JPH10101704A - Preparation of degradation product of polysaccharide having biological activity against plant utilizing radiation irradiation - Google Patents

Preparation of degradation product of polysaccharide having biological activity against plant utilizing radiation irradiation

Info

Publication number
JPH10101704A
JPH10101704A JP26045896A JP26045896A JPH10101704A JP H10101704 A JPH10101704 A JP H10101704A JP 26045896 A JP26045896 A JP 26045896A JP 26045896 A JP26045896 A JP 26045896A JP H10101704 A JPH10101704 A JP H10101704A
Authority
JP
Japan
Prior art keywords
polysaccharide
kgy
pectin
degradation product
biological activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26045896A
Other languages
Japanese (ja)
Inventor
Tamikazu Kume
民和 久米
Masamitsu Shimazu
昌光 島津
Shinpei Matsuhashi
信平 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP26045896A priority Critical patent/JPH10101704A/en
Publication of JPH10101704A publication Critical patent/JPH10101704A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an antimicrobial activity inducing material having a high elicitor activity in a large amt. with high efficiency by irradiating a polysaccharide with an ionizing radiation. SOLUTION: A naturally occurring polysaccharide, such as pectin or chitosan, in a dry or aq. soln. form is irradiated with an ionizing radiation at a dose of 0.01 to 2000KGy to obtain a degradation product comprising an oligosaccharide having biological activity against plants comprising glycerin or bisatin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多糖類に電離放射
線を照射することにより、該多糖類を分解して得られ
る、高い生物活性を有する分解物を製造する方法に関す
る。特に、本発明は、植物の害虫や病原菌に対する抵抗
反応を媒介する情報伝達物質(エリシター)としての活
性を有する抗菌活性物質(ファイトアレキシン)である
新規なオリゴ糖を大量に且つ効率よく製造法する方法に
関するものである。
The present invention relates to a method for producing a degradation product having high biological activity, which is obtained by irradiating a polysaccharide with ionizing radiation to decompose the polysaccharide. In particular, the present invention relates to a method for efficiently producing a large amount of a novel oligosaccharide which is an antibacterial active substance (phytoalexin) having an activity as a signal transmitting substance (elicitor) that mediates a resistance reaction to plant pests and pathogenic bacteria. How to do it.

【0002】[0002]

【従来の技術】従来、多糖類から得られる生物活性物質
の製造方法としては、植物や病原菌の細胞壁を酵素分解
或いは酸分解することにより製造する方法が行われてい
た。
2. Description of the Related Art Hitherto, as a method for producing a bioactive substance obtained from a polysaccharide, a method for producing a biologically active substance by enzymatically or acid-decomposing a cell wall of a plant or a pathogenic bacterium has been used.

【0003】しかし、酵素分解処理では、多糖類主鎖の
切断個所が限定されており、得られる分解生成物の種類
が限定されるという問題点があった。更にこれまで知ら
れている酵素の中で、大量処理に使用できる酵素はほん
のわずかしかなく、又酵素分解処理においては水溶液中
での反応を行うため、分解生成物の回収、乾燥等の操作
が必要であるという問題点があった。
[0003] However, in the enzymatic decomposition treatment, there is a problem that the location of cleavage of the polysaccharide main chain is limited, and the type of decomposition product obtained is limited. Furthermore, among the enzymes known so far, only a few enzymes can be used for large-scale treatment, and in the enzymatic digestion treatment, the reaction is performed in an aqueous solution. There was a problem that it was necessary.

【0004】一方、酸分解処理では、濃塩酸等を使用す
る苛酷な条件下において多糖類を加水分解する必要があ
るために、その結果として単糖が多量に生成して変換効
率が悪く、又耐酸性の反応容器を使用することが必要で
あり、更に又試薬の回収が困難である等の問題点があっ
た。
On the other hand, in the acid decomposition treatment, it is necessary to hydrolyze polysaccharides under severe conditions using concentrated hydrochloric acid or the like. As a result, a large amount of monosaccharides is produced and conversion efficiency is poor. It is necessary to use an acid-resistant reaction vessel, and there are also problems such as difficulty in recovering the reagent.

【0005】[0005]

【発明が解決しようとする課題】上記の問題点に鑑み、
本発明は、多糖類から高いエリシター活性を有する物質
を大量に、且つ効率よく製造する方法を提供すること、
及び従来の方法では得られなかった新規な活性物質を製
造することを目的とするものである。
In view of the above problems,
The present invention provides a method for efficiently producing a substance having high elicitor activity from a polysaccharide in a large amount,
Another object of the present invention is to produce a novel active substance which cannot be obtained by a conventional method.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記の問
題点を解決するために、多糖類に電離放射線を照射する
ことにより、短時間に、簡単に且つ効果的に植物の害虫
又は病原菌に対するエリシター(抗菌活性誘導物質)活
性の高い各種オリゴ糖を製造することができること、又
新規な高いエリシター活性を有する物質を製造すること
ができることを見いだした。
In order to solve the above problems, the present inventors irradiate polysaccharides with ionizing radiation, thereby quickly, simply and effectively treating plant pests or plants. It has been found that various oligosaccharides having high elicitor (antibacterial activity inducer) activity against pathogenic bacteria can be produced, and that novel substances having high elicitor activity can be produced.

【0007】即ち、本発明の放射線照射によるエリシタ
ー活性物質の製造方法は、大量の多糖類を連続的に且つ
短時間で処理することができ、しかも多糖類の乾燥粉末
又は溶液のいずれの状態での処理も可能であるという利
点を有している。又、放射線による多糖類の分解はラン
ダムに起こるため、従来の方法では得られなかった構造
の新規なオリゴ糖の生成が可能となった。
That is, the method of the present invention for producing an elicitor active substance by irradiation can treat a large amount of a polysaccharide continuously and in a short time, and can be carried out in the form of a dry powder or a solution of the polysaccharide. Is also possible. In addition, since the degradation of polysaccharides by radiation occurs randomly, it has become possible to generate a novel oligosaccharide having a structure not obtained by the conventional method.

【0008】[0008]

【発明の実態の形態】本発明において用いられる多糖類
とは最も広義の意味において使用され、全ての天然物、
微生物による生成物及びそれらの加工処理生成物も含ま
れる。天然の多糖類としては、例えばペクチン、キチ
ン、キトサン、キシラン、セルロース、デンプン、イヌ
リン等、海藻中に含まれるアルギン酸、カラギーナン、
微生物によって生成される多糖類であるポリガラクトサ
ミン、マンナン、プルラン等、担子菌によって生成され
るレンチナン、シゾフィラン等がある。これらの多糖類
は一種類でもよく、又混合物として用いても良い。本発
明においては、多糖類として特にペクチン、キチン、キ
トサンを用いることが望ましい。
DETAILED DESCRIPTION OF THE INVENTION The polysaccharide used in the present invention is used in the broadest sense and includes all natural products,
Also included are products from microorganisms and their processed products. As natural polysaccharides, for example, pectin, chitin, chitosan, xylan, cellulose, starch, inulin, alginic acid, carrageenan contained in seaweed,
There are polygalactosamine, mannan, pullulan, etc., which are polysaccharides produced by microorganisms, and lentinan, schizophyllan, etc. produced by basidiomycetes. These polysaccharides may be used alone or as a mixture. In the present invention, it is particularly preferable to use pectin, chitin, and chitosan as the polysaccharide.

【0009】本発明において、多糖類に照射する電離放
射線としては、α線、β線、γ線、電子線及びエックス
線が用いられる。実用的にはγ線、電子線及びエックス
線を使用するのが便利である。電離放射線の線量は、
0.01〜2,000kGyの範囲であることが望まし
い。線量が低すぎる(0.01kGy以下)と効果が得
られず、又線量が高すぎる(2,000kGy以上)と
分解が進み過ぎて活性が失われるためである。
In the present invention, α-rays, β-rays, γ-rays, electron beams and X-rays are used as the ionizing radiation for irradiating the polysaccharide. Practically, it is convenient to use γ-rays, electron beams and X-rays. The dose of ionizing radiation is
It is desirable to be in the range of 0.01 to 2,000 kGy. If the dose is too low (0.01 kGy or less), no effect is obtained, and if the dose is too high (2,000 kGy or more), the decomposition proceeds too much and the activity is lost.

【0010】多糖類に放射線を照射する際には、多糖類
を乾燥又は水溶液の状態に調整する。多糖類が乾燥状態
の場合には、線量は100〜2,000kGy程度の高
線量であることが望ましい。又、乾燥状態での放射線処
理は大量処理が容易である等の観点から有利である。多
糖類が水溶液状態の場合には、線量は0.01〜10k
Gy程度の低線量でよく、必要な線量を低減化できると
いった利点を有する。上述の通り、多糖類が乾燥状態の
場合には高線量の照射が必要であるが、そのような場合
には電子加速器を用いて高線量率下で、短時間で照射処
理を完了することができる。
When the polysaccharide is irradiated with radiation, the polysaccharide is adjusted to a dried or aqueous solution. When the polysaccharide is in a dry state, the dose is desirably as high as about 100 to 2,000 kGy. Radiation treatment in a dry state is advantageous from the viewpoint that mass treatment is easy. When the polysaccharide is in an aqueous solution, the dose is 0.01 to 10 k.
There is an advantage that the dose can be as low as Gy and the required dose can be reduced. As described above, when the polysaccharide is in a dry state, high-dose irradiation is necessary.In such a case, the irradiation process can be completed in a short time under a high dose rate using an electron accelerator. it can.

【0011】[0011]

【実施例】以下、実施例によって本発明を更に詳細に説
明するが、本発明の範囲はそれらの実施例に限定される
ものではない。
The present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to these examples.

【0012】[0012]

【実施例1】乾燥粉末状態にあるペクチンに種々の線量
の放射線を照射することによりペクチンを分解処理し、
大豆における抗菌活性物質であるグリセオンの誘導活性
効果を調べた。これと比較するために、酵素ドリセラー
ゼによるペクチン分解物の誘導活性効果も調べた。図1
に示すように、ペクチンに対する照射線量を100kG
yから1,000kGyに増加させることにより、グリ
セオンの生成量が著しく増加することが認められた。
2,000kGyの高照射線量においては、1,000
kGyの場合よりその生成量が減少したが、使用された
照射線量範囲では1,000kGyでの生成量が最も高
かった。これに対し、酵素ドリセラーゼを使用した場合
にもグリセオンの生成が認められるが、1,000kG
y及び2,000kGyの放射線を照射した場合の方が
グリセオリンの生成量が高かった。
Example 1 Pectin in a dry powder state is irradiated with various doses of radiation to decompose pectin,
The inducing activity of the antibacterial active substance glyceon in soybean was investigated. For comparison, the effect of inducing the pectin degradation product by the enzyme dolyserase was also examined. FIG.
As shown in FIG.
It was found that increasing the amount of y to 1,000 kGy significantly increased the amount of glyceone produced.
At a high dose of 2,000 kGy, 1,000
Although the production amount was smaller than in the case of kGy, the production amount at 1,000 kGy was the highest in the irradiation dose range used. On the other hand, when the enzyme doriserase was used, the production of glyceone was observed, but 1,000 kG
Irradiation of y and 2,000 kGy produced higher amounts of glyceolin.

【0013】次に、照射処理されたペクチンの分解物を
HPLC(高速液体クロマトグラフ)により分子量分画
を行った。図2に、グリセオンの生成量が最も高かった
照射線量1,000kGyにおけるペクチン分解物のH
PLCパターンを示す。又表1に、a(溶出時間:9.
7−10.7min.)、b(溶出時間:10.7−1
1.7min.)及びc(溶出時間:11.7−14.
0min.)の3区分について、グリセオンが誘導生成
される量を示す。その結果、照射線量1,000kGy
におけるペクチン分解の場合では、c画分において非常
に高いグリセオリンの誘導活性が認められた。ところ
で、照射線量2,000kGyにおけるペクチン分解の
場合では、a画分においてグリセオリンの誘導活性が最
も高かったが、1,000kGyのc画分の1/6程度
の活性しか得られなかった。
Next, the irradiated pectin degradation product was subjected to molecular weight fractionation by HPLC (High Performance Liquid Chromatography). FIG. 2 shows the H of the pectin-degraded product at an irradiation dose of 1,000 kGy at which the amount of produced glyceone was the highest.
3 shows a PLC pattern. Table 1 shows that a (elution time: 9.
7-10.7 min. ), B (elution time: 10.7-1)
1.7 min. ) And c (elution time: 11.7-14.
0 min. 3) indicates the amount of glyceone induced and produced. As a result, irradiation dose of 1,000 kGy
In the case of the pectin degradation in, a very high glyceolin-inducing activity was observed in the fraction c. By the way, in the case of pectin degradation at an irradiation dose of 2,000 kGy, the glyceolin-inducing activity was highest in the fraction a, but only about 1/6 of that in the c fraction of 1,000 kGy was obtained.

【0014】[0014]

【表1】 表1.ペクチン分解・分画成分によるグリセオリンの誘
導生成 試料 グリセオリン(nmol/g) 未処理 1.0 500kGy−a 5.4 500kGy−b 7.0 500kGy−c 5.4 1000kGy−a 9.4 1000kGy−b 10.2 1000kGy−c 61.9 2000kGy−a 11.7 2000kGy−b 5.5 2000kGy−c 5.8
[Table 1] Table 1. Induction and production of glyceolin by pectin degradation / fractionation components Sample Glyceolin (nmol / g) Untreated 1.0 500 kGy-a 5.4 500 kGy-b 7.0 500 kGy-c 5.4 1000 kGy-a 9.4 1000 kGy-b 10.2 1000 kGy-c 61.9 2000 kGy-a 11.7 2000 kGy-b 5.5 2000 kGy-c 5.8

【0015】そこで、最も活性の高い1,000kGy
における照射処理されたペクチンのc画分について、グ
リセオン誘導活性を調べた。子葉(コチレドン)へのペ
クチンの必要添加量を調べた結果、図3に示されるよう
に、30μgの添加濃度が最適であることが分かった。
Therefore, the most active of 1,000 kGy
The glycein-inducing activity was examined for the c fraction of the pectin that had been irradiated. As a result of examining the required amount of pectin to be added to the cotyledon (cotyledone), it was found that the addition concentration of 30 μg was optimal as shown in FIG.

【0016】[0016]

【実施例2】エンドウのファイトアレキシンであるピサ
チンの誘導生成を検討した。エンドウは栽培開始後50
日後の若い莢を収穫して用いた。エンドウの莢の内膜に
エリシターを含む溶液を滴下して培養して生成したピサ
チンを単離後、HPLCで分析した。
Example 2 Induction of peasin, a pea phytoalexin, was investigated. Pea is 50 after the start of cultivation
Young pods after a day were harvested and used. A solution containing elicitor was dropped on the inner membrane of the pea pod and cultured, and the produced pisatin was isolated and analyzed by HPLC.

【0017】図4に示すように、1,000kGyで照
射処理したペクチン分解物中にピサチンの誘導活性が認
められ、それがエリシターとして機能していることが認
められたが、その生成量は、酵素エンドポリガラクツロ
ナーゼによるペクチン分解物中のピサチンの生成量より
低かった。
As shown in FIG. 4, the pectin-decomposed product irradiated with 1,000 kGy showed an activity of inducing pisatin, and it was found that it functions as an elicitor. The yield of pisatin in pectin degradation products by the enzyme endopolygalacturonase was lower.

【0018】一方、グルコサミンのポリマーであるキト
サンを照射処理して得られた分解物中のピサチンの誘導
生成量を検討したところ、1,000kGyで照射処理
したキトサンにおいて非常に高いピサチンの生成量が得
られた。又、2,000kGyで照射処理したキトサン
では、1,000kGyでの照射処理の場合に比較して
著しくピサチンの生成量が減少した。
On the other hand, when the induced amount of pisatin in the degradation product obtained by irradiating chitosan, which is a polymer of glucosamine, was examined, it was found that the amount of pisatin produced was extremely high in chitosan irradiated with 1,000 kGy. Obtained. In addition, in chitosan irradiated with 2,000 kGy, the amount of generated pisatin was significantly reduced as compared with the case of irradiation with 1,000 kGy.

【0019】従って、これらの結果から、ピサチンの誘
導生成は照射処理されたペクチンでも認められるがが、
キトサンの1,000kGyの照射物がはるかにピサチ
ンの生成量において有効であることが分かった。
Thus, from these results, the induced production of pisatin can be observed in irradiated pectin,
A 1,000 kGy irradiation of chitosan was found to be much more effective at producing pisatin.

【0020】[0020]

【実施例3】ペクチンの放射線分解物を用いて、エンド
ウにおける抗オーキシン効果を調べた。検体として7日
目のエンドウの第3節間の胚軸を用いた。その断片1c
mを切り出し、各20断片を秤量した後、それらを、そ
れぞれ、1mMインドール酢酸(IAA)及び0.3m
g/mlのペクチン分解物を含む溶液中において3時間
静置した。各断片を回収後再び秤量し、次の式から分解
物であるオリゴマーの抗オーキシン効果を算出した。 抗オーキシン効果=(C−T)/C×100(%) C:未処理の場合における重量増加分 T:処理バッチにおける重量増加分
Example 3 The anti-auxin effect in pea was examined using a radiolysis product of pectin. The hypocotyl of the third node of pea on day 7 was used as a specimen. Its fragment 1c
m, and after weighing each of the 20 fragments, they were combined with 1 mM indoleacetic acid (IAA) and 0.3 mM, respectively.
It was left still for 3 hours in a solution containing g / ml pectin degradation product. After recovering each fragment, it was weighed again, and the anti-auxin effect of the oligomer as a degradation product was calculated from the following equation. Anti-auxin effect = (CT) / C × 100 (%) C: Weight increase in untreated case T: Weight increase in treated batch

【0021】図5に示すように、オーキシン効果による
エンドウの伸長促進に対する阻害効果は、800kGy
の放射線を照射されたペクチン分解物では殆ど認められ
なかったが、1,000kGy及び2,000kGyの
放射線を照射されたペクチン分解物では顕著な阻害効果
が認められた。
As shown in FIG. 5, the inhibitory effect of the auxin effect on the promotion of pea elongation was 800 kGy.
Were hardly observed in the pectin-decomposed product irradiated with the above-mentioned radiation, but a remarkable inhibitory effect was observed in the pectin-decomposed product irradiated with the 1,000 kGy and 2,000 kGy radiations.

【0022】又、エンドポリガラクツロナーゼ(End
oPG)又はドリセラーゼ(Driselase)とい
った酵素で処理したペクチン分解物でも阻害効果が認め
られたが、2,000kGyの放射線を照射されたペク
チン分解物による阻害効果が最も高かった。
In addition, endopolygalacturonase (End)
An inhibitory effect was also observed with a pectin degradation product treated with an enzyme such as oPG) or driselase, but the inhibitory effect of a pectin degradation product irradiated with 2,000 kGy radiation was the highest.

【0023】酵素エンドポリガラクツロナーゼによるペ
クチン分解物であるオリゴマー混合物を用いた結果は、
20%の阻害効果であるのに対し、2,000kGyの
放射線を照射したペクチン分解物を用いた結果は、前記
酵素による分解物を用いた場合よりも高い阻害効率が発
生する。したがって、放射線によるペクチン分解物が植
物のオーキシンによる伸長促進に対して高い阻害活性を
有していることが明らかとなった。
The result of using an oligomer mixture which is a pectin degradation product by the enzyme endopolygalacturonase is as follows:
In contrast to a 20% inhibitory effect, the result of using a pectin degradation product irradiated with 2,000 kGy of radiation has a higher inhibition efficiency than using a degradation product of the enzyme. Therefore, it was clarified that the pectin-degraded product by radiation has a high inhibitory activity against the promotion of elongation by auxin in plants.

【0024】[0024]

【発明の効果】本発明は、ペクチン又はキトサン等の多
糖類を電離放射線を使用して照射処理することにより、
植物の害虫や病原菌に対する抗菌活性誘導物質として高
い生物活性を有する新規なオリゴ糖を大量に且つ効率よ
く製造法することができるという効果を生ずる。
The present invention provides a method for irradiating a polysaccharide such as pectin or chitosan with ionizing radiation.
The effect is that a novel oligosaccharide having a high biological activity as an antibacterial activity inducer against plant pests and pathogenic bacteria can be produced in large quantities and efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ペクチン分解物を用いたグリセオン誘導生成
を示す図である。
FIG. 1 is a diagram showing glyceone-induced production using a pectin degradation product.

【図2】 ペクチン分解物のHPLCによる分子量分画
を示す図である。
FIG. 2 is a view showing a molecular weight fractionation of a pectin degradation product by HPLC.

【図3】 1,000kGyーc画分における子葉中の
ペクチンの添加量に対するグリセオリンの誘導生成量を
示す図である。
FIG. 3 is a graph showing the amount of glyceolin induced production relative to the amount of pectin added to cotyledons in the 1,000 kGy-c fraction.

【図4】 多糖類を放射線処理して得られた分解物によ
るピサチンの生成量を示す図である。
FIG. 4 is a graph showing the amount of pisatin produced by a decomposition product obtained by radiation treatment of a polysaccharide.

【図5】 ペクチン分解物によるエンドウ胚軸の伸長阻
害効果を示す図である。
FIG. 5 is a graph showing the effect of inhibiting degradation of pea hypocotyls by pectin degradation products.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08B 37/08 C08B 37/08 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C08B 37/08 C08B 37/08 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 植物に対する生物活性を有する多糖類の
分解物を製造する方法において、多糖類に電離性放射線
を照射することによりオリゴ糖からなる分解物を製造す
る方法。
1. A method for producing a decomposed product of a polysaccharide having a biological activity on a plant, which comprises irradiating the polysaccharide with ionizing radiation to produce a decomposed product composed of an oligosaccharide.
【請求項2】 多糖類がペクチン又はキトサンであり、
分解物がグリセオリン又はピサチンである請求項1に記
載の方法。
2. The polysaccharide is pectin or chitosan,
The method according to claim 1, wherein the degradation product is glyceolin or pisatin.
【請求項3】 放射線の線量が0.01〜2,000k
Gyである請求項1に記載の方法。
3. A radiation dose of 0.01 to 2,000 k.
2. The method according to claim 1, which is Gy.
JP26045896A 1996-10-01 1996-10-01 Preparation of degradation product of polysaccharide having biological activity against plant utilizing radiation irradiation Pending JPH10101704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26045896A JPH10101704A (en) 1996-10-01 1996-10-01 Preparation of degradation product of polysaccharide having biological activity against plant utilizing radiation irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26045896A JPH10101704A (en) 1996-10-01 1996-10-01 Preparation of degradation product of polysaccharide having biological activity against plant utilizing radiation irradiation

Publications (1)

Publication Number Publication Date
JPH10101704A true JPH10101704A (en) 1998-04-21

Family

ID=17348232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26045896A Pending JPH10101704A (en) 1996-10-01 1996-10-01 Preparation of degradation product of polysaccharide having biological activity against plant utilizing radiation irradiation

Country Status (1)

Country Link
JP (1) JPH10101704A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000139221A (en) * 1998-11-02 2000-05-23 Japan Atom Energy Res Inst Plant blight suppressing and growth promoting agent composed of decomposition extraction product of fibrous material
KR20000053816A (en) * 2000-04-20 2000-09-05 조석형 Method for preparing a low molecular weight polysaccharides and oligosaccharides
WO2002006348A3 (en) * 2000-07-19 2002-05-16 Genzyme Corp Molecular weight reduction of polymer using irradiation treatment
KR100369518B1 (en) * 2000-02-02 2003-01-30 김공수 Method for preparing a low molecular weight polysaccharides and it's oligomers
KR20030077333A (en) * 2002-03-26 2003-10-01 박현진 A process for producing fruits coating agent composition containing watersoluble chitosan of low molecular weights obtaining by radiation
WO2005037895A1 (en) * 2003-10-14 2005-04-28 Cp Kelco, U.S., Inc. Pectin films prepared from gamma irradiated pectin
JP2006274226A (en) * 2005-03-30 2006-10-12 National Food Research Institute Process for production of modified sugar beet pectin and its application
KR100746478B1 (en) 2005-06-24 2007-08-03 한국원자력연구원 A process for the preparation of pectin oligomer using ionizing radiation
KR100896170B1 (en) * 2007-05-22 2009-05-12 한국원자력연구원 A method for preparing chitosanoligosaccharide using irradiation or radical scavengers
JP2015048436A (en) * 2013-09-03 2015-03-16 公立大学法人福井県立大学 Chitin inclusion derived from organism for improving disease resistance of plant, application method thereof, and manufacturing method thereof
JP2019202993A (en) * 2018-05-07 2019-11-28 ソシエテ・デチュード・エ・デクスプロワタシオン・ダルグ・エ・プロデュイ・マリティム(セテクサム)Societe D’Etude Et D’Exploitation D’Algues Et Produits Maritimes (Setexam) Use of extract or extract fraction of agar type red algae as plant protective elicitor/stimulus substance, and application of said extract or extract fraction

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000139221A (en) * 1998-11-02 2000-05-23 Japan Atom Energy Res Inst Plant blight suppressing and growth promoting agent composed of decomposition extraction product of fibrous material
KR100369518B1 (en) * 2000-02-02 2003-01-30 김공수 Method for preparing a low molecular weight polysaccharides and it's oligomers
KR20000053816A (en) * 2000-04-20 2000-09-05 조석형 Method for preparing a low molecular weight polysaccharides and oligosaccharides
WO2002006348A3 (en) * 2000-07-19 2002-05-16 Genzyme Corp Molecular weight reduction of polymer using irradiation treatment
KR20030077333A (en) * 2002-03-26 2003-10-01 박현진 A process for producing fruits coating agent composition containing watersoluble chitosan of low molecular weights obtaining by radiation
WO2005037895A1 (en) * 2003-10-14 2005-04-28 Cp Kelco, U.S., Inc. Pectin films prepared from gamma irradiated pectin
JP2006274226A (en) * 2005-03-30 2006-10-12 National Food Research Institute Process for production of modified sugar beet pectin and its application
KR100746478B1 (en) 2005-06-24 2007-08-03 한국원자력연구원 A process for the preparation of pectin oligomer using ionizing radiation
KR100896170B1 (en) * 2007-05-22 2009-05-12 한국원자력연구원 A method for preparing chitosanoligosaccharide using irradiation or radical scavengers
JP2015048436A (en) * 2013-09-03 2015-03-16 公立大学法人福井県立大学 Chitin inclusion derived from organism for improving disease resistance of plant, application method thereof, and manufacturing method thereof
JP2019202993A (en) * 2018-05-07 2019-11-28 ソシエテ・デチュード・エ・デクスプロワタシオン・ダルグ・エ・プロデュイ・マリティム(セテクサム)Societe D’Etude Et D’Exploitation D’Algues Et Produits Maritimes (Setexam) Use of extract or extract fraction of agar type red algae as plant protective elicitor/stimulus substance, and application of said extract or extract fraction

Similar Documents

Publication Publication Date Title
Kim et al. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review
DE3735365C2 (en) Method for accelerating plant growth
Eweis et al. Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens
Shahidi et al. Chitin, chitosan, and co-products: chemistry, production, applications, and health effects
JPH10101704A (en) Preparation of degradation product of polysaccharide having biological activity against plant utilizing radiation irradiation
JP3079115B2 (en) Preparation of water-soluble arabinoxylan
JPH0454124A (en) Antiviral agent
Dziril et al. Chitin oligomers and monomers production by coupling γ radiation and enzymatic hydrolysis
JP3202365B2 (en) Method for separating oligomannuronic acid by degree of polymerization
JPH0725772A (en) Antibacterially active agent from polysaccharide by radiation treatment and production thereof
JP2870871B2 (en) A method for treating crustacean shells using enzymes
JPS63213501A (en) Production of pectin
JPWO2017187672A1 (en) Method for producing chitin oligomer, N-acetylglucosamine and 1-O-alkyl-N-acetylglucosamine
JP2001523243A (en) Methods for enhancing and stimulating plant natural defense systems
JP5339500B2 (en) Mannose purification method
US4140802A (en) Barley malt sterilization
Dung et al. Study on the biological effects of oligochitosan fractions, prepared by synergistic degradation method, on capsicum
CN116634872A (en) Method for obtaining preparation based on galacto-oligosaccharide and application of preparation in agriculture
KR20110061311A (en) Antibiotic composition using low molecular weight silver-alginate and manufacturing method thereof and biotic pesticide using the same
EP0400364A3 (en) New process for preparing chitosan and its derivatives containing quaternary ammonium groups
KR101713932B1 (en) Method of preparing alginate having low molecular weight using hydrogen peroxide and ultrasonic wave
Takamori et al. Biodegradation of chitin with enzymes and vital components
CN114560962B (en) Preparation method of marine oligosaccharide with anti-tumor activity, marine oligosaccharide and application thereof
JP2902405B2 (en) Process for producing biologically active oligogalacturonide
KR100582593B1 (en) Preparation method for glucosamine employing irradiation

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20060223

Free format text: JAPANESE INTERMEDIATE CODE: A712

A131 Notification of reasons for refusal

Effective date: 20060418

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060808