JPH1010095A - Method of improving ultrasonic flaw detection inspectablity of welded metal - Google Patents

Method of improving ultrasonic flaw detection inspectablity of welded metal

Info

Publication number
JPH1010095A
JPH1010095A JP8178664A JP17866496A JPH1010095A JP H1010095 A JPH1010095 A JP H1010095A JP 8178664 A JP8178664 A JP 8178664A JP 17866496 A JP17866496 A JP 17866496A JP H1010095 A JPH1010095 A JP H1010095A
Authority
JP
Japan
Prior art keywords
welding
roller
layer
flaw detection
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8178664A
Other languages
Japanese (ja)
Inventor
Seiichi Kawaguchi
聖一 川口
Takahiro Ota
高裕 太田
Hiroshi Furuyasu
博司 古保
Nobuyoshi Iriki
信好 入木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8178664A priority Critical patent/JPH1010095A/en
Publication of JPH1010095A publication Critical patent/JPH1010095A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the ultrasonic flaw detection inspectbility to a base material by roller-pressurizing a welded part every layer welding in the multilayer welding of a stainless steel, and heating and holding it at a specified temperature for a specified time after the welding of all the layers is terminated. SOLUTION: The groove 7 of a stainless steel pipe 6 is roller-pressurized with a welding metal 5 in the part about 20-30mm back of a fusing pool 1 every TIG welding of each layer by use of a welding wire 8 to impart a plastic distortion. The pressurization is performed by a hydraulic jack. The magnitude of pressurizing force may be set within a range of about 5t to about 30t in a thickness of 15mm. The roller pressurization may be carried out after the first layer to the final layer are continuously welded. After the welding of all the layers, a solution heat treatment of holding it at a temperature from 800 deg.C to 1250 deg.C for 1-30 minutes to recrystallize the fused metal is performed to refine the crystal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は発電プラント等にお
けるステンレス鋼板及び鋼管の溶接部に適用される超音
波探傷検査性(UT性)の改善方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for improving ultrasonic flaw detection (UT performance) applied to a welded portion between a stainless steel plate and a steel pipe in a power plant or the like.

【0002】[0002]

【従来の技術】従来のSUS304やSUS316等の
ステンレス鋼の溶接金属は、図11にその金属組織の顕
微鏡写真を示すように柱状晶が生じるため超音波探傷検
査性(UT性)が悪いという問題があった。また、多層
溶接の際に各層溶接ごとにその溶接金属をピーニング処
理しても塑性歪が小さいため、次の層を溶接すると消滅
してしまい、組織に変化がみられず柱状晶をなくすこと
は困難であった。
2. Description of the Related Art Conventional stainless steel welding metals such as SUS304 and SUS316 have the problem that ultrasonic inspection (UT performance) is poor because columnar crystals are formed as shown in a micrograph of the metal structure in FIG. was there. Also, even when peening the weld metal for each layer weld during multi-layer welding, the plastic strain is small, so it disappears when the next layer is welded, and there is no change in the structure, eliminating columnar crystals. It was difficult.

【0003】[0003]

【発明が解決しようとする課題】通常、ステンレス鋼の
溶接金属では柱状晶が底面から上方へ成長する。溶接を
多層溶接としてもエピタキシー成長により柱状晶が成長
する。そのため、超音波探傷検査の際に超音波が柱状晶
で屈折し、ノイズを生じたり透過性を損なうなどの問題
がある。また、柱状晶は母材の結晶に比べて大きく、そ
のため溶接欠陥等があっても、柱状晶に起因するノイズ
発生や透過性の低下によりUT性が損なわれるため検出
できない場合がある。
Generally, in a weld metal of stainless steel, columnar crystals grow upward from the bottom surface. The columnar crystal grows by epitaxy even if the welding is multi-layer welding. Therefore, there is a problem that ultrasonic waves are refracted by columnar crystals at the time of ultrasonic inspection, thereby causing noise and impairing transmittance. In addition, the columnar crystal is larger than the crystal of the base material, so that even if there is a welding defect or the like, the UT property is impaired due to the generation of noise or a decrease in transmittance due to the columnar crystal, and thus, it may not be detected.

【0004】本発明は上記技術水準に鑑み、ステンレス
鋼の溶接における溶接金属の柱状晶を消失させ、かつ、
結晶を微細化させ、それによって母材と同等にUT性を
向上させる方法を提供しようとするものである。
[0004] In view of the above-mentioned state of the art, the present invention eliminates columnar crystals of a weld metal in stainless steel welding, and
An object of the present invention is to provide a method for refining a crystal and thereby improving the UT property as well as the base material.

【0005】[0005]

【課題を解決するための手段】本発明は(1)ステンレ
ス鋼を多層溶接する際に、各層溶接ごとに溶接部をロー
ラ加圧して塑性歪みを加え、全層溶接終了後に800〜
1250℃に1〜30分加熱する溶体化処理を施し、結
晶を微細化させることを特徴とする溶接金属の超音波探
傷検査性改善方法及び(2)ステンレス鋼を多層溶接す
る際に、全層溶接後に溶接部をローラ加圧して塑性歪み
を加え、更に800〜1250℃に1〜30分加熱する
溶体化処理を施し、結晶を微細化させることを特徴とす
る溶接金属の超音波探傷検査性改善方法である。
According to the present invention, there is provided (1) a multi-layer welding of stainless steel, in which a plastic strain is applied by applying a roller pressure to a welding portion for each layer welding, and 800 to 800 mm after completion of all-layer welding.
A method for improving the ultrasonic flaw detection of weld metal, which comprises subjecting to a solution treatment of heating to 1250 ° C. for 1 to 30 minutes to refine the crystal, and (2) all layers in stainless steel multi-layer welding Ultrasonic flaw detection of weld metal characterized by applying a plastic strain by applying a roller pressure to the weld after welding, further subjecting the weld to a solution treatment of heating at 800 to 1250 ° C. for 1 to 30 minutes to refine the crystal. It is an improvement method.

【0006】[0006]

【発明の実施の形態】図1に本発明の方法の施工手順を
示す。図1(a)は本発明の実施態様を示す一部欠載正
面図、図1(b)はその側面図、図1(c)は施工方式
の例を示す説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a construction procedure of the method of the present invention. 1A is a partially cutaway front view showing an embodiment of the present invention, FIG. 1B is a side view thereof, and FIG. 1C is an explanatory view showing an example of a construction method.

【0007】例えばステンレス鋼(SUS316)製の
板又は鋼管6の開先7内を溶接ワイヤ(SUS316
L、Y316L)8を用いて各層ティグ溶接ごとに、好
ましくは溶融プール1の後方、約20〜30mmの部分
の溶接金属5をローラ加圧し、塑性歪を与える。ローラ
2は先端半径約20〜25mmRで、加圧は油圧ジャッ
キ3等で行う。ローラ2と油圧ジャッキ3との間にロー
ドセル4を挿入し、加圧力を設定する。加圧力の大きさ
は板又は管の厚さによっても異なるが、厚さが15mm
の場合、次層の溶接で溶融しない範囲まで塑性歪を与え
ることができる5トン程度から、溶接部厚み全体に塑性
歪を与えることができる30トン程度までの範囲で実施
すればよい。また、溶融プール1の後方、約20〜30
mmの部分で加圧するのが好ましいのは、溶融プールの
後方約20〜30mmの、溶接金属が約300℃の部分
では降伏応力が室温の場合より小さいので塑性歪を与え
やすいためである。
For example, a welding wire (SUS316) is formed in a groove 7 of a plate or a steel pipe 6 made of stainless steel (SUS316).
(L, Y316L) 8 is applied to each layer TIG welding, preferably by applying roller pressure to the weld metal 5 at a portion of about 20 to 30 mm behind the molten pool 1 to apply plastic strain. The roller 2 has a tip radius of about 20 to 25 mmR, and is pressurized by a hydraulic jack 3 or the like. The load cell 4 is inserted between the roller 2 and the hydraulic jack 3 to set a pressing force. The magnitude of the pressing force varies depending on the thickness of the plate or tube, but the thickness is 15 mm.
In the case of (1), the process may be performed in a range from about 5 tons that can apply plastic strain to a range where the next layer is not melted by welding, to about 30 tons that can apply plastic strain to the entire thickness of the welded portion. Also, behind the molten pool 1, about 20-30
The reason why the pressure is preferably applied in the area of mm is that the yield stress is smaller in the area where the weld metal is about 300 ° C. than about 20 to 30 mm behind the molten pool at about 300 ° C., so that plastic strain is easily applied.

【0008】ローラ加圧の施工方法としては、図1
(c)にその例を示すように各層溶接ごとに施工する方
法及び一層目から最終層まで順次連続して溶接した後、
施工する方法がある。どちらの方法を採っても効果に大
差はないが、各層ごとにローラ加圧を行うことなく全層
溶接後にローラ加圧を行う場合には加圧操作は1回でよ
いが比較的大きな加圧力を必要とし、装置も大型とな
る。これに対し、各層溶接ごとにローラ加圧する場合に
は、加圧力は小さくて済むので装置は小型化でき、作業
性もよい。
FIG. 1 shows a method of applying roller pressure.
(C) As shown in the example, after the method of applying for each layer welding and successively successive welding from the first layer to the final layer,
There is a method of construction. There is no significant difference in the effect of either method, but when applying the roller pressure after welding all layers without applying the roller pressure for each layer, only one pressing operation is required, but a relatively large pressing force Is required, and the size of the apparatus becomes large. On the other hand, when the roller is pressed for each layer welding, the pressing force can be small, so that the apparatus can be downsized and the workability is good.

【0009】一層溶接ごとにローラ加圧を行う方法又は
全層溶接後にローラ加圧を行う方法により全層溶接後、
再結晶温度(再結晶が始まる最低温度の800℃から粗
粒を生じ始める1250℃までの温度)で1〜30分間
保持し、溶接金属を再結晶させる溶体化処理を施し、結
晶を微細化させる。保持時間は1分以上で効果がある
が、あまり長時間になると粗粒化しやすいので30分ま
でとするのが望ましい。最適保持時間は板又は管の厚み
に応じて定めればよい。
[0009] After all layers are welded by a method in which rollers are pressed for each layer or a method in which rollers are pressed after all layers are welded,
The solution is held at a recrystallization temperature (a temperature from the lowest temperature at which recrystallization starts of 800 ° C. to a temperature at which coarse particles start to form at 1250 ° C.) for 1 to 30 minutes, and is subjected to a solution treatment for recrystallizing the weld metal to refine the crystal. . A holding time of 1 minute or more is effective, but if the time is too long, the particles are easily coarsened. The optimal holding time may be determined according to the thickness of the plate or tube.

【0010】[0010]

【実施例】以下実施例により本発明の効果を具体的に説
明する。 (実施例、比較例)図1の手順に従い鋼板(SUS31
6)の溶接試験を行った。溶接条件を表1に示す。
EXAMPLES The effects of the present invention will be specifically described below with reference to examples. (Examples and Comparative Examples) In accordance with the procedure of FIG.
6) The welding test was performed. Table 1 shows the welding conditions.

【0011】[0011]

【表1】 [Table 1]

【0012】表1の条件で溶接試験を行った試料につい
て、その溶接金属の金属組織の顕微鏡写真を図7、図
8、図9及び図10に、硬さ試験を行った結果を図3〜
図6に示す。また、比較のため各層溶接ごとにピーニン
グ処理(装置:チッピングハンマー、ピーニング回数:
1500回/分で4分間、チッピングハンマーの先端
径:1.5R)を行い、ローラ加圧及び溶体化処理は行
っていない試料(従来技術による試料)についての溶接
金属の金属組織の顕微鏡写真及び硬さ試験結果をそれぞ
れ図11と図2に示す。
Micrographs of the metal structures of the weld metals of the samples subjected to the welding test under the conditions shown in Table 1 are shown in FIGS. 7, 8, 9 and 10, and the results of the hardness test are shown in FIGS.
As shown in FIG. Also, for comparison, peening treatment for each layer welding (apparatus: chipping hammer, number of peening:
A micrograph of the metal structure of the weld metal of a sample (sample according to the prior art) in which tipping hammer tip diameter: 1.5R) was performed at 1500 times / minute for 4 minutes and roller pressing and solution treatment were not performed, and The results of the hardness test are shown in FIGS. 11 and 2, respectively.

【0013】図2〜図11から次のことがいえる。 (1)図11の従来のピーニングのままの試料では、柱
状組織が完全に残存していることがわかる。 (2)図7及び図8はローラ加圧のみ行ったもの(溶体
化処理0分)とローラ加圧後に1100℃で10分間溶
体化処理を行った試料の溶接金属の金属組織顕微鏡写真
を示す。ローラ加圧のみの試料では、従来のピーニング
を行っただけの試料に比較してわずかに柱状晶が減少し
ていることがわかる。更にローラ加圧及びその後の溶体
化処理によって柱状晶が消え、母材と同じ微細組織が得
られていることがわかる。
The following can be said from FIGS. (1) It can be seen that the columnar structure completely remains in the conventional peened sample of FIG. (2) FIGS. 7 and 8 show metallographic micrographs of the weld metal of the sample subjected to only the roller pressing (solution treatment 0 minutes) and the sample subjected to the solution treatment at 1100 ° C. for 10 minutes after the roller pressing. . It can be seen that the columnar crystals are slightly reduced in the sample subjected to the roller pressing only compared to the sample subjected to the conventional peening. Further, it can be seen that the columnar crystals disappeared by the roller pressing and the subsequent solution treatment, and the same fine structure as that of the base material was obtained.

【0014】(3)図2は従来のピーニングを行っただ
けの試料の硬さ分布を示し、溶接金属の硬さは200〜
270Hvであるが、図3に示すローラ加圧を行った試
料では230〜270Hvに硬化できている。なお、硬
さは大きいほど歪が大きく、後の熱処理により再結晶し
やすくなる。
(3) FIG. 2 shows the hardness distribution of a sample which has just been subjected to conventional peening.
Although it is 270 Hv, in the sample subjected to the roller pressing shown in FIG. Note that the greater the hardness, the greater the strain, and the easier it is to recrystallize by a subsequent heat treatment.

【0015】(4)図4、5及び6はローラ加圧後それ
ぞれ1100℃で1分、5分及び10分の溶体化処理を
行った試料の硬さ分布を示す図であり、硬さは初期レベ
ルにでき、問題はない。すなわち、熱処理後は硬いと伸
びなどが低くなるので硬さは低い方がよいが、溶体化処
理により結晶が微細化して硬さは母材に近いレベルにな
り超音波が通りやすくなりUT性が改善される。
(4) FIGS. 4, 5 and 6 show hardness distributions of the samples which were subjected to a solution treatment at 1100 ° C. for 1 minute, 5 minutes and 10 minutes after the roller pressing, respectively. Can be at initial level, no problem. In other words, it is better to have a low hardness because the elongation and the like will be low if it is hard after heat treatment. Be improved.

【0016】(5)図9及び図10はローラ加圧後それ
ぞれ1100℃で1分及び5分の溶体化処理を行った試
料の溶接金属の金属組織の顕微鏡写真であり、いずれも
再結晶化され微細組織が得られていることがわかる。
(5) FIGS. 9 and 10 are micrographs of the metallographic structure of the weld metal of the sample which was subjected to a solution treatment at 1100 ° C. for 1 minute and 5 minutes after pressing the roller, respectively. It can be seen that a fine structure was obtained.

【0017】[0017]

【発明の効果】本発明の方法によれば、溶接金属の柱状
晶が消失し、母材と同等レベルの微細な組織に再結晶化
することができる。それによって、従来の鋼板及び鋼管
の溶接金属部で悪化していたUT性を母材なみに改善す
ることができる。
According to the method of the present invention, the columnar crystal of the weld metal disappears, and it can be recrystallized to a fine structure equivalent to the base metal. Thereby, the UT property, which has been deteriorated in the conventional welded metal portion of the steel plate and the steel pipe, can be improved like a base material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施態様を示す施工手順の説明図。FIG. 1 is an explanatory view of a construction procedure showing an embodiment of the present invention.

【図2】従来のピーニングのみの試料の硬さ分布を示す
図。
FIG. 2 is a diagram showing a hardness distribution of a conventional peening-only sample.

【図3】ローラ加圧後の溶体化処理0分の試料の硬さ分
布を示す図。
FIG. 3 is a diagram showing a hardness distribution of a sample which is subjected to a solution treatment 0 minutes after roller pressing.

【図4】ローラ加圧後の溶体化処理1分の試料の硬さ分
布を示す図。
FIG. 4 is a diagram showing a hardness distribution of a sample for one minute of solution treatment after roller pressing.

【図5】ローラ加圧後の溶体化処理5分の試料の硬さ分
布を示す図。
FIG. 5 is a diagram showing a hardness distribution of a sample for a solution treatment 5 minutes after roller pressing.

【図6】ローラ加圧後の溶体化処理10分の試料の硬さ
分布を示す図。
FIG. 6 is a diagram showing a hardness distribution of a sample for a solution treatment 10 minutes after roller pressing.

【図7】ローラ加圧後の溶体化処理0分の試料の金属組
織の顕微鏡写真を示す図。
FIG. 7 is a diagram showing a micrograph of a metal structure of a sample of a solution treatment 0 minute after roller pressing.

【図8】ローラ加圧後の溶体化処理10分の試料の金属
組織の顕微鏡写真を示す図。
FIG. 8 is a diagram showing a micrograph of a metal structure of a sample for a solution treatment 10 minutes after roller pressing.

【図9】ローラ加圧後の溶体化処理1分の試料の金属組
織の顕微鏡写真を示す図。
FIG. 9 is a diagram showing a micrograph of a metal structure of a sample for one minute of solution treatment after roller pressing.

【図10】ローラ加圧後の溶体化処理5分の試料の金属
組織の顕微鏡写真を示す図。
FIG. 10 is a diagram showing a micrograph of a metal structure of a sample of a solution treatment 5 minutes after roller pressing.

【図11】従来のピーニングのみの試料の金属組織の顕
微鏡写真を示す図。
FIG. 11 is a diagram showing a micrograph of a metal structure of a conventional peening-only sample.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C21D 8/00 9270−4K C21D 8/00 E (72)発明者 入木 信好 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C21D 8/00 9270-4K C21D 8/00 E (72) Inventor Noriyoshi Iriki Kobe City, Hyogo Prefecture 1-1-1 Wadazakicho, Hyogo-ku Mitsubishi Heavy Industries, Ltd. Kobe Shipyard

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ステンレス鋼を多層溶接する際に、各層
溶接ごとに溶接部をローラ加圧して塑性歪みを加え、全
層溶接終了後に800〜1250℃に1〜30分加熱す
る溶体化処理を施し、結晶を微細化させることを特徴と
する溶接金属の超音波探傷検査性改善方法。
1. When performing multi-layer welding of stainless steel, a solution treatment is performed in which a weld is roller-pressed for each layer welding to apply plastic strain, and after completion of all-layer welding, heating is performed at 800 to 1250 ° C. for 1 to 30 minutes. A method for improving the flaw detection of ultrasonic flaw detection of a weld metal, comprising:
【請求項2】 ステンレス鋼を多層溶接する際に、全層
溶接後に溶接部をローラ加圧して塑性歪みを加え、更に
800〜1250℃に1〜30分加熱する溶体化処理を
施し、結晶を微細化させることを特徴とする溶接金属の
超音波探傷検査性改善方法。
2. When performing multi-layer welding of stainless steel, after welding all layers, the weld is roller-pressed to apply plastic strain, and further subjected to a solution treatment of heating to 800 to 1250 ° C. for 1 to 30 minutes. A method for improving ultrasonic flaw detection of weld metal, which is characterized by miniaturization.
JP8178664A 1996-06-20 1996-06-20 Method of improving ultrasonic flaw detection inspectablity of welded metal Withdrawn JPH1010095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8178664A JPH1010095A (en) 1996-06-20 1996-06-20 Method of improving ultrasonic flaw detection inspectablity of welded metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8178664A JPH1010095A (en) 1996-06-20 1996-06-20 Method of improving ultrasonic flaw detection inspectablity of welded metal

Publications (1)

Publication Number Publication Date
JPH1010095A true JPH1010095A (en) 1998-01-16

Family

ID=16052418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8178664A Withdrawn JPH1010095A (en) 1996-06-20 1996-06-20 Method of improving ultrasonic flaw detection inspectablity of welded metal

Country Status (1)

Country Link
JP (1) JPH1010095A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090091A (en) * 2002-09-03 2004-03-25 General Electric Co <Ge> Method for welding to material sensitive to stress
JP5579316B1 (en) * 2013-09-30 2014-08-27 大陽日酸株式会社 Welding method and welded structure
CN111347148A (en) * 2020-01-15 2020-06-30 吉林大学 Ultrasonic auxiliary welding device and method for ferritic stainless steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090091A (en) * 2002-09-03 2004-03-25 General Electric Co <Ge> Method for welding to material sensitive to stress
JP5579316B1 (en) * 2013-09-30 2014-08-27 大陽日酸株式会社 Welding method and welded structure
JP2015066586A (en) * 2013-09-30 2015-04-13 大陽日酸株式会社 Welding construction method and welding structure
CN111347148A (en) * 2020-01-15 2020-06-30 吉林大学 Ultrasonic auxiliary welding device and method for ferritic stainless steel

Similar Documents

Publication Publication Date Title
AU2005322594B2 (en) Clad alloy substrates and method for making same
Çam et al. Diffusion bonding of investment cast γ-TiAl
Dhinakaran et al. A review on the categorization of the welding process of pure titanium and its characterization
CN1013084B (en) Method of welding inside groove machined in solid steel part, and utilization of the method for repairing cracked rotor
JP6050912B1 (en) How to prevent cracks in drawn products of high-strength steel sheets
JPH0772530B2 (en) Water turbine runner manufacturing method
JPH1010095A (en) Method of improving ultrasonic flaw detection inspectablity of welded metal
WO2004046397A1 (en) Method of increasing strength of cold worked part by ultrasonic shock treatment, and metal product with high fracture toughness and fatigue strength
CN115401156A (en) Forging tool and forging method for semi-steel roller
Nagasaka et al. Development of tubing technique for high-purity low activation vanadium alloys
SE449061B (en) PROCEDURE FOR MANUFACTURING PLATED STEEL PLATE
JP2004131794A (en) Method for dehydrogenation of steel sheet and method for manufacturing steel sheet using the same
JPH07232201A (en) Manufacture of extremely thick steel plate
WO2004046392A1 (en) Delayed fracture prevention method for steel structure and steel structure manufacturing method
JP2885057B2 (en) Evaluation method for bonding strength of clad steel sheet
JP3276072B2 (en) Overlap welding method of carburized parts
JPS6188994A (en) Weld repairing method
Poppmeier, WAH & Vreugdenburg The manufacture of stainless clad steels
Kumar et al. Studies on stainless steel 304 samples joined by submerged arc welding, MIG welding and hybrid welding
Pantazopoulos et al. Analysis of a weld failure of a rolled Zn-alloy strip–a case study
JP3840172B2 (en) UOE steel pipe manufacturing method with excellent HAZ toughness
JP3377428B2 (en) ERW steel pipe for steel towers having excellent hot-dip galvanizing crack resistance and method for producing the same
JP6316912B1 (en) Manufacturing method for high-strength steel sheet press products
JP3740114B2 (en) Method for improving reliability of hot dipped metal structural members
JP2000084670A (en) Welding method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030902