JPH0994423A - Gas passing method for pressure swing adsorption type gas separating device - Google Patents

Gas passing method for pressure swing adsorption type gas separating device

Info

Publication number
JPH0994423A
JPH0994423A JP7256337A JP25633795A JPH0994423A JP H0994423 A JPH0994423 A JP H0994423A JP 7256337 A JP7256337 A JP 7256337A JP 25633795 A JP25633795 A JP 25633795A JP H0994423 A JPH0994423 A JP H0994423A
Authority
JP
Japan
Prior art keywords
adsorption
gas
pressure
desorption
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7256337A
Other languages
Japanese (ja)
Inventor
Tatsuo Kahata
達雄 加幡
Masazumi Oishi
正純 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7256337A priority Critical patent/JPH0994423A/en
Publication of JPH0994423A publication Critical patent/JPH0994423A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the upper limit of space velocity to decrease the diameter of a column by preventing the fluidization of an adsorbent in a pressure swing adsorption type(PSA) as separating device. SOLUTION: In the PSA gas separating device provided with adsorption columns 1A, 1B for executing an adsorption process for obtaining a production gas by adsorbing a separating component in a stock gas to the adsorbent under pressure and a desorption process for desorbing the adsorbed separating component from the adsorbent under reduced pressure, the fluidization of the adsorbent is prevented by making the gas flow in the adsorption columns 1A, 1B downward flow through full processes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は圧力スイング吸着式
(以下PSAという)ガス分離装置の通ガス方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas passing method of a pressure swing adsorption type (hereinafter referred to as PSA) gas separator.

【0002】[0002]

【従来の技術】従来のPSAガス分離装置によるガス分
離技術を図6及び図7に示す。図6は従来装置の系統図
であり、図7は従来システムによるガス分離プロセスを
示している。なお、図7の下部にA〜Dで示される部分
は、図7の上方の部分においてA〜Dで示される工程に
おいて吸着塔1A,1B内を流れるガス流の方向を矢印
で示したものである。
2. Description of the Related Art A conventional gas separation technique using a PSA gas separation apparatus is shown in FIGS. FIG. 6 is a system diagram of a conventional apparatus, and FIG. 7 shows a gas separation process by the conventional system. The parts indicated by A to D in the lower part of FIG. 7 are the arrows indicating the directions of the gas flows flowing in the adsorption towers 1A and 1B in the steps indicated by A to D in the upper part of FIG. is there.

【0003】このPSAガス分離装置では、原料空気ブ
ロワ2によって原料ガスは、吸着塔1A,1Bの下部に
接続された原料ガスライン4を通り吸着塔内1A又は1
Bに送気され(上昇流)、加圧下で吸着塔内の上下多孔
円板間に充填された吸着剤に分離成分を吸着させ(吸着
工程)て製造ガスライン7に製造ガスを送る。吸着剤に
よる吸着量が飽和に達したら、真空ポンプ3により脱着
ライン6を通り吸着塔内を排気して(下降流)吸着剤を
再生する(脱着工程)ようになっている。なお、吸着塔
1A,1Bは並列に配置され、前記の吸着工程と吸着工
程は吸着塔1A,1Bにおいてそれぞれ交互に、かつ、
繰り返して行われるようになっている。
In this PSA gas separator, the raw material gas is blown by the raw material air blower 2 through the raw material gas line 4 connected to the lower part of the adsorption towers 1A and 1B.
B is fed to B (upflow), and the adsorbent filled between the upper and lower porous discs in the adsorption tower adsorbs the separated components under pressure (adsorption step) and sends the production gas to the production gas line 7. When the amount of adsorption by the adsorbent reaches saturation, the vacuum pump 3 exhausts the inside of the adsorption tower through the desorption line 6 (downflow) to regenerate the adsorbent (desorption process). The adsorption towers 1A and 1B are arranged in parallel, the adsorption step and the adsorption step are alternately performed in the adsorption towers 1A and 1B, and
It is supposed to be repeated.

【0004】また、一方の吸着塔、例えば吸着塔1Aが
吸着工程を終了し、他方の吸着塔、例えば吸着塔1Bが
脱着工程を終了すると、両吸着塔1A,1Bの製造ガス
ラインを接続する均圧ライン5によって、吸着工程を行
って圧力の高い吸着塔1Aよりガスを脱着工程を行って
圧力が低い吸着塔1Bへ移し、両吸着塔1A,1Bを均
圧させる均圧工程が行われる。
When one adsorption tower, for example the adsorption tower 1A, completes the adsorption step and the other adsorption tower, for example the adsorption tower 1B, completes the desorption step, the production gas lines of both adsorption towers 1A, 1B are connected. Through the pressure equalizing line 5, a gas is desorbed from the adsorption tower 1A having a high pressure and transferred to the adsorption tower 1B having a low pressure by performing the adsorption step, and a pressure equalization step for equalizing the pressures of both adsorption towers 1A and 1B is performed. .

【0005】前記吸着塔1A,1Bにおける吸着工程、
均圧工程及び脱着工程は、各ラインに設けられた弁を操
作することによって、吸着塔1A,1Bにおいてそれぞ
れ吸着工程、及び脱着工程が交互に繰り返し行われ、ま
た吸着工程と脱着工程の間において均圧工程が行われる
ようにされている。
The adsorption step in the adsorption towers 1A and 1B,
The pressure equalization step and the desorption step are alternately repeated in the adsorption towers 1A and 1B by operating a valve provided in each line, and between the adsorption step and the desorption step. A pressure equalization process is performed.

【0006】[0006]

【発明が解決しようとする課題】従来のPSAガス分離
装置では、図6に示すように、原料ガスライン4から製
造ガスライン7へ向って吸着塔1A,1B内を流れる原
料ガス流れが上昇流であるために、吸着剤の受ける流動
抵抗力と重力が相殺する方向に働き、原料ガス流れの速
度が大きくなると流動抵抗の方が卓越して吸着剤の流動
が起こる。これは吸着剤の粉化を引き起こし、吸着剤性
能の劣化・製品ガス中への混入など性能に著しい悪影響
を及ぼす。
In the conventional PSA gas separation apparatus, as shown in FIG. 6, the raw material gas flow flowing in the adsorption towers 1A and 1B from the raw material gas line 4 to the manufacturing gas line 7 flows upward. Therefore, the flow resistance force that the adsorbent receives and the gravity work in a direction of canceling each other, and when the speed of the raw material gas flow increases, the flow resistance is more predominant and the flow of the adsorbent occurs. This causes pulverization of the adsorbent, which has a significant adverse effect on the performance such as deterioration of the adsorbent performance and inclusion in the product gas.

【0007】従来は、吸着剤の流動化防止のために、吸
着塔の塔径を大きくとることにより空塔速度を落とす必
要があった。このため吸着塔の形状の自由度が低く、特
に大容量機となると塔径が過大になり、配置スペースの
問題や過大重量によるコスト高といった問題が生じてい
た。
In the past, in order to prevent fluidization of the adsorbent, it was necessary to reduce the superficial velocity by increasing the column diameter of the adsorption column. For this reason, the degree of freedom of the shape of the adsorption tower is low, and the tower diameter becomes excessively large, especially in the case of a large-capacity machine, and there have been problems such as an arrangement space problem and an excessive weight, resulting in high cost.

【0008】本発明は、以上の問題点を解決することが
できるPSAガス分離装置の通ガス方法を提供しようと
するするものである。
The present invention is intended to provide a gas passage method for a PSA gas separation apparatus which can solve the above problems.

【0009】[0009]

【課題を解決するための手段】本発明のPSAガス分離
装置の通ガス方法は、次の手段を講じた。 (1)加圧下で原料ガス中の分離成分を吸着剤に吸着さ
せて製造ガスを得る吸着工程、及び減圧下で吸着された
前記分離成分を吸着剤から脱着する脱着工程を行う吸着
塔を具えた圧力スイング吸着式ガス分離装置において、
吸着塔内のガスの流れを吸着及び脱着の全工程において
下降流とすることを特徴とする。 (2)前記(1)の通ガス方法において、吸着塔を複数
個並列に設けて、各吸着塔内で吸着工程と脱着工程を交
互に繰り返し行うと共に吸着工程と脱着工程の間で複数
の吸着塔内を均圧させる均圧工程を行うようにした圧力
スイング吸着式ガス分離装置の各吸着塔内のガスの流れ
を、吸着及び脱着工程に加えて均圧工程においても下降
流とすることを特徴とする。 (3)前記(2)の通ガス方法において、複数個の吸着
塔の原料ガス供給ラインを接続するラインと製造ガスを
排出する製造ガスラインを接続する均圧ラインによって
複数個の吸着塔内を均圧させることを特徴とする。 (4)前記(1)又は(2)の通ガス方法において、脱
着ガスラインに接続された多孔質の空円筒を吸着塔内の
中央に配置して脱着工程において吸着塔内の中央より脱
着ガスを排出することを特徴とする。
Means for Solving the Problems The gas passing method of the PSA gas separation apparatus of the present invention takes the following means. (1) An adsorption tower is provided which performs an adsorption step of adsorbing a separation component in a raw material gas under pressure to an adsorbent to obtain a production gas, and a desorption step of desorbing the separated component adsorbed from the adsorbent under reduced pressure. In the pressure swing adsorption type gas separation device,
It is characterized in that the gas flow in the adsorption tower is a downward flow in all steps of adsorption and desorption. (2) In the gas passing method according to (1) above, a plurality of adsorption towers are provided in parallel, the adsorption step and the desorption step are alternately repeated in each adsorption tower, and a plurality of adsorption steps are performed between the adsorption step and the desorption step. In addition to the adsorption and desorption steps, the flow of gas in each adsorption tower of the pressure swing adsorption type gas separation device that performs the pressure equalization step for equalizing the pressure in the tower can be made to be a downflow also in the pressure equalization step. Characterize. (3) In the gas passing method of (2) above, the inside of the plurality of adsorption towers is formed by a pressure equalizing line connecting a line connecting the raw material gas supply lines of the plurality of adsorption towers and a production gas line discharging the production gas. It is characterized by equalizing pressure. (4) In the gas passing method according to (1) or (2) above, a porous empty cylinder connected to a desorption gas line is arranged in the center of the adsorption tower, and desorption gas is introduced from the center of the adsorption tower in the desorption step. Is discharged.

【0010】本発明は、以上の構成を具えているため
に、吸着工程及び脱着工程、又は脱着工程、吸着工程及
び均圧工程の全工程を通じて、吸着塔内のガスの流れが
下降流となり、吸着塔内の吸着剤の流動化を防止し、吸
着塔内の空塔速度の上昇を高くして吸着塔の塔径を小さ
くすることができる。
Since the present invention has the above-mentioned constitution, the gas flow in the adsorption tower becomes a downward flow through the adsorption step and the desorption step, or the desorption step, the adsorption step and the pressure equalization step, It is possible to prevent fluidization of the adsorbent in the adsorption tower, increase the superficial velocity in the adsorption tower, and reduce the tower diameter of the adsorption tower.

【0011】[0011]

【発明の実施の形態】本発明の実施の第1の形態を、図
1ないし図3によって説明する。図1はその系統図、図
2は同実施の形態における吸着塔の断面図、図3は同実
施の形態のガス分離プロセス図であり、その下部にA〜
Dで示される部分は、その上方の部分においてA〜Dで
示される工程において吸着塔1A,1B内を流れるガス
流の方向を矢印で示したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. 1 is a system diagram thereof, FIG. 2 is a cross-sectional view of an adsorption tower in the same embodiment, and FIG. 3 is a gas separation process diagram of the same embodiment.
The portion indicated by D is an arrow indicating the direction of the gas flow flowing in the adsorption towers 1A, 1B in the steps indicated by A to D in the upper portion.

【0012】1A,1Bは吸着剤を内蔵し後記するよう
に並列に配置された円筒状の竪形の吸着塔であり、図2
に示すように同吸着塔1A,1B内には、上下にほぼ水
平に配置され多孔板よりなる支持板11,12が設けら
れており、この支持板11,12の間に圧力下で空気中
のN2 又はO2 を吸着する吸着剤が充填されている。
Reference numerals 1A and 1B are cylindrical vertical adsorption towers each containing an adsorbent and arranged in parallel as will be described later.
As shown in FIG. 1, in the adsorption towers 1A and 1B, support plates 11 and 12 composed of perforated plates which are arranged substantially horizontally above and below are provided, and the support plates 11 and 12 are in air under pressure under pressure. Is filled with an adsorbent that adsorbs N 2 or O 2 .

【0013】2は原料空気を供給する原料空気ブロワで
あり、その吐出側の原料ガスライン4は、それぞれ弁V
A−1,VB−1をもつライン4A,4Bに分岐し、同
ライン4A,4Bはそれぞれ支持板11より上方の吸着
塔1A,1Bの上部に接続されている。支持板12より
下方の吸着塔1A,1Bの下部には、それぞれ弁VA−
3,VB−3をもつライン7A,7Bが接続され、この
両ライン7A,7Bは合流して製造ガスライン7となっ
ている。
Reference numeral 2 is a raw material air blower for supplying raw material air, and a raw material gas line 4 on the discharge side thereof has a valve V, respectively.
The lines 4A and 4B having A-1 and VB-1 are branched, and the lines 4A and 4B are connected to the upper portions of the adsorption towers 1A and 1B above the support plate 11, respectively. Valves VA- are provided below the adsorption plates 1A and 1B below the support plate 12, respectively.
Lines 7A and 7B having 3, VB-3 are connected, and these lines 7A and 7B join to form a production gas line 7.

【0014】また吸着塔1A,1Bの中央の位置には、
吸着塔1A,1Bの底部から支持板12,11を貫通し
て上方へ延びその閉鎖された上端が支持板11よりやや
上方の位置にある空円柱13が配設され、同空円柱13
の支持板11と12の間にある部分は多孔質となってお
り、かつその0方の部分の開孔率が下方の部分のそれよ
り大きくされている。前記空円柱13の下端は、それぞ
れ弁VA−2,VB−2をもつライン6A,6Bに接続
され、同ライン6A,6Bは合流して真空ポンプ3に接
続された脱着ガスライン6となっている。
At the central position of the adsorption towers 1A and 1B,
An empty cylinder 13 is provided, which extends upward from the bottom of the adsorption towers 1A, 1B through the support plates 12, 11 and has its closed upper end slightly above the support plate 11.
The portion between the support plates 11 and 12 is porous, and the porosity of the zero portion is larger than that of the lower portion. The lower end of the empty cylinder 13 is connected to lines 6A and 6B having valves VA-2 and VB-2, respectively, and the lines 6A and 6B join to form a desorption gas line 6 connected to the vacuum pump 3. There is.

【0015】さらに、1本の均圧ライン5が設けられ、
同均圧ライン5の下端は、弁VA−4,VB−4を介し
て前記ライン7A,7Bの吸着塔1A,1Bと弁VA−
3,VB−3との間の部分に接続され、また、同均圧ラ
イン5の上端は、弁VA−5,VB−5を介して前記ラ
イン4A,4Bの吸着塔1A,1Bと弁VA−1,VB
−1との間の部分に接続されている。
Further, one equalizing line 5 is provided,
The lower end of the pressure equalizing line 5 is connected via valves VA-4 and VB-4 to the adsorption towers 1A and 1B of the lines 7A and 7B and the valve VA-.
3 and VB-3, and the upper end of the pressure equalizing line 5 is connected to the adsorption towers 1A and 1B of the lines 4A and 4B and the valve VA via valves VA-5 and VB-5. -1, VB
It is connected to the part between -1 and -1.

【0016】本実施の形態では、図6及び図7に示す従
来のPSAガス分離装置と同様に、吸着塔1Aが吸着工
程にあるときには吸着塔1Bが脱着工程にあり、また吸
着塔1Aが脱着工程にあるときには吸着塔1Bが吸着工
程にあり、かつ、吸着工程と脱着工程の間で両吸着塔1
A,1B間を均圧する均圧工程が行われ、これらの工程
が両吸着塔1A,1Bにおいて繰り返して行われる。
In this embodiment, as in the conventional PSA gas separator shown in FIGS. 6 and 7, when the adsorption tower 1A is in the adsorption step, the adsorption tower 1B is in the desorption step and the adsorption tower 1A is desorbed. In the process, the adsorption tower 1B is in the adsorption process, and both adsorption towers 1B are in between the adsorption process and the desorption process.
A pressure equalizing step for equalizing the pressure between A and 1B is performed, and these steps are repeatedly performed in both adsorption towers 1A and 1B.

【0017】吸着塔1Aが吸着工程、吸着塔1Bが脱着
工程にある場合を説明する。弁VA−1,VA−3,V
B−2が開かれ他の弁が閉じられる。原料空気は、原料
空気ブロワ2により昇圧されて原料ガスライン4、弁V
A−1が開かれたライン4Aを通って吸着塔1Aの上部
へ入り、吸着塔1A内を下降流となって流れ、吸着剤に
原料空気中のN2 又はO2 が吸着され、N2 又はO2
多い製造ガスは、弁VA−3が開かれたライン7Aを通
って製造ガスライン7内を流れる。一方、吸着塔1B内
は、弁VB−2が開かれたライン6B及び脱着ガスライ
ン6を介して真空ポンプ3に連絡されて低圧となり、吸
着剤に吸着されていたN2 又はO2 は吸着剤より脱着さ
れて吸着剤が再生され、脱着されたガスは吸着剤の充填
された部分から吸着塔の中央に設けられた多孔質の空円
柱3に流入し吸着塔1B内を確実に下降流となって流
れ、ライン6B及び脱着ガスライン6を経て真空ポンプ
3によって系外に放出される。
The case where the adsorption tower 1A is in the adsorption step and the adsorption tower 1B is in the desorption step will be described. Valves VA-1, VA-3, V
B-2 is opened and the other valves are closed. The raw material air is pressurized by the raw material air blower 2 and is fed to the raw material gas line 4 and the valve V.
A-1 enters the upper part of the adsorption tower 1A through the opened line 4A and flows as a downward flow in the adsorption tower 1A, N 2 or O 2 in the raw material air is adsorbed by the adsorbent, and N 2 Alternatively, the O 2 -rich production gas flows in the production gas line 7 through the line 7A in which the valve VA-3 is opened. On the other hand, the inside of the adsorption tower 1B is connected to the vacuum pump 3 via the line 6B in which the valve VB-2 is opened and the desorption gas line 6 to become a low pressure, and the N 2 or O 2 adsorbed by the adsorbent is adsorbed. The desorbed gas is desorbed from the adsorbent to regenerate the adsorbent, and the desorbed gas flows from the portion filled with the adsorbent into the porous empty column 3 provided in the center of the adsorbent tower and surely flows downward in the adsorbent tower 1B. And flows through the line 6B and the desorption gas line 6 and is discharged to the outside of the system by the vacuum pump 3.

【0018】吸着塔1Aの前記吸着工程が終了し、吸着
塔1Bの前記吸着工程が終了する(図3におけるX点)
と、吸着塔1A,1B間の均圧工程が行われる。この場
合には、弁VA−4,VB−5が開かれ他の弁が閉じら
れる。吸着塔1Aはそれ迄吸着工程が行われていて圧力
が高く、吸着塔1Bはそれ迄脱着工程が行われていて圧
力が低くなっている。従って、吸着塔1A内に残留した
製造ガスは、この圧力差によって均圧ライン5を経て、
吸着塔1Aの下部より吸着塔1Bの上部へ入る。これに
より、吸着塔1A,1B内におけるガスの流れは共に下
降流となる。吸着塔1Aにおいては、残留した製造ガス
が吸着塔1Bへ排出されると共に圧力が減少して次の脱
着工程を円滑に開始することができ、また、吸着塔1B
には吸着塔1Aに残留した製造ガスが移されると共に圧
力が高められ、次の脱着工程を円滑に行うことができ、
かつ、製造ガスをロスなく製造ガスライン7へ流すこと
ができる。
The adsorption step of the adsorption tower 1A ends, and the adsorption step of the adsorption tower 1B ends (point X in FIG. 3).
Then, the pressure equalizing step between the adsorption towers 1A and 1B is performed. In this case, the valves VA-4 and VB-5 are opened and the other valves are closed. The adsorption tower 1A has been subjected to the adsorption step and has a high pressure, and the adsorption tower 1B has been subjected to the desorption step and have a low pressure. Therefore, the manufacturing gas remaining in the adsorption tower 1A passes through the pressure equalizing line 5 due to this pressure difference,
The lower part of the adsorption tower 1A enters the upper part of the adsorption tower 1B. As a result, the gas flows in the adsorption towers 1A and 1B both become downward flows. In the adsorption tower 1A, the residual production gas is discharged to the adsorption tower 1B and the pressure is reduced so that the next desorption process can be started smoothly.
The production gas remaining in the adsorption tower 1A is transferred to the chamber and the pressure is increased, so that the next desorption process can be performed smoothly.
Moreover, the production gas can be flown to the production gas line 7 without loss.

【0019】以上の均圧工程が終了すると、吸着塔1A
で脱着工程が行われ、吸着塔1Bで吸着工程が行われる
が、これは、前記吸着塔1Aで吸着工程が行われ吸着塔
1Bで脱着工程が行われる前記の場合の両吸着塔の関係
を逆にしたものに相当するので、その説明を省略する。
When the above pressure equalization process is completed, the adsorption tower 1A
The desorption step is performed in the adsorption tower 1B, and the adsorption step is performed in the adsorption tower 1B. This is because the adsorption step is performed in the adsorption tower 1A and the desorption step is performed in the adsorption tower 1B. Since it corresponds to the reverse, the description thereof is omitted.

【0020】また、吸着塔1Aで脱着工程が行われ吸着
塔1Bで吸着工程が行われた後の両吸着塔1A,1B間
の均圧工程の場合も、両吸着塔の関係は、前記した吸着
塔1Aで吸着工程が行われ吸着塔1Bで脱着工程が行わ
れた後の均圧工程における両塔吸着塔の関係を逆にした
ものに相当するので、その説明を省略する。
Also in the case of the pressure equalization step between the adsorption towers 1A and 1B after the desorption step is performed in the adsorption tower 1A and the adsorption step is performed in the adsorption tower 1B, the relationship between the adsorption towers is as described above. The description is omitted because it corresponds to the case where the relationship between the two adsorption towers in the pressure equalization step after the adsorption step is performed in the adsorption tower 1A and the desorption step is performed in the adsorption tower 1B is reversed.

【0021】以上の吸着塔1A,1Bにおけるガス分離
プロセスは図3に示されており、図3の下方の部分のA
〜Dにおける吸着塔1A,1Bにおける矢印は、同図上
方の部分のA〜Dにおけるガスの流れの方向を示してい
る。
The gas separation process in the adsorption towers 1A and 1B described above is shown in FIG. 3, and A in the lower part of FIG.
Arrows in the adsorption towers 1A and 1B in ~ D indicate the gas flow directions in AD in the upper part of the figure.

【0022】以上の通り、本実施の形態では、各吸着塔
において、吸着工程、脱着工程及び均圧工程を通じてガ
ス流れを常に下降流とすることができる。従って、各工
程を通じて吸着剤の受ける流動抵抗を動と同じ鉛直方向
下向きにするために、吸着剤の流動化を防止することが
でき、吸着塔内における空塔速度の上限を上げて吸着塔
を小型にして塔形状の自由度を高めることができる。
As described above, in the present embodiment, in each adsorption tower, the gas flow can be always made a downward flow through the adsorption step, the desorption step and the pressure equalization step. Therefore, in order to make the flow resistance of the adsorbent downward in the same vertical direction as the motion through each process, it is possible to prevent the fluidization of the adsorbent, and to raise the upper limit of the superficial velocity in the adsorption tower to increase the adsorption tower. The size of the tower can be reduced and the flexibility of the tower shape can be increased.

【0023】ちなみに、従来0.5〜0.6mm/se
cに設定された吸着塔の空塔速度の上限を、本実施の形
態では1m/sec以上にすることができ、吸着塔の塔
径をこれに対応して小さくし塔形状の自由度を向上させ
ることができる。
Incidentally, the conventional 0.5-0.6 mm / se
In the present embodiment, the upper limit of the superficial velocity of the adsorption tower set to c can be set to 1 m / sec or more, and the tower diameter of the adsorption tower is correspondingly reduced to improve the flexibility of the tower shape. Can be made.

【0024】本発明の実施の第2の形態を、図4によっ
て説明する。本実施の形態は、単塔式の吸着塔を用いる
ものであり、吸着塔を内蔵し、図2に示すものと同様な
構造をもつ吸着塔1の上部に原空ブロワ2と弁V−1を
備えた原料ガスライン4が接続され、吸着塔1の下部に
弁V−2をもつ脱着ライン6及び弁V−3をもつ製造ガ
スライン7がが接続されており、脱着ライン6には真空
ポンプは設けられていない。
A second embodiment of the present invention will be described with reference to FIG. The present embodiment uses a single tower type adsorption tower, which has a built-in adsorption tower and has an empty space blower 2 and a valve V-1 above an adsorption tower 1 having a structure similar to that shown in FIG. Is connected to a raw material gas line 4, a desorption line 6 having a valve V-2 and a production gas line 7 having a valve V-3 are connected to the lower part of the adsorption tower 1, and the desorption line 6 is vacuumed. No pump is provided.

【0025】本実施の形態においては、前記本発明の実
施の第1の形態と同様に吸着工程と脱着工程が行われる
が、均圧工程が行われない(図4(b)参照)。また、
原料ガスライン4を吸着塔1の上部に接続し、脱着ライ
ン6と製造ガスライン7を吸着塔1の下部に接続してい
るために、図4(a)中矢印に示すように吸着塔1内の
ガス流れを常に下降流とすることができる。
In this embodiment, the adsorption process and the desorption process are performed as in the first embodiment of the present invention, but the pressure equalization process is not performed (see FIG. 4 (b)). Also,
Since the raw material gas line 4 is connected to the upper part of the adsorption tower 1 and the desorption line 6 and the production gas line 7 are connected to the lower part of the adsorption tower 1, as shown by the arrow in FIG. The gas flow inside can always be a downward flow.

【0026】本発明の実施の第3の形態を、図5によっ
て説明する。本実施の形態は、前記本発明の実施の第2
の形態におけると同様な単塔式の吸着塔を用いるもので
あるが、前記本発明の実施の第2の形態における吸着塔
1の原料ガスライン4、脱着ライン6及び製造ガスライ
ン7に加えて、吸着塔の上部と下部にそれぞれ接続さ
れ、それぞれ弁V−4,V−5をもつ復圧用と減圧用の
均圧ライン21,22が設けられ、また脱着ライン6に
は真空ポンプ6が設けられている。
A third embodiment of the present invention will be described with reference to FIG. This embodiment is the second embodiment of the present invention.
The same single-column type adsorption tower as in the above embodiment is used, but in addition to the source gas line 4, desorption line 6 and production gas line 7 of the adsorption tower 1 in the second embodiment of the present invention, , Pressure equalization lines 21 and 22 connected to the upper part and the lower part of the adsorption tower and having valves V-4 and V-5, respectively, and pressure equalization lines 21 and 22 are provided, and a vacuum pump 6 is provided in the desorption line 6. Has been.

【0027】本実施の形態では、吸着工程と脱着工程は
前記本発明の実施の第2の形態と同様に行われるが、吸
着塔1の減圧時には弁V−5が開かれて吸着塔1内のガ
スを均圧ライン22より大気へ放出し(図5(b)のC
均圧)、また、吸着塔1の復圧時には弁V−4が開かれ
て大気を均圧ライン21より吸着塔1内へ吸入する(図
5(b)のA均圧)。本実施の形態においても、図5
(a)中矢印に示すように吸着塔1内のガス流れを常に
下降流とすることができる。
In this embodiment, the adsorption step and the desorption step are performed in the same manner as in the second embodiment of the present invention, but when the pressure of the adsorption tower 1 is reduced, the valve V-5 is opened and the inside of the adsorption tower 1 is opened. Of the gas is discharged to the atmosphere through the pressure equalizing line 22 (see C in FIG. 5B).
(Equal pressure equalization), and when the pressure in the adsorption tower 1 is restored, the valve V-4 is opened to suck the atmosphere into the adsorption tower 1 through the equalization line 21 (A equalization pressure in FIG. 5B). Also in this embodiment, FIG.
(A) As shown by the middle arrow, the gas flow in the adsorption tower 1 can always be a downward flow.

【0028】[0028]

【発明の効果】以上に説明したように、本発明は、吸着
塔内のガス流れを常に下降流とすることによって、各工
程を通じて吸着剤流動化を防止できる。これによって、
吸着塔内の空塔速度の上限を高くして、吸着塔の塔径を
小さくすることができ、塔形状の自由度を向上させるこ
とができる。また、これに伴って、吸着塔の低重量化及
び低コスト化を図ることができると共に、配置スペース
に合った自由な形の吸着塔を設計でき、大容量機への適
用も容易になる。
As described above, according to the present invention, the fluidization of the adsorbent can be prevented through each step by always making the gas flow in the adsorption tower downward. by this,
The upper limit of the superficial velocity in the adsorption tower can be increased to reduce the diameter of the adsorption tower, and the degree of freedom of the tower shape can be improved. In addition, along with this, it is possible to reduce the weight and cost of the adsorption tower, and it is possible to design an adsorption tower of a free form that fits the arrangement space, and it is easy to apply it to a large capacity machine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の第1の形態の系統図である。FIG. 1 is a system diagram of a first embodiment of the present invention.

【図2】同実施の形態の吸着塔の断面図である。FIG. 2 is a cross-sectional view of the adsorption tower of the same embodiment.

【図3】同実施の形態におけるガス分離プロセス図であ
る。
FIG. 3 is a gas separation process diagram in the same embodiment.

【図4】本発明の実施の第2の形態を示し、図4(a)
はその系統図、図4(b)はそのプロセス図である。
FIG. 4 shows a second embodiment of the present invention, and FIG.
Is a system diagram thereof, and FIG. 4B is a process diagram thereof.

【図5】本発明の実施の第3の形態を示し、図5(a)
はその系統図、図5(b)はそのプロセス図である。
FIG. 5 shows the third embodiment of the present invention, and FIG.
Is a system diagram thereof, and FIG. 5 (b) is a process diagram thereof.

【図6】従来のPSAガス分離装置の系統図である。FIG. 6 is a system diagram of a conventional PSA gas separation device.

【図7】同従来のPSAガス分離装置のガス分離プロセ
ス図である。
FIG. 7 is a gas separation process diagram of the conventional PSA gas separation device.

【符号の説明】[Explanation of symbols]

1,1A,1B 吸着塔 2 原料空気ブロワ 3 真空ポンプ 4 原料ガスライン 5 均圧ライン 6 脱着ガスライン 7 製造ガスライン 13 多孔質の空円柱 V1〜V5 弁 VA−1〜VA−5 弁 VB−1〜VB−5 弁 1, 1A, 1B Adsorption tower 2 Raw material air blower 3 Vacuum pump 4 Raw material gas line 5 Pressure equalizing line 6 Desorption gas line 7 Production gas line 13 Porous empty cylinder V1 to V5 valve VA-1 to VA-5 valve VB- 1-VB-5 valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加圧下で原料ガス中の分離成分を吸着剤
に吸着させて製造ガスを得る吸着工程、及び減圧下で吸
着された前記分離成分を吸着剤から脱着する脱着工程を
行う吸着塔を具えた圧力スイング吸着式ガス分離装置に
おいて、吸着塔内のガスの流れを吸着及び脱着の全工程
において下降流とすることを特徴とする圧力スイング吸
着式ガス分離装置の通ガス方法。
1. An adsorption tower which performs an adsorption step of adsorbing a separation component in a raw material gas under pressure to an adsorbent to obtain a production gas, and a desorption step of desorbing the adsorbed separation component from the adsorbent under reduced pressure. In the pressure swing adsorption type gas separation apparatus comprising the above, the gas flow in the pressure swing adsorption type gas separation apparatus is characterized in that the flow of gas in the adsorption tower is made a downward flow in all steps of adsorption and desorption.
【請求項2】 吸着塔を複数個並列に設けて、各吸着塔
内で吸着工程と脱着工程を交互に繰り返し行うと共に吸
着工程と脱着工程の間で複数の吸着塔内を均圧させる均
圧工程を行うようにした圧力スイング吸着式ガス分離装
置の各吸着塔内のガスの流れを、吸着及び脱着工程に加
えて均圧工程においても下降流とすることを特徴とする
請求項1に記載の圧力スイング吸着式ガス分離装置の通
ガス方法。
2. A pressure equalizing device in which a plurality of adsorption towers are provided in parallel, the adsorption step and the desorption step are alternately repeated in each adsorption tower, and the pressures in the plurality of adsorption towers are equalized between the adsorption step and the desorption step. The gas flow in each adsorption tower of the pressure swing adsorption type gas separation device adapted to perform the steps is made to be a downflow also in the pressure equalization step in addition to the adsorption and desorption steps. Of the pressure swing adsorption type gas separation device of the above.
【請求項3】 複数個の吸着塔の原料ガス供給ラインを
接続するラインと製造ガスを排出する製造ガスラインを
接続する均圧ラインによって複数個の吸着塔内を均圧さ
せることを特徴とする請求項2に記載の圧力スイング吸
着式ガス分離装置の通ガス方法。
3. The pressure in the plurality of adsorption towers is equalized by a pressure equalizing line connecting a line connecting the raw material gas supply lines of the plurality of adsorption towers and a production gas line discharging the production gas. The gas passing method of the pressure swing adsorption type gas separation device according to claim 2.
【請求項4】 脱着ガスラインに接続された多孔質の空
円筒を吸着塔内の中央に配置して脱着工程において吸着
塔内の中央より脱着ガスを排出することを特徴とする請
求項1又は2に記載の圧力スイング吸着式ガス分離装置
の通ガス方法。
4. The desorption gas is discharged from the center of the adsorption tower in the desorption step by disposing a porous hollow cylinder connected to the desorption gas line in the center of the adsorption tower. 2. The gas passing method of the pressure swing adsorption type gas separation device according to 2.
JP7256337A 1995-10-03 1995-10-03 Gas passing method for pressure swing adsorption type gas separating device Withdrawn JPH0994423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7256337A JPH0994423A (en) 1995-10-03 1995-10-03 Gas passing method for pressure swing adsorption type gas separating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7256337A JPH0994423A (en) 1995-10-03 1995-10-03 Gas passing method for pressure swing adsorption type gas separating device

Publications (1)

Publication Number Publication Date
JPH0994423A true JPH0994423A (en) 1997-04-08

Family

ID=17291276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7256337A Withdrawn JPH0994423A (en) 1995-10-03 1995-10-03 Gas passing method for pressure swing adsorption type gas separating device

Country Status (1)

Country Link
JP (1) JPH0994423A (en)

Similar Documents

Publication Publication Date Title
US5169413A (en) Low temperature pressure swing adsorption with refrigeration
JP3838854B2 (en) Adsorbent bed restraint for adsorbers
EP0769319B1 (en) Duplex adsorption process
BRPI0618155A2 (en) vacuum pressure swing adsorption process and system
KR950016837A (en) How to adjust vacuum pressure adsorption system
JP5902920B2 (en) Nitrogen gas production method, gas separation method and nitrogen gas production apparatus
JPH0257972B2 (en)
AU4867200A (en) Air separation using monolith adsorbent bed
AU784559B2 (en) adsorption processes
KR20010052184A (en) Pressure swing adsorption gas separation method, using adsorbents with high intrinsic diffusivity and low pressure ratios
NO179129B (en) Method of separating gas mixtures
KR100221006B1 (en) Nitrogen psa with intermediate pressure transfer
JPH0994423A (en) Gas passing method for pressure swing adsorption type gas separating device
JPH1190157A (en) Method and plant for separating air by adsorption
JP4895467B2 (en) Oxygen concentration method and oxygen concentration apparatus
KR102018322B1 (en) Adsorber system for adsorption process and method of separating mixture gas using its adsorption process
KR20050030957A (en) Method of separating target gas
JP2691991B2 (en) Gas separation method
JP2001269532A (en) Pressure fluctuation adsorption air separation method
JP2981303B2 (en) Method for separating gaseous impurities from gas mixtures
JP4611514B2 (en) Hydrogen gas separation method
JPS60161309A (en) Production of oxygen-enriched gas
JPH07284624A (en) Device for continuously recovering specified gas with molecular-sieve adsorbent using fluidized bed
JP2001327829A (en) Pressure swing adsorber
CN115040982A (en) Air separation nitrogen production process of full-temperature-range simulated rotary moving bed pressure swing adsorption (FTrSRMPSA)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203