JPH0725772A - Antibacterially active agent from polysaccharide by radiation treatment and production thereof - Google Patents

Antibacterially active agent from polysaccharide by radiation treatment and production thereof

Info

Publication number
JPH0725772A
JPH0725772A JP5170534A JP17053493A JPH0725772A JP H0725772 A JPH0725772 A JP H0725772A JP 5170534 A JP5170534 A JP 5170534A JP 17053493 A JP17053493 A JP 17053493A JP H0725772 A JPH0725772 A JP H0725772A
Authority
JP
Japan
Prior art keywords
polysaccharide
chitosan
ionizing radiation
antibacterial activity
dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5170534A
Other languages
Japanese (ja)
Inventor
Tamikazu Kume
民和 久米
Shinpei Matsuhashi
信平 松橋
Shoji Hashimoto
昭司 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP5170534A priority Critical patent/JPH0725772A/en
Publication of JPH0725772A publication Critical patent/JPH0725772A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PURPOSE:To provide a method for efficiently producing an oligosaccharide having high antibacterial activity and a low molecular weight polysaccharide in a large scale. CONSTITUTION:The antibacterial agent is obtained by irradiating ionizing radiation onto a polysaccharide. The polysaccharide is, e.g. polygalactosamine. A dose of the ionizing radiation is, e.g. in the range of 0.01-1000Gy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多糖類に電離性放射線
を照射することにより、該多糖類を分解又は変性させて
得られる、高い抗菌活性を有する物質及びその製造方法
に関する。
TECHNICAL FIELD The present invention relates to a substance having a high antibacterial activity, which is obtained by decomposing or modifying a polysaccharide by irradiating the polysaccharide with ionizing radiation and a method for producing the same.

【0002】[0002]

【従来の技術】従来、多糖類を用いた抗菌活性物質の製
造方法には、各種多糖類を酸分解又は酵素分解すること
により、抗菌活性を有するオリゴマー等の分解産物を製
造する方法がある。
2. Description of the Related Art Conventionally, as a method for producing an antibacterial active substance using a polysaccharide, there is a method for producing a decomposition product such as an oligomer having an antibacterial activity by subjecting various polysaccharides to acid decomposition or enzymatic decomposition.

【0003】このうち、酸分解法は、濃塩酸等による苛
酷な条件下で加水分解することが必要であり、その結果
として単糖が多量に生成するので変換効率が悪いという
問題点や、耐酸性の反応容器が必要であったり試薬の回
収が困難である等の問題点がある。
Among them, the acid decomposition method requires hydrolysis under concentrated conditions such as concentrated hydrochloric acid, and as a result, a large amount of monosaccharide is produced, resulting in poor conversion efficiency and acid resistance. There is a problem that a reactive reaction vessel is required and it is difficult to collect the reagent.

【0004】一方、酵素分解法は、酸分解法に比べて比
較的温和な条件下で各種オリゴマーを得ることができ
る。しかし、それぞれの多糖類の分解に適した酵素が必
要であり、しかも反応に長時間を要するという欠点を有
する。また、酵素の回収が困難であったり、反応中に酵
素の失活が起こる等の問題点もある。
On the other hand, the enzymatic decomposition method can obtain various oligomers under relatively mild conditions as compared with the acid decomposition method. However, it has a drawback that an enzyme suitable for decomposing each polysaccharide is necessary and that the reaction takes a long time. In addition, there are problems that it is difficult to recover the enzyme and that the enzyme is deactivated during the reaction.

【0005】[0005]

【発明が解決しようとする課題】上記の問題点に鑑み、
本発明は、多糖類から抗菌活性の高いオリゴ糖や低分子
量多糖類を、大量に且つ効率良く製造する方法を提供す
ることを目的とする。
In view of the above problems,
An object of the present invention is to provide a method for efficiently producing a large amount of oligosaccharides or low molecular weight polysaccharides having high antibacterial activity from polysaccharides.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく、酸分解法や酵素分解法に代わる多糖類
からの抗菌活性物質の製造方法として、多糖類に電離性
放射線を照射することにより、短時間で簡単に且つ効果
的に抗菌活性の高い高重合オリゴ糖を製造し得ることを
見い出した。本発明の放射線照射による抗菌活性物質の
製造方法は、大量の試料を連続的に短時間で処理するこ
とができ、しかも乾燥又は溶液のいずれの状態での処理
が可能であるという点で有利である。
In order to solve the above-mentioned problems, the present inventors have proposed a method for producing an antibacterial active substance from a polysaccharide, which is an alternative to the acid decomposition method or the enzymatic decomposition method, to the polysaccharides with ionizing radiation. It was found that by irradiating with, highly polymerized oligosaccharides having high antibacterial activity can be easily and effectively produced in a short time. The method for producing an antibacterial active substance by irradiation of the present invention is advantageous in that a large amount of sample can be continuously treated in a short time, and further, treatment in either a dry state or a solution state is possible. is there.

【0007】本発明において用いられる多糖類とは最も
広義の意味において解釈され、凡ての天然物、微生物の
産生物及びそれらの加工処理産物を含む。天然物の多糖
類としては、例えばセルロース、デンプン、イヌリン、
キチン、キトサン、キシラン、ペクチン等、藻類中に含
まれるアルギン酸、カラギーナン、ラミナリン、ポルフ
ィラン、フコダインが挙げられる。一方、微生物の産生
物の多糖類としては、例えばポリガラクトサミン、ナン
マン、プルラン等、担子菌産生のレンチナン、シゾフィ
ラン等がある。これらの多糖類は一種類で用いてもよ
く、又は混合物として用いてもよい。本発明において
は、多糖類として特にポリガラクトサミン又はキトサン
を用いることが好ましい。
The polysaccharide used in the present invention is understood in the broadest sense, and includes all natural products, microbial products and processed products thereof. Examples of polysaccharides of natural products include cellulose, starch, inulin,
Examples thereof include alginic acid, carrageenan, laminarin, porphyran, and fucodine contained in algae such as chitin, chitosan, xylan, and pectin. On the other hand, examples of polysaccharides produced by microorganisms include polygalactosamine, nanman, pullulan, and the like, lentinan produced by basidiomycete, and sizofiran. These polysaccharides may be used alone or as a mixture. In the present invention, it is particularly preferable to use polygalactosamine or chitosan as the polysaccharide.

【0008】本発明において、多糖類に照射する電離性
放射線には、α線、β線、γ線、電子線、エックス線及
び紫外線が含まれる。実用的にはγ線、電子線又はエッ
クス線を使用することが便利である。電離性放射線の線
量は、0.01〜1000kGyの範囲であることが望
ましい。0.01kGy以下では効果が認められず、1
000kGy以上では分解が進みすぎて活性が失われて
しまうためである。
In the present invention, the ionizing radiation for irradiating the polysaccharide includes α rays, β rays, γ rays, electron rays, X rays and ultraviolet rays. Practically, it is convenient to use γ rays, electron rays or X rays. The dose of ionizing radiation is preferably in the range of 0.01 to 1000 kGy. No effect was observed below 0.01 kGy, and 1
This is because if it is 000 kGy or more, the decomposition proceeds too much and the activity is lost.

【0009】本発明にいう抗菌活性とは、細菌や糸状菌
等の微生物を死滅又はその増殖を抑制する性質をいう。
The antibacterial activity referred to in the present invention means the property of killing or suppressing the growth of microorganisms such as bacteria and filamentous fungi.

【0010】多糖類に電離性放射線を照射するに際して
は、多糖類を、乾燥、懸濁液又は水溶液の状態に調製す
る。多糖類が乾燥状態の場合には、照射する電離性放射
線の線量は100〜1000kGy程度の高線量である
ことが望ましい。乾燥状態での放射線の照射は大量処理
が容易である等の観点から有利である。多糖類が水溶液
の状態の場合には、照射する電離性放射線の線量は0.
01〜10kGy程度の低線量で十分である。水溶液状
態での照射は低線量で済むという観点から有利である。
多糖類が懸濁の状態の場合には、その中間の線量である
ことが望ましい。また、必要な照射線量は照射中の雰囲
気(例えば、窒素、酸素等)によっても異なる。上述の
通り、多糖類が乾燥状態の場合には比較的高線量の照射
が必要であるが、そのような場合には高線量率の電子加
速器を用いることによって短時間で照射処理を完了し得
る。
When irradiating the polysaccharide with ionizing radiation, the polysaccharide is prepared in a dry, suspension or aqueous solution state. When the polysaccharide is in a dry state, the dose of ionizing radiation to be applied is preferably a high dose of about 100 to 1000 kGy. Irradiation with radiation in a dry state is advantageous from the viewpoint of easy mass treatment. When the polysaccharide is in the form of an aqueous solution, the dose of ionizing radiation to be applied is 0.
A dose as low as 01 to 10 kGy is sufficient. Irradiation in an aqueous solution state is advantageous from the viewpoint of requiring a low dose.
When the polysaccharide is in a suspended state, it is desirable that the dose be in between. The required irradiation dose also differs depending on the atmosphere (eg, nitrogen, oxygen, etc.) during irradiation. As described above, irradiation of a relatively high dose is required when the polysaccharide is in a dry state, but in such a case, the irradiation process can be completed in a short time by using a high dose rate electron accelerator. .

【0011】多糖類に放射線を照射すると、その化学構
造に種々の変化が起こる。例えば、多糖類の主鎖の切断
が起こり、その結果、低分子量化に伴う粘度低下、溶解
度の増加、立体構造の変化等が起こる。また、側鎖の変
化、例えばNH2基の脱離が起こったり、環の崩壊等が
起こる。
Irradiation of polysaccharides causes various changes in their chemical structure. For example, the main chain of the polysaccharide is cleaved, and as a result, the viscosity is reduced, the solubility is increased, the three-dimensional structure is changed, and the like due to the reduction in the molecular weight. In addition, side chain changes such as elimination of NH 2 groups and ring collapse occur.

【0012】放射線が照射された多糖類は、その大部分
が高分子量のものである。このようの高分子量のものが
抗菌活性を有することはいうまでもないが、分子量の高
くないもの、例えば分子量1万以下のものであっても、
抗菌活性を有する。
Most of the irradiated polysaccharides are of high molecular weight. It goes without saying that such high molecular weight compounds have antibacterial activity, but even those having a low molecular weight, for example, those having a molecular weight of 10,000 or less,
Has antibacterial activity.

【0013】以下、実施例によって本発明を更に詳細に
説明するが、本発明の範囲はそれらの実施例にのみ限定
されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to these Examples.

【0014】[0014]

【実施例1】多糖類としてキトサンを使用した。乾燥状
態のキトサンに電子線を100kGy(試料1)及び5
00kGy(試料2)照射した。照射後のキトサンを
0.5%酢酸水溶液に溶解させ、次いで溶液のpHを
6.0に調整して0.1%キトサン水溶液とした。比較
のために電子線を照射していないキトサンを用いて同様
の手順にてキトサン水溶液を得た(対照1)。
Example 1 Chitosan was used as a polysaccharide. Electron beam of 100 kGy (Sample 1) and 5 on dry chitosan
Irradiation with 00 kGy (Sample 2) was performed. The irradiated chitosan was dissolved in a 0.5% acetic acid aqueous solution, and then the pH of the solution was adjusted to 6.0 to obtain a 0.1% chitosan aqueous solution. For comparison, a chitosan aqueous solution was obtained by the same procedure using chitosan which was not irradiated with an electron beam (control 1).

【0015】大腸菌(E.coli)の培養液(Nutrient Bro
th)に上記の各キトサン溶液を添加して、大腸菌の増殖
速度を大岳製作所製バイオスキャナーOT−BS−16
を用いて、濁度測定により調べた。その結果を図1に示
す。キトサンを全く含んでいないブランクの試料に比
べ、対照1では多少大腸菌の生育が遅れた。試料1では
大腸菌の生育の遅れが著しくなり、試料2では47時間
のわたる培養中、大腸菌の増殖は認められなかった。こ
のように、電離性放射線を照射されたキトサンによる抗
菌活性の増大が認められた。
E. coli culture medium (Nutrient Bro
The above chitosan solution was added to th) to increase the growth rate of Escherichia coli at Otake Bioscanner OT-BS-16.
Was measured by turbidity measurement. The result is shown in FIG. Growth of E. coli was somewhat delayed in Control 1 compared to a blank sample containing no chitosan. The delay in the growth of E. coli was significant in Sample 1, and the growth of E. coli was not observed in Sample 2 during the 47-hour culture. As described above, an increase in antibacterial activity was observed by chitosan irradiated with ionizing radiation.

【0016】また、分子量分画用の膜を用いて分子量1
万以下の分解生成物を分離し、同様の実験を行ったとこ
ろ、電離性放射線を照射されたキトサンの低分子量画分
にも抗菌活性の増大が認められた。
Further, a membrane for molecular weight fractionation was used to obtain a molecular weight of 1
When less than 10,000 decomposition products were separated and the same experiment was conducted, an increase in antibacterial activity was also observed in the low molecular weight fraction of chitosan irradiated with ionizing radiation.

【0017】[0017]

【実施例2】実施例1と同様の方法を用いて試料1及び
試料2並びに対照1のキトサン水溶液を得た。
Example 2 Using the same method as in Example 1, aqueous chitosan solutions of Sample 1 and Sample 2 and Control 1 were obtained.

【0018】糸状菌の一種であるFusarium oxysporumの
寒天培地に上記の各キトサン溶液を添加して、その生育
速度を観測した。その結果を表1に示す。
Each of the above chitosan solutions was added to an agar medium of Fusarium oxysporum, which is a type of filamentous fungus, and the growth rate thereof was observed. The results are shown in Table 1.

【0019】[0019]

【表1】 上記の結果から明らかなように、電離性放射線を照射さ
れたキトサンが添加された培地では、Fusarium oxyspor
umの生育が非常に阻害された。
[Table 1] As is clear from the above results, Fusarium oxyspor was added to the medium supplemented with chitosan irradiated with ionizing radiation.
The growth of um was greatly inhibited.

【0020】[0020]

【実施例3】キトサンを水に溶解して0.0125%の
希薄水溶液とした。空気平衡下で、この水溶液にγ線を
種々の線量で照射した。比較のためにγ線を照射してい
ないキトサン水溶液を対照とした。
Example 3 Chitosan was dissolved in water to prepare a 0.0125% dilute aqueous solution. This aqueous solution was irradiated with γ rays at various doses under air equilibration. For comparison, a chitosan aqueous solution not irradiated with γ-ray was used as a control.

【0021】大腸菌の培養液に上記の各キトサン溶液を
添加して、大腸菌の増殖速度を濁度により測定した。そ
の結果を図2に示す。
Each of the above chitosan solutions was added to the culture solution of Escherichia coli, and the growth rate of Escherichia coli was measured by turbidity. The result is shown in FIG.

【0022】図2から明らかなように、0.05〜0.
2kGyの範囲の線量で抗菌活性の顕著な増大が認めら
れた。なお、0.2kGy以上の線量では抗菌活性が低
下した。
As is apparent from FIG. 2, 0.05-0.
A significant increase in antibacterial activity was observed at doses in the 2 kGy range. The antibacterial activity was reduced at doses of 0.2 kGy or more.

【0023】従って、水溶液の状態の多糖類に電離性放
射線を照射することによって、乾燥状態での照射に比べ
て極めて低い線量にて、抗菌活性の効果的な増大を図れ
ることが分かった。
Therefore, it was found that by irradiating the polysaccharide in an aqueous solution state with ionizing radiation, the antibacterial activity can be effectively increased at a dose much lower than that in the dry state.

【0024】[0024]

【実施例4】キトサンを水に溶解して0.1%の水溶液
とした。窒素又は酸素を通気しながら、この水溶液にγ
線を種々の線量で照射した。比較のためにγ線を照射し
ていないキトサン水溶液を対照とした。
Example 4 Chitosan was dissolved in water to prepare a 0.1% aqueous solution. While aeration with nitrogen or oxygen, γ
The rays were irradiated at various doses. For comparison, a chitosan aqueous solution not irradiated with γ-ray was used as a control.

【0025】大腸菌の培養液に上記の各キトサン溶液を
添加して、大腸菌の増殖速度を濁度により測定した。そ
の結果を図3及び図4に示す。
Each of the above chitosan solutions was added to the culture solution of Escherichia coli, and the growth rate of Escherichia coli was measured by turbidity. The results are shown in FIGS. 3 and 4.

【0026】窒素を通気しながらγ線を照射した場合に
は(図3)、0.8〜1.0kGyの範囲の線量で68
時間以上大腸菌の生育を抑制することができた。一方、
酸素を通気しながらγ線を照射した場合には(図4)、
0.2kGyの線量で抗菌活性は最大となり、それ以上
の線量では活性が低下することが認められた。
When γ-rays are irradiated while nitrogen is ventilated (FIG. 3), a dose in the range of 0.8 to 1.0 kGy is 68.
The growth of Escherichia coli could be suppressed for more than an hour. on the other hand,
In the case of γ-ray irradiation while ventilating oxygen (Fig. 4),
It was observed that the antibacterial activity reached its maximum at a dose of 0.2 kGy and that the activity decreased at doses higher than that.

【図面の簡単な説明】[Brief description of drawings]

【図1】乾燥状態で照射した場合のキトサンの大腸菌に
対する抗菌活性を表す図である。
FIG. 1 is a graph showing the antibacterial activity of chitosan against Escherichia coli when irradiated in a dry state.

【図2】希薄水溶液中で照射した場合のキトサンの大腸
菌に対する抗菌活性を表す図である。
FIG. 2 is a view showing the antibacterial activity of chitosan against Escherichia coli when irradiated in a dilute aqueous solution.

【図3】キトサン水溶液を窒素通気下で照射した場合の
大腸菌に対する抗菌活性を表す図である。
FIG. 3 is a diagram showing antibacterial activity against Escherichia coli when an aqueous chitosan solution is irradiated under nitrogen aeration.

【図4】キトサン水溶液を酸素通気下で照射した場合の
大腸菌に対する抗菌活性を表す図である。
FIG. 4 is a diagram showing antibacterial activity against Escherichia coli when a chitosan aqueous solution is irradiated under oxygen aeration.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多糖類に電離性放射線を照射してなる抗
菌活性物質。
1. An antibacterial active substance obtained by irradiating a polysaccharide with ionizing radiation.
【請求項2】 多糖類がキトサン又はポリガラクトサミ
ンである請求項1に記載の抗菌活性物質。
2. The antibacterial active substance according to claim 1, wherein the polysaccharide is chitosan or polygalactosamine.
【請求項3】 電離性放射線の線量が0.01〜100
0Gyの範囲である、請求項1に記載の抗菌活性物質。
3. The dose of ionizing radiation is 0.01 to 100.
The antibacterial active substance according to claim 1, which is in the range of 0 Gy.
【請求項4】 多糖類に電離性放射線を照射してなる抗
菌活性物質の製造方法。
4. A method for producing an antibacterial active substance, which comprises irradiating a polysaccharide with ionizing radiation.
JP5170534A 1993-07-09 1993-07-09 Antibacterially active agent from polysaccharide by radiation treatment and production thereof Pending JPH0725772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5170534A JPH0725772A (en) 1993-07-09 1993-07-09 Antibacterially active agent from polysaccharide by radiation treatment and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5170534A JPH0725772A (en) 1993-07-09 1993-07-09 Antibacterially active agent from polysaccharide by radiation treatment and production thereof

Publications (1)

Publication Number Publication Date
JPH0725772A true JPH0725772A (en) 1995-01-27

Family

ID=15906704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5170534A Pending JPH0725772A (en) 1993-07-09 1993-07-09 Antibacterially active agent from polysaccharide by radiation treatment and production thereof

Country Status (1)

Country Link
JP (1) JPH0725772A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002830A3 (en) * 1995-07-10 1997-04-10 Abbott Lab Use of indigestible oligosaccharides to treat and prevent otitis media in humans
EP1050544A1 (en) * 1999-05-05 2000-11-08 Manfred Dr. Kuhn Radiolytic modified heteropolysaccharides
KR100279281B1 (en) * 1998-04-04 2001-01-15 강문일 Fish Parasite Scutica Insecticide with Alginate Oligosaccharide Derivative as an Active Ingredient
WO2002006348A3 (en) * 2000-07-19 2002-05-16 Genzyme Corp Molecular weight reduction of polymer using irradiation treatment
WO2004000886A1 (en) * 2002-06-21 2003-12-31 Laboratori Derivati Organici S.P.A. Process for the physical depolymerization of glycosaminoglycanes and products obtained therefrom
JP2005530897A (en) * 2002-06-25 2005-10-13 ローディア インク. Polysaccharide molecular weight reduction by electron beam
JP2006274226A (en) * 2005-03-30 2006-10-12 National Food Research Institute Process for production of modified sugar beet pectin and its application
JP2009201465A (en) * 2008-02-29 2009-09-10 Forestry & Forest Products Research Institute Grifola froundosa yield-increasing agent, medium for grifola froundosa fruit-body cultivation using the same, medium or culture medium for proliferating grifola froundosa mycelium, and grifola froundosa cultivating method
WO2011118748A1 (en) * 2010-03-26 2011-09-29 日本製紙株式会社 Method for producing cellulose nanofibers
KR101245730B1 (en) * 2010-07-09 2013-03-25 공주대학교 산학협력단 A method of depolymerizing Grifola frondosa Exo-polysaccharides, Grifola frondosa Exo-polysaccharides obtained therefrom, and cosmetic composotion and food product containing them
CN103548828A (en) * 2013-11-08 2014-02-05 成都新朝阳作物科学有限公司 Melon and fruit immunizing agent and application thereof
JP2015048436A (en) * 2013-09-03 2015-03-16 公立大学法人福井県立大学 Chitin inclusion derived from organism for improving disease resistance of plant, application method thereof, and manufacturing method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997002830A3 (en) * 1995-07-10 1997-04-10 Abbott Lab Use of indigestible oligosaccharides to treat and prevent otitis media in humans
KR100279281B1 (en) * 1998-04-04 2001-01-15 강문일 Fish Parasite Scutica Insecticide with Alginate Oligosaccharide Derivative as an Active Ingredient
EP1050544A1 (en) * 1999-05-05 2000-11-08 Manfred Dr. Kuhn Radiolytic modified heteropolysaccharides
WO2002006348A3 (en) * 2000-07-19 2002-05-16 Genzyme Corp Molecular weight reduction of polymer using irradiation treatment
WO2004000886A1 (en) * 2002-06-21 2003-12-31 Laboratori Derivati Organici S.P.A. Process for the physical depolymerization of glycosaminoglycanes and products obtained therefrom
JP2005530897A (en) * 2002-06-25 2005-10-13 ローディア インク. Polysaccharide molecular weight reduction by electron beam
JP2006274226A (en) * 2005-03-30 2006-10-12 National Food Research Institute Process for production of modified sugar beet pectin and its application
JP2009201465A (en) * 2008-02-29 2009-09-10 Forestry & Forest Products Research Institute Grifola froundosa yield-increasing agent, medium for grifola froundosa fruit-body cultivation using the same, medium or culture medium for proliferating grifola froundosa mycelium, and grifola froundosa cultivating method
WO2011118748A1 (en) * 2010-03-26 2011-09-29 日本製紙株式会社 Method for producing cellulose nanofibers
KR101245730B1 (en) * 2010-07-09 2013-03-25 공주대학교 산학협력단 A method of depolymerizing Grifola frondosa Exo-polysaccharides, Grifola frondosa Exo-polysaccharides obtained therefrom, and cosmetic composotion and food product containing them
JP2015048436A (en) * 2013-09-03 2015-03-16 公立大学法人福井県立大学 Chitin inclusion derived from organism for improving disease resistance of plant, application method thereof, and manufacturing method thereof
CN103548828A (en) * 2013-11-08 2014-02-05 成都新朝阳作物科学有限公司 Melon and fruit immunizing agent and application thereof

Similar Documents

Publication Publication Date Title
Abo Elsoud et al. Current trends in fungal biosynthesis of chitin and chitosan
Aranaz et al. Functional characterization of chitin and chitosan
JPH0725772A (en) Antibacterially active agent from polysaccharide by radiation treatment and production thereof
Araújo et al. Chitinous polymers: extraction from fungal sources, characterization and processing towards value‐added applications
JPS5836959B2 (en) Method for producing palatinose using immobilized α-glucosyltransferase
Hussain et al. Preparation of chitosan oligomers and characterization: Their antifungal activities and decay resistance
West Effect of carbon source on polysaccharide production by alginate‐entrapped Aureobasidium pullulans ATCC 42023 cells
JPH10101704A (en) Preparation of degradation product of polysaccharide having biological activity against plant utilizing radiation irradiation
JP3181337B2 (en) Method for producing chitosan oligosaccharide mixture and method for producing chitin oligosaccharide mixture
JPS63213501A (en) Production of pectin
JP2599415B2 (en) Chitosan gel composition and method for producing the same
JP3062893B2 (en) Enzymatic degradation of chitin-containing materials
JP6585295B2 (en) Melanin pigment non-producing or low-producing β-glucan-producing bacterium, its artificial production method, and β-glucan produced using the same, and its production method
JP3179563B2 (en) Biodegradable composition
JP2560257B2 (en) Method for producing chitosan-chitin hollow fiber
JPH02252701A (en) Novel cyclic inulooligosaccharide and its production
KR101713932B1 (en) Method of preparing alginate having low molecular weight using hydrogen peroxide and ultrasonic wave
Boryniec et al. Biodegradation of chitosan
JP2001069975A (en) Chitosanase
CN115181703B (en) Solid medium for fast growth of micromonospora for sisomicin production
JP2524287B2 (en) Method for regenerating microorganism-immobilized carrier
Gulshan et al. Comparative study of antibacterial activity of vancomycin and chemically treated chitosan prepared from shrimp (Macrobrachium rosenbergii) waste
JP2000253895A (en) Partially acetylated chitosan, chitooligosaccharide mixture and production of chitooligosaccharide
El Kady Current trends in fungal biosynthesis of chitin and chitosan
KR100418682B1 (en) Method for Isolation and purification of high molecular weight chitosan by using ultrasonic processing

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040827