JPH10106416A - Drive circuit for electromagnetic relay - Google Patents

Drive circuit for electromagnetic relay

Info

Publication number
JPH10106416A
JPH10106416A JP26263996A JP26263996A JPH10106416A JP H10106416 A JPH10106416 A JP H10106416A JP 26263996 A JP26263996 A JP 26263996A JP 26263996 A JP26263996 A JP 26263996A JP H10106416 A JPH10106416 A JP H10106416A
Authority
JP
Japan
Prior art keywords
voltage
signal
circuit
threshold value
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26263996A
Other languages
Japanese (ja)
Inventor
Takao Yamasaki
孝雄 山先
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP26263996A priority Critical patent/JPH10106416A/en
Publication of JPH10106416A publication Critical patent/JPH10106416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Relay Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To make power loss generated by a drive circuit not to be excess even if the voltage fluctuation coefficient of the DC power source of an electromagnetic relay is large. SOLUTION: A drive circuit is provided with first comparator 451 in which the detection voltage VK of a detection resistor 43 connected to an exciting coil 3 in series is compared with a threshold value VH produced by first threshold voltage source 441 and which outputs a Low comparison signal S1 when the detection signal VK is smaller than the threshold value VH and outputs a High comparison signal S1 when the detection signal CK is higher than the threshold value VH, and second comparator 452 is which the detection voltage VK is compared with a threshold value VL producted by second threshold voltage source 442 and which outputs a High comparison signal S2 when the detection signal VK is smaller than the threshold value VL and outputs a Low comparison signal S2 when the detection signal VK is larger than the threshold valve VL, and a latch circuit 46 which outputs a control signal SR when the signal S1 is input to a reset terminal R and a signal S2 is input to a signal terminal S respectively. The on and off of a transistor 41, as a switching element, is controlled by the control signal SR so as confine an exciting coil current between two threshold currents.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、制御回路や制御
機器の出力装置に使用される電磁継電器の駆動回路に関
し、特に電圧変動の大きい直流電源で使用される電磁継
電器の駆動回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving circuit for an electromagnetic relay used in a control circuit or an output device of a control device, and more particularly to a driving circuit for an electromagnetic relay used in a DC power supply having a large voltage fluctuation.

【0002】[0002]

【従来の技術】図4は電磁継電器(以下単にリレーと呼
ぶ)の従来の駆動回路を示す回路図である。この図にお
いて、1は安定化されていず電圧変動のある直流電源、
3はリレーの励磁コイルであり、これらの間に定電圧回
路2が設けられている。励磁コイル3に印加される電圧
が過大になると電流が増大して温度上昇が過大になって
焼損事故が発生する恐れがあることから、電圧値が変動
する直流電源1がリレーの電源として使用される場合に
このような定電圧回路2が使用される。この定電圧回路
2は負帰還形定電圧回路と呼ばれるものの一つである
(電気学会大学講座「基本電子回路」P.174)。
2. Description of the Related Art FIG. 4 is a circuit diagram showing a conventional driving circuit for an electromagnetic relay (hereinafter simply referred to as a relay). In this figure, 1 is a DC power supply that is not stabilized and has a voltage fluctuation,
Reference numeral 3 denotes an exciting coil of the relay, and the constant voltage circuit 2 is provided between them. If the voltage applied to the exciting coil 3 becomes excessively large, the current increases and the temperature rise becomes excessively large, possibly causing a burnout accident. Therefore, the DC power supply 1 whose voltage value fluctuates is used as a power supply for the relay. In such a case, such a constant voltage circuit 2 is used. The constant voltage circuit 2 is one of the so-called negative feedback constant voltage circuits (see “Basic Electronic Circuit” on page 174 of the Institute of Electrical Engineers of Japan).

【0003】定電圧回路2は、直流電源1と励磁コイル
3との間に直列に挿入されたトランジスタ21、このト
ランジスタ21のベース端子に陽極を、直流電源1の負
極に陰極をそれぞれ接続した定電圧ダイオード22及び
トランジスタ21のコレクタ端子とベース端子の間に接
続された抵抗23からなっている。定電圧回路2が励磁
コイル3に印加される電圧を安定化する作用の概要は次
の通りである。直流電源1の電圧をE、励磁コイル3に
印加される電圧をVとすると、電圧Vは定電圧ダイオー
ド22のツェナ電圧Vz からトランジスタ21のエミッ
タ・ベース間の電圧VEBを差し引いた値になる。すなわ
ち、
The constant voltage circuit 2 has a transistor 21 inserted in series between the DC power supply 1 and the exciting coil 3. A constant voltage circuit having an anode connected to the base terminal of the transistor 21 and a cathode connected to the negative electrode of the DC power supply 1. It comprises a voltage diode 22 and a resistor 23 connected between the collector terminal and the base terminal of the transistor 21. The outline of the operation of the constant voltage circuit 2 for stabilizing the voltage applied to the exciting coil 3 is as follows. Assuming that the voltage of the DC power supply 1 is E and the voltage applied to the exciting coil 3 is V, the voltage V is a value obtained by subtracting the voltage V EB between the emitter and the base of the transistor 21 from the zener voltage V z of the constant voltage diode 22. Become. That is,

【0004】[0004]

【数1】V=Vz −VEB ツェナ電圧Vz は略一定であり電圧VEBはその値が1ボ
ルト以下の小さい値であるとともにベース電流がある程
度大きな値であれば殆ど一定値になるので、結果的に電
圧Vは電圧Eに変動があっても実質的に一定値に保たれ
る。
V = V z −V EB The zener voltage V z is substantially constant, and the voltage V EB is a small value of 1 volt or less and almost constant if the base current is a relatively large value. As a result, the voltage V is kept substantially constant even if the voltage E fluctuates.

【0005】簡単に言えば、励磁コイル3には電圧Vz
が印加されて、電圧Eとの差電圧であるE−Vz はトラ
ンジスタ21が負担していることになる。
[0005] In short, the excitation coil 3 has a voltage V z
There is applied, E-V z is the voltage difference between the voltage E will be the transistor 21 is borne.

【0006】[0006]

【発明が解決しようとする課題】前述のように、定電圧
回路2はトランジスタ21が差電圧を負担することによ
って励磁コイル3に印加される電圧が一定に保たれるの
で、トランジスタ21はこれに流れる電流、言い換えれ
ば励磁コイル3に流れる電流Iと差電圧E−Vzとの積
に相当する電力損失が発生する。ツェナ電圧は電圧Eの
最低値よりも少し小さい値になるような定電圧ダイオー
ド22が選定される。したがって、直流電源1の電圧変
動の割合が小さいときには前述の差電圧E−Vz の最大
値は小さな値にできるが、電圧変動が大きいと、当然電
圧Eの最大値と最小値との差が大きくなるから差電圧E
−Vz の最大値も必然的に大きくなる。この差電圧が大
きいとトランジスタ21の電力損失が過大になってその
温度上昇が問題になるばかりでなく、このリレーが組み
込まれた制御機器などの装置内部の温度上昇の原因にな
って電子部品の劣化が促進されて装置の寿命が短縮する
という問題が生ずる。電圧変動の大きな直流電源を使用
してしかもこのような問題が生じないようにするために
は、トランジスタ21の冷却効率を高めるとともに装置
の冷却効率をも高めるめるがあり、そのために制御機器
などの装置全体の価格上昇を招くという問題に発展す
る。
As described above, in the constant voltage circuit 2, the voltage applied to the exciting coil 3 is kept constant because the transistor 21 bears the difference voltage. A power loss corresponding to the product of the flowing current, in other words, the current I flowing through the exciting coil 3 and the difference voltage E- Vz occurs. The constant voltage diode 22 is selected such that the Zener voltage has a value slightly smaller than the minimum value of the voltage E. Therefore, when the ratio of the voltage fluctuation of the DC power supply 1 is small, the maximum value of the difference voltage E- Vz can be made small, but when the voltage fluctuation is large, the difference between the maximum value and the minimum value of the voltage E naturally becomes large. Difference voltage E
The maximum value of -V z becomes necessarily large. If this difference voltage is large, the power loss of the transistor 21 becomes excessive and the temperature rise becomes a problem. In addition, the temperature rise inside a device such as a control device in which this relay is incorporated causes a rise in the temperature of electronic components. There is a problem that deterioration is accelerated and the life of the device is shortened. In order to use a DC power supply having a large voltage fluctuation and prevent such a problem from occurring, there is a need to increase the cooling efficiency of the transistor 21 and the cooling efficiency of the device. This leads to a problem that the price of the entire apparatus increases.

【0007】この発明の目的はこのような問題を解決
し、リレーの直流電源の電圧変動率が大きくても冷却効
率を向上させる必要のない電磁継電器の駆動回路を提供
することにある。
An object of the present invention is to solve such a problem and to provide a drive circuit for an electromagnetic relay which does not need to improve the cooling efficiency even when the voltage fluctuation rate of the DC power supply of the relay is large.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
にこの発明によれば、電磁継電器の励磁コイルに電流を
供給する直流電源から電圧が印加されたときにオンとな
り、励磁コイルに流れる電流が第1のしきい値よりも大
きくなったときにオフ、第1のしきい値よりも小さな値
の第2のしきい値よりも小さくなったときにオンとなる
スイッチング素子が直流電源に直列に挿入されてなり、
陰極が直流電源の負極側に接続されたダイオードを励磁
コイルに並列に設けることによって、電圧印加後の第1
のしきい値を越えた後の励磁コイルに流れる電流は、第
1のしきい値と第2のしきい値との間を往復して第2の
しきい値よりも大きくなることはなくまた第1のしきい
値よりも小さくなることはない。そして、励磁コイル以
外の回路素子で励磁コイルに匹敵する電力損失の発生は
ない。スイッチング素子がオフのときには励磁コイルに
流れる電流はダイオードを介して貫流する。
According to the present invention, to solve the above-mentioned problems, the present invention turns on when a voltage is applied from a DC power supply for supplying a current to an exciting coil of an electromagnetic relay. Is turned off when becomes larger than a first threshold value, and turned on when becomes smaller than a second threshold value which is smaller than the first threshold value. Is inserted into the
By providing a diode whose cathode is connected to the negative side of the DC power supply in parallel with the exciting coil,
The current flowing through the exciting coil after exceeding the threshold value does not reciprocate between the first threshold value and the second threshold value and does not become larger than the second threshold value. It will not be less than the first threshold. In addition, there is no power loss equivalent to that of the exciting coil in the circuit elements other than the exciting coil. When the switching element is off, the current flowing through the exciting coil flows through the diode.

【0009】励磁コイルに直列に接続された検出抵抗、
検出抵抗の両端の検出電圧を第1のしきい値と比較して
検出電圧が第1のしきい値よりも小さいときにLow 、高
いときに High の第1の比較信号を出力する第1の比較
器、検出電圧を第2のしきい値と比較して検出電圧が第
2のしきい値よりも小さいときに High 、大きいときに
Low の第2の比較信号を出力する第2の比較器及び第1
の比較信号がリセット端子に、第2の比較信号が信号端
子にそれぞれ入力されて制御信号を出力するラッチ回路
を備え、スイッチング素子が、制御信号が High のとき
にオフ、Low のときにオンとなるように構成すれば前述
の手段を具体的に実現することができる。
A detection resistor connected in series with the exciting coil,
A detection voltage at both ends of the detection resistor is compared with a first threshold value, and when the detection voltage is smaller than the first threshold value, a first comparison signal is output which is low and high when the detection voltage is high. The comparator compares the detection voltage with the second threshold value, and when the detection voltage is lower than the second threshold value, it is High, and when the detection voltage is higher,
A second comparator for outputting a low second comparison signal;
A latch circuit that outputs a control signal when the comparison signal is input to the reset terminal and the second comparison signal is input to the signal terminal, and the switching element turns off when the control signal is high and turns on when the control signal is low. With such a configuration, the above-described means can be specifically realized.

【0010】また、直流電源による電圧印加後、所定の
時間スイッチング素子をオンの状態に維持させるように
すれば、この時間内にリレーの動作がオフからオンにな
るのに充分な電流値が得られ、一方、リレーのオフから
オンに変わる動作に必要な電流に対してオンの状態を保
持するための電流は2分の1以下なので、第1、第2の
しきい値電流の値を前述のそれらの値よりも2分の1以
下の小さな値に設定しても、オンの状態を保持するのに
充分な電流値を確保できるので、励磁コイルの電力損失
は前述の駆動回路の4分の1以下になる。前述のラッチ
回路や比較器を使用する具体的な回路構成の場合には、
直流電源に並列に接続された抵抗とコンデンサの直列回
路、このコンデンサの端子間電圧とラッチ回路の出力信
号とが入力されるアンド回路を設け、このアンド回路の
出力信号が High のときにスイッチング素子がオフ、Lo
w のときにオンとなるようにすることによって実現する
ことができる。
If the switching element is kept on for a predetermined time after the application of the voltage by the DC power supply, a sufficient current value for the operation of the relay to be turned on from off to off is obtained within this time. On the other hand, the current required to maintain the ON state is less than half the current required for the operation of turning the relay from OFF to ON, so the values of the first and second threshold currents are set as described above. Even if it is set to a value smaller than one-half of those values, a current value sufficient to maintain the ON state can be secured, so that the power loss of the exciting coil is reduced to a quarter of that of the above-described drive circuit. Of 1 or less. In the case of a specific circuit configuration using the above-described latch circuit and comparator,
A series circuit of a resistor and a capacitor connected in parallel to a DC power supply, and an AND circuit for inputting the voltage between the terminals of the capacitor and the output signal of the latch circuit are provided. When the output signal of the AND circuit is high, the switching element is provided. Is off, Lo
It can be realized by turning on when w.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0012】[0012]

【実施例1】以下この発明を実施例に基づいて説明す
る。図1はこの発明の第1の実施例を示す電磁継電器の
駆動回路の回路図であり、図4と同じ回路要素には同じ
符号を付けて重複する説明を省く。ただ、この図の駆動
回路の他の要素と励磁コイルとの配置は図4とは異な
る。すなわち、図4では定電圧回路2が直流電源1と励
磁コイル3との間に挿入した回路構成で表示してある
が、図1では一点鎖線で示す大きな囲いの駆動回路2A
の中に等価回路で示す励磁コイル3を一点鎖線で囲って
示してある。励磁コイル3はインダクタンス31と抵抗
32との直列回路として図示してある。しかし、このよ
うな回路図上の違いは本質的なものではなく、実施例と
しての駆動回路4の回路構成を分かり易く図示するため
のものである。
Embodiment 1 The present invention will be described below based on an embodiment. FIG. 1 is a circuit diagram of a drive circuit for an electromagnetic relay according to a first embodiment of the present invention. The same circuit elements as those in FIG. However, the arrangement of the other components of the drive circuit in this figure and the excitation coil is different from that in FIG. That is, FIG. 4 shows a circuit configuration in which the constant voltage circuit 2 is inserted between the DC power supply 1 and the exciting coil 3, but in FIG. 1, a large surrounding drive circuit 2A indicated by a dashed line is shown.
The excitation coil 3 shown by an equivalent circuit is surrounded by a dashed line. The exciting coil 3 is shown as a series circuit of an inductance 31 and a resistor 32. However, such a difference in the circuit diagram is not essential, but is for the purpose of illustrating the circuit configuration of the drive circuit 4 as an embodiment in an easily understandable manner.

【0013】図1において、駆動回路4は、励磁コイル
3に直列接続されたスイッチング素子としてのトランジ
スタ41と検出抵抗43、励磁コイル3と検出抵抗43
との直列回路に並列接続されたダイオード42、検出抵
抗43の端子間電圧を一方の入力信号とする第1と第2
の二つの比較器451,452、これらの比較器45
1,452のしきい値電圧を設定する第1と第2の二つ
のしきい値電圧源441,442、第1の比較器451
の出力信号である第1の比較信号S1 がリセット端子R
に、第2の比較器272の出力信号である第2の比較信
号S2 が信号入力端子Sに入力されて出力端子Qから制
御信号SR を出力するラッチ回路46、この制御信号S
R が抵抗47を介してトランジスタ41のベース端子に
入力される。
In FIG. 1, a drive circuit 4 includes a transistor 41 as a switching element connected in series to the exciting coil 3 and a detecting resistor 43, and an exciting coil 3 and a detecting resistor 43.
A first and a second signal in which the voltage between the terminals of the diode 42 and the detection resistor 43 connected in parallel to the series circuit of
, Two comparators 451 and 452,
The first and second two threshold voltage sources 441 and 442 for setting the threshold voltages of 1,452, and the first comparator 451
The first comparison signal S 1 which is the output signal of the reset terminal R
The latch circuit 46 compares the signal S 2 second is the output signal of the second comparator 272 outputs the control signal S R is input from the output terminal Q to the signal input terminal S, the control signal S
R is input to the base terminal of the transistor 41 via the resistor 47.

【0014】第1のしきい値電圧源441が生成する第
1のしきい値電圧をVH 、第2のしきい値電圧源442
が生成する第2のしきい値電圧をVL とすると、VH
Lに設定される。トランジスタ41がオンとなってい
て励磁コイル3に電流が流れているときに検出抵抗43
の抵抗値とこの電流値との積としての検出電圧VK は第
1の比較器451の+入力端子と第2の比較器452の
−入力端子にそれぞれ入力され、第1のしきい値電圧V
H が第1の比較器451の−入力端子に、第2のしきい
値電圧VL が第2の比較器452の+入力端子にそれぞ
れ印加されている。
The first threshold voltage generated by the first threshold voltage source 441 is V H , and the second threshold voltage source 442
Let V L be the second threshold voltage generated by V H > V H >
VL is set. When the transistor 41 is on and a current flows through the exciting coil 3, the detection resistor 43
Of the detected voltage V K of the product of the resistance value and the current value of the first + input terminal of the comparator 451 of the second comparator 452 - are input to the input terminal, a first threshold voltage V
H is applied to the-input terminal of the first comparator 451, and the second threshold voltage VL is applied to the + input terminal of the second comparator 452.

【0015】第2の比較信号S2 が High だとラッチ回
路46はリセットの状態にあって第1の比較信号S1
Low でも High でも制御信号SR はLow になる。第2の
比較信号S2 がLow だとラッチ回路46はリセットされ
ない状態のときに第1の比較信号S1 がLow から High
に変わると制御信号SR は High になり、以後はリセッ
トされない限り High の状態を維持する。すなわち、ラ
ッチ回路46は第2の比較器451の出力信号が High
になったらその状態を保持する保持機能を持つものであ
る。
When the second comparison signal S 2 is high, the latch circuit 46 is in a reset state and the first comparison signal S 1
Control signal S R Any High Any Low becomes Low. If the second comparison signal S 2 is low, the first comparison signal S 1 changes from low to high when the latch circuit 46 is not reset.
The control signal S R changes to become High, thereafter maintains the state of the High unless reset. That is, the latch circuit 46 sets the output signal of the second comparator 451 to High.
It has a holding function to hold the state when it becomes.

【0016】ラッチ回路46の出力信号である制御信号
R がLow のときはトランジスタ41のベース・エミッ
タ間電圧が大きくなるのでベース電流が流れてトランジ
スタ41はオン、 High のときには逆にオフになる。図
2は図1の定電流回路2Aの動作説明のための電流の時
間変化を示すグラスであり、横軸は時間t、縦軸は励磁
コイル3に流れる電流Iである。
When the control signal S R, which is the output signal of the latch circuit 46, is low, the base-emitter voltage of the transistor 41 increases, so that a base current flows and the transistor 41 is turned on. . FIG. 2 is a glass showing the time change of the current for explaining the operation of the constant current circuit 2A of FIG. 1. The horizontal axis represents time t, and the vertical axis represents the current I flowing through the exciting coil 3.

【0017】今、時点t0 で直流電源1の電圧が印加さ
れたとする。この後の駆動回路4の動作は次の通りであ
る。なお、この図における時点tの添字の1〜3、及び
a,bがここで述べる動作に関するもので、4,5,6
は後述のこの発明の第2の実施例の動作に関するもので
ある。 t0 <t<t1 電圧印加後ではたとえトランジスタ41を介して励磁コ
イル3に電流が流れてもインダクタンス31によって電
流上昇が制限されて図示のように直線的に上昇する。し
たがって、印加直後では検出抵抗43の電圧VK は小さ
く、したがって、第1の比較器451の出力信号はLow
であることから、第2の比較器452の出力信号である
第2の比較信号S1 は High 、したがってラッチ回路4
6はリセットされた状態にあって制御信号SR はLow な
のでトランジスタ41はオンとなる。すなわち、励磁コ
イル3には直流電源1の電圧の殆どが印加されてその電
圧値とインダクタンス31の値から決まる上昇率で電流
が上昇する。そして、検出抵抗43の端子間電圧VK
しきい値電圧VL よりも大きくなると第2の比較器45
2の出力信号である第2の比較信号S2 がLow になって
ラッチ回路46のリセットが解かれ(この時点は電流I
が第2のしきい値電流IL となる時点であるが時点符号
を付けていない)るが電流Iは更に上昇する。
Now, it is assumed that the voltage of the DC power supply 1 is applied at time t 0 . The operation of the drive circuit 4 after this is as follows. In this figure, the subscripts 1 to 3 and a and b at the time t relate to the operation described here.
Relates to the operation of a second embodiment of the present invention described later. After the voltage t 0 <t <t 1 is applied, even if a current flows through the exciting coil 3 via the transistor 41, the current rise is limited by the inductance 31 and rises linearly as shown in the figure. Therefore, immediately after the application, the voltage V K of the detection resistor 43 is small, and the output signal of the first comparator 451 is low.
Therefore, the second comparison signal S 1, which is the output signal of the second comparator 452, is High, and thus the latch circuit 4
6 is in a reset state and the control signal S R is low, so that the transistor 41 is turned on. That is, most of the voltage of the DC power supply 1 is applied to the exciting coil 3, and the current increases at a rate of increase determined by the voltage value and the value of the inductance 31. When the inter-terminal voltage V K of the detection resistor 43 becomes higher than the threshold voltage V L , the second comparator 45
The comparison signal S 2 of the second, which is the output signal 2 is reset in the latch circuit 46 becomes Low is released (this time current I
Is the second threshold current I L , but the time code is not given), but the current I further increases.

【0018】検出抵抗43が検出する電圧VKFがしきい
値電圧VH よりも大きくなると第1の比較器271の出
力信号がLow から High になって制御信号SR はLow か
ら High になり、その結果トランジスタ41はオンから
オフになって電流は遮断される(この時の時点が時点t
1 であり電流Iは第1のしきい値電流IH である)。 t1 <t<t2 励磁コイル3と検出抵抗43に流れる電流Iはダイオー
ド42を介して貫流し、インダクタンス31と抵抗32
とで決まる時定数に応じた電流降下率で降下する。これ
に伴い検出電圧VK も電流Iに比例して降下する。 t2 <t<t3 電圧VK がしきい値電圧VL よりも小さくなったら(こ
の時点が時点t2 でありこのときの電流Iの値が第2の
しきい値電流IL である)、第2の比較信号S 2 がLow
から High になるのでラッチ回路46にリセットが働い
て制御信号SRはHighからLow になる。そのためトラン
ジスタ41は再びオンになって直流電源1の電圧が励磁
コイル3に印加されて電流Iは再び上昇し、時点t3
再びトランジスタ41がオフとなり電流Iは降下に転ず
る。
The voltage V detected by the detection resistor 43KFThreshold
Value voltage VHIs larger than the output of the first comparator 271.
When the force signal changes from Low to High, the control signal SRIs Low
High from the start, and as a result, the transistor 41
It turns off and the current is interrupted (at this time, the time t
1And the current I is the first threshold current IHIs). t1<T <tTwo The current I flowing through the exciting coil 3 and the detection resistor 43 is
Through the resistor 42, and the inductance 31 and the resistance 32
Drop at a current drop rate corresponding to the time constant determined by this
The detection voltage VKAlso drop in proportion to the current I. tTwo<T <tThree Voltage VKIs the threshold voltage VLIf it is smaller than
At time tTwoAnd the value of the current I at this time is
Threshold current IL), The second comparison signal S TwoIs Low
To high, resetting the latch circuit 46
Control signal SRChanges from High to Low. So Tran
The register 41 is turned on again, and the voltage of the DC power supply 1 is excited.
The current I applied to the coil 3 increases again, and the time tThreeso
The transistor 41 is turned off again, and the current I does not turn down.
You.

【0019】このような動作が反復されて電流Iは二つ
のしきい値電圧VH 、VL で決まる二つのしきい値電流
H 、IL の間を往復することになり、高い方の第1の
しきい値電流IH を越えることはない。また、トランジ
スタ41はスイッチング素子として働いていて、電圧を
負担するオフのときには電流は実質的に0、電流が流れ
ているオンのときには電圧は実質的に0なので、オンと
オフが入れ代わるスイッチング動作時に発生する損失が
発生するだけであり、その損失値はコイル3の抵抗が発
生する抵抗損に比べてはるかに小さな値である。勿論、
前述の従来の定電圧回路2のトランジスタ21が発生す
る損失に比べてもはるかに小さい。したがって、リレー
が組み込まれた制御装置などの冷却効率を考慮する上
で、この駆動回路2Aが発生する損失を無視しても差し
支えない程度になる。
The above operation is repeated, and the current I reciprocates between the two threshold currents I H and I L determined by the two threshold voltages V H and V L. It does not exceed the first threshold current I H. Further, the transistor 41 functions as a switching element, and the current is substantially 0 when the voltage is off when the voltage is off, and the voltage is substantially 0 when the current is on when the current is flowing. Only the generated loss occurs, and the loss value is much smaller than the resistance loss generated by the resistance of the coil 3. Of course,
It is much smaller than the loss generated by the transistor 21 of the conventional constant voltage circuit 2 described above. Therefore, in consideration of the cooling efficiency of the control device or the like in which the relay is incorporated, the loss generated by the drive circuit 2A can be neglected.

【0020】時点ta ,tb は直流電源1の電圧Eが大
きくなった場合の変化についけ説明するためのもので、
時点ta で電圧Eが大きくなったとすると、電流Iの上
昇率も大きくなり、時点ta での第2のしきい値電流I
L の値から時点ta での第1のしきい値電流IH に達す
る時間が、かとえば時点t2 から時点t3 との間隔に比
べて小さくなる。しかし、電流Iは二つのしきい値電流
から上にも下にもはみ出すことはない。
The time points t a and t b are used to explain the change when the voltage E of the DC power supply 1 increases.
When the voltage E and increased at time t a, the rate of increase in current I becomes large, the second threshold current I at time t a
L value time reaching the first threshold current I H at the time t a from of, smaller than the spacing between the time t 3 from the time t 2 if Katoe. However, the current I does not protrude above or below the two threshold currents.

【0021】[0021]

【実施例2】図3はこの発明の第2の実施例を示す電磁
継電器の駆動回路の回路図であり、図1と同じ回路要素
には同じ符号を、類似の機能を持つ回路要素には添字A
を付けて重複する説明を省く。この図において、図1と
異なる点は、直流電源1の端子間に抵抗491とコンデ
ンサ492の直列回路を接続し、コンデンサ492の端
子間電圧である信号SC と信号SR との二つの信号を入
力信号とするアンド回路48を設け、このアンド回路4
8の出力信号をトランジスタ41のベース端子に入力す
る回路構成とした点、そして、第1と第2のしきい値電
圧源441A,442Aの二つのしきい値電圧を図1の
第1と第2のしきい値電圧源441,442のしきい値
電圧VL ,VH よりも小さな値であるVLA,VHAに設定
した点である。
Embodiment 2 FIG. 3 is a circuit diagram of a drive circuit of an electromagnetic relay according to a second embodiment of the present invention. In FIG. 3, the same circuit elements as those in FIG. Subscript A
To eliminate duplicate descriptions. 1 is different from FIG. 1 in that a series circuit of a resistor 491 and a capacitor 492 is connected between the terminals of the DC power supply 1, and two signals of a signal S C and a signal S R which are voltages between terminals of the capacitor 492 are provided. Is provided as an input signal.
8 is input to the base terminal of the transistor 41, and the two threshold voltages of the first and second threshold voltage sources 441A and 442A are changed to the first and second threshold voltages of FIG. This is the point that V LA and V HA are set to values smaller than the threshold voltages V L and V H of the second threshold voltage sources 441 and 442.

【0022】以下に図1の駆動回路4と異なる点を主に
して図3の駆動回路4Aの動作について説明する。前述
の図2の破線で示す電流の時間変化を示すグラフは駆動
回路4Aの動作を説明するためのものである。あお、実
線と破線とで時点t6 以降の変化の位相が一致している
ように図示してあるが、説明の簡単化のためにそうした
だけであって、両方の電流波形で上下変化の位相が一致
する必然性はない。 t0 <t<t4 時点t0 において直流電源1が印加された直後は駆動回
路4と同じく、電流Iは直流電源1の電圧値と励磁コイ
ル3のインダクタンスの値できまる上昇率で上昇する。
そして、信号SR がLow の状態を維持する点も同じであ
る。一方、コンデンサ492の端子間電圧である信号S
C は直流電源1の印加当初は低く、抵抗491の抵抗値
とコンデンサ492のキャパシタンスで決まる時定数で
指数関数的に上昇する。そして、アンド回路48が Hig
h の処理をするまではLow の値をとる信号として扱われ
る。したがって、当初はアンド回路48の二つの入力信
号がともにLow なのでアンド回路48の出力信号もLow
となり、図1の場合と同様にトランジスタ41はオンの
状態で励磁コイル3に電流を流すことができる。
The operation of the drive circuit 4A of FIG. 3 will be described below mainly on the points different from the drive circuit 4 of FIG. The above-described graph showing the time change of the current shown by the broken line in FIG. 2 is for explaining the operation of the drive circuit 4A. A, the solid line and the dashed line show that the phase of the change after time t 6 coincides, but this is only for the sake of simplicity of explanation, and the phase of the vertical change in both current waveforms is shown. There is no necessity to match. Immediately after the DC power supply 1 is applied at time t 0 <t <t 4 at time t 0 , similarly to the drive circuit 4, the current I increases at a rising rate determined by the voltage value of the DC power supply 1 and the inductance value of the exciting coil 3. .
The same holds for the point that the signal S R maintains the low state. On the other hand, a signal S which is a voltage between terminals of the capacitor 492
C is low at the beginning of application of the DC power supply 1, and rises exponentially with a time constant determined by the resistance value of the resistor 491 and the capacitance of the capacitor 492. And the AND circuit 48 is Hig
Until the processing of h, it is treated as a signal that takes a Low value. Therefore, initially, since the two input signals of the AND circuit 48 are both low, the output signal of the AND circuit 48 is also low.
Thus, as in the case of FIG. 1, the transistor 41 can be turned on to supply a current to the exciting coil 3.

【0023】電圧VK が第1のしきい値VHAに達して第
2の比較信号S2 が High になって信号SR が High に
なっても信号SC はLow のままになるように設定されて
いるのでアンド回路48の出力信号はLow 、したがっ
て、トランジスタ41はオンのままである。電流Iは第
1のしきい値電流IHAよりも更に上昇して飽和値IA
達する。 t4 <t<t5 信号SC は最終的には直流電源1の電圧Eで飽和するが
その前にアンド回路48が High として処理する電圧値
に達するのでその時点である時点t4 でアンド回路48
の二つの入力信号はともに High となるので、出力信号
はLow から High に変化してトランジスタ41はオンか
らオフになり、電流Iは降下する。この後は信号SC
Highの状態を維持したままなので、電流Iは、第2のし
きい値電圧VLAに対応する第2のしきい値電流ILAと第
1のしきい値電圧VHAに対応する第1のしきい値電流I
HAとの間を往復する点は図1の駆動回路4の動作と同じ
である。
The voltage V K is the first threshold value V signal the second comparison signal S 2 reaches the HA becomes the High S R is signal S C is also turned to High, as will remain Low Since it is set, the output signal of the AND circuit 48 is Low, and therefore, the transistor 41 remains ON. Current I reaches a saturation value I A further rises above the first threshold current I HA. The t 4 <t <t 5 signal S C eventually saturates at the voltage E of the DC power supply 1, but before reaching the voltage value that the AND circuit 48 processes as High, the AND at the time t 4 , which is the current time. Circuit 48
Since both input signals become high, the output signal changes from low to high, the transistor 41 is turned off from on, and the current I drops. After this, the signal S C
Since still maintaining the state of the High, the current I, the first corresponding to the second threshold current I LA and first threshold voltage V HA corresponding to the second threshold voltage V LA Threshold current I
The point of reciprocation with the HA is the same as the operation of the drive circuit 4 in FIG.

【0024】前述のように図1の二つのしきい値電圧V
L ,VH に対してVLA、VHAの値を2分の1又はそれ以
下の低く設定してあるので、電流のしきい値も同じ関係
になることから、図2の破線で示すように、以後の電流
Iは図1の電流変化に比べて低い位置で上下を繰り返す
ことになる。このように、直流電源1が印加された直後
には励磁コイル3に流れる電流を大きくし、その後は小
さな値で保持するようにしたのは次の理由による。
As described above, the two threshold voltages V shown in FIG.
Since the values of V LA and V HA are set to be lower than L and V H by half or less, the current thresholds have the same relationship. In addition, the subsequent current I repeats up and down at a position lower than the current change in FIG. The reason why the current flowing through the exciting coil 3 is increased immediately after the DC power supply 1 is applied and maintained at a small value thereafter is as follows.

【0025】一般に、リレーが動作する、すなわち、オ
フからオンになるのに必要な励磁コイル3の電流と、オ
ンの状態を保持するのに必要な電流とを比較すると、後
者は前者の半分またはそれ以下なのが実際である。した
がって、リレーを動作させるための電圧印加直後の電流
を大きくして、代わりに動作後の状態を保持するための
電流をその2分の1以下の小さな値にしてもリレーは正
常にオン・オフの動作をする。代わりに励磁コイル3の
電力損失を大幅に減らすことができる。実施例1の場合
の第2のしきい値電流IL の値はリレーが動作するため
に必要な値よりも少し大きな値に設定され、一方、実施
例2の場合のILAはとその2分の1程度で良いから駆動
回路の励磁コイル3の電力損失は約4分の1になる。
In general, comparing the current of the exciting coil 3 required for the relay to operate, that is, turning on from the off state, and the current required for maintaining the on state, the latter is half or half of the former. It is actually less than that. Therefore, the relay is normally turned on and off even if the current immediately after voltage application for operating the relay is increased and the current for maintaining the state after the operation is set to a value smaller than one half of the current instead. Works. Instead, the power loss of the exciting coil 3 can be greatly reduced. The value of the second threshold current I L in the case of the first embodiment is set to a value slightly larger than the value required for the operation of the relay, while I LA in the case of the second embodiment is The power loss of the exciting coil 3 of the drive circuit is reduced to about 1/4 since about 1/4 is sufficient.

【0026】なお、図1、図3で実施例として電磁継電
器の駆動回路の具体的な回路構成を図示したが、この発
明の目的を達成するのには前述の実施例の他に従来技術
の範囲内で種々の回路構成を採用する。
Although the specific circuit configuration of the drive circuit of the electromagnetic relay is shown in FIGS. 1 and 3 as an embodiment, in order to attain the object of the present invention, in addition to the above-described embodiment, a conventional technology will be described. Various circuit configurations are adopted within the range.

【0027】[0027]

【発明の効果】この発明は前述のように、励磁コイルの
電流を、スイッチング素子のオン・オフを制御すること
によって大小二つのしきい値電流の間の値だけをとるよ
うにしたことによって、励磁コイルの電流が過大になる
ことはなく、そして、励磁コイルが発生する電力損失と
同等の回路素子はなくなることから、たとえ直流電源の
電圧変動率が大きい場合でも、この発明になる電磁継電
器を使用した制御機器などの冷却効率を向上させる必要
がなくなり対象機器のコスト低減に貢献するという効果
が得られる。
According to the present invention, as described above, the current of the exciting coil is controlled between ON and OFF of the switching element to take only a value between two large and small threshold currents. Since the current of the exciting coil does not become excessive, and there is no circuit element equivalent to the power loss generated by the exciting coil, even if the voltage fluctuation rate of the DC power supply is large, the electromagnetic relay according to the present invention is used. There is no need to improve the cooling efficiency of the used control device and the like, and the effect of contributing to cost reduction of the target device can be obtained.

【0028】直流電源による電圧印加後、所定の時間ス
イッチング素子がオンの状態に維持すようにすれば、リ
レーのオフからオンに変わる動作に必要な電流に対して
オンの状態を保持するために必要な電流は2分の1以下
なのが実際なので、二つのしきい値電流の値を前述のそ
れらの値よりも2分の1以下の小さな値に設定できるの
で、励磁コイルが発生する電力損失を4分の1以下に低
減することができるという効果が得られる。
If the switching element is maintained in the ON state for a predetermined time after the application of the voltage by the DC power supply, it is necessary to maintain the ON state with respect to the current required for the operation of turning the relay from OFF to ON. Since the required current is actually less than half, the value of the two threshold currents can be set to a value less than one half of those described above, so that the power loss generated by the exciting coil is reduced. Can be reduced to 以下 or less.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施例を示すの電磁継電器の
駆動回路の回路図
FIG. 1 is a circuit diagram of a drive circuit of an electromagnetic relay according to a first embodiment of the present invention.

【図2】この発明の駆動回路の動作を説明するための電
流の時間的変化を示すグラフ
FIG. 2 is a graph showing a temporal change of a current for explaining the operation of the drive circuit of the present invention;

【図3】この発明の第2の実施例を示す電磁継電器の駆
動回路の回路図
FIG. 3 is a circuit diagram of a drive circuit of an electromagnetic relay according to a second embodiment of the present invention.

【図4】従来の電磁継電器の駆動回路の回路図FIG. 4 is a circuit diagram of a drive circuit of a conventional electromagnetic relay.

【符号の説明】[Explanation of symbols]

1…直流電源、2…定電圧回路、3…励磁コイル、4,
4A…駆動回路、41…トランジスタ(スイッチング素
子)、42…ダイオード、43…検出抵抗、441,4
41A…第1のしきい値電圧源、442,442A…第
2のしきい値電圧源、451…第1の比較器、452…
第2の比較器、46…ラッチ回路、48…アンド回路、
491…抵抗、492…コンデンサ
1 DC power supply 2 Constant voltage circuit 3 Excitation coil 4
4A: drive circuit, 41: transistor (switching element), 42: diode, 43: detection resistor, 441, 4
41A: first threshold voltage source, 442, 442A: second threshold voltage source, 451: first comparator, 452 ...
2nd comparator, 46 ... latch circuit, 48 ... AND circuit,
491: resistance, 492: capacitor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電磁継電器の励磁コイルに電流を供給する
直流電源から電圧が印加されたときにオンとなり、励磁
コイルに流れる電流が第1のしきい値よりも大きくなっ
たときにオフ、第1のしきい値よりも小さな値の第2の
しきい値よりも小さくなったときにオンとなるスイッチ
ング素子が直流電源に直列に挿入されてなり、陰極が直
流電源の負極側に接続されたダイオードが励磁コイルに
並列に設けられてなることを特徴とする電磁継電器の駆
動回路。
1. A switch is turned on when a voltage is applied from a DC power supply that supplies current to an exciting coil of an electromagnetic relay, and is turned off when a current flowing through the exciting coil becomes larger than a first threshold value. A switching element that is turned on when the value becomes smaller than a second threshold value smaller than the threshold value of 1 is inserted in series with the DC power supply, and the cathode is connected to the negative side of the DC power supply. A driving circuit for an electromagnetic relay, wherein a diode is provided in parallel with an exciting coil.
【請求項2】励磁コイルに直列に接続された検出抵抗、
検出抵抗の両端の検出電圧を第1のしきい値と比較して
検出電圧が第1のしきい値よりも小さいときにLow 、高
いときに High の第1の比較信号を出力する第1の比較
器、検出電圧を第2のしきい値と比較して検出電圧が第
2のしきい値よりも小さいときに High 、大きいときに
Low の第2の比較信号を出力する第2の比較器及び第1
の比較信号がリセット端子に、第2の比較信号が信号端
子にそれぞれ入力されて制御信号を出力するラッチ回路
を備え、スイッチング素子が、制御信号が High のとき
にオフ、Low のときにオンとなることを特徴とする請求
項1記載の電磁継電器の駆動回路。
A detection resistor connected in series with the exciting coil;
A detection voltage at both ends of the detection resistor is compared with a first threshold value, and when the detection voltage is smaller than the first threshold value, a first comparison signal is output which is low and high when the detection voltage is high. The comparator compares the detection voltage with the second threshold value, and when the detection voltage is lower than the second threshold value, it is High, and when the detection voltage is higher,
A second comparator for outputting a low second comparison signal;
A latch circuit that outputs a control signal when the comparison signal is input to the reset terminal and the second comparison signal is input to the signal terminal, and the switching element turns off when the control signal is high and turns on when the control signal is low. The driving circuit for an electromagnetic relay according to claim 1, wherein:
【請求項3】直流電源による電圧印加後、所定の時間ス
イッチング素子をオンの状態に維持するべくしてなるこ
とを特徴とする請求項1又は2記載の電磁継電器の駆動
回路。
3. The driving circuit for an electromagnetic relay according to claim 1, wherein the switching element is kept on for a predetermined time after a voltage is applied by the DC power supply.
【請求項4】直流電源に並列に接続された抵抗とコンデ
ンサの直列回路、このコンデンサの端子間電圧とラッチ
回路の出力信号とが入力されるアンド回路が設けられ、
このアンド回路の出力信号が High のときにスイッチン
グ素子がオフ、Low のときにオンとなることを特徴とす
る請求項2記載の電磁継電器の駆動回路。
4. A series circuit of a resistor and a capacitor connected in parallel to a DC power supply, and an AND circuit for inputting a voltage between terminals of the capacitor and an output signal of a latch circuit is provided.
3. The driving circuit for an electromagnetic relay according to claim 2, wherein the switching element is turned off when the output signal of the AND circuit is high and turned on when the output signal is low.
JP26263996A 1996-10-03 1996-10-03 Drive circuit for electromagnetic relay Pending JPH10106416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26263996A JPH10106416A (en) 1996-10-03 1996-10-03 Drive circuit for electromagnetic relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26263996A JPH10106416A (en) 1996-10-03 1996-10-03 Drive circuit for electromagnetic relay

Publications (1)

Publication Number Publication Date
JPH10106416A true JPH10106416A (en) 1998-04-24

Family

ID=17378586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26263996A Pending JPH10106416A (en) 1996-10-03 1996-10-03 Drive circuit for electromagnetic relay

Country Status (1)

Country Link
JP (1) JPH10106416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109727813A (en) * 2019-01-23 2019-05-07 积成电子股份有限公司 A kind of circuit and method detecting panel switches power relay coil state

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109727813A (en) * 2019-01-23 2019-05-07 积成电子股份有限公司 A kind of circuit and method detecting panel switches power relay coil state

Similar Documents

Publication Publication Date Title
JP4226509B2 (en) Drive circuit and power supply device for voltage-driven switch element
JP2009205846A (en) Vehicular lighting control device
US20080048630A1 (en) Switching power supply circuit
JP4462734B2 (en) Drive signal supply circuit
US11522535B2 (en) Semiconductor device
JPH10106416A (en) Drive circuit for electromagnetic relay
US20030107357A1 (en) Vehicle electric power unit
JPH066975A (en) High voltage power supply circuit
JP2001222331A (en) System and method for switching current consumption characteristic and ripple rejection characteristic of constant voltage regulator
US11101647B1 (en) Overvoltage protection circuit
US9559582B2 (en) Switching power supply circuit
CN107633803B (en) Signal masking unit, signal masking method and display panel
US20200091846A1 (en) Control device of motor, control system, and control method
JPH1141914A (en) Dc-dc converter
US11588422B2 (en) Soft-start circuit
US11095225B2 (en) Power supply apparatus and control method thereof
JP2780314B2 (en) DC-DC converter
JP4622085B2 (en) Trapezoidal wave output circuit
KR800000574Y1 (en) Regulated power supply circuit
JP2000316237A (en) Method for controlling charging
CN115955742A (en) Intelligent LED driving circuit and control method
JP2020150761A (en) Switching power supply device
CN112996184A (en) Solid-state light source dimming control circuit and projector using same
JPH0591734A (en) Chopper-type dc/dc converter
JP2020202695A (en) Switching power supply device