JPH1010081A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPH1010081A
JPH1010081A JP8166267A JP16626796A JPH1010081A JP H1010081 A JPH1010081 A JP H1010081A JP 8166267 A JP8166267 A JP 8166267A JP 16626796 A JP16626796 A JP 16626796A JP H1010081 A JPH1010081 A JP H1010081A
Authority
JP
Japan
Prior art keywords
oxygen sensor
electric heater
exhaust gas
activation time
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8166267A
Other languages
Japanese (ja)
Inventor
Osamu Saotome
理 早乙女
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP8166267A priority Critical patent/JPH1010081A/en
Publication of JPH1010081A publication Critical patent/JPH1010081A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxygen sensor which can reduce activation time without damaging a structure. SOLUTION: A cylindrical base 111 formed from ZrO2 and having a closed end is provided with a projecting part 111a by cutting work or the like, and an electric heater 117 is directly installed on the upper surface of the projecting part 111a via an insulator 116. Therefore, not only the base and inside and outside electrodes 112, 113 provided respectively on the inner and outer surfaces of the base, but also exhaust gas passing through a coating layer 115 and a frame-sprayed layer 114 and making contact with an external electrode are heated by the electric heater, resulting in reduced activation time. Further, since the insulator and the base are almost equal in heat conductivity, cracking between them is also prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は酸素センサに係わ
り、特に内燃機関の排気ガス中の残留酸素濃度を検出す
るための酸素センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen sensor, and more particularly to an oxygen sensor for detecting the concentration of residual oxygen in exhaust gas of an internal combustion engine.

【0002】[0002]

【従来の技術】自動車用内燃機関から排出される排気ガ
ス中に含まれる窒素酸化物、炭化水素および一酸化炭素
が大気中に排出されることを抑制するために触媒コンバ
ータを使用することは公知であるが、高い浄化率を維持
するには内燃機関に供給される混合気をほぼ理論空燃比
に制御することが必要となる。
2. Description of the Related Art It is known to use a catalytic converter to suppress nitrogen oxides, hydrocarbons and carbon monoxide contained in exhaust gas emitted from an internal combustion engine for automobiles from being emitted into the atmosphere. However, in order to maintain a high purification rate, it is necessary to control the air-fuel mixture supplied to the internal combustion engine to approximately the stoichiometric air-fuel ratio.

【0003】混合気を理論空燃比に制御するために内燃
機関に供給される混合気の空燃比と相関を有する排気ガ
ス中に残留する酸素濃度を検出し、吸入空気量に応じて
燃料供給量を制御することが一般的である。現在広く使
用されている酸素センサはジルコニア酸素センサであっ
て、先端が閉塞された円筒形状のジルコニア固体電解質
(Zr 2 )の内外表面に白金電極がコーティングされ
た構成を有する。
[0003] In order to control the air-fuel mixture to the stoichiometric air-fuel ratio, the concentration of oxygen remaining in the exhaust gas correlated with the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine is detected, and the fuel supply amount is determined according to the intake air amount. Is generally controlled. An oxygen sensor that is currently widely used is a zirconia oxygen sensor has a structure in which a platinum electrode is coated on the inner and outer surfaces of the zirconia solid electrolyte of cylindrical tip is closed (Z r O 2).

【0004】この酸素センサを排気管に挿入して外表面
を酸素分圧の低い排気ガスにさらすとともに内面に酸素
分圧の高い大気を導入することによってジルコニア固体
電解質内を酸素イオンが流れ内外表面の白金電極間に残
留酸素濃度に応じた電圧が発生するが、酸素センサとし
て機能するためにはジルコニア固体電解質および内外表
面の白金電極が所定温度(650°C)以上となる活性
化状態を維持する必要がある。
[0004] The oxygen sensor is inserted into an exhaust pipe to expose the outer surface to exhaust gas having a low oxygen partial pressure and to introduce an atmosphere having a high oxygen partial pressure into the inner surface, whereby oxygen ions flow through the zirconia solid electrolyte to cause the inner and outer surfaces to flow. A voltage corresponding to the residual oxygen concentration is generated between the platinum electrodes, but in order to function as an oxygen sensor, the zirconia solid electrolyte and the platinum electrodes on the inner and outer surfaces are maintained in an activated state at a predetermined temperature (650 ° C.) or higher. There is a need to.

【0005】そこで内燃機関始動後に酸素センサが活性
化するのに要する時間を短縮するために酸素センサ内側
の中空部に電気ヒータを挿入し、ジルコニア固体電解質
および内外表面の白金電極を加熱することが普通であ
る。図2は従来から使用されている空燃比センサの外形
図および外形図の破線で囲まれた部分の拡大断面図であ
って、円筒形状の空燃比センサ21の中空部に電気ヒー
タ22が挿入されている。
In order to shorten the time required for the oxygen sensor to be activated after the internal combustion engine is started, an electric heater is inserted into the hollow portion inside the oxygen sensor to heat the zirconia solid electrolyte and the platinum electrodes on the inner and outer surfaces. Normal. FIG. 2 is an external view of a conventionally used air-fuel ratio sensor and an enlarged sectional view of a portion surrounded by a broken line in the external view. An electric heater 22 is inserted into a hollow portion of a cylindrical air-fuel ratio sensor 21. ing.

【0006】空燃比センサ21は数ミリメートルの厚さ
のジルコニア固体電解質211で形成され、内外表面に
は白金電極212、213がコーティングされている。
そして外側電極213を保護するために、外側電極21
3の外側に約500マイクロメートルの溶射層214お
よびコーティング層215が形成される。しかしながら
上記構成に係る酸素センサは、酸素センサ内側から加熱
されるため外側電極が所定温度となるまでに時間がかか
るだけでなく、内燃機関始動直後は低温の排気ガスが直
接外側電極に当たるため、酸素センサの活性化時間の短
縮には限界があった。
[0006] The air-fuel ratio sensor 21 is formed of a zirconia solid electrolyte 211 having a thickness of several millimeters, and the inner and outer surfaces are coated with platinum electrodes 212 and 213.
Then, in order to protect the outer electrode 213, the outer electrode 21
A thermal sprayed layer 214 and a coating layer 215 of about 500 micrometers are formed on the outside of 3. However, since the oxygen sensor according to the above configuration is heated from the inside of the oxygen sensor, it takes time for the outer electrode to reach a predetermined temperature. There is a limit to shortening the activation time of the sensor.

【0007】図3は内燃機関始動後に排出される炭化水
素量およびその積算値の時間的変化を示すグラフである
が、内燃機関始動後約50秒の間に排出される炭化水素
量は極めて多いものの50秒以降の排出量は少ないこと
が理解できる。即ち、一層厳しくなる排出規制を満たす
ためには内燃機関始動後数秒以内に酸素センサの活性化
を図り、触媒コンバータによる排気ガスの浄化を行うこ
とが必要となるからである。
FIG. 3 is a graph showing the change over time in the amount of hydrocarbons discharged after the internal combustion engine is started and the integrated value thereof. The amount of hydrocarbons discharged during about 50 seconds after the start of the internal combustion engine is extremely large. However, it can be understood that the discharge amount after 50 seconds is small. That is, in order to satisfy the stricter emission regulations, it is necessary to activate the oxygen sensor within a few seconds after the internal combustion engine is started and to purify the exhaust gas by the catalytic converter.

【0008】そこで電気ヒータを、従来使用されていた
酸化アルミニウム(Al2 3 )から窒化珪素(Si3
4 )とした酸素センサがすでに提案されている。しか
しながら酸素センサを急激に活性化させた場合には、電
気ヒータおよびジルコニア固体電解質が熱衝撃により破
壊するおそれがあるだけでなく、特に内側電極が熱凝縮
により劣化するおそれもある。
Therefore, the electric heater is changed from aluminum oxide (Al 2 O 3 ), which has been used conventionally, to silicon nitride (Si 3).
An oxygen sensor with N 4 ) has already been proposed. However, when the oxygen sensor is rapidly activated, not only the electric heater and the zirconia solid electrolyte may be broken by a thermal shock, but also the inner electrode may be deteriorated by thermal condensation.

【0009】そこで電気ヒータおよびジルコニア固体電
解質の破壊、および電極の劣化なしに酸素センサの急速
な活性化を可能とするために外側電極の内側の一部に絶
縁層で覆われたヒータを形成した酸素センサもすでに提
案されている(特開平4−370758公報参照)。
In order to enable rapid activation of the oxygen sensor without destruction of the electric heater and the zirconia solid electrolyte and deterioration of the electrode, a heater covered with an insulating layer is formed on a part of the inside of the outer electrode. An oxygen sensor has already been proposed (see Japanese Patent Application Laid-Open No. Hei 4-370758).

【0010】[0010]

【発明が解決しようとする課題】上記提案にかかる酸素
センサは、電気ヒータがジルコニア固体電解質の外側に
設置されておりジルコニア固体電解質およびジルコニア
固体電解質の内外面にコーティングされた電極を急速に
加熱することが可能であるため酸素センサの活性化時間
をある程度短縮することは可能である。
In the oxygen sensor according to the above proposal, an electric heater is installed outside the zirconia solid electrolyte to rapidly heat the zirconia solid electrolyte and the electrodes coated on the inner and outer surfaces of the zirconia solid electrolyte. Therefore, the activation time of the oxygen sensor can be reduced to some extent.

【0011】しかしながら、上記提案にかかる酸素セン
サにあっては、内燃機関始動直後に低温の排気ガスが直
接外側電極に当たることを防止することはできないため
酸素センサの活性化時間を十分に短縮することはできな
い。本発明は上記課題に鑑みなされたものであって、構
造に損傷を与えることなく活性化時間を短縮することの
可能な酸素センサを提供することを目的とする。
However, in the oxygen sensor according to the above proposal, it is impossible to prevent low-temperature exhaust gas from directly hitting the outer electrode immediately after the start of the internal combustion engine, so that the activation time of the oxygen sensor is sufficiently reduced. Can not. The present invention has been made in view of the above problems, and has as its object to provide an oxygen sensor capable of shortening an activation time without damaging a structure.

【0012】[0012]

【課題を解決するための手段】請求項1に係る酸素セン
サは、接触するガス中の酸素濃度に応じた特性変化を示
す基材と、基材の内表面および外表面に設けられた電極
と、を具備する酸素センサであって、基材がその外側に
前記基材によって形成された凸部を有し凸部上部に絶縁
層を介して電気ヒータを設置したことを特徴とする。
An oxygen sensor according to a first aspect of the present invention includes a base material exhibiting a characteristic change according to an oxygen concentration in a contacting gas, and electrodes provided on inner and outer surfaces of the base material. , Wherein the substrate has a convex portion formed by the substrate on the outside thereof, and an electric heater is provided above the convex portion via an insulating layer.

【0013】上記酸素センサによれば、電気ヒータによ
り基材および基材の内外表面に設けられた電極が加熱さ
れるだけでなく、外側電極に接触する排気ガスも加熱さ
れる。請求項2に係る酸素センサは、外表面に設けられ
た電極と電気ヒータとを共に被覆する通気性の被覆層を
さらに具備する。
According to the oxygen sensor, not only the base member and the electrodes provided on the inner and outer surfaces of the base member are heated by the electric heater, but also the exhaust gas in contact with the outer electrode is heated. The oxygen sensor according to claim 2 further includes a gas-permeable covering layer covering both the electrode and the electric heater provided on the outer surface.

【0014】上記酸素センサによれば、通気性の被覆層
を通過する排気ガスが暖められる。
According to the oxygen sensor, the exhaust gas passing through the air-permeable coating layer is warmed.

【0015】[0015]

【発明の実施の形態】既に説明したように内燃機関始動
後酸素センサを急速に活性化させるためには、以下の2
点が重要となる。 1.外側電極、固体電解質および排気ガスの3者の接触
面(3層界面)をできる限り急速に加熱すること。 2.始動直後の低温である排気ガスにより3層界面が冷
却されることを防止すること。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, in order to quickly activate an oxygen sensor after starting an internal combustion engine, the following two methods are required.
The point is important. 1. Heating the contact surface (three-layer interface) between the outer electrode, the solid electrolyte and the exhaust gas as quickly as possible. 2. To prevent the three-layer interface from being cooled by the low temperature exhaust gas immediately after starting.

【0016】そこで以下に示す3種類の構造について活
性化するまでの時間および酸素センサの構造に与える損
傷を調査した。即ち、図4は調査した酸素センサの拡大
断面図であって、(イ)は3層界面を直接加熱するため
に、外側電極213の外側に絶縁体(例えばAl
2 3 )116を介して電気ヒータ(例えばタングステ
ン)117を設置した構造を有する。
Therefore, the following three types of structures were examined for their activation time and damage to the oxygen sensor structure. That is, FIG. 4 is an enlarged cross-sectional view of the investigated oxygen sensor. FIG. 4A shows an insulator (for example, Al) outside the outer electrode 213 in order to directly heat the three-layer interface.
It has a structure in which established the electric heater (e.g., tungsten) 117 via the 2 O 3) 116.

【0017】(ロ)は低温の排気ガスを加熱するために
最外層であるコーティング層115の外側に電気ヒータ
117を設置した構造を有する。(ハ)は3層界面およ
び低温の排気ガスの両方を加熱するために、溶射層11
4内に絶縁体116を介して電気ヒータ117を設置し
た構造を有する。この結果、以下の事項が明らかとなっ
た。
(B) has a structure in which an electric heater 117 is provided outside the outermost coating layer 115 for heating low-temperature exhaust gas. (C) heats both the three-layer interface and the low-temperature exhaust gas.
4 has a structure in which an electric heater 117 is provided via an insulator 116. As a result, the following matters became clear.

【0018】(イ)の構造は、3層界面は急速に昇温さ
れるものの、低温の排気ガスによって3層界面が冷却さ
れることは避けることができず、酸素センサの活性化時
間は若干解決されるにすぎない。(ロ)の構造は、低温
の排気ガスが加熱されるため低温の排気ガスによって3
層界面が冷却されることは回避されるものの、ヒータか
ら3層界面までの距離が大きく3層界面の昇温は遅れ酸
素センサの活性時間は長くなる。
In the structure (a), although the temperature at the three-layer interface is rapidly increased, it is unavoidable that the three-layer interface is cooled by low-temperature exhaust gas, and the activation time of the oxygen sensor is slightly increased. It is only resolved. In the structure of (b), the low-temperature exhaust gas is heated because the low-temperature exhaust gas is heated.
Although the cooling of the layer interface is avoided, the distance from the heater to the three-layer interface is large, and the temperature rise at the three-layer interface is delayed, and the activation time of the oxygen sensor becomes longer.

【0019】(ハ)の構造は、3層界面が急速に昇温さ
れるだけでなく低温の排気ガスも加熱されるため低温の
排気ガスによって3層界面が冷却されることが抑制さ
れ、酸素センサの活性時間は短縮される。しかしなが
ら、絶縁体116と外側電極113との熱膨張率の相違
により、絶縁体116と固体電解質111との間のクラ
ックの発生を防止することは困難であった。
In the structure (c), not only the temperature of the three-layer interface is rapidly raised, but also the low-temperature exhaust gas is heated. The activation time of the sensor is reduced. However, it was difficult to prevent the occurrence of cracks between the insulator 116 and the solid electrolyte 111 due to the difference in the coefficient of thermal expansion between the insulator 116 and the outer electrode 113.

【0020】本発明はこれらの課題を解決するために、
以下の構造を有する。即ち図1は、本発明に係る酸素セ
ンサの外形図および拡大断面図であって、固体電解質1
11に例えば旋盤による切削加工を施し、凸部111a
を設ける。この凸部111aの高さは約200マイクロ
メートルとすることが望ましい。そして凸部111a上
面に絶縁体(例えばAl2 3 )116を介して電気ヒ
ータ(例えばタングステン)117を設置する。なお凸
部111a以外の固体電解質111の外表面には、従来
同様外側電極113を設置する。
The present invention has been made to solve these problems.
It has the following structure. That is, FIG. 1 is an external view and an enlarged cross-sectional view of the oxygen sensor according to the present invention.
11 is subjected to a cutting process using, for example, a lathe, and a convex portion 111a is formed.
Is provided. It is desirable that the height of the projection 111a be approximately 200 micrometers. Then, an electric heater (for example, tungsten) 117 is provided on the upper surface of the projection 111a via an insulator (for example, Al 2 O 3 ) 116. Note that an outer electrode 113 is provided on the outer surface of the solid electrolyte 111 other than the convex portion 111a as in the related art.

【0021】図5は固体電解質111を加工して設けら
れる凸部111aの構成例であって、凸部211aの高
さは誇張して描かれている。即ち(a)はリング状、
(b)は螺旋状、(c)は島状に形成された凸部211
aを有しているが、本発明にかかる酸素センサは固体電
解質111の外面に少なくとも1つの凸部が形成されて
いればよい。
FIG. 5 shows an example of the configuration of the projection 111a formed by processing the solid electrolyte 111. The height of the projection 211a is exaggerated. That is, (a) is a ring shape,
(B) is a spiral, and (c) is an island-shaped projection 211.
However, the oxygen sensor according to the present invention may have at least one protrusion on the outer surface of the solid electrolyte 111.

【0022】即ち本発明にかかる酸素センサにあって
は、3層界面、およびコーティッグ層115および溶射
層114を通って外側電極113に到達する排気ガスが
電気ヒータ117によって加熱されるため酸素センサの
活性化時間が短縮される。さらに固体電解質111の外
面に設けられた凸部111aにより酸素センサの軸方向
の排気ガスの流動が妨げられ3層界面の冷却が抑制され
る。
That is, in the oxygen sensor according to the present invention, since the exhaust gas reaching the outer electrode 113 through the three-layer interface and the coating layer 115 and the sprayed layer 114 is heated by the electric heater 117, Activation time is reduced. Furthermore, the flow of the exhaust gas in the axial direction of the oxygen sensor is prevented by the convex portion 111a provided on the outer surface of the solid electrolyte 111, and the cooling of the three-layer interface is suppressed.

【0023】さらに電気ヒータ117は絶縁体116を
介して絶縁物116とほぼ熱伝導率の等しい直接固体電
解質111に取り付けられているため、クラックの発
生、即ち機械的な損傷が発生することが防止される。図
6は本発明に係る酸素センサの活性化時間を示すグラフ
であって、図4の(イ)から(ハ)に示す構造の酸素セ
ンサの活性化時間も同時に掲載されている。このグラフ
から理解できるように本発明に係る酸素センサは内燃機
関始動後約6秒で活性化し、図4に示す(イ)から
(ハ)に示す構成の酸素センサのうち最短の活性化時間
を有する(ハ)とほぼ同一の活性化時間となる。
Further, since the electric heater 117 is attached to the direct solid electrolyte 111 having substantially the same thermal conductivity as the insulator 116 via the insulator 116, the occurrence of cracks, that is, the occurrence of mechanical damage is prevented. Is done. FIG. 6 is a graph showing the activation time of the oxygen sensor according to the present invention. The activation time of the oxygen sensor having the structure shown in FIGS. As can be understood from this graph, the oxygen sensor according to the present invention is activated about 6 seconds after the start of the internal combustion engine, and the shortest activation time of the oxygen sensors having the configurations shown in FIGS. The activation time is almost the same as that of (c).

【0024】[0024]

【発明の効果】本発明にかかる酸素センサによれば、基
材の凸部上面に絶縁体を介して設置されたヒータにより
基材および基材の内外表面に設置された電極だけでなく
外部電極に接触する排気ガスも加熱されるため酸素セン
サの活性化時間を短縮することが可能となる。さらに電
気ヒータが絶縁体を介して基材に直接取り付けられるた
め絶縁体と基材との間にクラックが発生することを抑制
することも可能となる。
According to the oxygen sensor of the present invention, not only the electrodes provided on the inner and outer surfaces of the substrate but also the external electrodes by the heater provided on the upper surface of the convex portion of the substrate via an insulator. Since the exhaust gas contacting the gas is also heated, the activation time of the oxygen sensor can be shortened. Further, since the electric heater is directly attached to the base material via the insulator, it is possible to suppress the occurrence of cracks between the insulator and the base material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る酸素センサの外形図および拡大断
面図である。
FIG. 1 is an external view and an enlarged sectional view of an oxygen sensor according to the present invention.

【図2】従来から使用されている酸素センサの外形図お
よび拡大断面図である。
FIG. 2 is an external view and an enlarged cross-sectional view of a conventionally used oxygen sensor.

【図3】内燃機関始動後に排出される炭化水素量および
その積算値の時間的変化を示すグラフである。
FIG. 3 is a graph showing the amount of hydrocarbons discharged after the start of the internal combustion engine and its integrated value over time.

【図4】調査した酸素センサの拡大断面図である。FIG. 4 is an enlarged cross-sectional view of the investigated oxygen sensor.

【図5】凸部の構成例である。FIG. 5 is a configuration example of a convex portion.

【図6】活性化時間を示すグラフである。FIG. 6 is a graph showing activation time.

【符号の説明】 11…酸素センサ 111…固体電解質 111a…凸部 112…内側電極 113…外側電極 114…溶射層 115…コーティング層 116…絶縁体 117…電気ヒータ[Description of Signs] 11 ... Oxygen sensor 111 ... Solid electrolyte 111a ... Protrusion 112 ... Inner electrode 113 ... Outer electrode 114 ... Sprayed layer 115 ... Coating layer 116 ... Insulator 117 ... Electric heater

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 接触するガス中の酸素濃度に応じた特性
変化を示す基材と、 前記基材の内表面および外表面に設けられた電極と、を
具備する酸素センサにおいて、 前記基材がその外側に前記基材によって形成された凸部
を有し、前記凸部上部に絶縁層を介して電気ヒータを設
置したことを特徴とする酸素センサ。
1. An oxygen sensor comprising: a base material exhibiting a characteristic change according to the oxygen concentration in a contacting gas; and electrodes provided on an inner surface and an outer surface of the base material, wherein the base material is An oxygen sensor having a convex portion formed of the base material on the outer side thereof, and an electric heater provided above the convex portion via an insulating layer.
【請求項2】 前記外表面に設けられた電極と、前記電
気ヒータとを共に被覆する通気性の被覆層をさらに具備
する請求項1に記載の酸素センサ。
2. The oxygen sensor according to claim 1, further comprising a gas-permeable covering layer covering both the electrode provided on the outer surface and the electric heater.
JP8166267A 1996-06-26 1996-06-26 Oxygen sensor Pending JPH1010081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8166267A JPH1010081A (en) 1996-06-26 1996-06-26 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8166267A JPH1010081A (en) 1996-06-26 1996-06-26 Oxygen sensor

Publications (1)

Publication Number Publication Date
JPH1010081A true JPH1010081A (en) 1998-01-16

Family

ID=15828223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8166267A Pending JPH1010081A (en) 1996-06-26 1996-06-26 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPH1010081A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987545A1 (en) * 1997-09-15 2000-03-22 Heraeus Electro-Nite International N.V. Tubular gas sensor with printed sensing and heat generating areas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987545A1 (en) * 1997-09-15 2000-03-22 Heraeus Electro-Nite International N.V. Tubular gas sensor with printed sensing and heat generating areas
US6241865B1 (en) 1997-09-15 2001-06-05 Heraeus Holding Gmbh Sensor for the measurement of gas concentrations

Similar Documents

Publication Publication Date Title
US4272349A (en) Catalyst supported oxygen sensor with sensor element having catalyst and protective layers and a method of manufacturing same
JP4571974B2 (en) Gas sensor
EP2224221B1 (en) Temperature sensor
US20060108222A1 (en) Gas sensor with protective cover having higher water wettability
JP2006234632A (en) Temperature sensor
US8359902B2 (en) Gas sensor apparatus for automotive exhaust gas applications
US10473614B2 (en) Gas sensor
JPH1010081A (en) Oxygen sensor
US20050230249A1 (en) Structure of gas sensor ensuring stability of output insensitive to heat
JPS59167635A (en) Glow plug of diesel engine
JP2002031618A (en) Gas sensor
US11604160B2 (en) Gas sensor
Naito et al. Development of planar oxygen sensor
JPH10142189A (en) Oxygen sensor cover
JP3449806B2 (en) Oxygen sensor structure
JP2017067734A (en) Gas sensor
JP3588094B2 (en) Oxygen sensor structure
JP3183149B2 (en) Heater structure of oxygen sensor
JP3159035B2 (en) Heater structure of oxygen sensor
JP4853461B2 (en) Gas sensor
JPH0727739A (en) Air/fuel ratio detection element
JPS61178514A (en) Ceramic precombustion chamber diesel engine
JPH04357450A (en) Oxygen sensor for internal combustion engine
US20020000377A1 (en) Oxygen sensor
JPH11183429A (en) Gas sensor for natural gas engine