JPH10106365A - Superconductor for permanent electric current switch - Google Patents

Superconductor for permanent electric current switch

Info

Publication number
JPH10106365A
JPH10106365A JP8262188A JP26218896A JPH10106365A JP H10106365 A JPH10106365 A JP H10106365A JP 8262188 A JP8262188 A JP 8262188A JP 26218896 A JP26218896 A JP 26218896A JP H10106365 A JPH10106365 A JP H10106365A
Authority
JP
Japan
Prior art keywords
superconducting
conductor
current switch
magnetic field
permanent current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8262188A
Other languages
Japanese (ja)
Inventor
Nobuyuki Sadakata
伸行 定方
Takashi Saito
隆 斉藤
Tsukasa Kono
宰 河野
Hitoshi Honma
仁 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Tohoku Electric Power Co Inc
Original Assignee
Fujikura Ltd
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Tohoku Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP8262188A priority Critical patent/JPH10106365A/en
Publication of JPH10106365A publication Critical patent/JPH10106365A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stable switching property by electrically communicating mutually neighboring superconductive strands. SOLUTION: This superconductor 10 is produced by stranding superconductive strands 12, 12,... on a normal conductive core wire 11 as a center. No insulating layer is formed on each strand 12, 12,... and on the whole body of the stranded conductor 10 and the mutually neighboring strands 12 are kept in electrically communicated state. At the time when electricity is applied to a magnetic permanent electric current switch using this superconductor 10 or an external magnetic field intensity is changed, even if electric resistance and inductance of connection parts of respective strands are not even, the electric current flowing in the whole conductor body is made even and dispersion from design values of switching properties is suppressed attributed to the electric continuity between mutually neighboring strands. Moreover, the conductor is directly cooled not through an insulating layer, the temperature rise of the conductor is suppressed and switching operation is stabilized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超電導現象を応用
したいわゆる「永久電流スイッチ」、特に磁界式の永久
電流スイッチに用いる超電導導体であって、設計通りの
オフ磁界強度において安定したスイッチングがバラツキ
なく実現でき、熱損失が少なく高速スイッチングや高速
電流流し込みが可能であり、しかも製造工程が簡略化さ
れ安価に製造できる永久電流スイッチ用超電導導体に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called "permanent current switch" to which the superconducting phenomenon is applied, and more particularly to a superconducting conductor used for a magnetic field type permanent current switch. The present invention relates to a superconducting conductor for a permanent current switch, which can be realized without heat loss, can perform high-speed switching and high-speed current flowing, and can be manufactured at a low cost with a simplified manufacturing process.

【0002】[0002]

【従来の技術】永久電流スイッチは、超電導コイルと組
み合わせて永久電流回路を実現するために不可欠な要素
であり、超電導磁気エネルギー貯蔵装置、核融合システ
ム、磁気浮上鉄道、理化学実験用超電導マグネット等へ
の応用が進められている。この永久電流スイッチは、環
境条件を設定することによって超電導状態と常電導状態
との間をいずれの方向にも転移し得る導体から形成され
てなり、この導体が超電導状態にあるときは電気抵抗が
ゼロとなるので電流が減衰せずに導通してスイッチ・オ
ンの状態となり、導体を常電導状態に転移させると電気
抵抗が高くなって実質的にスイッチ・オフの状態が実現
されるようになっている。
2. Description of the Related Art A permanent current switch is an essential element for realizing a permanent current circuit in combination with a superconducting coil. Is being applied. This permanent current switch is formed of a conductor that can transition between a superconducting state and a normal conducting state in any direction by setting environmental conditions, and when the conductor is in the superconducting state, the electric resistance is changed. Since the current becomes zero, the current is conducted without attenuation and the switch is turned on, and when the conductor is changed to the normal conducting state, the electric resistance is increased and the switch is substantially turned off. ing.

【0003】例えば、図4〜図6に作動態様を示す超電
導磁気エネルギー貯蔵システムにおいて、永久電流スイ
ッチは以下のように用いられる。この超電導磁気エネル
ギー貯蔵システムにおいて、超電導コイル1と永久電流
スイッチ2とは並列に接続され、この並列回路はパワー
リード線3と開閉スイッチ4とを介して交直変換装置5
に接続され、この交直変換装置5は更に、図示しない交
流電源系統に接続されている。この超電導コイル1と永
久電流スイッチ2とは、いずれも低温において超電導状
態に転移する超電導性導体から形成され、その並列回路
全体が液体ヘリウムなどの冷媒で冷却されている。
For example, in a superconducting magnetic energy storage system whose operation is shown in FIGS. 4 to 6, a permanent current switch is used as follows. In this superconducting magnetic energy storage system, the superconducting coil 1 and the permanent current switch 2 are connected in parallel, and this parallel circuit is connected to the AC / DC converter 5 via the power lead 3 and the open / close switch 4.
The AC / DC converter 5 is further connected to an AC power system (not shown). Each of the superconducting coil 1 and the permanent current switch 2 is formed of a superconducting conductor that transitions to a superconducting state at a low temperature, and the entire parallel circuit is cooled by a coolant such as liquid helium.

【0004】いま、この超電導エネルギー貯蔵装置を用
いて電力の貯蔵を行うには、先ず図4に示すように、開
閉スイッチ4を閉じ、かつ永久電流スイッチ2を常電導
状態にもたらすことでスイッチ・オフの状態とし、直流
電流を超電導コイル1に流し込み、電力を電磁エネルギ
ーとして超電導コイル1内に蓄積する。
Now, in order to store electric power using this superconducting energy storage device, first, as shown in FIG. 4, the on / off switch 4 is closed and the permanent current switch 2 is brought into a normal conducting state by switching the switch. In the off state, a DC current is supplied to the superconducting coil 1, and the electric power is stored in the superconducting coil 1 as electromagnetic energy.

【0005】次に、図4に示すように開閉スイッチ4を
閉じた状態で永久電流スイッチ2を超電導状態にもたら
すことでスイッチをオン状態にした後、外部からの電流
を減ずると永久電流スイッチ2に電流が流れ込む。外部
からの直流電流がゼロになると、超電導コイル1に流れ
る電流と同等の電流が永久電流スイッチ2に流れ、永久
電流モードとなる。この状態で、図5に示すように、開
閉スイッチ4を開く。すると、超電導コイル1も永久電
流スイッチ2も共に電気抵抗がゼロであるから、電流は
永久電流となって減衰することなくこの並列回路中を流
れ続け、超電導コイル1に蓄積されたエネルギーが無損
失で貯蔵されることになる。
Next, as shown in FIG. 4, the permanent current switch 2 is turned on by bringing the permanent current switch 2 into a superconducting state with the open / close switch 4 closed, and the external current is reduced by reducing the external current. The current flows into. When the DC current from the outside becomes zero, a current equivalent to the current flowing through the superconducting coil 1 flows through the permanent current switch 2, and a permanent current mode is set. In this state, the open / close switch 4 is opened as shown in FIG. Then, since the electric resistance of both the superconducting coil 1 and the permanent current switch 2 is zero, the current becomes a permanent current and continues to flow in this parallel circuit without being attenuated, and the energy stored in the superconducting coil 1 loses no loss. Will be stored at

【0006】この貯蔵されたエネルギーを取り出すに
は、図6に示すように、開閉スイッチ4を閉じた後に永
久電流スイッチ2を常電導状態にもたらすことでスイッ
チ・オフとする。すると、上記の並列回路に貯蔵されて
いたエネルギーは、パワーリード線3を通して電力とし
て取り出すことができる。
In order to take out the stored energy, as shown in FIG. 6, the permanent current switch 2 is turned off by bringing the permanent current switch 2 into a normal conduction state after closing the open / close switch 4. Then, the energy stored in the parallel circuit can be taken out as power through the power lead wire 3.

【0007】上記の永久電流スイッチ2は、スイッチン
グが超電導状態と常電導状態との間の転移によって行わ
れるものであるから、この転移をいかに再現性よく安定
にかつ高速で行うかが重要な課題となる。ところでこの
転移は、温度、磁界、電流のいずれか、ないしは相互の
条件変化により起こるものであることがわかっている。
すなわち、これらの3条件にはそれぞれ臨界値があっ
て、その少なくともいずれかの臨界値を境にして導体が
超電導状態になったり常電導状態になったりする。
In the permanent current switch 2 described above, switching is performed by a transition between a superconducting state and a normal conducting state. Therefore, it is important to perform this transition stably with good reproducibility and at high speed. Becomes By the way, it is known that this transition is caused by any one of the temperature, the magnetic field, the electric current, and the mutual condition change.
That is, each of these three conditions has a critical value, and the conductor enters a superconducting state or a normal conducting state at least one of the critical values.

【0008】従来から永久電流スイッチのスイッチング
方式としては、温度を変化させる熱式が最も一般的に用
いられている。熱式は、スイッチ用導体である超電導線
と温度制御用のヒーター線とを一緒にコイル状に巻き込
み、普通、エポキシ樹脂を含浸して断熱構造にしたもの
が多い。これに用いる巻線用の導体としては、主にNb
−Ti合金からなる超電導線が用いられており、その臨
界温度は約9Kである。従ってこの超電導線は約9Kを
境にして超電導状態と常電導状態との間を転移する。
Conventionally, as a switching method of a permanent current switch, a thermal method of changing a temperature is most generally used. In the thermal method, a superconducting wire, which is a switch conductor, and a heater wire for temperature control are wound together in a coil shape, and are usually impregnated with epoxy resin to form a heat insulating structure. The winding conductor used for this purpose is mainly Nb
A superconducting wire made of -Ti alloy is used, and its critical temperature is about 9K. Therefore, the superconducting wire transitions between the superconducting state and the normal conducting state at about 9K.

【0009】この永久電流スイッチを作動する際は、ヒ
ーター線に通電して超電導線を約9K以上に加熱すれば
スイッチはオフ状態となり、ヒーター線の通電を止め周
囲のヘリウムによって超電導線を約9K以下に冷却すれ
ばスイッチはオンとなる。従って、約9Kを挟んで超電
導線の温度の降下/上昇を繰り返すことによって、スイ
ッチングが可能となる。
When the permanent current switch is operated, if the heater wire is energized and the superconducting wire is heated to about 9K or more, the switch is turned off, the heater wire is turned off, and the superconducting wire is turned off for about 9K by the surrounding helium. The switch is turned on if cooled below. Therefore, switching can be performed by repeatedly lowering / raising the temperature of the superconducting wire across about 9K.

【0010】しかし、この熱式の装置では、温度制御系
に熱容量があったり、熱伝導に時間がかかるなどのた
め、特に大電流用スイッチのスイッチングの応答に数秒
から数十秒もかかるという問題がある。また、この構造
では超電導線材の温度を上げるために熱捌けの悪い断熱
構造を取らざるを得ないことから、オフ状態にしたと
き、超電導線材に急激な局所的発熱が生じ、超電導線材
を熔断してしまうなどの惧れもあった。
However, this thermal type device has a problem that it takes several seconds to several tens of seconds for the switching response of a switch for a large current, particularly because the temperature control system has a heat capacity or takes a long time to conduct heat. There is. In addition, in this structure, a heat insulation structure with poor heat dissipation must be used to raise the temperature of the superconducting wire, so when it is turned off, sudden local heat is generated in the superconducting wire, and the superconducting wire is melted. There was also a fear that it would be lost.

【0011】一方、磁界式永久電流スイッチは、低温域
において、超電導性線材に外部から磁界を印加すると、
臨界磁界強度を境にして超電導状態と常電導状態との転
移が行われる性質を利用するものである。従ってこの磁
界式永久電流スイッチは、スイッチング用の超電導巻線
と制御磁界発生用の電磁石とで構成される。スイッチン
グ用の線材としては、磁界制御が容易な適度の臨界磁界
強度を有する超電導性素材が用いられ、例えば1T(テ
スラ)以下程度の臨界磁界強度を有するCu−Nb合金
などが一般的に用いられる。
On the other hand, when a magnetic field type permanent current switch is applied with an external magnetic field to a superconducting wire in a low temperature range,
It utilizes the property of transition between the superconducting state and the normal conducting state at the critical magnetic field strength. Therefore, this magnetic field type permanent current switch is composed of a superconducting winding for switching and an electromagnet for generating a control magnetic field. As the switching wire, a superconducting material having a moderate critical magnetic field strength that facilitates magnetic field control is used, and for example, a Cu-Nb alloy having a critical magnetic field strength of about 1 T (tesla) or less is generally used. .

【0012】この磁界式永久電流スイッチは原理的に線
材の温度を上昇させる必要がないため、熱捌けのよい巻
線構造が可能となり、線材および巻線が有効に冷却され
るので、制御のため高速で外部磁界強度を変動させたと
きに発生する超電導巻線の交流損失による発熱に伴う温
度上昇が比較的少なく、熱式と比べれば安定かつ高速の
スイッチングが可能となる利点を有する。更にまた、磁
界式永久電流スイッチにおいては一般に、外部磁界強度
の変動によって発生する誘導電圧を抑制するために、自
己インダクタンスを小さくする無誘導巻きが行われるの
であるが、この無誘導巻きは、巻線構造として、隣接す
る導体間に発生する誘導電圧までも小さくするという利
点もある。
Since the magnetic field type permanent current switch does not need to raise the temperature of the wire in principle, a winding structure with good heat dissipation can be provided, and the wire and the winding are effectively cooled. The temperature rise due to the heat generated by the AC loss of the superconducting winding generated when the external magnetic field intensity is fluctuated at a high speed is relatively small, and has an advantage that stable and high-speed switching is possible as compared with the thermal type. Furthermore, in the magnetic field type permanent current switch, in order to suppress the induced voltage generated by the fluctuation of the external magnetic field strength, non-inductive winding for reducing the self-inductance is generally performed. The line structure also has the advantage of reducing the induced voltage generated between adjacent conductors.

【0013】[0013]

【発明が解決しようとする課題】従来の磁界式永久電流
スイッチに用いられる超電導性導体は、素線単独では例
えば0.3mmφ素線で数十Aから百A程度というよう
に、電流の通電容量が小さいため、一般に複数本の素線
を撚線に撚って電流容量の増大を図っている。この場
合、素線相互および撚線導体全体の電気絶縁のために、
個々の素線にそれぞれポリビニルホルマールなどの絶縁
層を施すことが一般的に行われている。しかしこのため
に、以下のような問題が起こる。 撚線とされた個々の絶縁素線の接続部における電気抵
抗やインダクタンスがばらつくため、導体に電流を流し
込む際、または外部磁界強度を変化させる際に、各素線
に均等に超電導電流が分流せず、従って電流が素線の本
数の和とならず永久電流スイッチのスイッチング特性が
設計値からはずれ、また作動が不安定になる。 絶縁層が保温体となるため、外部から冷却しているに
もかかわらず、外部磁界変動や電流流し込みに伴う導体
の交流損失により導体内部の温度が上昇し、この温度変
化によってスイッチングの臨界点が不安定になる。 線材に絶縁層が施されているために冷媒による冷却速
度が低下し、この冷却速度が律速となって十分な高速ス
イッチンッグができない。 個々の素線を絶縁するための工程が必要であり、工程
が煩雑になるとともに絶縁材などの経費を要する。
The superconducting conductor used in the conventional magnetic field type permanent current switch has a current carrying capacity of, for example, about tens to hundreds of amperes of a 0.3 mm.phi. In general, a plurality of strands are twisted into a stranded wire to increase the current capacity. In this case, for electrical insulation between the strands and the entire stranded conductor,
It is common practice to apply an insulating layer such as polyvinyl formal to each individual wire. However, this causes the following problems. Since the electrical resistance and inductance at the connection of individual stranded insulated wires vary, the superconducting current can be evenly distributed to each wire when applying current to the conductor or changing the external magnetic field strength. Therefore, the current does not become the sum of the number of wires, the switching characteristics of the permanent current switch deviate from the design values, and the operation becomes unstable. Because the insulating layer acts as a heat insulator, the temperature inside the conductor rises due to external magnetic field fluctuations and AC loss of the conductor due to current flow, even though it is cooled from the outside. Becomes unstable. Since the wire is provided with the insulating layer, the cooling rate of the refrigerant is reduced, and the cooling rate is rate-determining, so that sufficient high-speed switching cannot be performed. A process for insulating individual strands is required, which complicates the process and requires cost for an insulating material and the like.

【0014】本発明はこれらの問題を解決するためにな
されたものであり、従ってその目的は、磁界式永久電流
スイッチに用いる超電導導体であって、スイッチング特
性にバラツキがなく、作動が安定しているとともに熱損
失が少なく、しかも製造工程が簡略化され安価に製造で
きる超電導導体を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve these problems, and an object of the present invention is to provide a superconducting conductor used for a magnetic field type permanent current switch, which has no variation in switching characteristics and stable operation. Another object of the present invention is to provide a superconducting conductor which has a small heat loss and can be manufactured at a low cost with a simplified manufacturing process.

【0015】[0015]

【課題を解決するための手段】上記の課題は、超電導素
線を複数本撚り合わせた撚線導体からなり、その各超電
導素線に電気絶縁層を形成せず、互いに隣接する超電導
素線どうしが電気的に導通するようにした永久電流スイ
ッチ用超電導導体を提供することによって解決できる。
An object of the present invention is to provide a superconducting wire composed of a plurality of superconducting wires twisted together without forming an electrical insulating layer on each of the superconducting wires. Can be solved by providing a superconducting conductor for a permanent current switch, which is made electrically conductive.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を実施
例により図面を用いて説明する。図1は本発明の永久電
流スイッチ用超電導導体の一実施例を示している。図1
において、永久電流スイッチ用超電導導体10は、直径
0.3mmのCu−Ni合金製の常電導芯線11を中心
にして、それぞれ直径0.3mmの超電導素線12、1
2、…が撚り合わされた撚線導体(10)からなる。こ
の各超電導素線12、12、…にも、撚線導体10の全
体にも絶縁層は形成されておらず、互いに隣接する超電
導素線12どうしは電気的に導通状態になっている。こ
の撚線導体10の、4.2K、ゼロ磁界強度における直
流臨界電流は570Aであった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows an embodiment of a superconducting conductor for a permanent current switch according to the present invention. FIG.
In the superconducting conductor 10 for a permanent current switch, a superconducting wire 12 having a diameter of 0.3 mm and a superconducting wire 12, 1
2,.. Consist of a stranded wire conductor (10). The insulating layer is not formed on each of the superconducting wires 12, 12,..., Nor on the entire stranded conductor 10, and the superconducting wires 12 adjacent to each other are in an electrically conductive state. The DC critical current of this stranded conductor 10 at 4.2 K and zero magnetic field strength was 570 A.

【0017】この超電導導体を線材として用いた磁界式
永久電流スイッチは、導体に通電したとき、また外部磁
界強度を変化させたとき、個々の素線の接続部の電気抵
抗やインダクタンスにバラツキがあっても、互いに隣接
する超電導素線間に導通があるので、導体全体に流れる
電流が均化され、スイッチング特性の設計値からのバラ
ツキが減少する。また、超電導導体が絶縁層を介さず直
接冷却されるので、外部磁界強度の変動や電流の流し込
みに伴う導体の温度上昇が効果的に抑制され、臨界磁界
強度の熱的変動によるスイッチング動作の不安定が減少
し、かつ高速スイッチングが可能となる。
In the magnetic field type permanent current switch using the superconducting conductor as a wire, when the conductor is energized or when the external magnetic field strength is changed, the electric resistance and the inductance of the connection portions of the individual wires vary. However, since there is conduction between the superconducting wires adjacent to each other, the current flowing through the entire conductor is leveled, and the variation of the switching characteristics from the design value is reduced. In addition, since the superconducting conductor is directly cooled without passing through the insulating layer, fluctuations in the external magnetic field strength and temperature rise of the conductor due to the inflow of current are effectively suppressed, and switching operation due to thermal fluctuations in the critical magnetic field strength is prevented. Stability is reduced and high speed switching is possible.

【0018】この撚線導体10に用いた超電導素線12
は以下のようにして製造した。Cu−50重量%Nb合
金を超電導材料とし、この直径20mm×長さ2000
mmのロッドを外径30mm、内径21mm×長さ20
00mmのCu−30重量%Ni合金製パイプと複合
し、単芯線とした。この単芯線を、直径2mmとなるま
で線引き加工し、得られた単芯線を55本束ねて外径2
5mm、内径20mm×長さ2000mmのCu−30
重量%Ni合金製パイプに挿入し、このものを直径0.
3mmとなるまで線引きして超電導素線12とした。な
お、この超電導素線12を複合する際に用いるパイプ材
として、また撚線導体10の芯線11として用いたCu
−Ni合金は、この実施例における常導電領域での見か
けの比抵抗を低下させないために用いられたものであっ
て、これによってスイッチ・オフ時における電気抵抗が
高く維持され、電流遮断効果がより確実なものとなっ
た。
The superconducting wire 12 used for the stranded conductor 10
Was manufactured as follows. A Cu-50% by weight Nb alloy is used as a superconducting material.
mm rod, outer diameter 30 mm, inner diameter 21 mm x length 20
It was combined with a 00 mm Cu-30 wt% Ni alloy pipe to form a single core wire. This single-core wire is drawn to a diameter of 2 mm, and 55 obtained single-core wires are bundled to form an outer diameter of 2 mm.
5mm, Cu-30 of inner diameter 20mm x length 2000mm
Weight percent Ni alloy pipe, and insert this pipe with a diameter of 0.
The superconducting element wire 12 was drawn until it became 3 mm. In addition, Cu used as a pipe material used when compounding this superconducting element wire 12 and as a core wire 11 of the stranded conductor 10 is used.
The -Ni alloy was used in this embodiment to prevent the apparent specific resistance from decreasing in the normal conductive region, whereby the electric resistance at the time of switch-off was kept high, and the current interrupting effect was improved. It became certain.

【0019】次に、実施例の超電導導体10が組み込ま
れる永久電流スイッチと、この永久電流スイッチが組み
込まれる超電導磁気エネルギー貯蔵装置の一例を図2に
よって説明する。この超電導磁気エネルギー貯蔵装置2
0において、符号21は超電導コイル、符号22は超電
導コイル21に並列に接続された磁界式の永久電流スイ
ッチ、符号23は超電導コイル21と永久電流スイッチ
22に接続されたパワーリード、符号24はパワーリー
ド23に組み込まれた開閉スイッチ、符号25はパワー
リード23に接続された交直変換器をそれぞれ示してい
る。上記の永久電流スイッチ22は、図1に示した実施
例の超電導導体10を用いて構成されたものである。ま
た、符号26は磁界式の永久電流スイッチ22のオン/
オフを制御するための制御用超電導電磁石であり、符号
27はこの制御用電磁石27のための励磁用電流源であ
る。この制御用電磁石26は1T程度の磁界を発生させ
ることができるようになっている。符号28は冷却容器
による極低温領域を示し、この領域を液体ヘリウムによ
り極低温に冷却することで超電導コイル21と永久電流
スイッチ22と制御用電磁石26をそれぞれ超電導状態
にすることができるようになっている。
Next, an example of a permanent current switch incorporating the superconducting conductor 10 of the embodiment and a superconducting magnetic energy storage device incorporating the permanent current switch will be described with reference to FIG. This superconducting magnetic energy storage device 2
0, reference numeral 21 denotes a superconducting coil, reference numeral 22 denotes a magnetic field type permanent current switch connected in parallel to the superconducting coil 21, reference numeral 23 denotes a power lead connected to the superconducting coil 21 and the permanent current switch 22, and reference numeral 24 denotes power. Reference numeral 25 denotes an open / close switch incorporated in the lead 23 and an AC / DC converter connected to the power lead 23. The above-mentioned permanent current switch 22 is configured using the superconducting conductor 10 of the embodiment shown in FIG. Reference numeral 26 denotes the on / off of the magnetic field type permanent current switch 22.
Reference numeral 27 denotes a control superconducting electromagnet for controlling turning-off, and reference numeral 27 denotes an exciting current source for the control electromagnet 27. This control electromagnet 26 can generate a magnetic field of about 1T. Reference numeral 28 denotes a cryogenic region by a cooling vessel. By cooling this region to a cryogenic temperature with liquid helium, the superconducting coil 21, the permanent current switch 22, and the control electromagnet 26 can be brought into a superconducting state. ing.

【0020】上記の超電導磁気エネルギー貯蔵装置20
に用いた永久電流スイッチ22は、図3に示すように、
直径50mm、長さ250mmのボビン31上に実施例
の超電導導体10を15mを要して無誘導巻きして形成
された無誘導コイルからなっている。このコイルは、超
電導導体10をその中間点32で折り返し、この中間点
32から双方にそれぞれ延びる超電導導体10aおよび
10bを平行に、ただし接触しないように0.4mmの
間隔を保ってボビン31に螺旋巻きして得られるもので
ある。この螺旋巻きは、導体のガイドのために予めボビ
ン31に2条の螺旋溝を形成して行った。得られたコイ
ルは、いま例えばその一端末Aから他端末Bへ電流を流
すと、隣接する導体に逆方向の電流が流れることにな
り、全体として無誘導コイルが実現する。
The above-described superconducting magnetic energy storage device 20
As shown in FIG. 3, the permanent current switch 22 used for
It comprises a non-inductive coil formed by winding the superconducting conductor 10 of the embodiment in a length of 15 m on a bobbin 31 having a diameter of 50 mm and a length of 250 mm without induction. The coil turns the superconducting conductor 10 at its midpoint 32, and spirally superposes the superconducting conductors 10a and 10b extending from the midpoint 32 to the bobbin 31 in parallel, but maintaining a 0.4 mm interval so as not to make contact. It is obtained by winding. The spiral winding was performed by forming two spiral grooves on the bobbin 31 in advance for guiding the conductor. In the obtained coil, for example, when current flows from one terminal A to another terminal B, a current flows in an opposite direction to an adjacent conductor, and a non-inductive coil is realized as a whole.

【0021】実施例の超電導導体10を永久電流スイッ
チ22に用いた上記の超電導磁気エネルギー貯蔵装置2
0は、図4〜図6によって説明した超電導磁気エネルギ
ー貯蔵装置と同様に、電力の充電と貯蔵と放出ができ
る。まず、充電を行うには開閉スイッチ24を閉じて回
路を接続するとともに、定電流源27を作動させて制御
用電磁石26に通電し、永久電流スイッチ22の超電導
導体10に、その臨界磁界より高い磁界をかける。これ
により超電導導体10は極低温においても常電導状態に
転移するので永久電流スイッチ22はオフとなり、超電
導コイル21に直流電流を流すことにより、磁気エネル
ギーとして電力を貯蔵することができるようになる。
The above-described superconducting magnetic energy storage device 2 using the superconducting conductor 10 of the embodiment for the permanent current switch 22.
0 can charge, store, and discharge power as in the superconducting magnetic energy storage device described with reference to FIGS. First, in order to perform charging, the open / close switch 24 is closed to connect the circuit, and the constant current source 27 is operated to energize the control electromagnet 26, so that the superconducting conductor 10 of the permanent current switch 22 has a voltage higher than its critical magnetic field. Apply a magnetic field. As a result, the superconducting conductor 10 transitions to a normal conducting state even at a very low temperature, so that the permanent current switch 22 is turned off, and a DC current is passed through the superconducting coil 21 so that electric power can be stored as magnetic energy.

【0022】次に、開閉スイッチ24を閉じた状態で制
御用電磁石26への通電電流を減少させゼロにすると、
常電導状態であった永久電流スイッチ22の超電導導体
10が受ける磁界がゼロになり、永久電流スイッチ22
は超電導状態となり、スイッチ・オンの状態となる。こ
の状態で外部からの電流を減ずると、永久電流スイッチ
22に電流が流れ込む。外部からの電流がゼロになる
と、超電導コイル21に流れる電流と等しい電流が永久
電流スイッチ22に流れ、永久電流モードとなる。この
状態で開閉スイッチ24を開く。すると、超電導コイル
21も永久電流スイッチ22も共に電気抵抗がゼロであ
るから、電流は永久電流となって減衰することなくこの
閉回路中を流れ続け、超電導コイル21に蓄積されたエ
ネルギーが無損失で貯蔵される。
Next, when the current supplied to the control electromagnet 26 is reduced to zero with the open / close switch 24 closed,
The magnetic field received by the superconducting conductor 10 of the permanent current switch 22 in the normal conduction state becomes zero, and the permanent current switch 22
Is in a superconducting state and is switched on. If the current from the outside is reduced in this state, the current flows into the permanent current switch 22. When the current from the outside becomes zero, a current equal to the current flowing through the superconducting coil 21 flows through the permanent current switch 22, and a permanent current mode is set. In this state, the open / close switch 24 is opened. Then, since the electric resistance of both the superconducting coil 21 and the permanent current switch 22 is zero, the current becomes a permanent current and continues to flow in this closed circuit without being attenuated, and the energy stored in the superconducting coil 21 is lost without loss. Stored in.

【0023】次にこの貯蔵されたエネルギーを取り出す
には、開閉スイッチ24を閉じた後に、制御用電磁石2
6に通電して磁界を加え、永久電流スイッチ22を常電
導状態に転移させる。これによって、超電導コイル21
に貯えられていた磁気エネルギーを電力として取り出す
ことができる。
Next, in order to take out the stored energy, the control electromagnet 2 is closed after the open / close switch 24 is closed.
6 to apply a magnetic field to cause the permanent current switch 22 to transition to the normal conduction state. Thereby, the superconducting coil 21
Magnetic energy stored in the vehicle can be extracted as electric power.

【0024】上記の一連の操作を、300Aの運転電流
で行った。この永久電流スイッチ22は、制御用電磁石
26の磁界をゼロから上昇させたところ、磁界強度0.
25Tで安定してオフとなり、95%の電流を遮断する
ことができた。スイッチをオフにする際の外部磁界変動
速度を1T/秒まで上昇させても、オフ磁界は0.25
Tを維持し安定していた。これは、安定した高速遮断が
可能であることを示している。また、磁界を1Tまで上
昇させたとき、永久電流スイッチ22の電気抵抗は10
Ωであった。
The above series of operations was performed at an operating current of 300 A. When this permanent current switch 22 raises the magnetic field of the control electromagnet 26 from zero, the magnetic field strength becomes 0.2.
It turned off stably at 25T, and it was possible to cut off 95% of the current. Even if the external magnetic field fluctuation speed when the switch is turned off is increased to 1 T / sec, the off magnetic field is 0.25
T was maintained and stable. This indicates that stable high-speed cutoff is possible. When the magnetic field is increased to 1T, the electric resistance of the permanent current switch 22 becomes 10
Ω.

【0025】(比較例)永久電流スイッチの超電導導体
として実施例と同様の構成を有するが、ただし従来の方
法に従い、各超電導素線並びに常電導芯線に、それぞれ
ポリビニルホルマール樹脂の絶縁層が施されたものを用
いて永久電流スイッチを作製し、この永久電流スイッチ
を用いて超電導磁気エネルギー貯蔵装置を構成した。比
較例導体の直流臨界電流は、実施例の場合と同様に、
4.2K、ゼロ磁界強度において570Aであった。
COMPARATIVE EXAMPLE The superconducting conductor of the permanent current switch has the same configuration as that of the embodiment, except that an insulating layer of polyvinyl formal resin is applied to each superconducting element wire and normal conducting core wire according to a conventional method. Then, a permanent current switch was manufactured using the obtained material, and a superconducting magnetic energy storage device was configured using the permanent current switch. The DC critical current of the comparative example conductor was the same as in the example,
It was 570 A at 4.2 K and zero magnetic field strength.

【0026】この超電導磁気エネルギー貯蔵装置を実施
例の場合と同様に300Aの運転電流で運転し、外部磁
界変動速度を1T/秒として外部磁界強度をゼロから上
昇させたところ、励磁開始直後に導体がクエンチした。
そこで、外部磁界変動速度を順次、0.9T/秒、0.
8T/秒、…と低下させてオフ磁界を測定した。しか
し、外部磁界変動速度を0.1T/秒に低下させるまで
は、スイッチがオフとなる磁界強度が0Tから0.25
Tの間でばらつき、再現性が得られなかった。外部磁界
変動速度が0.1T/秒に至ってようやく導体がクエン
チすることなく、0.25Tの磁界で再現性よく安定し
たオフ磁界値が得られるようになった。
The superconducting magnetic energy storage device was operated at an operating current of 300 A in the same manner as in the embodiment, and the external magnetic field intensity was increased from zero at an external magnetic field fluctuation speed of 1 T / sec. Has quenched.
Therefore, the external magnetic field fluctuation speed is sequentially set to 0.9 T / sec, 0.
The off-field was measured at 8 T / sec. However, until the external magnetic field fluctuation speed is reduced to 0.1 T / sec, the magnetic field strength at which the switch is turned off is from 0 T to 0.25 T.
There was variation between T and reproducibility was not obtained. Only when the external magnetic field fluctuation speed reaches 0.1 T / sec, the conductor does not quench, and a stable off-field value with good reproducibility can be obtained with a magnetic field of 0.25 T.

【0027】実施例および比較例の試験結果を比較する
と、絶縁層を有する撚線導体を用いた従来方式の永久電
流スイッチの場合、低速スイッチングは可能であるもの
の高速スイッチングにおいては作動が不安定になりオフ
磁界値も安定せず、実用性に問題があった。これに対し
て、絶縁層を有せず隣接した超電導素線どうしが導通し
合っている実施例の撚線導体を用いた場合は、高速スイ
ッチングにおいても一定のオフ磁界強度で安定したオン
/オフが可能であることがわかる。
A comparison of the test results of the embodiment and the comparative example shows that the conventional permanent current switch using a stranded conductor having an insulating layer enables low-speed switching but unstable operation at high-speed switching. The off-field value was not stable, and there was a problem in practicality. On the other hand, in the case of using the stranded conductor of the embodiment in which the adjacent superconducting wires do not have an insulating layer and are connected to each other, even in high-speed switching, stable on / off with a constant off-field magnetic field strength is achieved. It can be seen that is possible.

【0028】次に、実施例と比較例の撚線導体をそれぞ
れ用いた永久電流スイッチについて、通電可能速度を比
較した。それぞれの永久電流スイッチに対する通電は、
いずれも外部磁界強度ゼロの状態で電流値は300Aと
した。まず、比較例の撚線導体を用いた永久電流スイッ
チの場合は、10kA/秒以上の通電速度で導体がクエ
ンチし、オン状態が維持できなかった。10kA/秒ま
での通電速度では電流流し込みが可能であったものの、
この通電速度では300Aの電流を流し込むのに30ミ
リ秒以上を必要とし、電流流し込み速度において実用性
に問題がある。これに対して、実施例の撚線導体を用い
た永久電流スイッチの場合は、100kA/秒の通電速
度で電流流し込みを行っても常に安定してオン状態が維
持され、高速通電が可能であった。
Next, the energizable speeds of the permanent current switches using the stranded conductors of the embodiment and the comparative example were compared. The energization for each permanent current switch is
In each case, the current value was 300 A when the external magnetic field strength was zero. First, in the case of the permanent current switch using the stranded conductor of the comparative example, the conductor was quenched at an energizing speed of 10 kA / sec or more, and the ON state could not be maintained. At an energizing speed of up to 10 kA / sec, current could be supplied,
At this energizing speed, it takes 30 milliseconds or more to flow a current of 300 A, and there is a problem in practicality at the current flowing speed. On the other hand, in the case of the permanent current switch using the stranded conductor of the embodiment, the on state is always stably maintained even when the current is supplied at an energizing speed of 100 kA / sec, and high-speed energizing is possible. Was.

【0029】実施例の超電導導体は超電導材料としてC
u−Nb合金を用いたが、本発明の超電導導体に用いる
ことにできる超電導材料はこれに限定されるものではな
く、例えばNb3Sn、V3Gaなどの金属間化合物系超
電導材料、NbTiなどの合金系超電導材料、また、C
uにZnやNiなどを添加して高電気抵抗化した金属母
材に超電導フィラメントを多数分散配列させた複合超電
導材料なども用いることもできる。また、常導電材料も
実施例に用いたCu−Ni合金に限らず、Cu−Zn合
金やステンレス鋼などであってもよい。
The superconducting conductor of the embodiment uses C as a superconducting material.
was used u-Nb alloy, superconducting materials that can be used in the superconductor of the present invention is not limited thereto, for example, Nb 3 Sn, intermetallic compound superconducting material such as V 3 Ga, NbTi etc. Alloy superconducting material, and C
A composite superconducting material in which a large number of superconducting filaments are dispersed and arranged in a metal base material having high electric resistance by adding Zn or Ni to u can also be used. Further, the normal conductive material is not limited to the Cu-Ni alloy used in the embodiment, but may be a Cu-Zn alloy, stainless steel, or the like.

【0030】[0030]

【発明の効果】本発明の永久電流スイッチ用超電導導体
は、超電導素線を複数本撚り合わせた撚線からなり、こ
の各超電導素線に電気絶縁層を形成せず、互いに隣接す
る超電導素線どうしが電気的に導通するようにされてい
るので、これを線材として用いた磁界式永久電流スイッ
チは、素線間の偏流が小さくなり、設計通りのオフ磁界
強度において安定したスイッチングを再現性よく行うこ
とができる。また、外部磁界変動時や電流流し込み時に
おける導体の交流損失に起因する発熱に対しても絶縁層
を介さず効果的に冷却できるので、導体温度の上昇が抑
制され、高速のスイッチングや高速の電流流し込みが可
能となり、超電導磁気エネルギー貯蔵装置などに有利に
用いることができるようになる。更に、本発明の永久電
流スイッチ用超電導導体は、撚線導体製造時に絶縁工程
が省略されるので工程が簡略化されるとともに経費も節
減される利点を有する。
The superconducting conductor for a permanent current switch according to the present invention comprises a stranded wire in which a plurality of superconducting wires are twisted, and the superconducting wires adjacent to each other are formed without forming an electric insulating layer on each of the superconducting wires. Because they are electrically connected to each other, the magnetic field type permanent current switch using this as a wire reduces the drift between the strands and achieves stable switching with the off-field strength as designed with good reproducibility. It can be carried out. In addition, heat generated by the AC loss of the conductor when the external magnetic field fluctuates or the current flows can be effectively cooled without passing through the insulating layer, so the rise in the conductor temperature is suppressed, and high-speed switching and high-speed current Pouring becomes possible, and it can be advantageously used for a superconducting magnetic energy storage device or the like. Furthermore, the superconducting conductor for a permanent current switch according to the present invention has an advantage that the process is simplified and the cost is reduced because the insulating process is omitted when the stranded conductor is manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例である永久電流スイッチ用
超電導導体を示す軸心に垂直な断面図。
FIG. 1 is a sectional view perpendicular to an axis showing a superconducting conductor for a permanent current switch according to an embodiment of the present invention.

【図2】 図1の超電導導体を用いた超電導磁気エネル
ギー貯蔵装置の一例を示す回路図。
FIG. 2 is a circuit diagram showing an example of a superconducting magnetic energy storage device using the superconducting conductor of FIG.

【図3】 図1の超電導導体を用いた永久電流スイッチ
の一例を示す斜視図。
FIG. 3 is a perspective view showing an example of a permanent current switch using the superconducting conductor of FIG. 1;

【図4】 超電導磁気エネルギー貯蔵装置の一例におけ
る一作動態様を示す回路図。
FIG. 4 is a circuit diagram showing an operation mode of an example of the superconducting magnetic energy storage device.

【図5】 図4に示す超電導磁気エネルギー貯蔵装置の
他の作動態様を示す回路図。
FIG. 5 is a circuit diagram showing another operation mode of the superconducting magnetic energy storage device shown in FIG.

【図6】 図4に示す超電導磁気エネルギー貯蔵装置の
更に他の作動態様を示す回路図。
FIG. 6 is a circuit diagram showing still another operation mode of the superconducting magnetic energy storage device shown in FIG.

【符号の説明】[Explanation of symbols]

10……永久電流スイッチ用超電導導体、11……常電
導芯線、12……超電導素線。
10 ... superconducting conductor for permanent current switch, 11 ... normal conducting core wire, 12 ... superconducting element wire.

フロントページの続き (72)発明者 河野 宰 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 本間 仁 宮城県仙台市青葉区中山七丁目2番1号 東北電力株式会社研究開発センター内Continuing on the front page (72) Inventor Satoshi Kono 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Co., Ltd. (72) Inventor Jin Honma 7-2-1, Nakayama, Aoba-ku, Aoba-ku, Sendai, Miyagi Tohoku Electric Power Stock Inside the company R & D center

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 超電導素線を複数本撚り合わせた撚線導
体からなり、その各超電導素線に電気絶縁層を形成せ
ず、互いに隣接する超電導素線どうしが電気的に導通す
るようにしたことを特徴とする永久電流スイッチ用超電
導導体。
1. A superconducting element comprising a stranded conductor in which a plurality of superconducting elements are twisted, an electric insulating layer is not formed on each superconducting element, and superconducting elements adjacent to each other are electrically connected. A superconductor for permanent current switches.
JP8262188A 1996-10-02 1996-10-02 Superconductor for permanent electric current switch Pending JPH10106365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8262188A JPH10106365A (en) 1996-10-02 1996-10-02 Superconductor for permanent electric current switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8262188A JPH10106365A (en) 1996-10-02 1996-10-02 Superconductor for permanent electric current switch

Publications (1)

Publication Number Publication Date
JPH10106365A true JPH10106365A (en) 1998-04-24

Family

ID=17372301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8262188A Pending JPH10106365A (en) 1996-10-02 1996-10-02 Superconductor for permanent electric current switch

Country Status (1)

Country Link
JP (1) JPH10106365A (en)

Similar Documents

Publication Publication Date Title
KR100662754B1 (en) Resistive type superconducting fault current limiter
EP3033754B1 (en) Device for a current limiter and a current limiter comprising said device
KR100717351B1 (en) Fault current limiters having superconducting bypass reactor for simultaneous quench
US4602231A (en) Spaced stabilizing means for a superconducting switch
US20060268471A1 (en) Resistive superconducting fault current limiter
JP2000032654A (en) Current limiting element using oxide superconductor, and current limiter thereof
Verhaege et al. A new class of AC superconducting conductors
JPH10106365A (en) Superconductor for permanent electric current switch
US11527885B2 (en) Superconducting fault current limiter
JP3231837B2 (en) Superconducting current limiting device
JPH08264039A (en) Superconducting cable
US3393386A (en) Semiconducting shunts for stabilizing superconducting magnet coils
JP2889485B2 (en) Superconducting wire connection method and device, and superconducting coil device
Verhaege et al. Protection of superconducting AC windings
JPH10326915A (en) Connection structure of superconductive wire
JPH0714441A (en) Superconducting cable
JPH08222428A (en) Persistent current switch
Sadakata et al. Fast switching characteristics of magnetic persistent current switch for SMES
JP3065429B2 (en) Permanent current switch
JPH06223641A (en) Superconductor and superconducting current limiter trigger coil using same
JPH07115016A (en) Superconducting device
JP3326453B2 (en) Superconducting wire connection terminal
JPH03145922A (en) Current limiter
JPH05145125A (en) Superconductive device
JPH05176450A (en) Superconducting current limiter

Legal Events

Date Code Title Description
FPAY Renewal fee payment

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090109