・hr・atm.[Table 1] * Unit: cm / m 2 · hr · atm.

【0032】なお、本発明における被検試料の内で酸素
透過性が最も良好なシリコンシートを培地の表面に置い
た場合、被検試料を介して細菌の増殖に必要な酸素が十
分に補給されるので細菌の増殖は極めて良好であり、細
菌の増殖阻害は全く観察されない。表1に見る通り、酸
素透過係数が大きい被検試料ほど、試料直下の栄養培地
での細菌の増殖性が良好であるため細菌の増殖に伴い培
地が濁り、培地透明度は低下する。培地透明度を定量化
することで被検試料の酸素透過性を評価できる。被検試
料直下における培地での培地透明度を次のようにして評
価した。ニコン顕微鏡を用いて以下の方法により露出計
の露出時間(s)の表示値を読み取った。顕微鏡の倍率
は、4×2.5である。細菌の培養シャーレを顕微鏡に
セットし、菌を増殖させない培地あるいは実質的に酸素
を阻止するポリ塩化ビニリデン膜直下の露出時間をほぼ
1.00秒となるように顕微鏡下部の照明ランプ光源の
強さを便宜的に調節する。次に、培地上に接触した各被
検試料を顕微鏡の視野に置き、それぞれの露出時間を計
測し、最後に試料を乗せていないバックグラウンド(細
菌が増殖し不透明になっている)の露出時間を計測す
る。
When a silicon sheet having the best oxygen permeability among the test samples in the present invention is placed on the surface of a culture medium, oxygen necessary for the growth of bacteria is sufficiently supplied via the test sample. Therefore, bacterial growth is very good and no bacterial growth inhibition is observed. As shown in Table 1, as the test sample has a higher oxygen permeability coefficient, the growth of the bacteria in the nutrient medium immediately below the sample is better, so that the culture becomes more turbid as the bacteria grow and the transparency of the medium decreases. The oxygen permeability of the test sample can be evaluated by quantifying the transparency of the medium. The medium clarity in the medium immediately below the test sample was evaluated as follows. Using a Nikon microscope, the indicated value of the exposure time (s) of the light meter was read by the following method. The magnification of the microscope is 4 × 2.5. Set the culture dish on the microscope to the microscope, and set the intensity of the illumination lamp light source under the microscope so that the exposure time under the medium that does not grow bacteria or under the polyvinylidene chloride membrane that substantially blocks oxygen is almost 1.00 seconds. Is adjusted for convenience. Next, each test sample in contact with the medium is placed in the field of view of the microscope, and the respective exposure times are measured. Finally, the exposure time of the background (where bacteria grow and become opaque) with no sample placed thereon is finally measured. Is measured.

【0033】実施例2 実施例1の追加調査として被検試料の抗菌性の有無を調
べた。シャーレの底に試料番号1−4の被検試料の切片
を置き、その上からトマトかいよう病細菌を含むKB培
地を被検試料が浮き上がらないように十分注意して静か
ら流し込んで2日間培養し、細菌増殖阻害度を調べた。
その結果、試料番号1〜4の被検試料直上の培地にも細
菌が良好に増殖し、試料による細菌増殖阻害は観察され
なかった。このように、試料は抗菌性を有しなかったこ
とから、表1に見られた細菌増殖阻害度が酸素透過に基
づくものと判断できる。
Example 2 As an additional investigation of Example 1, the presence or absence of antibacterial properties of a test sample was examined. A section of the test sample No. 1-4 is placed on the bottom of the Petri dish, and a KB medium containing tomato canker bacterium is poured from above with sufficient care so that the test sample does not rise from above, and cultured for 2 days. The bacterial growth inhibition was examined.
As a result, the bacteria grew well in the medium immediately above the test samples of sample numbers 1 to 4, and no bacterial growth inhibition by the sample was observed. Thus, since the sample did not have antibacterial properties, it can be determined that the bacterial growth inhibition degree shown in Table 1 is based on oxygen permeation.

【0034】実施例3 実施例1で用いた試料番号3のセルロースチューブ膜の
枚数を変えKB培地にセットし、被検細菌にトマトかい
よう病細菌を用いて細菌増殖阻害度を評価した。得られ
た結果を表2に示す。
Example 3 The number of the cellulose tube membranes of Sample No. 3 used in Example 1 was changed and set in a KB medium, and the bacterial growth inhibition was evaluated using tomato canker as a test bacterium. Table 2 shows the obtained results.

【0035】[0035]

【表2】 厚さ;μm[Table 2] Thickness; μm

【0036】試料膜の厚さと細菌増殖阻害度の関係を示
す検量線を作成することにより、膜厚には関係無く、試
料膜の一定の厚さにおける酸素透過度を簡単に補正表示
できる。
By preparing a calibration curve showing the relationship between the thickness of the sample membrane and the degree of bacterial growth inhibition, the oxygen permeability at a constant thickness of the sample membrane can be easily corrected and displayed regardless of the film thickness.

【0037】実施例4 酸素透過係数の異なる絹フィブロイン膜を調製し、その
酸素透過度を次のようにして調べた。熟蚕体内より後部
絹糸線を取り出し、液状絹フィブロインを蒸留水に分散
させて、蒸留水で約0.85倍に希釈した。25℃に設
定した恒温槽内でポリエチレン膜に絹フィブロイン水溶
液を拡げ蒸発乾固させて絹フィブロイン膜を調製した。
次に、得られた膜を水不溶性にするため、50重量%の
メタノール水溶液に1、10、30分間処理してから取
り出した後、室温で1昼夜乾燥させた試料の酸素透過係
数を測定した。なお、膜の酸素透過係数の値は酸素電極
法により求めた。即ち、酸素電極の感応部に絹フィブロ
イン膜を装着し、30℃の酸素飽和水中にその電極を浸
漬し、得られる電極値から酸素の透過係数値を測定し
た。膜の厚さは約40μmであった。但し、酸素透過係
数の単位は、cm3(S.T.P)・cm/cm2・s・
cmHg)である。得られた結果を表3に示す。酸素電
極法で調べた酸素透過係数を表3に併せて示す。
Example 4 Silk fibroin membranes having different oxygen permeability coefficients were prepared, and the oxygen permeability was examined as follows. The rear silk wire was taken out from the mature silkworm, liquid silk fibroin was dispersed in distilled water, and diluted about 0.85 times with distilled water. A silk fibroin aqueous solution was spread on a polyethylene membrane in a thermostat set at 25 ° C. and evaporated to dryness to prepare a silk fibroin membrane.
Next, in order to make the obtained membrane water-insoluble, the membrane was treated with a 50% by weight aqueous solution of methanol for 1, 10, and 30 minutes, taken out, and then dried at room temperature for 24 hours. . The value of the oxygen permeability coefficient of the membrane was determined by the oxygen electrode method. That is, the silk fibroin membrane was attached to the sensitive part of the oxygen electrode, the electrode was immersed in oxygen-saturated water at 30 ° C., and the oxygen transmission coefficient value was measured from the obtained electrode value. The thickness of the film was about 40 μm. However, the unit of the oxygen permeability coefficient is cm 3 (STP) · cm / cm 2 · s ·
cmHg). Table 3 shows the obtained results. Table 3 also shows the oxygen transmission coefficient measured by the oxygen electrode method.

【0038】[0038]

【表3】 ** 単位:cm3(S.T.P)・cm/m2・s・cmHg[Table 3] ** Unit: cm 3 (STP) cm / m 2 s cm Hg

【0039】培養後に培地の透明度が高いということ
は、試料膜における酸素透過性が低いためであり、細菌
が増殖しにくいことを意味する。メタノール溶液で絹膜
を浸漬処理すると、処理時間が長くなるつれ酸素を通さ
ない傾向を示す。それは、通常、不溶化処理で絹フィブ
ロイン分子の形態がランダムコイル型からβ型に移行
し、これに伴い分子の凝集構造が緻密になるために酸素
透過係数が減少するためと考えられている。表3から分
かるように、本法でも酸素電極法で測定した酸素透過係
数と同様の結果が得られた。
The high transparency of the medium after the cultivation means that the oxygen permeability of the sample membrane is low, which means that the bacteria are difficult to grow. When a silk film is immersed in a methanol solution, the treatment tends to impede oxygen as the treatment time increases. This is considered to be due to the fact that the form of silk fibroin molecules usually shifts from a random coil type to a β type by the insolubilization treatment, and the aggregation structure of the molecules becomes dense accompanying this, thereby decreasing the oxygen permeability coefficient. As can be seen from Table 3, the same result as the oxygen permeability coefficient measured by the oxygen electrode method was obtained in this method.

【0040】[0040]

【発明の効果】本発明は、微生物を含む培地表面に被検
膜を接触させ一定時間培養し、微生物の増殖度を生物学
的手法を用いて計測することで、被検試料における酸素
透過係数を測定するという簡易さに特徴がある。従来の
物理学化学的な手法で被検試料における酸素透過係数を
測定するのではないため、酸素透過係数測定のための測
定装置は不必要である。さらに、本発明法は被検試料の
数が多いほど経済的に優れた効果を奏する。それは、微
生物を懸濁した培地表面に多数の被検試料の小片をセッ
トすることでサンプルの酸素透過係数の評価が同時に可
能になるからであり、この点においても従来にはない酸
素透過係数の測定法といえる。本発明は、一方が溶液
相、他の一方が任意の湿度を含む気体相に接する被検試
料の酸素透過係数の測定が可能となる点において従来に
例を見ない特徴をもつ。また、サンプルのサイズを厳密
に規制する必要が無いので、試料片でもよいし任意の形
態であっても良いため、被検試料は、膜、粉末、水を含
んだゲル状物、繊維状物、塊状物等色々な形態のもので
も同様に利用できる点でも従来の方法より優れている。
さらに力を加えると変形し易いゲルを対象にした場合で
も測定できるという特徴を持っている。
According to the present invention, the oxygen permeability coefficient of a test sample is determined by bringing a test membrane into contact with the surface of a culture medium containing microorganisms, culturing them for a certain period of time, and measuring the proliferation of the microorganisms using a biological technique. It is characterized by the simplicity of measuring. Since the oxygen permeability coefficient of the test sample is not measured by a conventional physicochemical method, a measuring device for measuring the oxygen permeability coefficient is unnecessary. Furthermore, the method of the present invention has an economically superior effect as the number of test samples increases. This is because by setting a large number of small pieces of the test sample on the surface of the medium in which the microorganisms are suspended, the oxygen permeability coefficient of the sample can be evaluated at the same time. It is a measurement method. The present invention has an unprecedented feature in that it allows measurement of the oxygen permeability coefficient of a test sample in which one is in contact with a solution phase and the other is in contact with a gas phase containing arbitrary humidity. Further, since it is not necessary to strictly control the size of the sample, the sample may be in any form or in any form. Therefore, the test sample may be a film, a powder, a gel containing water, or a fibrous material. It is also superior to the conventional method in that various forms such as lumps can be similarly used.
It has the characteristic that it can be measured even for gels that are easily deformed when a force is applied.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 微生物を懸濁させた平板状の栄養培地の
表面に膜素材被検試料を置いた状態で微生物を一定時間
培養し、被検試料直下の微生物増殖量と被検試料が無い
培地の微生物増殖量とを比較することにより、該被検試
料の酸素透過係数を求めることを特徴とする膜素材にお
ける酸素透過係数の測定方法。
1. A microorganism is cultured for a certain period of time with a test sample placed on a surface of a plate-shaped nutrient medium in which the microorganism is suspended, and the amount of microorganism growth immediately below the test sample and no test sample are present. A method for measuring an oxygen permeation coefficient of a membrane material, comprising determining an oxygen permeation coefficient of the test sample by comparing the amount of microbial growth in a culture medium.
【請求項2】 好気性微生物を用いることを特徴とする
請求項1記載の膜素材における酸素透過係数の測定方
法。
2. The method for measuring the oxygen permeability coefficient of a membrane material according to claim 1, wherein an aerobic microorganism is used.
【請求項3】 膜素材被検試料の一方側が液体相あるい
は固体相に接し、他方側が任意の湿度を含む気体相に接
する状態で測定を行うこと特徴とする請求項1記載の膜
素材における酸素透過係数の測定方法。
3. The membrane material according to claim 1, wherein the measurement is performed in a state in which one side of the sample is in contact with a liquid phase or a solid phase and the other side is in contact with a gas phase containing arbitrary humidity. How to measure the transmission coefficient.
JP27998696A 1996-10-01 1996-10-01 Measuring method of oxygen permeability coefficient in membrane material Expired - Lifetime JP2818866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27998696A JP2818866B2 (en) 1996-10-01 1996-10-01 Measuring method of oxygen permeability coefficient in membrane material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27998696A JP2818866B2 (en) 1996-10-01 1996-10-01 Measuring method of oxygen permeability coefficient in membrane material

Publications (2)

Publication Number Publication Date
JPH10108690A true JPH10108690A (en) 1998-04-28
JP2818866B2 JP2818866B2 (en) 1998-10-30

Family

ID=17618718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27998696A Expired - Lifetime JP2818866B2 (en) 1996-10-01 1996-10-01 Measuring method of oxygen permeability coefficient in membrane material

Country Status (1)

Country Link
JP (1) JP2818866B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010020330A (en) * 1995-04-04 2010-01-28 Novartis Ag Extended wear ophthalmic lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010020330A (en) * 1995-04-04 2010-01-28 Novartis Ag Extended wear ophthalmic lens

Also Published As

Publication number Publication date
JP2818866B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
Witty et al. Direct evidence for changes in the resistance of legume root nodules to O2 diffusion
US3843452A (en) Microbiological test article
DK145380B (en) PROCEDURE FOR MASS CULTIVATION OF CELLS AND TISSUE AND CONTAINER FOR CARRYING OUT THE PROCEDURE
DK153333B (en) PROCEDURE FOR PREPARING A UNIT FOR DETERMINING ANTIBIOTICS AND SULPHONAMID RESIDUES IN BIOLOGICAL LIQUIDS AND UNITS PREPARED BY THE PROCEDURE
Munton et al. Aspects of the action of glutaraldehyde on Escherichia coli
CN104560891A (en) Screening method of pseudomonas solanacearum bacteriophage resource
Lonnemann Assessment of the quality of dialysate.
JP2818866B2 (en) Measuring method of oxygen permeability coefficient in membrane material
Cole THE PREPARATION OF SOLID AND LIQUID MEDIA FOR THE CULTIVATION OF THE GONOCOCCUS. ¹
Eschlbeck et al. Effect of moisture equilibration time and medium on contact angles of bacterial spores
KR20180113445A (en) Heat-Wet Response Device for Predicting Potential of Indoor Air Microbe Contamination and Producing Method Thereof
Michigan Agricultural College. Department of Bacteriology Laboratory manual in general microbiology
RU2238973C1 (en) Liquid nutrient medium for culturing brucella
CN105779563A (en) Detection reagent kit and method of heat-resistant microorganisms in elemene lipidosome injection semi-finished products
RU2681499C1 (en) Nutrient medium on basis of secondary product of beef hydrolyzate for cultivation of microorganisms
SU977466A1 (en) Polyacrylamide gel for medical and biological uses and process for producing the ssame
Kojima et al. Homeostatic regulation of membrane potential by an electrogenic ion pump against change in the K+ concentration of the extra-and intra-organ perfusion solutions
RU2247775C1 (en) Liquid nutrient transporting medium for collection, culturing and transportation of patient blood with suspicion for brucellosis
Fairbrother A text-book of medical bacteriology
KR920008386B1 (en) Detection paper of staphylococcus aureus
FR2569419A1 (en) PROCESS FOR THE PREPARATION OF A NUTRIENT MEDIUM FOR THE CULTURE OF MICROORGANISMS AND CULTURES OF CELLS OF A MACROORGANISM
FI105044B (en) Method for culturing microbiological samples
RU2410424C1 (en) Culture medium for growing microorganism
RU2677954C1 (en) Method of monitoring the stage of cultivation in the technology of the plague vaccine
RU2346052C1 (en) Two-phase nutrient medium for isolating brucellosis microbe

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

EXPY Cancellation because of completion of term