JPH10101467A - Explosive composition and its production - Google Patents

Explosive composition and its production

Info

Publication number
JPH10101467A
JPH10101467A JP26091696A JP26091696A JPH10101467A JP H10101467 A JPH10101467 A JP H10101467A JP 26091696 A JP26091696 A JP 26091696A JP 26091696 A JP26091696 A JP 26091696A JP H10101467 A JPH10101467 A JP H10101467A
Authority
JP
Japan
Prior art keywords
potassium
ammonium nitrate
explosive composition
explosive
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26091696A
Other languages
Japanese (ja)
Inventor
Takeisa Arita
武功 有田
Shosaku Aramaki
昌作 荒牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP26091696A priority Critical patent/JPH10101467A/en
Publication of JPH10101467A publication Critical patent/JPH10101467A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B31/00Compositions containing an inorganic nitrogen-oxygen salt
    • C06B31/28Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate
    • C06B31/285Compositions containing an inorganic nitrogen-oxygen salt the salt being ammonium nitrate with fuel oil, e.g. ANFO-compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an explosive composition improved in the detonation reaction rate and the generation of gas after blasting by uniformly mixing an oxidizing agent composed mainly of ammonium nitrate with a fuel and a potassium compound. SOLUTION: This explosive composition contains an oxidizing agent composed mainly of ammonium nitrate, a fuel and a potassium compound and has fine crystals containing 111-phase ammonium nitrate on the surface of particle. The fine crystal is an acicular or dendrite crystal having a longitudinal length of about 1-200μm. The explosive composition is produced e.g. by mixing an oxidizing agent composed mainly of ammonium nitrate with a fuel and adding a potassium compound to the mixture or adding a mixture of a fuel and a potassium compound to an oxidizing agent composed mainly of ammonium nitrate. The preferable oxidizing agent is porous granular ammonium nitrate, crushed porous ammonium nitrate, powdery ammonium nitrate, etc. The potassium compound is preferably potassium sulfate, potassium nitrate, potassium sorbate, potassium benzoate, potassium acetate, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は産業用爆薬に関する
ものであり、より詳しくは土木建設、採石、採鉱、採
炭、トンネル掘削などの鉱工業分野;排水、潅漑、開
墾、抜根、伐採などの農林分野;海中の雑藻や泥土除去
等の海洋分野などにおける発破、破砕、掘削などに利用
される爆薬組成物及びその製造方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to industrial explosives, and more particularly to the fields of mining and industry such as civil engineering, quarrying, mining, coal mining, and tunnel excavation; and agriculture and forestry such as drainage, irrigation, clearing, root removal, and logging. An explosive composition used for blasting, crushing, excavating, and the like in the marine field such as removal of undersea weeds and mud, and a method for producing the same.

【0002】[0002]

【従来の技術】産業用爆薬の代表的なものとしては、ダ
イナマイト、含水爆薬、硝安油剤爆薬等がある。特に、
硝安油剤爆薬は、ポ−ラス粒状硝安94部と油剤6部の
二成分からなり、雷管1本では起爆できない鈍感な爆薬
であるために発破後ガス等に問題があるものの、他の爆
薬に比べて安価なために、非トンネル現場(明かり現
場)での発破用爆薬として年々、その需要が増大する傾
向にある。このような硝安油剤爆薬の爆性等の品質改善
対策としては、特開平7−69772号公報に示される
ような特定の吸油率を持つプリル硝安や粉砕したプリル
硝安を用いる方法、特開平2−221178号公報に示
されるような、吸油率や粒径を限定したプリル硝安を用
いる方法、特開平2−267182号公報のように燃料
としてワックスを使用する方法、特開平8−48590
号公報に示されるような高温下で酸化剤と燃料を混合成
型する方法が公知である。又、硝安油剤爆薬の発破後ガ
ス対策としては、工業火薬協会主催昭和40年度研究発
表講演要旨「ANFO爆薬の後ガスについて」に示され
るような、軽油量配合比、プリル硝安の粒度を調整する
方法が公知である。
2. Description of the Related Art Typical examples of industrial explosives include dynamite, hydrous explosives, and explosives for nitrate oil. Especially,
The nitric acid explosive is composed of two parts, 94 parts of porous granular nitric acid and 6 parts of oil, and is an insensitive explosive that cannot be detonated with a single detonator. Due to its low cost and low cost, the demand for explosives for blasting at non-tunnel sites (light sites) tends to increase year by year. As a measure for improving the explosive property of such an nitrate oil explosive, a method using a prill nitrate having a specific oil absorption rate or a prilled prill nitrate having a specific oil absorption rate as disclosed in JP-A-7-69772 is disclosed in JP-A-221178 discloses a method using prill nitrate having a limited oil absorption and particle size, JP-A-2-267182 uses a wax as a fuel, JP-A-8-48590.
There is known a method of mixing and molding an oxidant and a fuel at a high temperature as shown in Japanese Patent Application Laid-Open Publication No. HEI 10-260, 1988. In addition, as a countermeasure against gas after blasting of nitrate oil explosives, adjust the blending ratio of light oil and the particle size of prill nitrate as shown in "Regarding gas after ANFO explosives" in the abstract of the 1965 research presentation sponsored by the Industrial Explosives Association. Methods are known.

【0003】[0003]

【発明が解決しようとする課題】硝安油剤爆薬は他の産
業爆薬に比べ、簡便な方法で安価に製造できるが、特定
の吸油率を持つプリル硝安、粒径を限定したプリル硝
安、破砕硝安を用いた硝安油剤爆薬や軽油配合量を調整
した硝安油剤爆薬の爆轟反応速度や発破後ガスは十分に
改善するに至らず、トンネル等の硬岩掘削や換気の悪い
現場での使用が難しいものであった。従って、爆轟反応
速度が低いことや発破後に多量の一酸化炭素や窒素酸化
物等の有害ガスが発生すると云った問題が残されてい
た。
An ammonium nitrate explosive can be manufactured at a lower cost by a simple method than other industrial explosives. However, prill nitrate having a specific oil absorption rate, prill nitrate having a limited particle size, and crushed nitrate are used. The detonation reaction speed and gas after blasting of the used nitric acid explosives and the adjusted amount of light oil were not sufficiently improved, making it difficult to use in hard rock excavations such as tunnels and sites with poor ventilation. Met. Therefore, there remains a problem that the detonation reaction rate is low and that a large amount of harmful gases such as carbon monoxide and nitrogen oxides are generated after blasting.

【0004】[0004]

【課題を解決するための手段】発明者等は、前記課題を
解決するために鋭意研究した結果、硝安を主とする酸化
剤と燃料に、カリウム化合物を溶解させずに室温で混合
することによって、爆薬組成物を構成する爆薬粒子の表
面や粒子内部の一次粒子間の隙間である空隙部の一部に
III相硝安を含む微細な結晶が形成されることを突き
止めた。そして、該微細結晶を形成する爆薬粒子を含む
爆薬組成物は、爆轟反応速度(爆速)が高まり、岩盤破
壊力や発破後ガスが著しく改善されることを見いだし本
発明を完成するに至った。即ち、本発明の構成は、下記
の通りの爆薬組成物及びその製造方法である。 (1)硝安を主とする酸化剤、燃料及びカリウム化合物
を含有し、粒子の表面にIII相硝安を含む微細結晶を
含有する爆薬組成物。 (2)硝安を主とする酸化剤と燃料とを混合した後にカ
リウム化合物を添加混合する爆薬組成物の製造方法。 (3)燃料とカリウム化合物との混合物を硝安を主とす
る酸化剤に添加混合する爆薬組成物の製造方法。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, by mixing at room temperature without dissolving a potassium compound in an oxidizing agent mainly composed of ammonium nitrate and a fuel. The present inventors have found that fine crystals containing phase III ammonium nitrate are formed on the surfaces of explosive particles constituting the explosive composition and on some of the voids, which are gaps between primary particles inside the particles. The explosive composition containing the explosive particles forming the fine crystals has an increased detonation reaction speed (explosion speed), and has found that the rock breaking force and the gas after blasting are remarkably improved, thereby completing the present invention. . That is, the constitution of the present invention is the following explosive composition and a method for producing the same. (1) An explosive composition containing an oxidizing agent mainly composed of ammonium nitrate, a fuel, and a potassium compound, and containing fine crystals containing phase III ammonium nitrate on the surface of particles. (2) A method for producing an explosive composition in which an oxidizing agent mainly composed of ammonium nitrate and a fuel are mixed and then a potassium compound is added and mixed. (3) A method for producing an explosive composition in which a mixture of a fuel and a potassium compound is added to and mixed with an oxidizing agent mainly composed of ammonium nitrate.

【0005】本発明において驚くべきことは、実質的に
酸化剤と燃料とカリウム化合物からなる爆薬組成物に、
さらに少量の硫酸カリウム、硝酸カリウム、臭化カリウ
ム、ヨウ化カリウム、リン酸2水素カリウム、塩化カリ
ウム、ソルビン酸カリウム、1ナフチル酢酸カリウム、
安息香酸カリウム、酢酸カリウム、酒石酸水素カリウ
ム、P−スチレンスルホン酸カリウムから選ばれてなる
1種又は2種以上の微細な粉末を添加することによっ
て、前記の爆薬組成物の粒子表面や粒子内部の隙間の一
部にIII相硝安を含む微細な結晶が形成され、爆速や
発破後ガスが顕著に改善された爆薬組成物が得られるこ
とを見出したことである。
What is surprising in the present invention is that an explosive composition consisting essentially of an oxidizing agent, a fuel and a potassium compound,
In addition, a small amount of potassium sulfate, potassium nitrate, potassium bromide, potassium iodide, potassium dihydrogen phosphate, potassium chloride, potassium sorbate, potassium naphthyl acetate,
By adding one or more fine powders selected from potassium benzoate, potassium acetate, potassium hydrogen tartrate, and potassium P-styrenesulfonate, the surface of the explosive composition and the inside of the particles are added. It has been found that fine crystals containing phase III ammonium nitrate are formed in a part of the gap, and that an explosive composition having a significantly improved explosion velocity and gas after blasting can be obtained.

【0006】本発明の爆薬組成物の粒子表面や粒子断面
の構造は例えば電子顕微鏡写真によって観察することが
できる。第1図及び第2図に電子顕微鏡にて撮影した本
願発明に係る爆薬組成物の一例の表面及び断面の構造写
真を示す。第3図及び第4図には従来技術に係る爆薬組
成物の表面及び断面の構造写真を示す。第1図は本発明
の爆薬組成物の粒子表面、即ち、粒子の外周の一部分を
拡大(倍率:500)したものであり、粒子表面には独
立した針状結晶や、前記の針状結晶の複数が融着したよ
うに集まった針状結晶や、前記の針状結晶の一部分が融
着したようになり木の枝のような形に枝別れした樹枝状
結晶が、爆薬組成物の粒子表面の一部に析出、形成され
ている。第2図は本発明の爆薬組成物の粒子断面、即
ち、粒子内部の一部分を拡大(倍率:500)したもの
であり、粒子表面近傍の内部にも粒子表面に見らるよう
な針状結晶等が析出、形成されている。第3図は、従来
の爆薬組成物の粒子表面、即ち、粒子の外周の一部分を
拡大(倍率:500)したものであり、粒子表面には第
1図にみられるような針状結晶等は析出、形成されてい
ない。第4図は、従来の爆薬組成物の粒子断面、即ち、
粒子内部の一部分を拡大(倍率:500)したものであ
り、粒子表面近傍の内部にも粒子表面に見らるような針
状結晶等が析出、形成されていない。
The structure of the particle surface or particle cross section of the explosive composition of the present invention can be observed by, for example, an electron micrograph. 1 and 2 show structural photographs of the surface and cross section of an example of the explosive composition according to the present invention, taken by an electron microscope. 3 and 4 show structural photographs of the surface and cross section of the explosive composition according to the prior art. FIG. 1 is an enlarged (magnification: 500) particle surface of the explosive composition of the present invention, that is, a part of the outer periphery of the particle. Needle-like crystals that are gathered as if they were fused together, or dendrites that are partly fused to form a tree-like branch that looks like a tree branch are formed on the particle surface of the explosive composition. Is deposited and formed on a part of. FIG. 2 is a cross-sectional view of a particle of the explosive composition of the present invention, that is, an enlarged portion (magnification: 500) of a part of the inside of the particle. Etc. are deposited and formed. FIG. 3 is an enlarged view (magnification: 500) of the particle surface of the conventional explosive composition, that is, a part of the outer periphery of the particle. Needle-like crystals and the like as shown in FIG. No precipitation or formation. FIG. 4 shows a particle cross section of a conventional explosive composition, that is,
This is an enlarged part (magnification: 500) of the inside of the particle, and no needle-like crystals or the like as seen on the particle surface are deposited or formed in the vicinity of the particle surface.

【0007】本発明の粒子は、一次粒子が凝集して形成
された二次粒子をも含む。したがって、本発明の爆薬組
成物には、粒子表面近傍の内部に針状結晶が形成される
ものをも含む。本発明でいう微細結晶とは、前記のよう
な直径約0.5〜10μm、長さ約2〜100μmの独
立した針状結晶、針状結晶が集合した結晶及び針状結晶
が枝別れして形成される樹枝状結晶や、これらの結晶が
混在する形の結晶のことをいう。
[0007] The particles of the present invention also include secondary particles formed by agglomeration of primary particles. Therefore, the explosive composition of the present invention includes those in which needle-like crystals are formed in the vicinity of the particle surface. The fine crystals referred to in the present invention are the above-mentioned independent needle-like crystals having a diameter of about 0.5 to 10 μm and a length of about 2 to 100 μm, the crystals in which the needle-like crystals are aggregated and the needle-like crystals are branched. It refers to dendritic crystals that are formed and crystals in the form of a mixture of these crystals.

【0008】さらに、本発明の微細結晶は常温にてもI
II相硝安を含有する。該III相硝安は爆薬組成物を
粉末X線回析装置で解析したときに、回折角約34.2
度に回折強度ピークを示す。本発明の爆薬組成物は酸化
剤、燃料およびカリウム化合物を成分とする。それぞれ
の組成は、酸化剤90〜97重量%、燃料3〜10重量
%、カリウム化合物0.2〜10重量%である。酸化剤
は硝安を主成分とすることが必要である。好ましくは酸
化剤の80〜100重量%が硝安であるとよい。なお、
前記カリウム化合物は硝安中に含まれていても良い。
Further, the fine crystals of the present invention have
Contains phase II nitrate. The phase III nitrate had a diffraction angle of about 34.2 when the explosive composition was analyzed with a powder X-ray diffraction apparatus.
Each time, a diffraction intensity peak is shown. The explosive composition of the present invention comprises an oxidizer, a fuel and a potassium compound. Each composition is 90-97% by weight of the oxidizing agent, 3-10% by weight of the fuel, and 0.2-10% by weight of the potassium compound. The oxidizing agent needs to be mainly composed of ammonium nitrate. Preferably, 80 to 100% by weight of the oxidizing agent is ammonium nitrate. In addition,
The potassium compound may be contained in ammonium nitrate.

【0009】以下、本発明の爆薬組成物の製造方法につ
いて説明する。本発明で使用される酸化剤は、火薬業界
で公知のものの使用が可能であり、例えば、従来より産
業爆薬の代表的な酸化剤として使用されている硝安、硝
酸ナトリウム等を使用することができる。上述したよう
に酸化剤は硝安を主成分、好ましくは酸化剤の80重量
%以上が硝安となるようにする。前記硝安には燃料が混
合された硝安油剤爆薬やカリウムを含んだものでもよ
く、特に嵩比重が約0.7〜0.8、粒径0.8〜2.
4mmが大半を占めるプリル硝安が好適である。また、
硝安粉末、ポ−ラス粒状硝安やこれを破砕した粉状硝安
であると良い。特にプリル硝安を破砕したものは好適で
ある。硝安以外の酸化剤としては硝酸ナトリウム、硝酸
カルシウムなどが挙げられる。
Hereinafter, a method for producing the explosive composition of the present invention will be described. As the oxidizing agent used in the present invention, those known in the explosive industry can be used. For example, ammonium nitrate, sodium nitrate, etc. which have been conventionally used as typical oxidizing agents for industrial explosives can be used. . As described above, the oxidizing agent contains ammonium nitrate as a main component, and preferably 80% by weight or more of the oxidizing agent is ammonium nitrate. The ammonium nitrate may include an ammonium nitrate explosive mixed with a fuel or potassium, particularly having a bulk specific gravity of about 0.7 to 0.8 and a particle size of 0.8 to 2.
Prill nitrate, the majority of which is 4 mm, is preferred. Also,
It is preferable to use ammonium nitrate powder, porous granular ammonium nitrate, or powdered ammonium nitrate obtained by crushing it. In particular, those obtained by crushing prill nitrate are preferable. Oxidants other than ammonium nitrate include sodium nitrate and calcium nitrate.

【0010】酸化剤の添加量は、爆薬組成物の全組成に
対して90〜97重量%とするとよい。この範囲内であ
ると、爆薬としての性能は維持しつつ爆速も低下しな
い。又、伝爆性能の低下、通常のブ−スタ−量での爆轟
中断の発生頻度の増大といった問題も生じない。より好
ましいのは94〜96重量%である。本発明の燃料は、
火薬類の技術分野で公知のものを使用することができ
る。特に、常温で液状のものが好ましい。例えば、軽
油、灯油、ジニトロトルエン、ジニトロキシレン、アル
コ−ル、ニトロプロパン等があり、1種又は2種以上を
組み合わせて用いることもできる。なかでも、軽油は硝
安との混合性が良く、安価であり、実用性の優れた爆速
改善効果を示す良好な燃料である。
The amount of the oxidizing agent added is preferably 90 to 97% by weight based on the total composition of the explosive composition. Within this range, the explosive speed does not decrease while maintaining the performance as an explosive. Also, there is no problem such as a decrease in the detonation performance and an increase in the frequency of detonation interruption with a normal booster amount. More preferred is 94 to 96% by weight. The fuel of the present invention
Those known in the technical field of explosives can be used. In particular, a liquid at room temperature is preferable. For example, there are light oil, kerosene, dinitrotoluene, dinitroxylene, alcohol, nitropropane and the like, and one kind or a combination of two or more kinds can be used. Above all, light oil is a good fuel that has good miscibility with ammonium nitrate, is inexpensive, and has an explosive speed improving effect with excellent practicality.

【0011】燃料の添加量は全組成に対して3〜10重
量%とするとよい。この範囲内であると爆薬としての性
能を維持できる上、発破後にガス中の窒素酸化物やに一
酸化炭素の増加がなく、発破現場の安全作業が向上す
る。より好ましいのは4〜6重量%である。本発明のカ
リウム化合物には、硫酸カリウム、硝酸カリウム、臭化
カリウム、ヨウ化カリウム、リン酸2水素カリウム、塩
化カリウム、ソルビン酸カリウム、1ナフチル酢酸カリ
ウム、安息香酸カリウム、酢酸カリウム、酒石酸水素カ
リウム、P−スチレンスルホン酸カリウム等の1種又は
2種以上を選んで用いることができる。なかでも、硝酸
カリウム、硫酸カリウム、安息香酸カリウム、ソルビン
酸カリウムの微細な粉末は爆速や発破後ガスの改善が顕
著である。
The amount of fuel added is preferably 3 to 10% by weight based on the total composition. Within this range, the performance as an explosive can be maintained, and there is no increase in nitrogen oxides and carbon monoxide in the gas after blasting, so that the safety work at the blasting site is improved. More preferably, it is 4 to 6% by weight. The potassium compound of the present invention includes potassium sulfate, potassium nitrate, potassium bromide, potassium iodide, potassium dihydrogen phosphate, potassium chloride, potassium sorbate, potassium naphthyl acetate, potassium benzoate, potassium acetate, potassium hydrogen tartrate, One or more of potassium P-styrenesulfonate and the like can be selected and used. Above all, fine powders of potassium nitrate, potassium sulfate, potassium benzoate, and potassium sorbate have remarkable improvements in explosive velocity and gas after blasting.

【0012】前記のカリウム化合物は粉状として添加さ
れるが、粒径が大きくなると析出する微細結晶の量が減
少して、反応性を改善する効果が減少し、爆速も十分に
改善されない。従って、本発明で使用されるカリウム化
合物の粒径は150μm以下がよい。好ましくは70μ
m以下であり、より好ましくは0.5〜20μmであ
る。粒径が大きなものを使用する際は、微細化又は一部
をジメチルスルホキシドのごとき有機溶媒に溶解もしく
は分散して使用すると、爆薬粒子表面の広範囲に微細結
晶が析出し、爆速等の性能品質に好結果を与える。
The above-mentioned potassium compound is added in the form of a powder. However, when the particle size is large, the amount of fine crystals precipitated is reduced, the effect of improving the reactivity is reduced, and the explosion speed is not sufficiently improved. Therefore, the particle size of the potassium compound used in the present invention is preferably 150 μm or less. Preferably 70μ
m, more preferably 0.5 to 20 μm. When large particles are used, if they are refined or partly dissolved or dispersed in an organic solvent such as dimethylsulfoxide, fine crystals will precipitate over a wide area of the explosive particles, resulting in poor quality such as explosion velocity. Give good results.

【0013】本発明のカリウム化合物の添加量は全組成
に対して0.2〜10重量%とするとよい。この範囲で
あると、爆薬としての性能は維持しつつ、爆速や発破後
ガスの改善も十分なものとなる上、反応性が阻害されて
爆速が低下するという欠点もない。より好ましいのは
0.5〜5重量%である。本発明の爆薬組成物は、硝安
を主とする酸化剤、燃料、カリウム化合物を均一に混合
して製造される。このとき予め、硝安を主とする酸化剤
と微粉カリウム化合物を十分に混合したものを作製し、
これに燃料を加えて均一に混合して製造することもでき
る。又、硝安を主とする酸化剤に微粉カリウム化合物と
燃料とを十分に混合したものを添加して均一に混合して
製造することもできる。
The amount of the potassium compound of the present invention is preferably 0.2 to 10% by weight based on the total composition. Within this range, the performance as an explosive is maintained, the explosion velocity and the gas after blasting are sufficiently improved, and there is no disadvantage that reactivity is impaired and the explosion velocity is reduced. More preferably, it is 0.5 to 5% by weight. The explosive composition of the present invention is produced by uniformly mixing an oxidizing agent mainly composed of ammonium nitrate, a fuel, and a potassium compound. At this time, in advance, a mixture of an oxidizing agent mainly composed of ammonium nitrate and a finely divided potassium compound is prepared, and
It can also be manufactured by adding a fuel to the mixture and mixing it uniformly. It is also possible to add an oxidizing agent mainly composed of ammonium nitrate and a mixture of the finely powdered potassium compound and the fuel sufficiently, and to uniformly mix the mixture.

【0014】何れの製造においても、用いられる爆薬原
料中には0.1〜0.6重量%の水分が含まれる。この
範囲であると水分が適当であり、III相硝安を含む微
細結晶の析出が阻害されることがない。微細結晶が析出
しやすくより好ましい範囲は、0.15〜0.4重量%
である。したがって、製造後約3〜30日の期間は、前
記の水分範囲になるように保持するとよい。微細結晶が
十分に析出した後は、前記の範囲に水分を保つ必要はな
いが、爆薬組成物の結晶をより安定に保つためには、微
結晶析出後は含有水分を0.01〜0.6重量%に維持
管理するとよい。
In any of the productions, the explosive raw material used contains 0.1 to 0.6% by weight of water. Within this range, the water content is appropriate, and the precipitation of fine crystals containing phase III nitrate is not hindered. A more preferable range in which fine crystals are easily precipitated is 0.15 to 0.4% by weight.
It is. Therefore, for a period of about 3 to 30 days after production, it is preferable to keep the water content in the above-mentioned range. It is not necessary to keep the water content within the above range after the fine crystals are sufficiently precipitated. However, in order to keep the crystals of the explosive composition more stable, after the fine crystals are precipitated, the water content is preferably 0.01 to 0.1%. It is recommended to maintain the weight at 6% by weight.

【0015】本発明の爆薬組成物は爆薬としての要件を
十分に満足しているが、更に付加的に性能を向上させる
ためには必要に応じて微粉末のアルミニウムを加えるこ
とや燃料として石炭粉、ギルソナイト、タイヤ粉末、イ
オウ、、小麦粉、蔗糖、糖蜜、ブドウ糖、果糖、乳酸、
グリシン、樹脂微粒子等を加えることも可能である。
又、水中や海中等での発破作業を考慮して高分子粉末を
加えて耐水性を改善することや、耐熱性を付加するため
に、耐熱性を有するポリアクリルアミド粉末とその凝集
剤を用いることができる。更に又、帯電性や固防止のた
めに界面活性剤も使用できる。
Although the explosive composition of the present invention sufficiently satisfies the requirements as an explosive, it is possible to further improve the performance by adding fine powder of aluminum as necessary or using coal powder as a fuel. , Gilsonite, tire powder, sulfur, flour, sucrose, molasses, glucose, fructose, lactic acid,
It is also possible to add glycine, resin fine particles and the like.
In addition, in order to improve the water resistance by adding a polymer powder in consideration of blasting work in water or under the sea, etc., use heat-resistant polyacrylamide powder and its coagulant to add heat resistance. Can be. Further, a surfactant may be used for chargeability and solidification prevention.

【0016】[0016]

【実施例】次に実施例により本発明を説明する。爆薬の
嵩比重、充填比重、爆速、発破後ガスの測定、電子顕微
鏡による形態観察及び、粉末X線回析装置によるIII
相硝安の測定は下記方法によって行なった。
Next, the present invention will be described by way of examples. Measurement of bulk specific gravity, filling specific gravity, explosion velocity, gas after blasting, morphological observation by electron microscope, and powder X-ray diffractometer III
The measurement of sodium nitrate was performed by the following method.

【0017】[0017]

【嵩比重の測定】爆薬を32A鋼管(外径42.7m
m、内径35.7mm、肉厚3.5mm、長さ350m
m)の一端を密閉し、これに爆薬をタンピングせずに充
填した後、充填した爆薬の重量と容器内に占める爆薬の
体積を読み取り、爆薬の重量と体積から比重を算出し
た。
[Measurement of bulk specific gravity] Use a 32A steel pipe (outer diameter 42.7m)
m, inner diameter 35.7mm, thickness 3.5mm, length 350m
m) was sealed at one end and charged with explosives without tamping. The weight of the charged explosives and the volume of the explosives occupying the container were read, and the specific gravity was calculated from the weight and volume of the explosives.

【0018】[0018]

【充填比重の測定】爆薬を32A鋼管(外径42.7m
m、内径35.7mm、肉厚3.5mm、長さ350m
m)の一端を密閉し、これに爆薬をタンピングしながら
充填した後、充填した爆薬の重量と容器内に占める爆薬
の体積を読み取り、爆薬の重量と体積から充填比重を算
出した。
[Measurement of filling specific gravity] A 32A steel pipe (outer diameter 42.7m)
m, inner diameter 35.7mm, thickness 3.5mm, length 350m
After sealing one end of m) and filling the explosive with tamping, the weight of the charged explosive and the volume of the explosive in the container were read, and the filling specific gravity was calculated from the weight and the volume of the explosive.

【0019】[0019]

【爆速の測定】32A鋼管(外径42.7mm、内径3
5.7mm、肉厚3.5mm、長さ350mm)の一端
を密閉し、これに爆薬を充填した後、励爆薬(3号桐ダ
イナマイト30g)つきの6号雷管を管の閉塞されてい
ない方の端の中心部に挿入したのち、砂上で雷管を起爆
させ、光ファイバ−法にて爆速を測定した。
[Measurement of explosion velocity] 32A steel pipe (outer diameter 42.7mm, inner diameter 3
(5.7 mm, thickness 3.5 mm, length 350 mm) was sealed at one end and charged with an explosive, and then a No. 6 primer with an explosive (No. 3 paulownia dynamite 30 g) was used. After insertion into the center of the end, a primer was detonated on sand and the explosion velocity was measured by the optical fiber method.

【0020】[0020]

【発破後ガスの測定】円筒容器(ブリキ製、内径40m
m、長さ240mm)に、爆薬200gを充填し、該爆
薬に励爆薬(3号桐ダイナマイト30g)を装着した。
次いで、該励爆薬に6号雷管結着後、容器空隙部に水を
含む粘土を充填し爆発容器とした。更に、該爆発容器を
底部に前記の粘土を充填した円筒容器(ブリキ製)内径
100mm、長さ250mmに挿入し、容器空隙部及び
開口部を前記の粘土で覆った後に、タンク中央部で爆発
させた。爆発直後にタンクを密閉したのち、爆発1分後
のタンク内の一酸化炭素、一酸化窒素及びアンモニアを
北川式検知管を用いて測定した。
[Measurement of gas after blasting] Cylindrical container (made of tin, inner diameter 40 m
m, 240 mm in length) was filled with 200 g of explosive, and the explosive was fitted with an explosive (30 g of paulownia dynamite).
Then, after the No. 6 primer was attached to the explosive, the cavity containing the container was filled with clay containing water to obtain an explosive container. Further, the explosion container was inserted into a cylindrical container (made of tinplate) filled with the clay at the bottom at an inner diameter of 100 mm and a length of 250 mm. After covering the container gap and opening with the clay, the explosion was carried out at the center of the tank. I let it. Immediately after the explosion, the tank was sealed, and one minute after the explosion, carbon monoxide, nitrogen monoxide, and ammonia in the tank were measured using a Kitagawa detector tube.

【0021】[0021]

【電子顕微鏡による形態観察】爆薬の粒子表面と粒子断
面(割断面)にイオン蒸着装置(E−1010:日立
(株)製)にて白金を蒸着したのちに電子顕微鏡(S−
2360N:日立(株)製)にて粒子表面と粒子断面に
析出する微結晶を観察し、その結果を◎;粒子表面、粒
子内部の何れにも微結晶が析出している。○;粒子表面
に微結晶が析出している。×;微結晶が析出していない
とした。
[Morphological Observation by Electron Microscope] After platinum is vapor-deposited on the particle surface and cross-section (split cross-section) of the explosive using an ion vapor deposition device (E-1010: manufactured by Hitachi, Ltd.), an electron microscope (S-
2360N: manufactured by Hitachi, Ltd.), microcrystals precipitated on the particle surface and the particle cross section were observed, and the result was ◎; microcrystals were precipitated on both the particle surface and the inside of the particle. ;: Microcrystals precipitated on the particle surface. X: It was determined that microcrystals did not precipitate.

【0022】[0022]

【X線回折装置によるIII相硝安の測定】爆薬の粒子
を粉砕して結晶のX線回折パタ−ンを粉末X線回折装置
にて測定し、○;回折角34.2度付近に回折強度ピー
クを示すもの、×;回折角34.2度付近に回折強度ピ
ークを示さないものとした。
[Measurement of phase III ammonium nitrate by X-ray diffractometer] The powder of the explosive was pulverized, and the X-ray diffraction pattern of the crystal was measured by a powder X-ray diffractometer. A peak is indicated by x, and a diffraction intensity peak is not indicated around a diffraction angle of 34.2 degrees.

【0023】[0023]

【実施例1】含有水分0.15重量%のプリル硝安(三
菱化学製)2000gと2号軽油120gとをポリエチ
レン袋(以降はポリ袋と略称する)内で十分に手混合し
た。次いで、粒径約0.5〜70μm、含有水分0.0
3重量%の硫酸カリウム(キシダ(株)製試薬特級)2
0gを前記のポリ袋内に添加し、十分に手混合して爆薬
粒子組成物を得た。その後、常温(約20℃)にて約2
0日貯蔵後に、嵩比重、充填比重、爆速、発破後ガスの
測定、電子顕微鏡による形態観察及び粉末X線回折装置
によるIII相硝安の測定を行った。その結果を表1に
示す。
Example 1 2000 g of prill nitrate (manufactured by Mitsubishi Chemical) having a water content of 0.15% by weight and 120 g of light oil No. 2 were sufficiently mixed by hand in a polyethylene bag (hereinafter abbreviated as a poly bag). Next, a particle size of about 0.5 to 70 μm and a water content of 0.0
3% by weight potassium sulfate (special grade reagent manufactured by Kishida Co., Ltd.) 2
0 g was added into the above-mentioned plastic bag and thoroughly mixed by hand to obtain an explosive particle composition. Then, at room temperature (about 20 ° C), about 2
After storage for 0 days, measurement of bulk specific gravity, filling specific gravity, explosion velocity, gas after blasting, morphological observation with an electron microscope, and measurement of phase III nitrate with a powder X-ray diffractometer were performed. Table 1 shows the results.

【0024】[0024]

【実施例2】含有水分0.10重量%のプリル硝安(三
菱化学製)2000gと粒径約0.5〜70μm、含有
水分0.05重量%の硫酸カリウム(キシダ(株)製試
薬特級)60gとをポリ袋内で十分に手混合した。次い
で、2号軽油120gを前記のポリ袋内に添加し、十分
に手混合して爆薬粒子組成物を得た。その後、常温(約
20℃)にて約20日貯蔵後に、嵩比重、充填比重、爆
速、発破後ガスの測定、電子顕微鏡による形態観察及び
粉末X線回折装置によるIII相硝安の測定を行った。
その結果を表1に示す。
Example 2 2000 g of prill nitrate (manufactured by Mitsubishi Chemical) having a water content of 0.10% by weight, potassium sulfate having a particle size of about 0.5 to 70 μm and a water content of 0.05% by weight (special grade reagent manufactured by Kishida Co., Ltd.) 60 g was thoroughly mixed by hand in a plastic bag. Next, 120 g of No. 2 light oil was added into the above-mentioned plastic bag and thoroughly mixed by hand to obtain an explosive particle composition. Thereafter, after storage at room temperature (about 20 ° C.) for about 20 days, measurement of bulk specific gravity, filling specific gravity, explosion velocity, gas after blasting, morphological observation with an electron microscope, and measurement of phase III ammonium nitrate with a powder X-ray diffractometer were performed. .
Table 1 shows the results.

【0025】[0025]

【実施例3】含有水分0.10重量%のプリル硝安(三
菱化学製)2000gと2号軽油120gとをポリ袋内
にて十分に手混合した。次いで、粒径約5〜100μ
m、含有水分0.08重量%の硝酸カリウム(片山化学
(株)製試薬特級)40gを添加し、十分に手混合して
爆薬粒子組成物を得た。その後、常温(約20℃)にて
約20日貯蔵後に、嵩比重、充填比重、爆速、発破後ガ
スの測定、電子顕微鏡による形態観察及び粉末X線回折
装置によるIII相硝安の測定を行った。その結果を表
1に示す。
Example 3 2000 g of prill nitrate (manufactured by Mitsubishi Chemical) having a water content of 0.10% by weight and 120 g of No. 2 light oil were thoroughly mixed by hand in a plastic bag. Next, a particle size of about 5 to 100 μm
m, 40 g of potassium nitrate (reagent grade, manufactured by Katayama Chemical Co., Ltd.) having a water content of 0.08% by weight was added and thoroughly mixed by hand to obtain an explosive particle composition. Thereafter, after storage at room temperature (about 20 ° C.) for about 20 days, measurement of bulk specific gravity, filling specific gravity, explosion velocity, gas after blasting, morphological observation with an electron microscope, and measurement of phase III ammonium nitrate with a powder X-ray diffractometer were performed. . Table 1 shows the results.

【0026】[0026]

【実施例4】含有水分0.15重量%のプリル硝安(三
菱化学製)2000gと粒径約2〜80μm、含有水分
0.15重量%のソルビン酸カリウム(和光純薬製試薬
1級)60gとをポリ袋内で十分に手混合した。次い
で、前記のポリ袋内に2号軽油80gを添加し十分に手
混合して爆薬粒子組成物を得た。その後、常温(約20
℃)にて約20日貯蔵後に、嵩比重、充填比重、爆速、
発破後ガスの測定、電子顕微鏡による形態観察及びX線
回折装置によるIII相硝安の測定を行った。その結果
を表1に示す。
Example 4 2000 g of prill nitrate (manufactured by Mitsubishi Chemical) having a water content of 0.15% by weight and 60 g of potassium sorbate (reagent grade 1 made by Wako Pure Chemical Industries) having a particle size of about 2-80 μm and a water content of 0.15% by weight Was thoroughly hand-mixed in a plastic bag. Next, 80 g of No. 2 light oil was added to the above-mentioned plastic bag and mixed thoroughly by hand to obtain an explosive particle composition. Then, at room temperature (about 20
℃) for about 20 days, then the bulk specific gravity, the filling specific gravity, the explosion velocity,
After blasting, gas measurement, morphological observation with an electron microscope, and measurement of phase III ammonium nitrate with an X-ray diffractometer were performed. Table 1 shows the results.

【0027】[0027]

【実施例5】含有水分0.10重量%のプリル硝安(三
菱化学製)2000gと粒径約2〜80μm、含有水分
0.03重量%のソルビン酸カリウム(和光純薬製試薬
1級)40gとをポリ袋内で十分に手混合した。次い
で、前記のポリ袋内に2号軽油92gを添加し十分に手
混合して爆薬粒子組成物を得た。その後、常温(約20
℃)にて約20日貯蔵後に、嵩比重、充填比重、爆速、
発破後ガスの測定、電子顕微鏡による形態観察及び粉末
X線回折装置によるIII相硝安の測定を行った。その
結果を表1に示す。
Example 5 2000 g of prill nitrate (Mitsubishi Chemical) containing 0.10% by weight of water and 40 g of potassium sorbate (Wako Pure Chemical Reagent 1 grade) having a particle size of about 2 to 80 μm and a water content of 0.03% by weight Was thoroughly hand-mixed in a plastic bag. Next, 92 g of No. 2 light oil was added to the above-mentioned plastic bag and mixed thoroughly by hand to obtain an explosive particle composition. Then, at room temperature (about 20
℃) for about 20 days, then the bulk specific gravity, the filling specific gravity, the explosion velocity,
Measurement of gas after blasting, morphological observation with an electron microscope, and measurement of phase III ammonium nitrate with a powder X-ray diffractometer were performed. Table 1 shows the results.

【0028】[0028]

【実施例6】含有水分0.10重量%のプリル硝安(三
菱化学製)2000gと粒径約2〜80μm、含有水分
0.05重量%の安息香酸カリウム(和光純薬製試薬1
級)40gとをポリ袋内で十分に手混合した。次いで、
前記のポリ袋内に2号軽油100gを添加し十分に手混
合して爆薬粒子組成物を得た。その後、常温(約20
℃)にて約20日貯蔵後に、嵩比重、充填比重、爆速、
発破後ガスの測定、電子顕微鏡による形態観察及び粉末
X線回折装置によるIII相硝安の測定を行った。その
結果を表1に示す。
Example 6 2000 g of prill nitrate (manufactured by Mitsubishi Chemical) having a water content of 0.10% by weight, potassium benzoate having a particle size of about 2 to 80 μm and a water content of 0.05% by weight (reagent 1 manufactured by Wako Pure Chemical Industries, Ltd.)
Grade) and 40 g were sufficiently mixed by hand in a plastic bag. Then
100 g of No. 2 light oil was added to the above-mentioned plastic bag and mixed thoroughly by hand to obtain an explosive particle composition. Then, at room temperature (about 20
℃) for about 20 days, then the bulk specific gravity, the filling specific gravity, the explosion velocity,
Measurement of gas after blasting, morphological observation with an electron microscope, and measurement of phase III ammonium nitrate with a powder X-ray diffractometer were performed. Table 1 shows the results.

【0029】[0029]

【実施例7】含有水分0.2重量%のANFO爆薬〔硝
安油剤爆薬:旭化成工業製〕2000gと粒径約0.5
〜70μm、含有水分0.03重量%の硫酸カリウム
(キシダ(株)製試薬特級)60gとをポリ袋内で十分
に手混合して爆薬組成物を得た。その後、常温(約20
℃)にて約20日貯蔵後に、嵩比重、充填比重、爆速、
発破後ガスの測定、電子顕微鏡による形態観察及び粉末
X線回折装置によるIII相硝安の測定を行った。その
結果を表1に示す。
Example 7 An ANFO explosive with a water content of 0.2% by weight [An explosive nitrate: Explosives manufactured by Asahi Kasei Kogyo] 2000 g with a particle size of about 0.5
An explosive composition was obtained by sufficiently hand-mixing 60 g of potassium sulfate (special grade of reagent manufactured by Kishida Co., Ltd.) with a water content of 0.03% by weight in a plastic bag. Then, at room temperature (about 20
℃) for about 20 days, then the bulk specific gravity, the filling specific gravity, the explosion velocity,
Measurement of gas after blasting, morphological observation with an electron microscope, and measurement of phase III ammonium nitrate with a powder X-ray diffractometer were performed. Table 1 shows the results.

【0030】[0030]

【実施例8】含有水分0.2重量%の粒径約0.1〜
0.4mmの破砕プリル硝安(住友化学製プリル硝安の
破砕品)2000gと粒径約0.5〜70μm、含有水
分0.05量%の硫酸カリウム(キシダ(株)製試薬特
級)40gとをポリ袋内で十分に手混合した。次いで、
2号軽油120gを前記のポリ袋内に添加し十分に手混
合して爆薬粒子組成物を得た。その後、常温(約20
℃)にて約20日貯蔵後に、嵩比重、充填比重、爆速、
発破後ガスの測定、電子顕微鏡による形態観察及び粉末
X線回折装置によるIII相硝安の測定を行った。その
結果を表1に示す。
Embodiment 8 Particle size of about 0.1 to about 0.2% by weight of water content
2000 g of 0.4 mm crushed prill nitrate (crushed product of Sumitomo Chemical's prill nitrate) and 40 g of potassium sulfate (special grade reagent manufactured by Kishida Co., Ltd.) having a particle size of about 0.5 to 70 μm and a water content of 0.05% by weight. Mix well by hand in a plastic bag. Then
120 g of No. 2 light oil was added into the above-mentioned plastic bag and mixed thoroughly by hand to obtain an explosive particle composition. Then, at room temperature (about 20
℃) for about 20 days, then the bulk specific gravity, the filling specific gravity, the explosion velocity,
Measurement of gas after blasting, morphological observation with an electron microscope, and measurement of phase III ammonium nitrate with a powder X-ray diffractometer were performed. Table 1 shows the results.

【0031】[0031]

【比較例1】含有水分0.15重量%のプリル硝安(三
菱化学製)1880gと2号軽油120gとをポリ袋内
で十分に手混合して爆薬組成物を得た。その後、常温
(約20℃)にて約20日貯蔵後に、嵩比重、充填比
重、爆速、発破後ガスの測定、電子顕微鏡による形態観
察及び粉末X線回折装置によるIII相硝安の測定を行
った。その結果を表1に示す。
Comparative Example 1 1880 g of prill nitrate (manufactured by Mitsubishi Chemical) having a water content of 0.15% by weight and 120 g of No. 2 light oil were sufficiently mixed by hand in a plastic bag to obtain an explosive composition. Thereafter, after storage at room temperature (about 20 ° C.) for about 20 days, measurement of bulk specific gravity, filling specific gravity, explosion velocity, gas after blasting, morphological observation with an electron microscope, and measurement of phase III ammonium nitrate with a powder X-ray diffractometer were performed. . Table 1 shows the results.

【0032】[0032]

【比較例2】粒径約0.1〜0.4mm、含有水分0.
25重量%の破砕プリル硝安(住友化学製プリル硝安の
破砕品)1880gと2号軽油とをポリ袋内で十分に手
混合して爆薬組成物を得た。その後、常温(約20℃)
にて約20日貯蔵後に、嵩比重、充填比重、爆速、発破
後ガスの測定、電子顕微鏡による形態観察及び粉末X線
回折装置によるIII相硝安の測定を行った。その結果
を表1に示す。
Comparative Example 2 Particle size: about 0.1 to 0.4 mm, water content: 0.1
An explosive composition was obtained by sufficiently hand-mixing 1880 g of 25 wt% crushed prill nitrate (crushed product of Sumitomo Chemical's prill nitrate) and No. 2 light oil in a plastic bag. Then, at room temperature (about 20 ° C)
After storage for about 20 days, measurement of bulk specific gravity, filling specific gravity, explosion velocity, gas after blasting, morphological observation with an electron microscope, and measurement of phase III nitrate with a powder X-ray diffractometer were performed. Table 1 shows the results.

【0033】[0033]

【比較例3】含有水分0.15重量%のプリル硝安(三
菱化学製)1740gと5〜100μm、含有水分0.
08重量%の硝酸カリウム(片山化学(株)製試薬特
級)140gとの混合物を約160℃にて加熱し溶融混
合物を作製して放冷した。次いで、0.8〜1.4μm
に粉砕した前記の溶融混合物と軽油120gを十分に手
混合して爆薬組成物を得た。その後、常温(約20℃)
にて約20日貯蔵後に、嵩比重、充填比重、爆速、発破
後ガスの測定、電子顕微鏡による形態観察及び粉末X線
回折装置によるIII相硝安の測定を行った。その結果
を表1に示す。
Comparative Example 3 1740 g of prill nitrate (manufactured by Mitsubishi Chemical) having a water content of 0.15% by weight, 5 to 100 μm, and a water content of 0.15% by weight.
A mixture of 140 g of 08% by weight of potassium nitrate (Katayama Chemical Co., Ltd. reagent, 140 g) was heated at about 160 ° C. to prepare a molten mixture, which was allowed to cool. Next, 0.8 to 1.4 μm
The above-mentioned melted mixture and 120 g of light oil were sufficiently mixed by hand to obtain an explosive composition. Then, at room temperature (about 20 ° C)
After storage for about 20 days, measurement of bulk specific gravity, filling specific gravity, explosion velocity, gas after blasting, morphological observation with an electron microscope, and measurement of phase III nitrate with a powder X-ray diffractometer were performed. Table 1 shows the results.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】本発明の爆薬粒子組成物及びその製造方
法は、爆薬粒子の表面構造を変えることによって、従来
の硝安油剤爆薬の欠点であった威力や発破後ガス等の消
費上の問題を改善して、トンネル発破への使用も可能に
した。
The explosive particle composition and the method for producing the same according to the present invention, by changing the surface structure of the explosive particles, can solve the drawbacks of conventional explosives such as nitrous acid oil explosives in terms of power and consumption of gas after blasting. Improvements have also been made possible for use in tunnel blasting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の爆薬組成物の粒子表面の電子顕微鏡写
FIG. 1 is an electron micrograph of the particle surface of the explosive composition of the present invention.

【図2】本発明の爆薬組成物の粒子断面の電子顕微鏡写
FIG. 2 is an electron micrograph of a particle cross section of the explosive composition of the present invention.

【図3】従来技術の爆薬組成物の粒子表面の電子顕微鏡
写真
FIG. 3 is an electron micrograph of a particle surface of a conventional explosive composition.

【図4】従来技術の爆薬組成物の粒子断面の電子顕微鏡
写真
FIG. 4 is an electron micrograph of a particle cross section of a prior art explosive composition.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年10月7日[Submission date] October 7, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】 FIG. 4

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】硝安を主とする酸化剤、燃料及びカリウム
化合物とを含有し、粒子の表面にIII相硝安を含む微
細結晶を含有する爆薬組成物。
1. An explosive composition containing an oxidizing agent mainly composed of ammonium nitrate, a fuel and a potassium compound, and containing fine crystals containing phase III ammonium nitrate on the surface of particles.
【請求項2】微細結晶が針状又は樹枝状結晶である請求
項1の爆薬組成物。
2. The explosive composition according to claim 1, wherein the fine crystals are acicular or dendritic crystals.
【請求項3】針状又は樹枝状結晶の長手方向の長さが1
〜200μmである請求項2の爆薬組成物。
3. A needle-like or dendritic crystal having a longitudinal length of 1
The explosive composition according to claim 2, which has a size of ~ 200 µm.
【請求項4】硝安を主とする酸化剤と燃料とを混合した
後にカリウム化合物を添加混合する請求項1の爆薬組成
物の製造方法。
4. The method for producing an explosive composition according to claim 1, wherein a potassium compound is added and mixed after mixing an oxidizing agent mainly composed of ammonium nitrate and a fuel.
【請求項5】燃料とカリウム化合物との混合物を硝安を
主とする酸化剤に添加混合する爆薬組成物の製造方法。
5. A method for producing an explosive composition wherein a mixture of a fuel and a potassium compound is added to and mixed with an oxidizing agent mainly composed of ammonium nitrate.
【請求項6】酸化剤がポ−ラス粒状硝安、破砕ポ−ラス
硝安、粉状硝安の1種又は2種以上から選ばれる請求項
4または5の爆薬組成物の製造方法。
6. The method for producing an explosive composition according to claim 4, wherein the oxidizing agent is selected from one or more of porous granular ammonium nitrate, crushed porous ammonium nitrate, and powdery ammonium nitrate .
【請求項7】カリウム化合物が粒径0.5〜150μmの
粉状である請求項4または5の爆薬組成物の製造方法。
7. The method for producing an explosive composition according to claim 4, wherein the potassium compound is in the form of powder having a particle size of 0.5 to 150 μm.
【請求項8】カリウム化合物が硫酸カリウム、硝酸カリ
ウム、ソルビン酸カリウム、安息香酸カリウム、酢酸カ
リウムの1種又は2種以上から選ばれる請求項4または
5の爆薬組成物の製造方法。
8. The method according to claim 4, wherein the potassium compound is selected from one or more of potassium sulfate, potassium nitrate, potassium sorbate, potassium benzoate, and potassium acetate.
【請求項9】燃料が液状物質である請求項4または5の
爆薬組成物の製造方法。
9. The method for producing an explosive composition according to claim 4, wherein the fuel is a liquid substance.
JP26091696A 1996-10-01 1996-10-01 Explosive composition and its production Pending JPH10101467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26091696A JPH10101467A (en) 1996-10-01 1996-10-01 Explosive composition and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26091696A JPH10101467A (en) 1996-10-01 1996-10-01 Explosive composition and its production

Publications (1)

Publication Number Publication Date
JPH10101467A true JPH10101467A (en) 1998-04-21

Family

ID=17354543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26091696A Pending JPH10101467A (en) 1996-10-01 1996-10-01 Explosive composition and its production

Country Status (1)

Country Link
JP (1) JPH10101467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076832A (en) * 2004-09-09 2006-03-23 Nof Corp Combustion accelerator for ammonium nitrate, explosive composition using the same and gas producing agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076832A (en) * 2004-09-09 2006-03-23 Nof Corp Combustion accelerator for ammonium nitrate, explosive composition using the same and gas producing agent

Similar Documents

Publication Publication Date Title
CA1087396A (en) Aqueous blasting composition
US5007973A (en) Multicomponent explosives
CN107001170A (en) Explosive composite and carrying method
US4600452A (en) Eutectic microknit composite explosives and processes for making same
US4439254A (en) Solid sensitizers in water gel explosives and method
US4600450A (en) Microknit composite explosives and processes for making same
NZ202647A (en) Melt explosive composition containing napthalene sulfonate derivatives
JPH05208885A (en) Slurry explosive composition
JPH10101467A (en) Explosive composition and its production
US3496040A (en) Aqueous ammonium nitrate slurry explosive compositions containing hexamethylenetetramine
JPH10226591A (en) Production of explosive composition
US4096003A (en) Aluminum, amine nitrate sensitized gel explosive compositions
JP3043672B2 (en) Explosive medicine package for nitrate oil
CN1089080C (en) Enhanced performance blasting agent
US3524777A (en) Slurry explosive containing an improved thickening agent
US11230509B2 (en) Method for manufacturing energetic material composites
RU2134782C1 (en) Drilling-and-blasting charge
JP3599506B2 (en) Explosive composition
US3630250A (en) Ammonium nitrate explosive composition
US3664897A (en) Slurry explosive comprising ammonium nitrate and aluminum powder
US3737350A (en) Preparing explosive composition having precipitated salt mix
JP3342711B2 (en) Explosive composition
JP2598319B2 (en) Granular explosive composition
US3431154A (en) Aqueous slurry explosive composition containing a chlorinated organic compound as sensitizer
CA2095260C (en) Low density watergel explosive composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424