JPH0993997A - Ac motor drive inverter control method - Google Patents

Ac motor drive inverter control method

Info

Publication number
JPH0993997A
JPH0993997A JP7250291A JP25029195A JPH0993997A JP H0993997 A JPH0993997 A JP H0993997A JP 7250291 A JP7250291 A JP 7250291A JP 25029195 A JP25029195 A JP 25029195A JP H0993997 A JPH0993997 A JP H0993997A
Authority
JP
Japan
Prior art keywords
axis
value
phase
angle
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7250291A
Other languages
Japanese (ja)
Inventor
Hiroaki Hayashi
寛明 林
Yasuaki Yatsusu
康明 八須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7250291A priority Critical patent/JPH0993997A/en
Publication of JPH0993997A publication Critical patent/JPH0993997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the abnormality of a motor current due to the discontinuous change of a deviation angle δ between a d-axis value and a q-axis value when an AC motor operated by a VVVF inverter for analysing it into the d-axis value and the q-axis value to perform vector control is reversed. SOLUTION: An electrical angle holding circuit 31 holds an electrical angle θobtained at the time of the inversion of an electric motor as it is to give it to a vector rotation device 23 as a d-q axis computing electrical angle θ1 and however, if a comparator 32 detects θ1 =θ, the holding state is released. Therefore, it can be avoided that a d-axis voltage detection value Vd and a q-axis voltage detection value Vq computed by the vector rotation device 23 become an abnormal value. Further, a pattern generating circuit 33 avoids that a d-axis adjustment computing value Vd1 and a q-axis adjustment computing value Vq1 outputted from an adjustment device 13 become an abnormal value by weakening the adjustment device gains K1 , K2 of the adjustment device 13, and the current jump or the generation of an abnormal sound of an induction motor 4 driven by a VVVF inverter 3 is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、ベクトル制御に
より可変電圧・可変周波数の交流電力を出力するインバ
ータで運転する交流電動機の回転方向を切り替える際
の、前記インバータの制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling an inverter when switching the rotation direction of an AC electric motor operated by an inverter that outputs AC power of variable voltage and variable frequency by vector control.

【0002】[0002]

【従来の技術】図6はベクトル制御により可変電圧・可
変周波数の交流電力を出力して交流電動機を駆動するイ
ンバータの従来例を示した回路図である。この従来例回
路において、交流電源2からの交流電力を可変電圧・可
変周波数の交流電力に変換して出力するVVVFインバ
ータ3へ与える。このVVVFインバータ3はその出力
交流の電圧と周波数との比率が一定となるように電圧と
周波数とを制御しており、この出力交流電力で誘導電動
機4を所望の回転速度で運転する。ここでVVVFイン
バータ3は以下に記述する要領により制御される。
2. Description of the Related Art FIG. 6 is a circuit diagram showing a conventional example of an inverter for driving an AC motor by outputting AC power of variable voltage and variable frequency by vector control. In this conventional circuit, the AC power from the AC power supply 2 is supplied to a VVVF inverter 3 which converts the AC power into a variable voltage / variable frequency AC power and outputs it. The VVVF inverter 3 controls the voltage and frequency so that the ratio of the output AC voltage and frequency is constant, and the output AC power drives the induction motor 4 at a desired rotation speed. Here, the VVVF inverter 3 is controlled by the procedure described below.

【0003】三相電圧検出器21は、VVVFインバー
タ3が出力する三相交流電圧のうちのU相電圧検出値V
U とW相電圧検出値VW を検出して三相/二相変換器2
2へ与える。三相/二相変換器22は下記の数式1の演
算により、固定軸上の相互に直交するa軸上とb軸上の
二相交流量,即ちa軸電圧検出値Va とb軸電圧検出値
b とに変換する。
The three-phase voltage detector 21 detects the U-phase voltage detection value V of the three-phase AC voltage output from the VVVF inverter 3.
Three-phase / two-phase converter 2 by detecting the U and W phase voltage detection value V W
Give to 2. The three-phase / two-phase converter 22 is operated by the following mathematical formula 1 to detect the two-phase AC amounts on the a-axis and the b-axis which are orthogonal to each other on the fixed axis, that is, the a-axis voltage detection value V a and the b-axis voltage detection. Convert to the value V b .

【0004】[0004]

【数1】 [Equation 1]

【0005】これらa軸電圧検出値Va とb軸電圧検出
値Vb は、周波数設定器11が設定する周波数指令値f
* を積分して得られる電気角θを使うことにより、下記
の数式2の演算により、回転座標軸上の直流量であるd
軸電圧検出値Vd とq軸電圧検出値Vq とに変換され
る。
The a-axis voltage detection value V a and the b-axis voltage detection value V b are the frequency command value f set by the frequency setter 11.
By using the electrical angle θ obtained by integrating * , the DC amount on the rotation coordinate axis is calculated by the following mathematical formula 2.
It is converted into the axial voltage detection value V d and the q-axis voltage detection value V q .

【0006】[0006]

【数2】 [Equation 2]

【0007】一方、電圧指令値発生器12は周波数設定
器11が設定する周波数指令値f*からd軸電圧指令値
d * とq軸電圧指令値Vq * とを発生させている。比
例演算器または比例積分演算器で構成している調節器1
3へ、d軸電圧指令値Vd *とd軸電圧検出値Vd との
偏差,およびq軸電圧指令値Vq * とq軸電圧検出値V
q との偏差を入力させて、これらの偏差を零にする調節
動作を別個に行わせることにより、この調節器13から
d軸調節演算値Vd1とq軸調節演算値Vq1とが出力す
る。なお当該調節器13へ入力するK1 とK2 は、それ
ぞれd軸用とq軸用の調節器ゲインである。
On the other hand, the voltage command value generator 12 generates the d-axis voltage command value V d * and the q-axis voltage command value V q * from the frequency command value f * set by the frequency setting device 11. Controller 1 composed of a proportional calculator or a proportional integral calculator
3, the deviation between the d-axis voltage command value V d * and the d-axis voltage detection value V d , and the q-axis voltage command value V q * and the q-axis voltage detection value V
By inputting the deviation from q and separately performing the adjusting operation to make these deviations zero, the adjuster 13 outputs the d-axis adjustment calculation value V d1 and the q-axis adjustment calculation value V q1. . Note that K 1 and K 2 input to the adjuster 13 are the d-axis and q-axis adjuster gains, respectively.

【0008】指令値演算回路14は、調節器13が出力
するd軸調節演算値Vd1とq軸調節演算値Vq1を入力し
て、下記の数式3の演算により電圧指令値V1 と偏差角
δを出力する。
The command value calculation circuit 14 inputs the d-axis adjustment calculation value V d1 and the q-axis adjustment calculation value V q1 output from the controller 13, and calculates the deviation from the voltage command value V 1 by the calculation of the following formula 3. Output the angle δ.

【0009】[0009]

【数3】 (Equation 3)

【0010】前述したように、周波数設定器11が設定
する周波数指令値f* を積分器16で積分することによ
り電気角θが得られる。この電気角θと指令値演算回路
14が出力する偏差角δとを加算すればa−d軸間位相
角εが得られる。三相電圧指令値演算器15はこのa−
d軸間位相角εと前述した電圧指令値V1 とを入力し、
以下に記載の数式4の演算を行うことにより、U相電圧
指令値VU * とV相電圧指令値VV * およびW相電圧指
令値VW * が得られる。これら各相電圧指令値VU *
V * ,VW * をVVVFインバータ3へ与えること
で、当該VVVFインバータ3が出力する各相電圧
U ,VV ,VW を前記の指令値に一致させることがで
きる。
As described above, the electrical angle θ is obtained by integrating the frequency command value f * set by the frequency setting device 11 by the integrator 16. By adding the electrical angle θ and the deviation angle δ output from the command value calculation circuit 14, the a-d axis phase angle ε is obtained. The three-phase voltage command value calculator 15 uses this a-
Input the d-axis phase angle ε and the voltage command value V 1 described above,
The U-phase voltage command value V U * , the V-phase voltage command value V V *, and the W-phase voltage command value V W * are obtained by performing the calculation of the following formula 4. These phase voltage command values V U * ,
By applying V V * and V W * to the VVVF inverter 3, the phase voltages V U , V V and V W output by the VVVF inverter 3 can be made to match the command values.

【0011】[0011]

【数4】VU =V1 ・cos ε VV =V1 ・cos (ε− 120O ) VW =V1 ・cos (ε− 240O ) 前述した図6の従来例回路は、ベクトル制御の概念を、
速度制御系を備えていないオープンループのインバータ
に取り入れて電圧制御系を構成する場合の例である。こ
こでd軸は励磁電流に相当するし、q軸はトルク電流に
相当すると考える。
V U = V 1 · cos ε V V = V 1 · cos (ε-120 O ) V W = V 1 · cos (ε-240 O ) The conventional circuit shown in FIG. The concept of
In this example, the voltage control system is constructed by incorporating it into an open loop inverter that does not have a speed control system. Here, it is considered that the d-axis corresponds to the exciting current and the q-axis corresponds to the torque current.

【0012】[0012]

【発明が解決しようとする課題】図6に図示の従来例回
路で、誘導電動機4の回転方向を切り替える際は、正転
の駆動モードから正転の制動モードへ移行し、次いで逆
転の駆動モードへと移行することになる。よって、正転
から逆転へ切り替わるときにq軸電圧検出値Vqの極性
が反転する(前述したように、q軸はトルク電流に相当
する)。このときにd軸電圧検出値Vd は零であるか
ら、偏差角δは+90O から−90O へ変化するので、a−
d軸間位相角εもこれに対応して不連続な変化をする。
その結果、誘導電動機4の電流位相が飛んで、電動機の
回転がぎくしゃくしたり、異常音を発生するなどの不都
合を生じることになる。
When switching the rotation direction of the induction motor 4 in the conventional circuit shown in FIG. 6, the drive mode of the forward rotation is changed to the braking mode of the forward rotation, and then the drive mode of the reverse rotation. Will be moved to. Therefore, the polarity of the q-axis voltage detection value V q is reversed when switching from the normal rotation to the reverse rotation (as described above, the q-axis corresponds to the torque current). At this time, since the d-axis voltage detection value V d is zero, the deviation angle δ changes from +90 O to −90 O , so a−
The d-axis phase angle ε also correspondingly changes discontinuously.
As a result, the current phase of the induction motor 4 jumps, causing inconveniences such as jerky rotation of the electric motor and generation of abnormal noise.

【0013】そこで誘導電動機4が逆転する際に、偏差
角δが+90O から−90O へ変化するのに対応して電気角
θを不連続的に変化させることにより、a−d軸間位相
角εが不連続にならないようにしている。図7の従来例
回路において、逆転指令器24から積分器16への破線
は、逆転時に電気角θを不連続的に変化させる指令であ
る。
Therefore, when the induction motor 4 reversely rotates, the electrical angle θ is discontinuously changed in response to the deviation angle δ changing from +90 O to −90 O , whereby the phase between the a and d axes is changed. The angle ε does not become discontinuous. In the conventional circuit of FIG. 7, the broken line from the reverse rotation commander 24 to the integrator 16 is a command for changing the electrical angle θ discontinuously during reverse rotation.

【0014】しかしながら、電気角θを不連続的に変化
させると、ベクトル回転器23で演算するd軸電圧検出
値Vd とq軸電圧検出値Vq (数式2参照)が異常な値
になってしまうので、これらVd ,Vq を入力して調節
動作をする調節器13の出力であるd軸調節演算値Vd1
とq軸調節演算値Vq1が異常値となり、最終的には誘導
電動機4の電流飛びなどの不具合を生じてしまう。
However, when the electrical angle θ is changed discontinuously, the d-axis voltage detection value V d and the q-axis voltage detection value V q (see Formula 2) calculated by the vector rotator 23 become abnormal values. Therefore, the d-axis adjustment calculation value V d1 which is the output of the adjuster 13 that inputs these V d and V q to perform the adjustment operation.
And the q-axis adjustment calculation value V q1 become an abnormal value, and eventually a problem such as a current jump of the induction motor 4 occurs.

【0015】図7は図6に図示の従来例回路で電動機を
逆転させたときの各部の動作を示した動作波形図であっ
て、図7は電気角θの変化、図7はa−d軸間位相
角εの変化、図7は偏差角δの変化、図7は調節器
13の出力の変化、をそれぞれが示している。この図7
において、誘導電動機4が逆転するのがt0 時点であっ
て、この時点での偏差角δの不連続な変化に対応して積
分器16の出力である電気角θを不連続に変化させてい
るが、そのため調節器13の出力(図7参照)が異常
値になっていることが分かる。
FIG. 7 is an operation waveform diagram showing the operation of each part when the electric motor is rotated in the reverse direction in the conventional circuit shown in FIG. 6, FIG. 7 shows changes in the electrical angle θ, and FIG. FIG. 7 shows changes in the inter-axis phase angle ε, FIG. 7 shows changes in the deviation angle δ, and FIG. 7 shows changes in the output of the adjuster 13. This FIG.
At time t 0 , the induction motor 4 reverses, and the electrical angle θ which is the output of the integrator 16 is discontinuously changed corresponding to the discontinuous change of the deviation angle δ at this time. However, because of this, it can be seen that the output of the controller 13 (see FIG. 7) has an abnormal value.

【0016】そこでこの発明の目的は、d軸値とq軸値
とに分解してベクトル制御するVVVFインバータで運
転する交流電動機を逆転させる際に、d軸値とq軸値と
の偏差角δの不連続変化に起因する電動機電流の異常を
抑制することにある。
Therefore, an object of the present invention is to deviate the d-axis value and the q-axis value from each other, and to reverse the alternating-current motor operated by a VVVF inverter which performs vector control by dividing the value into a d-axis value and a q-axis value. It is to suppress the abnormality of the electric motor current due to the discontinuous change of the.

【0017】[0017]

【課題を解決するための手段】前記の目的を達成するた
めにこの発明の交流電動機駆動用インバータの制御方法
は、交流電動機を駆動するインバータの出力側から検出
する三相交流検出量を固定軸上の相互に直交するa軸上
とb軸上の二相交流量に変換した後、別途に定める周波
数指令値の積分演算で得られる電気角により前記二相交
流量をベクトル回転させて回転座標軸上の直流量である
d軸検出値とq軸検出値とに変換し、これらd軸検出値
とq軸検出値とを別途に設定するd軸指令値とq軸指令
値とに一致させる調節演算を行ってd軸調節演算値とq
軸調節演算値を求め、これらd軸調節演算値とq軸調節
演算値から電圧指令値と偏差角とを求め、この偏差角と
前記電気角からa軸とd軸との間の位相角を求め,この
位相角と前記電圧指令値から三相電圧指令値を演算し、
この三相電圧指令値で前記インバータを制御する構成の
交流電動機駆動用インバータの制御方法において、前記
交流電動機の回転方向を切り替える際でも、周波数指令
値の積分演算による電気角の算出は継続するが、別途に
回転方向切替え時点での値に保持した電気角を持続さ
せ、前記d軸検出値とq軸検出値の演算にはこの保持し
た電気角を使用する。更に、積分演算で算出を継続して
いる電気角がこの保持した電気角と同じ値になった時点
でこの保持状態を解除し、前記d軸検出値とq軸検出値
の演算には、積分演算で算出を継続している電気角を再
び使用するものとする。
In order to achieve the above-mentioned object, a method of controlling an inverter for driving an AC motor according to the present invention comprises a fixed shaft for detecting a three-phase AC detected from an output side of an inverter for driving an AC motor. After converting into the two-phase alternating current amount on the a-axis and the b-axis which are orthogonal to each other, the two-phase alternating current amount is vector-rotated by the electrical angle obtained by the integral calculation of the frequency command value separately determined, and the two-phase alternating current amount is on the rotating coordinate axis. An adjustment calculation for converting the d-axis detected value and the q-axis detected value, which are direct current amounts, to match the d-axis detected value and the q-axis detected value separately with the d-axis command value and the q-axis command value. Go to d axis adjustment calculation value and q
The axis adjustment calculation value is obtained, the voltage command value and the deviation angle are obtained from the d axis adjustment calculation value and the q axis adjustment calculation value, and the phase angle between the a axis and the d axis is calculated from the deviation angle and the electrical angle. Obtained, calculate a three-phase voltage command value from this phase angle and the voltage command value,
In the method for controlling an AC motor driving inverter configured to control the inverter with the three-phase voltage command value, the electrical angle calculation by the integral calculation of the frequency command value is continued even when the rotation direction of the AC motor is switched. Separately, the electrical angle held at the value at the time of switching the rotation direction is maintained, and the held electrical angle is used for the calculation of the d-axis detected value and the q-axis detected value. Further, the holding state is released when the electric angle which is being calculated by the integral calculation becomes the same value as the held electric angle, and the d-axis detected value and the q-axis detected value are calculated by the integration. It is assumed that the electrical angle whose calculation is being continued is used again.

【0018】または、前記交流電動機の回転方向を切り
替える際でも、周波数指令値の積分演算による電気角の
算出は継続するが、別途に回転方向切替え時点での値に
保持した電気角を持続させ、前記d軸検出値とq軸検出
値の演算にはこの保持した電気角を使用する。更に、積
分演算で算出を継続している電気角がこの保持した電気
電気角と同じ値になった時点でこの保持状態を解除し、
前記d軸検出値とq軸検出値の演算には、積分演算で算
出を継続している電気角を再び使用すると共に、d軸検
出値とq軸検出値とを別途に設定するd軸指令値とq軸
指令値とに一致させる調節演算をする際の調節ゲイン
を、前記電気角の保持開始時点から保持解除時点までの
期間中は弱めるものとする。
Alternatively, even when the rotation direction of the AC motor is switched, the calculation of the electrical angle by the integral calculation of the frequency command value is continued, but the electrical angle held separately at the value at the time of switching the rotation direction is maintained, The held electrical angle is used for the calculation of the d-axis detected value and the q-axis detected value. Furthermore, when the electric angle that continues to be calculated by the integral calculation becomes the same value as the held electric angle, this hold state is released,
For the calculation of the d-axis detected value and the q-axis detected value, the electrical angle that continues to be calculated by the integral calculation is used again, and the d-axis command for separately setting the d-axis detected value and the q-axis detected value It is assumed that the adjustment gain when performing the adjustment calculation to match the value and the q-axis command value is weakened during the period from the holding start time of the electrical angle to the holding release time.

【0019】前述したように、d軸値とq軸値とに分解
してベクトル制御するVVVFインバータで運転する交
流電動機を逆転させる際に、d軸値とq軸値との偏差角
δが不連続変化をするので、これに対処するために電気
角θを不連続変化をさせるが、この電気角θを使って算
出するとd軸電圧検出値Vd とq軸電圧検出値Vq とが
異常値になってしまう。そこで電動機が逆転する時点の
電気角θを保持してその値をθ1 とし、d軸電圧検出値
d とq軸電圧検出値Vq の演算にはこのθ1を用い、
θ1 =θになる時点でこの保持状態を解除する。さら
に、d軸検出値とq軸検出値とを別途に設定するd軸指
令値とq軸指令値とに一致させる調節演算をする際の調
節ゲインも、前記電気角θを保持している期間中にかぎ
って弱めることで、VVVFインバータが出力する交流
電圧の異常を解消して、電動機の電流飛びなどの不都合
の回避を図る。
As described above, when the AC motor operated by the VVVF inverter which is decomposed into the d-axis value and the q-axis value and is vector-controlled is reversed, the deviation angle δ between the d-axis value and the q-axis value is not correct. Since it changes continuously, the electrical angle θ is changed discontinuously in order to cope with this, but when calculated using this electrical angle θ, the d-axis voltage detection value V d and the q-axis voltage detection value V q are abnormal. It becomes a value. Therefore, the electric angle θ at the time when the electric motor reverses is held and its value is set to θ 1, and this θ 1 is used to calculate the d-axis voltage detection value V d and the q-axis voltage detection value V q .
This hold state is released when θ 1 = θ. Furthermore, the adjustment gain when performing the adjustment calculation for matching the d-axis detected value and the q-axis detected value with the d-axis command value and the q-axis command value that are separately set is also a period during which the electrical angle θ is held. By weakening only in the middle, the abnormality of the AC voltage output by the VVVF inverter is eliminated, and inconvenience such as current jump of the electric motor is avoided.

【0020】[0020]

【発明の実施の形態】図1は本発明の第1実施例を表し
た回路図であるが、この第1実施例回路は、図6で既述
の従来例回路に電気角保持回路31とコンパレータ32
とを追加して構成している。それ故、図6の従来例回路
と同じ部分の説明は省略する。この第1実施例回路で
は、積分器16が出力する電気角θは電気角保持回路3
1を介してベクトル回転器23へ与えられる。通常運転
中では電気角保持回路31は保持動作を行わないから、
当該電気角保持回路31が出力するd−q軸演算用電気
角θ1 は積分器16が出力する電気角θと同じ値であ
る。ここで誘導電動機4の逆転指令が発令されると、逆
転指令器24から電気角保持回路31へ保持指令が与え
られるので、この時点での電気角θがd−q軸演算用電
気角θ1 としてベクトル回転器23へ与えられる。従っ
てベクトル回転器23が出力するd軸電圧検出値Vd
q軸電圧検出値Vq とは、下記の数式5の演算から得ら
れることになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a circuit diagram showing a first embodiment of the present invention. This first embodiment circuit includes an electrical angle holding circuit 31 in addition to the conventional example circuit described in FIG. Comparator 32
It is configured by adding and. Therefore, the description of the same parts as those of the conventional circuit of FIG. 6 will be omitted. In this first embodiment circuit, the electrical angle θ output by the integrator 16 is the electrical angle holding circuit 3
1 to the vector rotator 23. Since the electrical angle holding circuit 31 does not perform the holding operation during normal operation,
The electrical angle θ 1 for dq axis calculation output by the electrical angle holding circuit 31 has the same value as the electrical angle θ output by the integrator 16. When the reverse rotation command of the induction motor 4 is issued here, the reverse rotation command device 24 gives a holding command to the electrical angle holding circuit 31, so that the electrical angle θ at this point is the electrical angle θ 1 for dq axis calculation. To the vector rotator 23. Therefore, the d-axis voltage detection value V d and the q-axis voltage detection value V q output by the vector rotator 23 are obtained from the calculation of the following Equation 5.

【0021】[0021]

【数5】 (Equation 5)

【0022】コンパレータ32へは積分器16が出力す
る電気角θと、電気角保持回路31が保持して出力して
いるd−q軸演算用電気角θ1 とが入力し、両入力値が
一致した時点でコンパレータ32は電気角保持回路31
へ保持動作の解除を指令するので、これ以後は再び電気
角θがそのままベクトル回転器23へ入力されることに
なる。
The electrical angle θ output from the integrator 16 and the electrical angle θ 1 for dq axis calculation held and output by the electrical angle holding circuit 31 are input to the comparator 32. When they match, the comparator 32 causes the electrical angle holding circuit 31 to
Since the command to cancel the holding operation is issued to, the electrical angle θ is again input to the vector rotator 23 as it is.

【0023】図2は図1に図示の第1実施例回路るおけ
る本発明の部分の動作を表したフローチャートである。
即ち、逆転指令の発令(処理41)により電気角保持回
路31はその時点の出力値を保持(処理42)する。次
いでコンパレータ32が保持したd−q軸演算用電気角
θ1 と積分器16が出力する電気角θとを比較(処理4
3)し、両者の値が一致したとき(判断45)、電気角
保持回路31へ保持動作の解除を指令(処理44)す
る。
FIG. 2 is a flow chart showing the operation of the portion of the present invention in the first embodiment circuit shown in FIG.
That is, the electrical angle holding circuit 31 holds the output value at that time (processing 42) by issuing the reverse rotation command (processing 41). Next, the electrical angle θ 1 for dq axis calculation held by the comparator 32 and the electrical angle θ output by the integrator 16 are compared (Processing 4
3) Then, when both values match (decision 45), the electric angle holding circuit 31 is instructed to cancel the holding operation (process 44).

【0024】図3は図1に図示の第1実施例回路で電動
機を逆転させたときの各部の動作を表した動作波形図で
あって、図3は電気角θの変化、図3はd−q軸演
算用電気角θ1 の変化、図3はa−d軸間位相角εの
変化、図3は偏差角δの変化、図3は調節器13の
出力の変化、をそれぞれが表している。この図3におい
て、誘導電動機4が逆転するt0 時点では、偏差角δの
不連続な変化に対応して積分器16の出力である電気角
θを不連続に変化させているが、電気角保持回路31が
出力するd−q軸演算用電気角θ1 は逆転時の電気角の
値をそのまま保持し、θ1 =θとなるt1 時点でこの保
持状態を解除している。その結果、調節器13の出力
(図3参照)の変化は小さく抑制されていることが分
かる。
FIG. 3 is an operation waveform diagram showing the operation of each part when the electric motor is rotated in the reverse direction in the circuit of the first embodiment shown in FIG. 1. FIG. 3 shows changes in the electrical angle θ, and FIG. 3 shows d. -Changes in the electrical angle θ 1 for q-axis calculation, FIG. 3 shows changes in the phase angle ε between the a-d axes, FIG. 3 shows changes in the deviation angle δ, and FIG. 3 shows changes in the output of the controller 13. ing. In FIG. 3, at time t 0 when the induction motor 4 reversely rotates, the electrical angle θ which is the output of the integrator 16 is discontinuously changed in response to the discontinuous change of the deviation angle δ. The electrical angle θ 1 for d-q axis calculation output by the holding circuit 31 holds the value of the electrical angle at the time of reverse rotation as it is, and this holding state is released at time t 1 when θ 1 = θ. As a result, it can be seen that the change in the output of the adjuster 13 (see FIG. 3) is suppressed to be small.

【0025】図4は本発明の第2実施例を表した回路図
であるが、この第2実施例回路は、図1で既述の第1実
施例回路にパターン発生回路33を追加して構成してい
る。それ故、図1の第1実施例回路と同じ部分の説明は
省略する。前述した第1実施例回路は、積分器16が出
力する電気角θを電気角保持回路31を介してベクトル
回転器23へ与え、逆転指令でその時点の電気角θがd
−q軸演算用電気角θ1 としてベクトル回転器23へ与
えられ、θ1 =θの時点でコンパレータ32は電気角保
持回路31へ保持動作の解除を指令する構成であるが、
図4の第2実施例回路は、これに更にパターン発生回路
33が附加されている。このパターン発生回路33は逆
転指令の発令と同時に調節器13へ入力する調節器ゲイ
ンK1 とK2 とを弱めるが、コンパレータ32がθ1
θを検出した時点で、前記調節器ゲインK1 とK2 の弱
めを元に戻す。
FIG. 4 is a circuit diagram showing a second embodiment of the present invention. In this second embodiment circuit, a pattern generation circuit 33 is added to the first embodiment circuit described in FIG. I am configuring. Therefore, the description of the same parts as those of the first embodiment circuit of FIG. 1 will be omitted. In the circuit of the first embodiment described above, the electrical angle θ output from the integrator 16 is given to the vector rotator 23 via the electrical angle holding circuit 31, and the electrical angle θ at that time is d by the reverse rotation command.
The q-axis calculation electrical angle θ 1 is given to the vector rotator 23, and the comparator 32 instructs the electrical angle holding circuit 31 to cancel the holding operation at the time of θ 1 = θ.
The second embodiment circuit of FIG. 4 is further provided with a pattern generation circuit 33. The pattern generation circuit 33 weakens the controller gains K 1 and K 2 input to the controller 13 at the same time when the reverse rotation command is issued, but the comparator 32 outputs θ 1 =.
When θ is detected, the weakening of the controller gains K 1 and K 2 is restored.

【0026】図5は図4に図示の第2実施例回路で電動
機を逆転させたときの各部の動作を表した動作波形図で
あって、図5は電気角θの変化、図5はd−q軸演
算用電気角θ1 の変化、図5はa−d軸間位相角εの
変化、図5は偏差角δの変化、図5はd−q軸演算
用電気角θ1 を使って演算するd軸電圧検出値Vd とq
軸電圧検出値Vq の変化、図5は調節器13のゲイン
の変化、図5は調節器13の出力の変化、をそれぞれ
が表している。この図5において、誘導電動機4が逆転
するt0 時点では、偏差角δの不連続な変化に対応して
積分器16の出力である電気角θを不連続に変化させて
いるが、電気角保持回路31が出力するd−q軸演算用
電気角θ1 は逆転時の電気角の値をそのまま保持し、θ
1 =θとなるt1 時点でこの保持状態を解除している。
同時に調節器13のゲインを弱めている。その結果、d
軸電圧検出値Vd とq軸電圧検出値Vq の変動を抑制す
ると共に、調節器13の出力変化も小さく抑制されてい
ることが分かる。
FIG. 5 is an operation waveform diagram showing the operation of each part when the electric motor is rotated in the reverse direction in the circuit of the second embodiment shown in FIG. 4. FIG. 5 shows changes in the electrical angle θ, and FIG. -Change of q-axis calculation electrical angle θ 1 , Fig. 5 is change of a-d axis phase angle ε, Fig. 5 is change of deviation angle δ, Fig. 5 is d-q-axis calculation electrical angle θ 1 D-axis voltage detection value V d and q
FIG. 5 shows changes in the axial voltage detection value V q , FIG. 5 shows changes in the gain of the controller 13, and FIG. 5 shows changes in the output of the controller 13. In FIG. 5, at time t 0 when the induction motor 4 reversely rotates, the electrical angle θ which is the output of the integrator 16 is discontinuously changed in response to the discontinuous change in the deviation angle δ. The electrical angle θ 1 for dq axis calculation output from the holding circuit 31 holds the value of the electrical angle during reverse rotation as it is,
This holding state is released at time t 1 when 1 = θ.
At the same time, the gain of the adjuster 13 is weakened. As a result, d
It can be seen that the change in the axial voltage detection value V d and the q-axis voltage detection value V q is suppressed, and the output change of the controller 13 is also suppressed to a small level.

【0027】[0027]

【発明の効果】d軸値とq軸値とに分解してベクトル制
御するVVVFインバータで運転する交流電動機を逆転
させる際に、d軸値とq軸値との偏差角δが不連続変化
する。これに対して本発明では、d軸電圧検出値Vd
q軸電圧検出値Vq を演算するのに用いる電気角θを逆
転時の値に保持し、これをd−q軸演算用電気角θ1
して使用する。更にd軸電圧検出値Vd とq軸電圧検出
値Vq とを別途に設定するd軸電圧指令値Vd * とq軸
電圧指令値Vq * とに一致させる調節演算を行う調節器
のゲインを、逆転時に一時的に弱めることにより、偏差
角δが不連続変化してもd軸電圧検出値Vd とq軸電圧
検出値Vq の演算値が異常値になったり、調節器の出力
値が異常になるのを抑制できるので、電動機の電流飛び
の発生や異常音の発生を抑制できる効果が得られる。
When the AC motor operated by the VVVF inverter which is decomposed into the d-axis value and the q-axis value and is vector-controlled, is reversed, the deviation angle δ between the d-axis value and the q-axis value changes discontinuously. . On the other hand, in the present invention, the electrical angle θ used for calculating the d-axis voltage detection value V d and the q-axis voltage detection value V q is held at the value at the time of reverse rotation, and this value is used as the d-q axis calculation electrical value. Used as the angle θ 1 . Further, a controller that performs adjustment calculation to match the d-axis voltage command value V d * and the q-axis voltage command value V q * that separately set the d-axis voltage detection value V d and the q-axis voltage detection value V q By temporarily weakening the gain during reverse rotation, even if the deviation angle δ changes discontinuously, the calculated values of the d-axis voltage detection value V d and the q-axis voltage detection value V q become abnormal values, or the controller Since it is possible to suppress the output value from becoming abnormal, it is possible to obtain the effect of suppressing the occurrence of current jump and abnormal noise of the electric motor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を表した回路図FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】図1に図示の第1実施例回路における本発明の
部分の動作を表したフローチャート
FIG. 2 is a flowchart showing the operation of the portion of the present invention in the first embodiment circuit shown in FIG.

【図3】図1に図示の第1実施例回路で電動機を逆転さ
せたときの各部の動作を表した動作波形図
FIG. 3 is an operation waveform diagram showing the operation of each part when the electric motor is reversed in the first embodiment circuit shown in FIG.

【図4】本発明の第2実施例を表した回路図FIG. 4 is a circuit diagram showing a second embodiment of the present invention.

【図5】図4に図示の第2実施例回路で電動機を逆転さ
せたときの各部の動作を表した動作波形図
5 is an operation waveform diagram showing the operation of each part when the electric motor is reversed in the circuit of the second embodiment shown in FIG.

【図6】ベクトル制御により可変電圧・可変周波数の交
流電力を出力して交流電動機を駆動するインバータの従
来例を示した回路図
FIG. 6 is a circuit diagram showing a conventional example of an inverter that drives an AC electric motor by outputting AC electric power of a variable voltage / variable frequency by vector control.

【図7】図6に図示の従来例回路で電動機を逆転させた
ときの各部の動作を示した動作波形図
FIG. 7 is an operation waveform diagram showing the operation of each part when the electric motor is reversed in the conventional circuit shown in FIG.

【符号の説明】[Explanation of symbols]

2 交流電源 3 VVVFインバータ 4 誘導電動機 11 周波数設定器 12 電圧指令値発生器 13 調節器 14 指令値演算回路 15 三相電圧指令値演算器 16 積分器 21 三相電圧検出器 22 三相/二相変換器 23 ベクトル回転器 24 逆転指令器 31 電気角保持回路 32 コンパレータ 33 パターン発生回路 41〜44 処理 45 判断 2 AC power supply 3 VVVF inverter 4 Induction motor 11 Frequency setter 12 Voltage command value generator 13 Controller 14 Command value calculation circuit 15 Three-phase voltage command value calculator 16 Integrator 21 Three-phase voltage detector 22 Three-phase / two-phase Converter 23 Vector rotator 24 Reverse rotation command device 31 Electrical angle holding circuit 32 Comparator 33 Pattern generation circuit 41-44 Processing 45 Judgment

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】交流電動機を駆動するインバータの出力側
から検出する三相交流検出量を固定軸上の相互に直交す
るa軸上とb軸上の二相交流量に変換した後、別途に定
める周波数指令値の積分演算で得られる電気角により前
記二相交流量をベクトル回転させて回転座標軸上の直流
量であるd軸検出値とq軸検出値とに変換し、これらd
軸検出値とq軸検出値とを別途に設定するd軸指令値と
q軸指令値とに一致させる調節演算を行ってd軸調節演
算値とq軸調節演算値を求め、これらd軸調節演算値と
q軸調節演算値から電圧指令値と偏差角とを求め、この
偏差角と前記電気角からa軸とd軸との間の位相角を求
め,この位相角と前記電圧指令値から三相電圧指令値を
演算し、この三相電圧指令値で前記インバータを制御す
る構成の交流電動機駆動用インバータの制御方法におい
て、 前記交流電動機の回転方向を切り替える際は、前記d軸
検出値とq軸検出値の演算に使用する前記電気角のみは
回転方向切替え時点の値に保持し、積分演算で得られる
電気角がこの保持した値に一致した時点で保持状態を解
除させることを特徴とする交流電動機駆動用インバータ
の制御方法。
1. A three-phase AC detection amount detected from the output side of an inverter for driving an AC motor is converted into a two-phase AC amount on an a-axis and a b-axis orthogonal to each other on a fixed axis, and then separately determined. The two-phase alternating current amount is vector-rotated by the electrical angle obtained by the integral calculation of the frequency command value to be converted into a d-axis detected value and a q-axis detected value which are direct-current amounts on the rotation coordinate axis, and these d
The d-axis adjustment calculation value and the q-axis adjustment calculation value are obtained by performing an adjustment calculation to match the d-axis command value and the q-axis command value, which separately set the axis detection value and the q-axis detection value, and obtain these d-axis adjustment values. The voltage command value and the deviation angle are calculated from the calculated value and the q-axis adjustment calculation value, the phase angle between the a-axis and the d-axis is calculated from the deviation angle and the electrical angle, and from the phase angle and the voltage command value. In a method of controlling an inverter for driving an AC motor, which is configured to calculate a three-phase voltage command value and control the inverter with this three-phase voltage command value, when switching the rotation direction of the AC motor, the d-axis detection value and Only the electric angle used for the calculation of the q-axis detection value is held at the value at the time of switching the rotation direction, and the holding state is released when the electric angle obtained by the integral calculation matches the held value. A method for controlling an inverter for driving an AC motor.
【請求項2】交流電動機を駆動するインバータの出力側
から検出する三相交流検出量を固定軸上の相互に直交す
るa軸上とb軸上の二相交流量に変換した後、別途に定
める周波数指令値の積分演算で得られる電気角により前
記二相交流量をベクトル回転させて回転座標軸上の直流
量であるd軸検出値とq軸検出値とに変換し、これらd
軸検出値とq軸検出値とを別途に設定するd軸指令値と
q軸指令値とに一致させる調節演算を行ってd軸調節演
算値とq軸調節演算値を求め、これらd軸調節演算値と
q軸調節演算値から電圧指令値と偏差角とを求め、この
偏差角と前記電気角からa軸とd軸との間の位相角を求
め,この位相角と前記電圧指令値から三相電圧指令値を
演算し、この三相電圧指令値で前記インバータを制御す
る構成の交流電動機駆動用インバータの制御方法におい
て、 前記交流電動機の回転方向を切り替える際は、前記d軸
検出値とq軸検出値の演算に使用する前記電気角のみは
回転方向切替え時点の値に保持し、積分演算で得られる
電気角がこの保持した値に一致した時点で保持状態を解
除させると共に、前記電気角の保持開始時点から保持状
態解除時点までの期間は前記d軸検出値とq軸検出値と
をd軸指令値とq軸指令値とに一致させる調節演算のゲ
インを弱めることを特徴とする交流電動機駆動用インバ
ータの制御方法。
2. A three-phase AC detection amount detected from the output side of an inverter for driving an AC motor is converted into a two-phase AC amount on an a-axis and a b-axis, which are orthogonal to each other on a fixed axis, and then separately determined. The two-phase alternating current amount is vector-rotated by the electrical angle obtained by the integral calculation of the frequency command value to be converted into a d-axis detected value and a q-axis detected value which are direct-current amounts on the rotation coordinate axis, and these d
The d-axis adjustment calculation value and the q-axis adjustment calculation value are obtained by performing an adjustment calculation to match the d-axis command value and the q-axis command value, which separately set the axis detection value and the q-axis detection value, and obtain these d-axis adjustment values. The voltage command value and the deviation angle are calculated from the calculated value and the q-axis adjustment calculation value, the phase angle between the a-axis and the d-axis is calculated from the deviation angle and the electrical angle, and from the phase angle and the voltage command value. In a method of controlling an inverter for driving an AC motor, which is configured to calculate a three-phase voltage command value and control the inverter with this three-phase voltage command value, when switching the rotation direction of the AC motor, the d-axis detection value and Only the electric angle used for the calculation of the q-axis detection value is held at the value at the time of switching the rotation direction, and the holding state is released when the electric angle obtained by the integral calculation matches the held value. From the start of holding the corner to the end of the holding state. During the period, the gain of the adjustment calculation for matching the d-axis detected value and the q-axis detected value with the d-axis command value and the q-axis command value is weakened.
JP7250291A 1995-09-28 1995-09-28 Ac motor drive inverter control method Pending JPH0993997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7250291A JPH0993997A (en) 1995-09-28 1995-09-28 Ac motor drive inverter control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7250291A JPH0993997A (en) 1995-09-28 1995-09-28 Ac motor drive inverter control method

Publications (1)

Publication Number Publication Date
JPH0993997A true JPH0993997A (en) 1997-04-04

Family

ID=17205728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7250291A Pending JPH0993997A (en) 1995-09-28 1995-09-28 Ac motor drive inverter control method

Country Status (1)

Country Link
JP (1) JPH0993997A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075532A1 (en) * 2006-12-18 2008-06-26 Kabushiki Kaisha Yaskawa Denki Inverter device and its control method
JP2008220032A (en) * 2007-03-02 2008-09-18 Oriental Motor Co Ltd Inductance load controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075532A1 (en) * 2006-12-18 2008-06-26 Kabushiki Kaisha Yaskawa Denki Inverter device and its control method
JP2008220032A (en) * 2007-03-02 2008-09-18 Oriental Motor Co Ltd Inductance load controller

Similar Documents

Publication Publication Date Title
WO1998042070A1 (en) Apparatus and method for controlling induction motor
WO2008047438A1 (en) Vector controller of permanent magnet synchronous motor
WO2008004316A1 (en) Vector control apparatus for induction motor, vector control method for induction motor, and drive control apparatus for induction motor
JP2008011682A (en) Drive controller and drive control method of ac motor
JP2001161090A (en) Position sensor-less control method for synchronous motor
WO2010050020A1 (en) Control device for permanent magnet synchronization electric motor
JPH07264900A (en) Variable-speed controller for induction motor
JP4581739B2 (en) Electric motor drive
JPH0984400A (en) Method for controlling current of servomotor
JPH0923700A (en) Servo motor current control
JP4114942B2 (en) Induction motor control device
JPH0993997A (en) Ac motor drive inverter control method
JP6682313B2 (en) Motor control device
JP4219362B2 (en) Rotating machine control device
JP2005304175A (en) Speed controller of motor
JP2004023920A (en) Ac motor controller
JP7160641B2 (en) motor controller
JP5862691B2 (en) Control device for motor drive device and motor drive system
JP2010041748A (en) Motor control device and method
JP2002186296A (en) Driving gear for induction motor
JP2001008500A (en) Control device for induction motor
JP7376765B2 (en) Synchronous motor control device
JP3316118B2 (en) Induction motor drive
JP6816045B2 (en) Power converter controller
JP4425818B2 (en) Induction motor drive control device