JPH10103354A - Hydrostatic gas bearing - Google Patents

Hydrostatic gas bearing

Info

Publication number
JPH10103354A
JPH10103354A JP8256457A JP25645796A JPH10103354A JP H10103354 A JPH10103354 A JP H10103354A JP 8256457 A JP8256457 A JP 8256457A JP 25645796 A JP25645796 A JP 25645796A JP H10103354 A JPH10103354 A JP H10103354A
Authority
JP
Japan
Prior art keywords
bearing
porous body
gas
porous
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8256457A
Other languages
Japanese (ja)
Inventor
Toshio Mukai
俊夫 向井
Shuji Asada
修司 浅田
Akihiro Shinpo
章弘 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8256457A priority Critical patent/JPH10103354A/en
Publication of JPH10103354A publication Critical patent/JPH10103354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrostatic gas bearing having high stability. SOLUTION: A gas injection means is a baring in which a porous ceramics substance 3 having permeability of 5×10<-16> -5×10<-15> m<2> is incorporated, an exposure part surface forming the gas injection surface of the porous substance 3 is positioned flush with a bearing surface 1 and a ratio Sp /Sb between the area Sp of the exposure part surface and the total area Sb of a bearing surface is 0.05-0.3. A hydrostatic gas bearing is formed such that the shape of a porous ceramics substance is the shape of a rectangular frame or an annular shape and mounted on a body having a gas feed part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、精密工作機械や精
密測定器等の位置決めステージ及び高速回転スピンドル
等で用いられる静圧気体軸受けに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static pressure gas bearing used for a positioning stage of a precision machine tool, a precision measuring instrument, and the like, and a high-speed rotary spindle.

【0002】[0002]

【従来の技術】高精度位置決めの要求される精密工作機
械等においては、ワークを非接触で搬送するシステムが
採用されつつある。そこに使われる静圧気体軸受けとし
ては、高剛性のみならず高安定性であることが要求され
る。多孔質絞りを用いた静圧気体軸受けは、通常の単一
孔から気体を噴出する自成絞り、オリフィス絞り軸受け
に対して、少ない気体流量で高い剛性が得られるなどの
利点があるが、反面多孔質体の浸透率が限られた範囲に
ないと自励振動を起こすおそれがある。また、多孔質絞
りは、静的な圧力下での剛性(静剛性)は高いが、周期
的圧力下での剛性(動剛性)が低下するという問題があ
る。特開平4−219519号公報においては、多孔質
体の浸透率が7×10-15 2 以下であれば自励振動が
起こらないことが開示されている。また、特開平6−2
49239号公報においては、多孔質体の浸透率が5×
10-16 2 以下であれば、動剛性の低下が少なく自励
振動も起こらないことが開示されている。
2. Description of the Related Art In precision machine tools and the like that require high-precision positioning, a system for transporting a work in a non-contact manner is being adopted. The static pressure gas bearing used therein is required to have not only high rigidity but also high stability. A static pressure gas bearing using a porous restrictor has the advantage of being able to obtain high rigidity with a small gas flow rate, compared to a self-contained restrictor that blows out gas from a single hole and an orifice restrictor bearing. If the permeability of the porous body is not in a limited range, self-excited vibration may occur. Further, the porous restrictor has a high rigidity (static rigidity) under a static pressure, but has a problem that the rigidity (dynamic rigidity) under a periodic pressure is reduced. Japanese Unexamined Patent Publication (Kokai) No. 4-219519 discloses that self-excited vibration does not occur when the permeability of the porous body is 7 × 10 −15 m 2 or less. Also, JP-A-6-2
No. 49239, the permeability of the porous body is 5 ×
It is disclosed that when the pressure is 10 -16 m 2 or less, the dynamic rigidity decreases little and self-excited vibration does not occur.

【0003】以上のように、多孔質体の浸透率と自励振
動の関係については公知になっているが、多孔質体の軸
受け露出面積と軸受けの安定性に関しては十分な調査が
行われていない。
As described above, the relationship between the permeability of the porous body and the self-excited vibration is publicly known, but a sufficient investigation has been made on the exposed area of the bearing of the porous body and the stability of the bearing. Absent.

【0004】[0004]

【発明が解決しようとする課題】本発明は、多孔質体の
浸透率と軸受け面の多孔質体露出面積を限定することに
より、高安定かつ高剛性の軸受けを提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly stable and highly rigid bearing by limiting the permeability of the porous body and the exposed area of the porous body on the bearing surface.

【0005】[0005]

【課題を解決するための手段】本発明では、気体噴出手
段として気体の浸透率が5×10-16 2 以上、5×1
-15 2 以下の多孔質セラミックス体が組み込まれた
軸受けであって、多孔質体の気体噴出面となる露出部表
面が軸受け面と同一平面上にあって、該露出部表面の面
積(SP )と軸受け面の全面積(Sb )の比Sp /Sb
が0.05以上、0.3以下であることを特徴とする静
圧気体軸受けを提供する。
According to the present invention, the gas ejection means has a gas permeability of 5 × 10 −16 m 2 or more and 5 × 1
A bearing incorporating a porous ceramic body of 0 -15 m 2 or less, wherein the surface of the exposed portion serving as a gas ejection surface of the porous body is coplanar with the bearing surface, and the area of the surface of the exposed portion ( S P ) and the ratio Sp / S b of the total area of the bearing surface (S b )
Is not less than 0.05 and not more than 0.3.

【0006】本発明の静圧気体軸受けは、多孔質セラミ
ックス体の形状を矩形枠形状又はリング形状とし、気体
供給部を有するボディーに装着することにより実現でき
る。さらに、本形状の多孔体の気体供給側に一定幅の通
気溝を設けることにより、多孔質体全周にわたって均一
な通気を確保でき、高品位の軸受けが提供可能である。
The static pressure gas bearing of the present invention can be realized by mounting the porous ceramic body in a rectangular frame shape or a ring shape on a body having a gas supply portion. Further, by providing a ventilation groove having a constant width on the gas supply side of the porous body of this shape, uniform ventilation can be secured over the entire circumference of the porous body, and a high-quality bearing can be provided.

【0007】[0007]

【発明の実施の形態】図1に本発明の静圧気体軸受けの
概略図を示す。軸受け10は、通気溝5を有する環状の
多孔質体3の組み込まれた部材(ボディー)2とそれに
相対して軸受け間際を構成する部材(相対部材)9とか
らなる。給気孔4から、通常は3〜10kgf /cm2 の給
気圧で乾燥空気が供給され、軸受け間隙hに生じる圧力
によって荷重Wが支えられる。剛性は、隙間変動に対す
る荷重の変化dW/dhである。軸受けの特性は、通気流量
によって変化させることができる。多孔質体3の大気開
放下での通気流量Qは、多孔質体3の浸透率と多孔質体
3の形状によって以下のように表される。 Q=(kz /η)・Sp ・(ΔP/t)…(1) ここで、kz は多孔質体3の浸透率、ηは空気の粘性係
数、Sp は多孔質体3の露出部面積、tは空気の流れ方
向の多孔質体3の厚さ、ΔPは給気圧と大気圧の差であ
る。したがって、所定の流量を得るには、多孔質体3の
浸透率を変えても良く、形状を変えても実現できる。
FIG. 1 is a schematic view of a hydrostatic gas bearing according to the present invention. The bearing 10 is composed of a member (body) 2 in which the annular porous body 3 having the ventilation groove 5 is incorporated, and a member (relative member) 9 which constitutes a bearing just before the bearing. Dry air is supplied from the air supply hole 4 at a supply pressure of usually 3 to 10 kgf / cm 2 , and the load W is supported by the pressure generated in the bearing gap h. The stiffness is a change dW / dh of the load with respect to the gap variation. The characteristics of the bearing can be varied by the flow rate. The flow rate Q of the porous body 3 when the porous body 3 is open to the atmosphere is expressed as follows depending on the permeability of the porous body 3 and the shape of the porous body 3. Q = (k z / η) · S p · (ΔP / t) ... (1) where, k z the permeability of the porous body 3, eta is the viscosity coefficient of air, S p is the porous body 3 The exposed portion area, t is the thickness of the porous body 3 in the air flow direction, and ΔP is the difference between the supply pressure and the atmospheric pressure. Therefore, in order to obtain a predetermined flow rate, the permeability can be changed even if the permeability of the porous body 3 is changed.

【0008】従来の安定性を高める軸受けの設計は、浸
透率の低い多孔質体を用いて、通気流量は多孔質体の面
積を大きくするかもしくは厚さを薄くすることにより確
保する設計であった。しかしながら、実際には多孔質体
の面積は装置に組み込まれる軸受けの面積から制限され
るし、厚さを極端に薄くするのは耐久性に問題が生じ
る。また、軸受けの支える負荷容量が小さい条件下で高
剛性を得たい場合には、多孔質体を中抜き形状にする等
により多孔質体の面積を小さくした方が得やすいことが
わかっている。そのような場合には浸透率の低い多孔質
体は使いにくいという側面がある。
The conventional design of a bearing for improving stability is to use a porous body having a low permeability and to secure a ventilation flow rate by increasing the area or reducing the thickness of the porous body. Was. However, in practice, the area of the porous body is limited by the area of the bearing incorporated in the device, and making the thickness extremely small causes a problem in durability. It is also known that when it is desired to obtain high rigidity under the condition that the load capacity supported by the bearing is small, it is easier to obtain the porous body by reducing the area of the porous body by, for example, forming the porous body into a hollow shape. In such a case, it is difficult to use a porous body having a low permeability.

【0009】以上の知見に鑑みて、通気率の比較的大き
い多孔質体を用いて、軸受けの安定性を高める検討を行
った。その結果、軸受けの減衰特性が、多孔質体の露出
面積Sp と軸受け面1の面積Sb の比Sp /Sb によっ
て整理され、Sp /Sb が小さいほど減衰比ζが高くな
ることを見出した。同時に、Sp /Sb が小さいほど、
動剛性の低下が少ないことを見出し、本発明を完成する
に至った。以下、本発明の詳細を示す。
In view of the above findings, a study was conducted to improve the stability of the bearing by using a porous body having a relatively large air permeability. As a result, the damping characteristics of the bearing are organized by the ratio S p / S b of the exposed area S p and the bearing surface 1 area S b of the porous body, the more the damping ratio ζ is S p / S b is small increases I found that. At the same time, as the S p / S b is small,
The inventors have found that the reduction in dynamic rigidity is small, and have completed the present invention. Hereinafter, details of the present invention will be described.

【0010】本発明では、気体噴出手段として空気の浸
透率が5×10-16 2 以上、5×10-15 2 以下の
多孔質セラミックス体を組み込む。浸透率を5×10
-16 2 以上とするのは、それ未満の多孔質体では、上
記のように特定の軸受けには対応できず、また通気流量
を稼ぐために厚さを薄くすると軸受けの耐久性に問題が
生じるからである。また、浸透率を5×10-15 2
下とするのは、浸透率がそれより大きくなると自励振動
が発生する場合があり安定性のよい軸受けを構成するの
が困難であるからである。多孔質体の気孔率は、浸透率
を規定すればおのずと制限される値になるが、通常10
〜30%である。
[0010] In the present invention, air immersion means is used as the gas ejection means.
Permeability is 5 × 10-16mTwo5 × 10 or more-15mTwobelow
Incorporate a porous ceramic body. 5 × 10 penetration
-16m TwoThe reason for the above is that for a porous body smaller than that,
As described above, it is not possible to support specific bearings, and
If you reduce the thickness to earn more, there is a problem with the durability of the bearing
This is because it occurs. In addition, the penetration rate is 5 × 10-15mTwoLess than
The lower value means that self-excited
Cause a stable bearing.
Is difficult. The porosity of the porous body is determined by the permeability
Stipulates a naturally limited value, but usually 10
3030%.

【0011】本発明では、多孔質体の露出面を軸受け面
と同一平面上におく。多孔質体3の露出面は、図2に示
すように例えば矩形枠形状にする等により軸受け面1の
中心に対して点対称に配置され、できるだけ大気開放空
間に近い位置に配置されるのが通常である。適用される
多孔質体の厚さは、通常1〜10mmである。本発明で
は、安定性を高める軸受けの設計として、上記の多孔質
体の浸透率に加えて多孔質体露出部面積(Sp )と軸受
け面の全面積(Sb )の比Sp /Sb を限定する。ここ
で、Sb は、大気圧以上の圧力が作用している軸受け面
のトータルの面積とした。本発明では、Sp /Sb
0.05以上、0.3以下に限定する。なぜならば、S
p /Sb が0.05未満では、空気流量が不足し、高剛
性の軸受けを構成できないからである。また、Sp /S
b が0.3超では、自励振動が起こる場合があるからで
ある。
In the present invention, the exposed surface of the porous body is placed on the same plane as the bearing surface. The exposed surface of the porous body 3 is arranged point-symmetrically with respect to the center of the bearing surface 1 by, for example, forming a rectangular frame shape as shown in FIG. Normal. The thickness of the applied porous body is usually 1 to 10 mm. In the present invention, as a design of a bearing for enhancing stability, in addition to the above-described permeability of the porous body, a ratio S p / S of the area of the exposed portion of the porous body (S p ) to the total area of the bearing surface (S b ) is used. Limit b . Here, S b is a pressure above atmospheric pressure was total area of the bearing surface acting. In the present invention, S p / S b is limited to 0.05 or more and 0.3 or less. Because S
If p / Sb is less than 0.05, the air flow rate is insufficient, and a highly rigid bearing cannot be formed. Also, Sp / S
If b exceeds 0.3, self-excited vibration may occur.

【0012】Sp /Sb が0.05以上、0.3以下で
ある多孔気体3は、図2に示すように、形状を矩形枠形
状とすることにより実現できる。多孔質体3の実際の形
状は、多孔質体3の幅wと軸受けボディー2の外周から
多孔質体外周までの距離(L 1 −L3 )/2又は(L2
−L4 )/2(ランド幅と称する)によって決められ
る。軸受けの支える負荷容量と剛性を高めるために、通
常ランド幅は軸受け外形寸法の20%以下に設定され
る。そのような軸受けで多孔質体の露出面積率Sp/S
b を0.05以上、0.3以下に限定すると、必然的に
多孔質体の幅wは小さくなる。製造する軸受けのサイズ
によって異なるが、多孔質体の幅wは通常1〜10mmと
なる。
Sp/ SbIs greater than 0.05 and less than 0.3
A certain porous gas 3 has a rectangular frame shape as shown in FIG.
It can be realized by making the shape. Actual shape of porous body 3
From the width w of the porous body 3 and the outer circumference of the bearing body 2
Distance to the outer periphery of the porous body (L 1-LThree) / 2 or (LTwo
-LFour) / 2 (referred to as land width)
You. To increase the load capacity and rigidity supported by the bearing,
The normal land width is set to 20% or less of the outer dimensions of the bearing.
You. With such a bearing, the exposed area ratio S of the porous bodyp/ S
bIs limited to 0.05 or more and 0.3 or less, inevitably
The width w of the porous body becomes smaller. Size of bearing to manufacture
However, the width w of the porous body is usually 1 to 10 mm.
Become.

【0013】本発明の静圧気体軸受けは、多孔質セラミ
ックス体3の形状を上記のような矩形枠形状とする以外
に、リング形状とすることによってラジアル軸受け等の
タイプの異なる軸受けにも適用することができる。本発
明の静圧気体軸受けは、気体供給部4を有するボディー
2に多孔質セラミックス体3を有機系接着剤又はガラス
を含む無機系接着剤により装着することにより実現でき
る。一般的には、これを目的としてボディー2側に通気
溝6(図3(b))が設けられるが、本発明におけるよ
うな狭幅の多孔質体を組み込む場合には、多孔質体の側
面に塗布した接着剤が垂れてその通気溝6をふさぐ可能
性がある。本発明者は、この問題に対して多孔質体3側
に多孔質体3の全周に亘って一定幅の通気溝5(図3
(a))を設けることを考案した。通気溝5の幅は、要
求通気量により多孔質体3の幅の20〜80%で調整可
能である。矩形枠形状の場合の軸受けの断面図の一例を
図1に、その多孔質部拡大図を図3(a)に示す。本発
明の多孔質体形状では、多孔質体の通気溝底面7が給気
面となり、構造的に接着剤の垂れの影響を受けることは
ない。これにより、多孔質体全周にわたって均一通気を
確保することが可能であり、信頼性の高い軸受けの提供
が可能である。多孔質体に通気溝が設けてあれば、あえ
てボディー側に通気溝を設ける必要はないが、両方に通
気溝を設ければ一段と信頼性を増すことができる。
The hydrostatic gas bearing of the present invention is applicable to bearings of different types, such as radial bearings, by forming the porous ceramic body 3 into a ring shape in addition to the rectangular frame shape as described above. be able to. The static pressure gas bearing of the present invention can be realized by attaching the porous ceramic body 3 to the body 2 having the gas supply unit 4 with an organic adhesive or an inorganic adhesive containing glass. Generally, a ventilation groove 6 (FIG. 3B) is provided on the body 2 side for this purpose. However, when a narrow porous body as in the present invention is incorporated, the side face of the porous body is provided. There is a possibility that the adhesive applied on the ventilation groove 6 may drop and block the ventilation groove 6. To solve this problem, the inventor of the present invention has proposed a ventilation groove 5 (FIG. 3) having a constant width over the entire periphery of the porous body 3 on the porous body 3 side.
(A)) was devised. The width of the ventilation groove 5 can be adjusted to 20 to 80% of the width of the porous body 3 depending on the required ventilation amount. FIG. 1 shows an example of a cross-sectional view of the bearing in the case of a rectangular frame shape, and FIG. In the porous body shape of the present invention, the ventilation groove bottom surface 7 of the porous body serves as an air supply surface, and is not structurally affected by the dripping of the adhesive. This makes it possible to ensure uniform ventilation over the entire circumference of the porous body, and to provide a highly reliable bearing. If the porous body has a ventilation groove, it is not necessary to provide a ventilation groove on the body side. However, if ventilation grooves are provided on both sides, the reliability can be further increased.

【0014】[0014]

【実施例】図1,2に示す形状の軸受けを、図3(a)
に拡大図示する通気溝5を有する多孔質体3の接着によ
り試作した。通気溝5の幅は多孔質体幅wの33%とし
た。多孔質体3の軸受けボディー2への組み込みは、有
機系の接着剤8を多孔質体3の側面に塗布してボディー
2に挿入する方法によった。図中で、軸受け面1の面積
b 及び多孔質体露出部面積Sp はそれぞれ以下の通り
である。 Sb =L1 ×L2 …(2) Sp =L3 ×L4 −(L3 −2w)×(L4 −2w)…(3) ここで、wは多孔体の幅である。多孔体露出比Sp /S
b は、(L1 −L3 )、及び(L2 −L4 )を一定と
し、L1 ,L2 又はwを変えることにより変化させた。
用いた多孔質体は、浸透率が(0.7〜2.2)×10
-15 2 のアルミナ質多孔質体である。給気圧5kgf /
cm2 の下でスラスト軸受け方式で測定した軸受けの諸特
性を表1に示す。軸受けの浮上隙間hは4〜6μmであ
る。ここで、周波数200Hz付近における動剛性値Kd
を求め、静剛性値Ks の比として示した。また、浮上体
に衝撃力を加えて隙間に振動を生じさせ、その減衰曲線
から減衰比ζ(対数減衰率In(x1 /x2 )を2πで割
った値)を求めた。表から、すべての浸透率の場合に、
p /Sb が小さいほど動剛性が高く減衰比も高いのが
わかる。なお、比較として製作したSp /Sb が0.4
2の軸受けでは、浸透率が2.2×10-15 2 と1.
3×10-15 2 の場合で自励振動が発生し、上記の特
性は測定不能であった。
FIG. 3A shows a bearing having the shape shown in FIGS.
A prototype was produced by bonding a porous body 3 having a ventilation groove 5 shown in an enlarged scale. The width of the ventilation groove 5 was 33% of the width w of the porous body. The porous body 3 was incorporated into the bearing body 2 by a method in which an organic adhesive 8 was applied to the side surface of the porous body 3 and inserted into the body 2. In the figure, the area S b and the porous substrate exposed portion area S p of the bearing surface 1 is as follows. S b = L 1 × L 2 ... (2) S p = L 3 × L 4 - (L 3 -2w) × (L 4 -2w) ... (3) where, w is the width of the porous body. Porous body exposure ratio S p / S
b was changed by keeping (L 1 -L 3 ) and (L 2 -L 4 ) constant and changing L 1 , L 2 or w.
The used porous body has a permeability of (0.7 to 2.2) × 10.
It is an alumina porous body of -15 m 2 . Supply pressure 5kgf /
Table 1 shows the characteristics of the bearing measured by the thrust bearing method under cm 2 . The bearing clearance h is 4 to 6 μm. Here, the dynamic rigidity value K d near a frequency of 200 Hz
The calculated, expressed as the ratio of the static rigidity value K s. Further, an impact force was applied to the floating body to generate vibration in the gap, and the damping ratio ζ (the value obtained by dividing the logarithmic damping rate In (x 1 / x 2 ) by 2π) was obtained from the damping curve. From the table, for all penetration rates,
S p / S b is higher dynamic stiffness is higher damping ratio less high to be seen. Incidentally, S p / S b that is made as a comparison 0.4
In the bearing of No. 2 , the permeability is 2.2 × 10 −15 m 2 and 1.
In the case of 3 × 10 −15 m 2 , self-excited vibration occurred, and the above characteristics could not be measured.

【0015】多孔質体形状の比較例として、多孔質体露
出面は図2と同じにし、多孔質体3の給気側底面に溝5
を設けずに、図3(b)に示すようなボディー2に給気
溝6を設けた軸受けを作製した。本発明例と同様に接着
剤8を多孔質体側面に塗布してボディー2に挿入したと
ころ、接着剤の一部がボディー通気溝6に垂れ、通気溝
6の一部をふさぐ結果となった。結果的に多孔質体3の
一部に空気が流れないところが生じ、軸受けの浮上実験
においては傾いて浮上し、軸受けとしては機能しないも
のとなった。
As a comparative example of the shape of the porous body, the exposed surface of the porous body is the same as that shown in FIG.
The bearing having the air supply groove 6 in the body 2 as shown in FIG. When the adhesive 8 was applied to the side surface of the porous body and inserted into the body 2 in the same manner as in the example of the present invention, a part of the adhesive dripped into the body ventilation groove 6 and a part of the ventilation groove 6 was blocked. . As a result, air did not flow through a part of the porous body 3, and in the bearing floating experiment, the body floated in an inclined manner and did not function as a bearing.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】多孔質セラミックスを用いた静圧気体軸
受けに特有の自励振動の発生及び高周波での動剛性の低
下は、本発明によれば、多孔質体の軸受け面での露出面
積を少なくすることにより解決可能である。これによ
り、高剛性かつ高安定性の気体軸受けの提供が可能であ
る。
According to the present invention, the generation of self-excited vibration and the reduction of dynamic rigidity at high frequency, which are peculiar to the static pressure gas bearing using porous ceramics, can reduce the exposed area of the porous body on the bearing surface. This can be solved by reducing the number. Thereby, a highly rigid and highly stable gas bearing can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の軸受けの断面図である。FIG. 1 is a sectional view of a bearing according to the present invention.

【図2】図2は、本発明の軸受けの平面図である。FIG. 2 is a plan view of the bearing of the present invention.

【図3】図3(a)は本発明の多孔質体部の拡大断面図
で、図3(b)は比較例の多孔質体部の拡大断面図であ
る。
FIG. 3A is an enlarged sectional view of a porous body of the present invention, and FIG. 3B is an enlarged sectional view of a porous body of a comparative example.

【符号の説明】[Explanation of symbols]

1…軸受け面 2…ボディー 3…多孔質体 4…給気孔 5…多孔質体通気溝 6…ボディー通気溝 7…多孔質体給気面 8…接着剤層 9…相対部材 DESCRIPTION OF SYMBOLS 1 ... Bearing surface 2 ... Body 3 ... Porous body 4 ... Air supply hole 5 ... Porous body ventilation groove 6 ... Body ventilation groove 7 ... Porous body air supply surface 8 ... Adhesive layer 9 ... Relative member

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 気体噴出手段として気体の浸透率が5×
10-16 2 以上、5×10-15 2 以下の多孔質セラ
ミックス体が組み込まれた軸受けであって、多孔質体の
気体噴出面となる露出部表面が軸受け面と同一平面上に
あって、該露出部表面の面積(SP )と軸受け面の全面
積(Sb )の比SP /Sb が0.05以上、0.3以下
であることを特徴とする静圧気体軸受け。
1. A gas blowing means having a gas permeability of 5 ×
A bearing incorporating a porous ceramic body having a size of 10 −16 m 2 or more and 5 × 10 −15 m 2 or less, wherein the surface of an exposed portion serving as a gas ejection surface of the porous body is flush with the bearing surface. Te, the area of the exposed portion surfaces (S P) and the total area of the bearing surface (S b) of the ratio S P / S b is 0.05 or more, hydrostatic gas bearing, characterized in that less than 0.3 .
【請求項2】 多孔質セラミックス体の形状を、矩形枠
形状又はリング形状とすることを特徴とする請求項1記
載の静圧気体軸受け。
2. The hydrostatic gas bearing according to claim 1, wherein the shape of the porous ceramic body is a rectangular frame shape or a ring shape.
【請求項3】 多孔質セラミックス体の形状を、矩形枠
形状又はリング形状とし、気体供給側に通気溝を設けた
ことを特徴とする請求項1記載の静圧気体軸受け。
3. The hydrostatic gas bearing according to claim 1, wherein the shape of the porous ceramic body is a rectangular frame shape or a ring shape, and a ventilation groove is provided on a gas supply side.
JP8256457A 1996-09-27 1996-09-27 Hydrostatic gas bearing Pending JPH10103354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8256457A JPH10103354A (en) 1996-09-27 1996-09-27 Hydrostatic gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8256457A JPH10103354A (en) 1996-09-27 1996-09-27 Hydrostatic gas bearing

Publications (1)

Publication Number Publication Date
JPH10103354A true JPH10103354A (en) 1998-04-21

Family

ID=17292912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8256457A Pending JPH10103354A (en) 1996-09-27 1996-09-27 Hydrostatic gas bearing

Country Status (1)

Country Link
JP (1) JPH10103354A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111475A1 (en) * 2003-06-11 2004-12-23 Karl Weis Device comprising a floating bearing system and guide track consisting of tiles
JP2007315611A (en) * 2007-09-06 2007-12-06 Nsk Ltd Thrust hydrostatic bearing pad
US20120301060A1 (en) * 2010-01-22 2012-11-29 Shoji Uchimura Static-pressure bearing apparatus and stage comprising static-pressure bearing apparatus
JP2014047827A (en) * 2012-08-30 2014-03-17 Ntn Corp Static pressure gas bearing spindle device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156312U (en) * 1988-04-20 1989-10-27
JPH04113023A (en) * 1990-08-29 1992-04-14 Ibiden Co Ltd Hydrostatic bearing structure
JPH04219519A (en) * 1990-11-29 1992-08-10 Ngk Insulators Ltd Porous static pressure pneumatic bearing
JPH06249239A (en) * 1993-02-22 1994-09-06 Canon Inc Static pressure bearing device
JPH06297421A (en) * 1993-04-16 1994-10-25 Toto Ltd Production of partially porous ceramic and fluid bearing obtained from partially porous ceramic
JPH08229759A (en) * 1995-02-24 1996-09-10 Canon Inc Positioning device, and device and method of manufacturing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156312U (en) * 1988-04-20 1989-10-27
JPH04113023A (en) * 1990-08-29 1992-04-14 Ibiden Co Ltd Hydrostatic bearing structure
JPH04219519A (en) * 1990-11-29 1992-08-10 Ngk Insulators Ltd Porous static pressure pneumatic bearing
JPH06249239A (en) * 1993-02-22 1994-09-06 Canon Inc Static pressure bearing device
JPH06297421A (en) * 1993-04-16 1994-10-25 Toto Ltd Production of partially porous ceramic and fluid bearing obtained from partially porous ceramic
JPH08229759A (en) * 1995-02-24 1996-09-10 Canon Inc Positioning device, and device and method of manufacturing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111475A1 (en) * 2003-06-11 2004-12-23 Karl Weis Device comprising a floating bearing system and guide track consisting of tiles
JP2007315611A (en) * 2007-09-06 2007-12-06 Nsk Ltd Thrust hydrostatic bearing pad
US20120301060A1 (en) * 2010-01-22 2012-11-29 Shoji Uchimura Static-pressure bearing apparatus and stage comprising static-pressure bearing apparatus
US8608382B2 (en) * 2010-01-22 2013-12-17 Sintokogio Ltd. Static-pressure bearing apparatus and stage comprising static-pressure bearing apparatus
JP2014047827A (en) * 2012-08-30 2014-03-17 Ntn Corp Static pressure gas bearing spindle device

Similar Documents

Publication Publication Date Title
KR950011129B1 (en) Head slider for magnetic disc
EP0850723B1 (en) Wafer holding jig
Fan et al. Development of a multiple-microhole aerostatic air bearing system
JP3086764B2 (en) Hydrostatic bearing device
JP3860253B2 (en) Static pressure gas bearing
JPS62220716A (en) Gas bearing and manufacture thereof
JPH03132981A (en) Floating head slider
JPH10103354A (en) Hydrostatic gas bearing
CN114576269A (en) Throttling air bearing and preparation method and application thereof
JP3000361B2 (en) Photomask support plate for microchip manufacturing equipment
WO2007077878A1 (en) Gas pressure control actuator, gas bearing mechanism for the gas pressure control actuator, and minute displacement output device using the gas pressure control actuator
WO2002012742A2 (en) Hydrostatic gas bearing
JP4877690B2 (en) Static pressure slider
JP3660779B2 (en) Static pressure gas bearing device
US3719405A (en) Gas bearing
EP0457835A1 (en) Gas bearing having an auxiliary reservoir
JPS62101915A (en) Static pressure bearing pad
JPH0510330A (en) Static pressure bearing device
JP2000027865A (en) Static pressure porous bearing
JP3106189B1 (en) Hydrostatic bearing
JPH10169654A (en) Gas hydrostatic pressure bearing device
JP2000326194A (en) Cutting, polishing, holding device
JP2004324895A (en) Static pressure magnetic combined bearing
JP2004060833A (en) Static pressure gas linear guide device
JPH045659A (en) Photomask substrate supporting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308