JPH10108499A - Torque controller for induction motor - Google Patents

Torque controller for induction motor

Info

Publication number
JPH10108499A
JPH10108499A JP8278784A JP27878496A JPH10108499A JP H10108499 A JPH10108499 A JP H10108499A JP 8278784 A JP8278784 A JP 8278784A JP 27878496 A JP27878496 A JP 27878496A JP H10108499 A JPH10108499 A JP H10108499A
Authority
JP
Japan
Prior art keywords
voltage
vector
output
magnetic flux
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8278784A
Other languages
Japanese (ja)
Other versions
JP3508971B2 (en
Inventor
Keiichi Uesono
恵一 上園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP27878496A priority Critical patent/JP3508971B2/en
Publication of JPH10108499A publication Critical patent/JPH10108499A/en
Application granted granted Critical
Publication of JP3508971B2 publication Critical patent/JP3508971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To control torque even when a voltage command vector has a magnitude larger than that of a maximum voltage vector by selecting the voltage vector in the rotational direction of an induction motor or a primary angular speed and outputting the voltage vector thus selected as a voltage command for a voltage controlled inverter. SOLUTION: A decision means 11 receives the voltage Vdc of a DC power supply 1 detected through a voltage detector 10, and a voltage command vector V* from a coordinate conversion means 9. A voltage vector selection means 12 receiving an output A from the decision means 11, the voltage command vector V* and a rotational speed ωm from a speed detector 5 selects a voltage vector in the rotation direction which is inputted to an inverter 2. According to the arrangement, torque can be controlled even when the voltage command vector V* has a magnitude larger than that of a maximum voltage vector.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、インバータにより
誘導電動機のトルクを制御する装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for controlling the torque of an induction motor using an inverter.

【0002】[0002]

【従来の技術】図2は従来の誘導電動機のトルク制御装
置の一例を示すブロック図であり、図2において、電流
検出器4は、誘導電動機3の一次の電流ベクトルiを検
出する。また速度検出器5は前記誘導電動機3の回転子
の速度を検出する。電流検出器4、速度検出器5より、
検出された電流ベクトルiと回転速度ωmを入力して演
算手段6でトルクの大きさTと磁束ベクトル大きさφと
その位相角θを演算する。トルクTとその指令値T*と
の誤差をトルク誤差演算手段71で演算し、トルク誤差
増幅手段81で増幅されてトルク分電圧指令VTとな
る。演算手段6の出力の磁束ベクトルの大きさφとその
指令値φ*との誤差を磁束誤差演算手段72で求め、磁
束誤差増幅手段82で増幅されて磁束分電圧Vφとな
る。
2. Description of the Related Art FIG. 2 is a block diagram showing an example of a conventional torque control device for an induction motor. In FIG. 2, a current detector 4 detects a primary current vector i of the induction motor 3. The speed detector 5 detects the speed of the rotor of the induction motor 3. From the current detector 4 and the speed detector 5,
The detected current vector i and rotation speed ωm are input, and the calculation means 6 calculates the magnitude T of the torque, the magnitude φ of the magnetic flux vector, and the phase angle θ thereof. An error between the torque T and its command value T * is calculated by a torque error calculating means 71 and amplified by a torque error amplifying means 81 to become a torque component voltage command VT. An error between the magnitude φ of the magnetic flux vector output from the arithmetic means 6 and the command value φ * is obtained by the magnetic flux error arithmetic means 72, and is amplified by the magnetic flux error amplifying means 82 to become the magnetic flux component voltage Vφ.

【0003】トルク分電圧指令VT、磁束分電圧Vφは
座標変換手段9において、電圧指令ベクトルV*は、 V* =(Vφ+jVT)exp(jθ)───(1) の演算式で表せる回転座標変換をする。ここで、jは−
1の平方根で虚数部を表す。また式(1)で演算されて
座標変換手段9からの出力は電圧指令ベクトルV*であ
り、これが電圧制御インバータ2に入力される。ここで
は電圧指令ベクトルV* に応じた三相の電圧を誘導電
動機3に印加して、直流電源1から電力を誘導電動機3
に供給する。
The torque component voltage command VT and the magnetic flux component voltage Vφ are converted by the coordinate conversion means 9 into a voltage command vector V *, which is represented by the following equation: V * = (Vφ + jVT) exp (jθ) ─── (1) Make the conversion. Where j is-
The imaginary part is represented by the square root of 1. The output from the coordinate conversion means 9 calculated by the equation (1) is a voltage command vector V *, which is input to the voltage control inverter 2. Here, a three-phase voltage corresponding to the voltage command vector V * is applied to the induction motor 3, and power is supplied from the DC power supply 1 to the induction motor 3.
To supply.

【0004】[0004]

【発明が解決しようとする課題】前述した従来方式にお
いて、トルク誤差増幅手段81と磁束誤差増幅手段82
は一般的に比例積分増幅器で構成され、トルク誤差が無
くてもトルク誤差増幅器81の出力トルク分電圧指令V
Tは誘導電動機3の回転速度にほぼ比例した値となる。
また磁束誤差が無い場合、磁束誤差増幅器82の出力磁
束分電圧Vφは誘導電動機3の一次抵抗の電圧降下程度
の値となる。ここで一次抵抗の電圧降下程度の値はわず
かであり無視すると、式(1)から電圧指令ベクトルV
*の大きさは誘導電動機3の回転速度にほぼ比例する出
力トルク分電圧指令VTに等しいことが解る。
In the conventional system described above, the torque error amplifying means 81 and the magnetic flux error amplifying means 82 are used.
Is generally constituted by a proportional-integral amplifier. Even if there is no torque error, the output torque voltage command V
T is a value substantially proportional to the rotation speed of the induction motor 3.
When there is no magnetic flux error, the output magnetic flux divided voltage Vφ of the magnetic flux error amplifier 82 has a value of about the voltage drop of the primary resistance of the induction motor 3. Here, the value of the voltage drop of the primary resistance is very small and is ignored.
It can be understood that the magnitude of * is equal to the output torque voltage command VT that is substantially proportional to the rotation speed of the induction motor 3.

【0005】ただし、誘導電動機3の運転領域を高速側
に広げようとすると、インバータ2は直流電源1の電圧
により出力電圧の最大値が制限されるため、高速域で指
令通りの電圧が誘導電動機3に印加できない。この領域
では磁束誤差がないものとして成立させた従来の制御方
法では磁束の大きさφは指令値φ*に追従できるが、ト
ルクの大きさTが制御ができなくなる。
[0005] However, if the operating range of the induction motor 3 is to be extended to the high-speed side, the maximum value of the output voltage of the inverter 2 is limited by the voltage of the DC power supply 1, so that the voltage as instructed in the high-speed range is the induction motor. 3 cannot be applied. In this region, the magnitude of the magnetic flux φ can follow the command value φ *, but the magnitude of the torque T cannot be controlled by the conventional control method that is established without any magnetic flux error.

【0006】以下にその理由を述べる。まずインバータ
2が指令値通りの電圧を出力できる場合の出力トルク分
電圧指令VTと出力磁束分電圧Vφの大きさについて述
べる。インバータ2の出力電圧ベクトルVと磁束ベクト
ルψの関係は式(2)で表され、 V=dψ/dt──────(2) となる。ただし、誘導電動機3の一次抵抗の電圧降下は
考慮していない。ここで、ψ=φexp(jθ)とする
と式(2)は式(3)で表され、 V=d(φexp(jθ))/dt+jωφexp(jθ)───(3) となる。
The reason will be described below. First, the magnitude of the output torque component voltage command VT and the output magnetic flux component voltage Vφ when the inverter 2 can output a voltage according to the command value will be described. The relationship between the output voltage vector V of the inverter 2 and the magnetic flux vector ψ is expressed by equation (2), and V = dψ / dt────── (2). However, the voltage drop of the primary resistance of the induction motor 3 is not considered. Here, if ψ = φexp (jθ), Expression (2) is represented by Expression (3), and V = d (φexp (jθ)) / dt + jωφexp (jθ) ─── (3)

【0007】ここで、ω=dθ/dtである。前述した
従来方式において電圧制御インバータ2が忠実に指令値
通りの電圧ベクトルVを誘導電動機に印加するならば、
式(1)の電圧指令ベクトルV*は式(3)の出力電圧
ベクトルVと等しくなるので、実部と虚数部でまとめる
と、式(4),(5)で表され、 Vφ=dφ/dt─────(4) VT=ωφ────────(5) となる。磁束の回転角速度ωは、ほぼ誘導電動機の回転
速度ωmに等しいので式(5)より出力トルク分電圧指
令VTが概略速度に比例し、式(4)より出力磁束分電
圧Vφは磁束の変化率に等しいためほとんど値を持たな
いことが解る。したがって、電圧指令ベクトルV*の大
きさを決定付けるのは速度に比例するトルク分電圧指令
VTであることが解る。
Here, ω = dθ / dt. In the conventional method described above, if the voltage control inverter 2 faithfully applies a voltage vector V according to the command value to the induction motor,
Since the voltage command vector V * in the equation (1) becomes equal to the output voltage vector V in the equation (3), the real part and the imaginary part are expressed by the equations (4) and (5), and Vφ = dφ / dt───── (4) VT = ωφ──────── (5) Since the rotational angular velocity ω of the magnetic flux is almost equal to the rotational speed ωm of the induction motor, the output torque voltage command VT is approximately proportional to the speed according to the equation (5), and the output magnetic flux voltage Vφ is the rate of change of the magnetic flux according to the equation (4). It has almost no value because it is equal to. Therefore, it is understood that the magnitude of the voltage command vector V * is determined by the torque voltage command VT proportional to the speed.

【0008】次にインバータ2が指令値通りの電圧を出
力できる理由とできない理由を述べる。インバータ2の
出力可能な瞬時の電圧ベクトルはゼロベクトルを含んだ
7種類の電圧ベクトルからなり、正六角形の中心が大き
さゼロのゼロベクトルで、6つの頂点が残り6 種類の電
圧ベクトルで構成されており、電圧指令ベクトル(V
*)に近いゼロベクトル(Vo)を含んだ3種類の電圧
ベクトル(Vo、Va、Vb)とそれぞれの出力時間
(To、Ta、Tb)との積のベクトル和が電圧指令ベ
クトル(V*)と前記出力時間の総和(Ts)との積に
等しくなるように3種類の電圧ベクトル(Vo、Va、
Vb)を順次それぞれの出力時間(To、Ta、Tb)
出力することにより電圧指令ベクトルV*に等しい電圧
ベクトルVを出力することができる。つまり次に示す式
(6)の条件を満足する必要がある。 V*・Ts=Vo・To+Va・Ta+Vb・Tb───(6)
Next, the reason why the inverter 2 can output a voltage according to the command value and the reason why it cannot be output will be described. The instantaneous voltage vectors that can be output from the inverter 2 are composed of seven types of voltage vectors including a zero vector. The center of a regular hexagon is a zero vector having a size of zero, and the six vertices are composed of the remaining six types of voltage vectors. And the voltage command vector (V
*) Is the voltage command vector (V *), which is the sum of the products of three types of voltage vectors (Vo, Va, Vb) including the zero vector (Vo) close to the respective output times (To, Ta, Tb). And three types of voltage vectors (Vo, Va, Va) so as to be equal to the product of the sum of the output times (Ts).
Vb) is sequentially output to each output time (To, Ta, Tb)
By outputting, a voltage vector V equal to the voltage command vector V * can be output. That is, it is necessary to satisfy the condition of the following expression (6). V * · Ts = Vo · To + Va · Ta + Vb · Tb─── (6)

【0009】ところが、電圧指令ベクトルV*がこの正
六角形の大きさより大きいと指令値に等しい電圧ベクト
ルVは出力できない。しかも電圧指令ベクトルV*の大
きさを決定付けているのはトルク分電圧指令VTであ
り、トルクの大きさTと指令値T*の誤差によりトルク
誤差増幅手段81の出力トルク分電圧指令VTが増加す
ると、式(1)より電圧指令ベクトルV*はますます大
きくなる傾向にあり、実際に誘導電動機に印加される電
圧ベクトルVとの差も増加し、トルクTが指令値に追従
できない状態になる。
However, if the voltage command vector V * is larger than the regular hexagon, the voltage vector V equal to the command value cannot be output. Moreover, it is the torque component voltage command VT that determines the magnitude of the voltage command vector V *, and the output torque component voltage command VT of the torque error amplifier 81 is determined by the error between the magnitude T of the torque and the command value T *. As the voltage increases, the voltage command vector V * tends to become larger and larger from the equation (1), the difference between the voltage command vector V * and the voltage vector V actually applied to the induction motor also increases, and the torque T cannot follow the command value. Become.

【0010】磁束の大きさφと指令値φ*との誤差によ
り磁束分電圧Vφが増幅した場合、式(1)より磁束分
電圧Vφはトルク分電圧指令VTに対して直角のベクト
ルであり、VφはVTに対して十分に小さいため、V*
の大きさ方向の増加はほとんど無く、V*の位相角方向
の変化として現れる。たとえV*が前記正六角形の大き
さより大きいくインバータが指令値に等しい大きさの電
圧ベクトルを出力できない場合でも位相方向の変化には
対応できるため、磁束の大きさφは指令値φ*に追従す
る。
When the magnetic flux component voltage Vφ is amplified due to an error between the magnitude of the magnetic flux φ and the command value φ *, the magnetic flux component voltage Vφ is a vector perpendicular to the torque component voltage command VT according to equation (1). Since Vφ is sufficiently smaller than VT, V *
There is almost no increase in the direction of the magnitude, and it appears as a change in the phase angle direction of V *. Even if V * is larger than the size of the regular hexagon and the inverter cannot output a voltage vector having a magnitude equal to the command value, the magnitude of the magnetic flux φ follows the command value φ * because it can cope with a change in the phase direction. I do.

【0011】このように、従来では電圧指令ベクトルV
*の大きさがインバータの入力直流電圧により制限され
る最大の電圧ベクトルVの大きさより大きい場合にトル
クの制御ができないという問題があった。本発明は上述
した点に鑑みて創案されたもので、その目的とするとこ
ろは、これらの欠点を解決する誘導電動機のトルク制御
装置を提供することにある。
Thus, conventionally, the voltage command vector V
When the magnitude of * is larger than the magnitude of the maximum voltage vector V limited by the input DC voltage of the inverter, there is a problem that torque cannot be controlled. The present invention has been made in view of the above points, and an object of the present invention is to provide a torque control device for an induction motor that solves these drawbacks.

【0012】[0012]

【課題を解決するための手段】つまり、その目的を達成
するための手段は、電圧指令と電圧制御インバータの入
力電源の電圧から前記電圧制御インバータが指令値と等
価の電圧を出力可能か否かを判断する判別手段と、この
判別手段の出力と前記誘導電動機の回転方向または一次
角速度の回転方向とを入力し前記判別手段により出力不
可能と判断された場合には前記誘導電動機または一次角
速度の回転方向の電圧ベクトルを選択し前記電圧制御イ
ンバータの電圧指令として出力する電圧ベクトル選択手
段と、磁束誤差増幅手段が比例積分増幅器である場合
に、前記判別手段により出力不可能と判別された場合に
は磁束誤差増幅手段の積分器の出力を更新させない磁束
誤差積分値固定手段とを設けることによって構成されて
いる。
Means for achieving the object is to determine whether or not the voltage control inverter can output a voltage equivalent to a command value from a voltage command and a voltage of an input power supply of the voltage control inverter. Determination means for determining whether the output of the induction motor and the rotation direction of the induction motor or the rotation direction of the primary angular velocity are input, and if it is determined that the output is impossible by the determination means, A voltage vector selecting means for selecting a voltage vector in the rotating direction and outputting it as a voltage command of the voltage control inverter; and a case where the magnetic flux error amplifying means is a proportional-integral amplifier, and when it is determined that the output is impossible by the determining means Is provided by providing a magnetic flux error integral value fixing means which does not update the output of the integrator of the magnetic flux error amplifying means.

【0013】前記判別手段により電圧指令ベクトルV*
が正六角形の外側にあると判断した場合には、インバー
タは電圧指令ベクトルV*と等価の電圧を出力できな
い。そこで、電圧ベクトル選択手段により、回転方向の
電圧ベクトルV**正6角形の頂点の1つ)を選択し、
電圧指令ベクトルV*に置き換えると、磁束誤差積分値
固定手段により磁束の大きさφは指令値φ*に追従せず
に小さくなり、トルクの大きさTは指令値T*にほぼ追
従することができる。従ってトルクの制御ができる。以
下に理由を述べる。
The voltage command vector V * is determined by the determination means.
Is outside the regular hexagon, the inverter cannot output a voltage equivalent to the voltage command vector V *. Then, a voltage vector V ** in the rotation direction is selected by the voltage vector selection means (one of the vertices of a regular hexagon).
When the voltage command vector V * is replaced, the magnitude of the magnetic flux φ becomes smaller without following the command value φ * by the magnetic flux error integral value fixing means, and the magnitude T of the torque almost follows the command value T *. it can. Therefore, torque can be controlled. The reason is described below.

【0014】いま電圧指令ベクトルV*がインバータが
出力できる電圧範囲(正六角形)の外側にある場合、電
圧ベクトル選択手段により磁束ベクトルの回転方向の電
圧ベクトルを選択することにより磁束の大きさφを指令
値φ*より小さくすることができる。
If the voltage command vector V * is outside the voltage range (regular hexagon) that the inverter can output, the magnitude of the magnetic flux φ is determined by selecting the voltage vector in the rotation direction of the magnetic flux vector by the voltage vector selection means. It can be smaller than the command value φ *.

【0015】つまり、トルク分電圧指令VTが式(5)
(4)で示されるように磁束分電圧指令に対して十分に
大きい場合はV*に対して回転方向の電圧ベクトルV*
は式(1)で示されるVφに対してマイナス方向に存在
し、V*を出力することにより強制的にマイナスのVφ
を出力したことになる。すると式(4)より磁束の大き
さφは指令値φ*によらずに小さくなることが解る。磁
束の大きさφが小さくなると、式(5)よりVTも小さ
くなることが解る。
That is, the torque component voltage command VT is given by the following equation (5).
As shown in (4), when the value is sufficiently large with respect to the magnetic flux component voltage command, the voltage vector V * in the rotation direction with respect to V *.
Is present in a minus direction with respect to Vφ shown in the equation (1), and by outputting V *, the negative Vφ is forced.
Is output. Then, from the equation (4), it can be seen that the magnitude φ of the magnetic flux decreases regardless of the command value φ *. It can be seen from equation (5) that VT also decreases as the magnitude φ of the magnetic flux decreases.

【0016】また、磁束の大きさφが指令値φ*より小
さくなると磁束誤差増幅手段によりVφはプラス方向に
増加するが、磁束誤差積分値固定手段によりVφの誤差
積分による増加を防ぎ、Vφは単に磁束の大きさφと指
令値φ*との誤差に比例した値と固定された積分値との
和になる。
When the magnitude of the magnetic flux φ becomes smaller than the command value φ *, Vφ increases in the plus direction by the magnetic flux error amplifying means, but the magnetic flux error integral value fixing means prevents the increase due to the error integration of Vφ. It is simply the sum of a value proportional to the error between the magnitude φ of the magnetic flux and the command value φ * and a fixed integral value.

【0017】以上の働きによりV*がインバータの出力
できる電圧範囲を超えると、電圧指令ベクトルV*に対
して、回転方向の電圧ベクトルV**を誘導電動機に印
加し、磁束の積分器の働きを停止させることにより、V
φの増加を防ぎながら磁束の大きさφを指令値φ*に追
従させずにVTを下げ、V*とV**の誤差を発散させ
ないことにより、トルクTを指令値T*に追従させるこ
とを可能にしている。以下、本発明の一実施例を図面に
基づいて詳述する。
When V * exceeds the voltage range that the inverter can output due to the above operation, a voltage vector V ** in the rotating direction is applied to the induction motor in response to the voltage command vector V *, and the operation of the magnetic flux integrator is performed. By stopping V
To reduce the VT without causing the magnitude of the magnetic flux φ to follow the command value φ * while preventing the increase in φ, and to make the torque T follow the command value T * by preventing the error between V * and V ** from diverging. Is possible. Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

【0018】[0018]

【発明の実施の形態】図1は本発明の一実施例を示すブ
ロック図であり、図中、図2の従来技術を示すブロック
図と同一な部分は説明を省略し異なる部分(図1の点線
内)のみ説明する。図1において、判別手段11は検出
器10より検出された直流電源1の電圧Vdcと、座標
変換手段9から出力される電圧指令ベクトルV*とを入
力し、式(6)を満足する出力時間Ta、Tbの和が総
和Tsより大きいときはA=1、小さいときはA=0を出
力する。電圧ベクトル選択手段12は判別手段11の出
力Aと、電圧指令ベクトルV*と、検出器5の回転速度
ωmを入力してA=0ならV**=V* を、A=1な
らωmの極性に応じて式(6)の電圧ベクトルVa、V
bのうち回転方向の電圧ベクトルを選び、V**=V
a、またはV**=Vbを出力し、インバータ2に入力
する。
FIG. 1 is a block diagram showing an embodiment of the present invention. In FIG. 1, the same parts as those in the prior art shown in FIG. Only the part within the dotted line) will be described. In FIG. 1, a discriminating unit 11 receives a voltage Vdc of the DC power supply 1 detected by a detector 10 and a voltage command vector V * output from a coordinate transforming unit 9, and outputs an output time satisfying the equation (6). When the sum of Ta and Tb is larger than the sum Ts, A = 1 is output, and when it is smaller, A = 0 is output. The voltage vector selection means 12 inputs the output A of the determination means 11, the voltage command vector V *, and the rotation speed ωm of the detector 5, and if A = 0, V ** = V *, and if A = 1, ωm The voltage vectors Va and V of the equation (6) according to the polarity
Select the voltage vector in the rotation direction from b, and V ** = V
a or V ** = Vb is output and input to the inverter 2.

【0019】また、磁束誤差積分値固定手段13は判別
手段11の出力Aを入力し、A=1の場合に磁束誤差増
幅手段821の積分器の値を更新させない。
The magnetic flux error integrated value fixing means 13 receives the output A of the discriminating means 11 and does not update the value of the integrator of the magnetic flux error amplifying means 821 when A = 1.

【0020】[0020]

【発明の効果】以上説明したように、従来は電圧指令ベ
クトルV*の大きさがインバータの入力直流電圧により
制限される最大の電圧ベクトルVの大きさより大きい場
合はトルクの制御ができなかったことが、本発明によ
り、電圧指令ベクトルV*の大きさがインバータの入力
直流電圧により制限される最大の電圧ベクトルVの大き
さより大きい場合でもトルクの制御ができる。
As described above, conventionally, when the magnitude of voltage command vector V * is greater than the magnitude of maximum voltage vector V limited by the input DC voltage of the inverter, torque cannot be controlled. However, according to the present invention, the torque can be controlled even when the magnitude of the voltage command vector V * is larger than the magnitude of the maximum voltage vector V limited by the input DC voltage of the inverter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明の一実施例を示すブロック図であ
る。
FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2】図2は従来技術の一例を示すブロック図であ
る。
FIG. 2 is a block diagram showing an example of the related art.

【符号の説明】[Explanation of symbols]

1 直流電源 2 電圧制御インバータ 3 誘導電動機 4 電流検出器 5 速度検出器 6 演算手段 71 トルク誤差演算手段 72 磁束誤差演算手段 81 トルク誤差増幅手段 82 磁束誤差増幅手段 821 磁束誤差増幅手段 9 座標変換手段 10 電圧検出器 11 判別手段 12 電圧ベクトル選択手段 13 磁束誤差積分値固定手段 DESCRIPTION OF SYMBOLS 1 DC power supply 2 Voltage control inverter 3 Induction motor 4 Current detector 5 Speed detector 6 Calculation means 71 Torque error calculation means 72 Flux error calculation means 81 Torque error amplification means 82 Flux error amplification means 821 Flux error amplification means 9 Coordinate conversion means DESCRIPTION OF SYMBOLS 10 Voltage detector 11 Judgment means 12 Voltage vector selection means 13 Magnetic flux error integral value fixing means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 三相誘導電動機の磁束ベクトルとトルク
を演算する演算手段と、該演算手段の出力の磁束ベクト
ルとトルクの大きさとこれら磁束ベクトル及びトルクの
指令値とを比較するトルク誤差演算手段および磁束誤差
演算手段と、これらの誤差演算手段の出力を増幅するト
ルク誤差増幅手段および磁束誤差増幅手段と、これらの
誤差増幅手段の出力を前記演算手段の出力の磁束ベクト
ルの位相角で回転座標変換する座標変換手段と、該座標
変換手段の出力を電圧指令として入力して電圧波形に変
換する電圧ベクトル選択手段を経て三相の電圧を前記誘
導電動機に印加する電圧制御インバータとで構成される
誘導電動機のトルク制御装置において、前記電圧指令と
電圧制御インバータの入力電源の電圧から前記電圧制御
インバータが指令通りの電圧を出力できないことを判断
する判別手段と、該判別手段の出力と前記誘導電動機の
回転方向または一次角速度の回転方向とを入力し、電圧
が制限状態にあることを示す前記判別手段の出力に応じ
て前記誘導電動機または一次角速度の回転方向の電圧ベ
クトルを選択し、前記電圧制御インバータの電圧指令と
して出力するように為した電圧ベクトル選択手段とを設
けたことを特徴とする誘導電動機のトルク制御装置。
1. A calculating means for calculating a magnetic flux vector and a torque of a three-phase induction motor, and a torque error calculating means for comparing a magnitude of a magnetic flux vector and a torque output from the calculating means with a command value of the magnetic flux vector and a torque. And a magnetic flux error calculating means, a torque error amplifying means and a magnetic flux error amplifying means for amplifying the output of these error calculating means, It comprises a coordinate conversion means for converting, and a voltage control inverter for applying a three-phase voltage to the induction motor through a voltage vector selection means for inputting an output of the coordinate conversion means as a voltage command and converting the output into a voltage waveform. In the torque control device for an induction motor, the voltage control inverter transmits a command based on the voltage command and a voltage of an input power supply of the voltage control inverter. A determination unit that determines that a voltage cannot be output, and an output of the determination unit and a rotation direction of the induction motor or a rotation direction of the primary angular velocity, and the determination unit that indicates that the voltage is in a limited state. A voltage vector selecting means for selecting a voltage vector in the rotation direction of the induction motor or the primary angular velocity in accordance with an output, and outputting the selected voltage vector as a voltage command of the voltage-controlled inverter. Torque control device.
【請求項2】 前記磁束誤差増幅手段が比例積分増幅器
である場合に、前記判別手段により出力不可能と判別さ
れた場合には磁束誤差増幅手段の積分器の出力を更新さ
せない磁束誤差積分値固定手段を設けた請求項1記載の
誘導電動機のトルク制御装置。
2. When the magnetic flux error amplifying means is a proportional-integral amplifier, the output of an integrator of the magnetic flux error amplifying means is not updated when the output of the magnetic flux error amplifying means is determined to be impossible. The torque control device for an induction motor according to claim 1, further comprising means.
JP27878496A 1996-09-30 1996-09-30 Induction motor torque control device Expired - Fee Related JP3508971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27878496A JP3508971B2 (en) 1996-09-30 1996-09-30 Induction motor torque control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27878496A JP3508971B2 (en) 1996-09-30 1996-09-30 Induction motor torque control device

Publications (2)

Publication Number Publication Date
JPH10108499A true JPH10108499A (en) 1998-04-24
JP3508971B2 JP3508971B2 (en) 2004-03-22

Family

ID=17602138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27878496A Expired - Fee Related JP3508971B2 (en) 1996-09-30 1996-09-30 Induction motor torque control device

Country Status (1)

Country Link
JP (1) JP3508971B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1633039A1 (en) * 2004-09-06 2006-03-08 BSH Bosch und Siemens Hausgeräte GmbH Control method for an electrical motor and drive to carry out the method
JP2008043112A (en) * 2006-08-09 2008-02-21 Toyo Electric Mfg Co Ltd Induction machine controller
JP2011050178A (en) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd Motor control device and generator control device
EP2592747A3 (en) * 2011-11-10 2014-05-21 General Electric Company Method and system for controlling motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1633039A1 (en) * 2004-09-06 2006-03-08 BSH Bosch und Siemens Hausgeräte GmbH Control method for an electrical motor and drive to carry out the method
JP2008043112A (en) * 2006-08-09 2008-02-21 Toyo Electric Mfg Co Ltd Induction machine controller
JP2011050178A (en) * 2009-08-27 2011-03-10 Sanyo Electric Co Ltd Motor control device and generator control device
EP2592747A3 (en) * 2011-11-10 2014-05-21 General Electric Company Method and system for controlling motor
US8963460B2 (en) 2011-11-10 2015-02-24 General Electric Company Method and system for controlling motor

Also Published As

Publication number Publication date
JP3508971B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
JP3337076B2 (en) Induction motor control device
JPH08182398A (en) Driving device for permanent magnet-type synchronous motor
JPH05260781A (en) Power conversion apparatus
BR112019001636B1 (en) ELECTRIC POWER STEERING DEVICE
JPH0344508B2 (en)
JP3508971B2 (en) Induction motor torque control device
JP4114942B2 (en) Induction motor control device
JP4219362B2 (en) Rotating machine control device
JP2816103B2 (en) Induction motor control device
JPH11127600A (en) Controlling device for permanent-magnet type synchronous electric motor
JP3751991B2 (en) AC servo motor current control method
JPH09140187A (en) Power converter
JPH11299298A (en) Torque controller of induction motor
JP3754740B2 (en) Torque control method and torque control device for induction motor
JPH0585470B2 (en)
JPS6330236Y2 (en)
JP2912316B2 (en) Elevator speed control device
JP2629196B2 (en) Vector controller for induction motor
JP2521985B2 (en) Control method of induction motor
JPH11137000A (en) Controller for ac machine
JP2536994B2 (en) Induction motor torque control device
JPH08163900A (en) Induction motor controller
JPH0993997A (en) Ac motor drive inverter control method
JPS6244089A (en) Induction motor driver
JPS6412194B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees