JPS60161309A - Production of oxygen-enriched gas - Google Patents

Production of oxygen-enriched gas

Info

Publication number
JPS60161309A
JPS60161309A JP59014324A JP1432484A JPS60161309A JP S60161309 A JPS60161309 A JP S60161309A JP 59014324 A JP59014324 A JP 59014324A JP 1432484 A JP1432484 A JP 1432484A JP S60161309 A JPS60161309 A JP S60161309A
Authority
JP
Japan
Prior art keywords
oxygen
tower
gas
product
rich gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59014324A
Other languages
Japanese (ja)
Inventor
Eiji Hirooka
広岡 永治
Tsuneo Miyoshi
三好 常雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP59014324A priority Critical patent/JPS60161309A/en
Priority to GB08500233A priority patent/GB2154895B/en
Priority to KR1019850000594A priority patent/KR850005285A/en
Publication of JPS60161309A publication Critical patent/JPS60161309A/en
Priority to SG65087A priority patent/SG65087G/en
Priority to MYPI87001699A priority patent/MY101185A/en
Priority to HK905/87A priority patent/HK90587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To produce O2-enriched gas with high efficiency by combining specified processes utilizing adsorption under varied pressure and separating N2 from a gaseous mixture consisting essentially of O2 and N2. CONSTITUTION:Three adsorption towers packed with adsorbent are used. A primary pressure equalizing process is proceeded by connecting a tower A with another tower B or C at the end parts of produced gas of each tower wherein pressurized gaseous mixture is fed from an end part of the feed gas of the tower A, and the tower B or C has been already pressurized by the gaseous mixture to a specified pressure and discharges produced O2-enriched gas. Further, a purging process is performed for cleaning the inside of the adsorption towers by introducing O2-enriched gas from other tower from the produced gas end of the tower while the tower is evacuated from the feed gas end and desorption of N2 is being carried out. Thus, O2-enriched gas as product is discharged continuously without interruption during the cycles of the processes.

Description

【発明の詳細な説明】 技術分野 本発明は、富酸素ガスの製造方法に関する。更に詳しく
述べるならば、本発明は、窒素を選択的に吸着する吸着
剤を用い、圧力変動吸着により、空気の如き酸素及び窒
素を含む混合ガスから窒素を吸着除去して富酸素ガスを
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a method for producing oxygen-rich gas. More specifically, the present invention uses an adsorbent that selectively adsorbs nitrogen to adsorb and remove nitrogen from a mixed gas containing oxygen and nitrogen, such as air, by pressure fluctuation adsorption to produce oxygen-rich gas. Regarding the method.

従来技術 合成ゼオライトや天然ゼオライト等の吸着剤の窒素に対
するj!択吸着性を利用し、圧力変動吸着により、空気
の如き酸素/窒素混合ガスを分離して、富酸素ガスを製
造することは知られている(例えば、特公昭51−40
549及び51−40550、及び特開昭56−fi3
804及び58−84020 )。このような方法で富
酸素がスを製造するに当っては、吸着剤の床を含む複数
の吸着塔”のそれ−Bれにおいて、酸素/g素混合ガス
を導入して窒素を吸着除去し、雛吸着性の酸素が濃縮富
化されたガスを吸着塔より導性して製品ガスとするので
ある。そして、吸着塔内の吸着剤を再生するための減圧
、ノ9−ジ、排気等の工程と前記吸着分離工程を順次に
各吸着塔内において切換操作するのである。
Conventional technology adsorbents such as synthetic zeolite and natural zeolite for nitrogen! It is known that an oxygen-rich gas can be produced by separating an oxygen/nitrogen mixed gas such as air by pressure fluctuation adsorption using selective adsorption (for example, Japanese Patent Publication No. 51-40
549 and 51-40550, and JP-A-56-fi3
804 and 58-84020). In producing oxygen-enriched gas using this method, nitrogen is adsorbed and removed by introducing an oxygen/g element mixed gas into a plurality of adsorption towers each containing a bed of adsorbent. The gas enriched with concentrated oxygen adsorbed by the chicks is made conductive from the adsorption tower to become a product gas.Then, pressure reduction, injection, exhaust, etc. are performed to regenerate the adsorbent in the adsorption tower. The step and the adsorption/separation step are sequentially switched in each adsorption tower.

しかし、従来公知の、圧力変動吸着による、このような
富酸素ガスの製造方法においては、酸素の分離回収効率
が十分でなかったり、捷だ製品ガス生成隼当りのエネル
ギー消費量が大きかったりする等の問題があり、なお改
良の余地があるのである。
However, in the conventionally known method for producing oxygen-rich gas using pressure fluctuation adsorption, there are problems such as insufficient oxygen separation and recovery efficiency and high energy consumption per product gas produced. There are still problems, and there is still room for improvement.

発明の目的 本発明は、主として、酸素の分離回収効率が従来の方法
に比較して高く、かつ製品がス生成量当りのエネルギー
消費量が小さい、圧力変動吸着による富酸素ガスの製造
方法を提供することを目的とする。
OBJECTS OF THE INVENTION The present invention mainly provides a method for producing oxygen-rich gas by pressure fluctuation adsorption, which has higher oxygen separation and recovery efficiency than conventional methods and consumes less energy per amount of product produced. The purpose is to

発明の構成 不発明によれば、即ち、窒素を選択的に吸着する吸着剤
の床を充填した3個の吸着塔を用い、前記吸着塔に酸素
及び窒素を含む混合ガスを流連させて窒素を吸着除去す
ることにより、富酸素ガスを製造する方法が提供される
。本発明に係るこの方法は、第1の吸着塔において、順
次に、(1)原料端部から加圧混合ガスを導入し、同時
に第2の吸着塔からの富酸素ガスを製品端部より導入し
て、前記第2の吸着塔と均圧化させる工程、 (2)原料端部から加圧混合ガスを導入して窒素を選択
的に吸着させ、同時に製品端部から富酸素ガスを導出し
ながら、塔内圧力を上昇させる工程、 (3)加圧混合ガスの導入を停止し、製品端部から富酸
素ガスを導出しなが呟この富酸素ガスの一部を筆3の吸
着塔の製品端部に供給して、前記第3の吸着塔と均圧化
させる工程、 (4)製品4j (fl(から富酸素ガスを導出し、こ
の富酸素ガスを第2の吸着塔の/Z’−ジのために前記
第2の吸着塔の製品端に供給する工程、 (5)原料端部から減圧排気する工程、及び(6)原料
端部から真空排気しながら、第3の吸着塔からの富酸素
ガスを製品端部より導入して塔内をパージする工程、 を実施し、更にその間に前記工程サイクルを第2及び第
3の吸着塔のそれぞねにおいて位相を変えて実施するこ
とを特徴とする。
According to the invention, three adsorption towers filled with a bed of adsorbent that selectively adsorbs nitrogen are used, and a mixed gas containing oxygen and nitrogen is made to flow through the adsorption towers to remove nitrogen. A method is provided for producing oxygen-rich gas by adsorption and removal. In this method according to the present invention, in the first adsorption tower, (1) a pressurized mixed gas is introduced from the end of the raw material, and at the same time, oxygen-rich gas from the second adsorption tower is introduced from the end of the product; (2) Introducing pressurized mixed gas from the end of the raw material to selectively adsorb nitrogen, and at the same time leading out oxygen-rich gas from the end of the product. (3) The introduction of the pressurized mixed gas is stopped, and the oxygen-rich gas is drawn out from the end of the product. (4) Deriving oxygen-rich gas from the product 4j (fl) and supplying the oxygen-rich gas to the /Z of the second adsorption tower; (5) evacuation from the end of the raw material under reduced pressure, and (6) while evacuation from the end of the raw material, supplying the product to the product end of the second adsorption tower. A step of purging the inside of the column by introducing oxygen-rich gas from the end of the product, and during this step, the process cycle is carried out with the phase changed in each of the second and third adsorption columns. It is characterized by

発明の構成の具体的説明 本発明は、圧力変動吸着を利用して、空気の如き、主と
して酸素及び窒素を含む混合ガスから、窒素を分+I!
ltL 、富酸素ガスを得るものである。即ち、合成セ
°オライド、天然ゼオライト等の吸着剤が充フされてい
る吸着塔に加圧した混合ガスを供給し、この吸着剤に窒
素を吸着させ、酸素を濃縮して製品ガスとして放出させ
る。次に、窒素を吸着した吸着剤が充填されている吸着
塔を原料端側から真空圧に吸引することにより、吸着剤
に吸着された窒素を脱着させる。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes pressure fluctuation adsorption to extract nitrogen from a mixed gas mainly containing oxygen and nitrogen, such as air.
ltL, to obtain oxygen-rich gas. That is, a pressurized mixed gas is supplied to an adsorption tower filled with an adsorbent such as synthetic ceolide or natural zeolite, and the adsorbent adsorbs nitrogen, concentrating oxygen and releasing it as a product gas. . Next, the nitrogen adsorbed by the adsorbent is desorbed by vacuuming the adsorption column filled with the adsorbent adsorbing nitrogen from the raw material end side.

本発明においては、吸着剤を充填した3個の吸着塔が用
いられ、1つの塔の原1sI端部から加圧された混合ノ
fスを供給しながら、既に混合ガスによって所定圧まで
昇圧され、酸素富化された製品ガスを放出しつつある他
の塔とそれぞれ製品端部を連絡し合って両塔間の圧力の
均等化を行う均圧の工程が行われる。また、原料端側か
ら真空圧に吸引され、窒素が脱着されている間に、その
塔の製品端から他塔からの富酸素ガスを導入して塔内を
洗滌するパージの工程が実施される。そして、製品の富
酸素ガスは、工程サイクルの間絶えることなく連続的に
放出される。
In the present invention, three adsorption towers filled with adsorbent are used, and while pressurized mixed gas is supplied from the raw end of one tower, the pressure has already been increased to a predetermined pressure by the mixed gas. Then, a pressure equalization process is performed in which the product end is connected to another column which is discharging oxygen-enriched product gas, and the pressure between the two columns is equalized. In addition, while nitrogen is being desorbed by vacuum suction from the raw material end, a purge process is carried out in which oxygen-rich gas from another tower is introduced from the product end of the tower to clean the inside of the tower. . The product oxygen-rich gas is then released continuously during the process cycle.

しかして、均圧に、吸着塔の製品端部から富酸素ガスを
供給することにより、塔内における窒素の吸着前線を短
かく押えて、得られるガス中の酸酸素濃度を高くする効
果を奏する。・ヤ−・りは、窒素の真空脱着の間に富−
酵素ガスを製品端部から供給して塔内を通過させること
により、塔内の9素分圧を下げてより脱着効果を増加さ
せるとともに、真空脱着のための時間を短縮して動力コ
ストを節減する効果を奏する。
Therefore, by supplying oxygen-rich gas from the product end of the adsorption tower to equalize the pressure, it is possible to shorten the nitrogen adsorption front in the tower and increase the acid-oxygen concentration in the resulting gas. .・Year is enriched during vacuum desorption of nitrogen.
By supplying enzyme gas from the end of the product and passing it through the column, the partial pressure of the 9 elements in the column is lowered, increasing the desorption effect, and reducing the time for vacuum desorption, reducing power costs. It has the effect of

このような構成を有する本発明の方法によれば、酸素濃
度の高い、特に90〜93係又はそれ以上の酸素濃度の
、富酸素ガスを極めて高い効、率をもって製造すること
が可能となる。そして、真空ポンプも捷た、サイクルの
間常に有効に作動される。
According to the method of the present invention having such a configuration, it is possible to produce an oxygen-rich gas with a high oxygen concentration, particularly an oxygen concentration of 90 to 93 or more, with extremely high efficiency and efficiency. The vacuum pump is also turned off and remains active throughout the cycle.

以下、本発明の方法を、第1図を参照しながら具体的に
説明するが、以下に示す操作は一例であって、この操作
のみに限定されないものであることを理解されたい。
Hereinafter, the method of the present invention will be specifically explained with reference to FIG. 1, but it should be understood that the operations shown below are merely examples and are not limited to these operations.

操作に肖っては、以下に説明する6エ程を順次繰返しな
がら連続的に富酸素ガスを放出する。また、各工程の操
作時間は、タイマーにより任意にコントロールされ得る
構成としている。
In operation, oxygen-rich gas is continuously released by sequentially repeating the six steps described below. Further, the operation time of each step can be arbitrarily controlled by a timer.

′工程1 弁1Aが開かれ、加圧さねた空気20がミストセ・ぐレ
ータ21により除湿されて、A塔の下部即ち原料端部か
ら供給される。同時に、弁2A、2Cが開かれ、既に前
段階(工86)で加圧さf′した空気により所定圧力ま
で昇圧されつつ、弁12Cが開かれて製品の富酸素ガス
を放出しているC塔とが管18により連結されて、C塔
の上部即ち製品端部から富酸素ガスをA塔の製品端部に
導入することにより、A塔とC塔との間の圧力が均等化
される(均圧)。この際、C塔からの富酸素ガスの流出
速度は、バルブ6A、6Cによりコントロールされる。
'Step 1 The valve 1A is opened, the pressurized air 20 is dehumidified by the mist separator 21, and is supplied from the lower part of the A tower, that is, the end of the raw material. At the same time, valves 2A and 2C are opened, and while the pressure is increased to a predetermined pressure by the air already pressurized in the previous step (step 86), valve 12C is opened to release the oxygen-rich gas of the product. The pressure between the A column and the C column is equalized by connecting the columns with a pipe 18 and introducing oxygen-rich gas from the upper part of the C column, that is, the product end, to the product end of the A column. (equal pressure). At this time, the outflow rate of oxygen-rich gas from the C tower is controlled by valves 6A and 6C.

一方、弁4Bが開かれ減圧し、真空ポン7’19によっ
てB塔が減圧排気される。
On the other hand, the valve 4B is opened to reduce the pressure, and the B tower is evacuated by the vacuum pump 7'19.

工程2 弁2A 、12Cが閉じられると同時に弁12Aが開か
れ、製品ガスはA塔から放出される。A塔は製品ガスを
放出しつつ、バルブIA全通して加圧された空気の供給
を受けて、次第に塔内の圧力が高められていく。一方、
弁3Bが開かれ、C塔の製品端部より富酸素ガスがB塔
の製品端部に供給され、B塔内を向流方向に洗滌しなが
ら、真空ボンデ19によって系外に排出される(・クー
ツ)。
Step 2 Valve 2A and 12C are closed and at the same time valve 12A is opened, and product gas is discharged from A column. While releasing product gas, tower A is supplied with pressurized air through valve IA, and the pressure inside the tower is gradually increased. on the other hand,
The valve 3B is opened, and oxygen-rich gas is supplied from the product end of the C tower to the product end of the B tower, and is discharged to the outside of the system by the vacuum bonder 19 while washing the inside of the B tower in the countercurrent direction.・Coutts).

C塔は、B塔に富酸素ガスを供給しつつ、更に減圧し七
いく。C塔からの富酸素ガスの供給速度はバルブ17に
よってコントロールされる。
The C tower supplies oxygen-rich gas to the B tower while further reducing the pressure. The feed rate of oxygen-enriched gas from the C column is controlled by valve 17.

工程3 弁IA、2C,4Bが閉じられ、新たに弁IBが開かハ
で、加圧さねた空気がB塔の原料端部より供給される。
Step 3 Valves IA, 2C, and 4B are closed, and valve IB is newly opened to supply pressurized air from the raw material end of the B column.

同時に、弁2A、2Bが開かれ、A塔の製品端部から富
酸素ガスがB塔の製品端部に供給さflて、A塔及びB
塔間の圧力が均憩化される(均圧)。この119.、A
塔からの富酸素ガスの汁出速度は、バルブ6A、6Bに
よりコントロールさハる。一方、弁3Bが閉じらね、弁
4Cが開かれ減圧い直空・iンプ19によってC塔が減
圧排気される。
At the same time, valves 2A and 2B are opened, and oxygen-rich gas is supplied from the product end of the A column to the product end of the B column.
The pressure between the columns is equalized (pressure equalization). This 119. ,A
The rate of extraction of oxygen-rich gas from the column is controlled by valves 6A and 6B. On the other hand, the valve 3B does not close, but the valve 4C opens, and the C tower is depressurized and exhausted by the depressurized direct air/input pump 19.

工程4 弁2B、12Aが閉じられると同時に弁12Bが開かれ
、製品ガスIl″jXB塔より放出さね、る。B塔は製
品ガスを放出しつつ、・ぐルブIBを通して加圧された
空気の供給を受けて、次第に塔内の圧力が高められてい
く。一方、弁3Cが開かれ、A塔の製品端部から富酸素
ガスがC塔の製品端部に供給され、C塔内を向流方向に
洗滌しながら、X′9チンプ19によって系外に排出さ
れる(ツヤージ)。
Step 4 Valve 2B and 12A are closed, and at the same time valve 12B is opened to release the product gas from the column Il''jXB. While the B column releases the product gas, it also releases the pressurized air through Group IB. The pressure inside the column is gradually increased.Meanwhile, valve 3C is opened, and oxygen-rich gas is supplied from the product end of the A column to the product end of the C column. While being washed in the countercurrent direction, it is discharged out of the system by the X'9 chimp 19 (throw).

A塔は、C塔に富酸素ガスを供給しつつ、更に減圧して
いく。A塔からの富酸素−/fスの供給速度はバルブ1
7によってコントロールされる。
Tower A further reduces the pressure while supplying oxygen-rich gas to tower C. The supply rate of oxygen-rich oxygen-/fs from A tower is determined by valve 1.
Controlled by 7.

工程5 弁IB、2A、4Cが閉じられ、新たに弁ICが開かれ
て、加圧された空気がC塔の原料端部より供給される。
Step 5 Valves IB, 2A, and 4C are closed, valve IC is newly opened, and pressurized air is supplied from the raw material end of the C tower.

同時に、弁2B 、2Cが開かれ、B塔の製品りIbか
ら富酸素ガスがC塔の製品端部に供給されて、B塔及び
C塔間の圧力が均等化される(均圧)。この際、B塔か
らの富酸素がスの流出速度は、バルブ5B、6Cによっ
てコントロールされる。一方、弁3Cが閉じられ、弁4
Aが、開かれ減圧し、真空ポンプ19によってA塔が減
圧排気される。
At the same time, valves 2B and 2C are opened, and oxygen-rich gas is supplied from the product stream Ib of the B column to the product end of the C column, so that the pressure between the B column and the C column is equalized (pressure equalization). At this time, the outflow rate of oxygen-enriched gas from the B tower is controlled by valves 5B and 6C. Meanwhile, valve 3C is closed and valve 4
A is opened and depressurized, and the A column is evacuated by the vacuum pump 19.

工程6 弁2C,12Bが閉じられると同時に弁12C’が開か
力、て、製品ガスがC塔より放出される。C塔に1i、
lj品rスを放出しつつ、バルブICf通して加圧され
た空気のイi(給を受けて、次第に各自の圧力が高めら
れてい〈。一方、弁3Aが開かハフ、B塔の製品gra
部から富酸素ガスがA塔の製品晧部に供J”lされ、A
塔内を向汗方向に洗Aiシながら、直空ポンプ19によ
って系外に排出される(パーク)。
Step 6: At the same time as valves 2C and 12B are closed, valve 12C' is opened and product gas is released from the C tower. 1i in C tower,
While discharging the product gras, the respective pressures are gradually increased as pressurized air is supplied through valve ICf.Meanwhile, valve 3A is opened and the product gra from column B is released.
Oxygen-rich gas is supplied from the A section to the product section of the A tower, and
While cleaning the inside of the tower in the anti-perspirant direction, it is discharged outside the system by the direct air pump 19 (park).

B塔に、A塔に富酸素ガスを供給しつつ、史に減圧して
いく。B塔からの富酸素ガスの41(給凍度にバルブ1
7によってコントロールされる。
While supplying oxygen-rich gas to tower B and tower A, the pressure is gradually reduced. 41 of the oxygen-rich gas from the B tower (valve 1 to the degree of freezing)
Controlled by 7.

尚、第1図において、22は製品である富酸素ガスの流
出流を示し、23は分++l#除去された窒素の流出流
を示す。
In FIG. 1, 22 indicates the outflow of oxygen-rich gas as a product, and 23 indicates the outflow of nitrogen that has been removed.

以上の説明からも理解されるように、上記の6エ程は、
工程1及び2を1つの単位として、塔と塔との関係にお
いて1塔づつ位相を変えていきながら、繰り返し行うも
のである。第2図及び第3[ツ1に、これらの基本的な
2工程(工程1及び2)を説明する模式図である。
As can be understood from the above explanation, the above 6 steps are:
Steps 1 and 2 are treated as one unit, and the steps are repeated while changing the phase of each column one by one. FIGS. 2 and 3 are schematic diagrams illustrating these two basic steps (steps 1 and 2).

以上に説明した通り、本発明の方法においては、各塔内
の圧力は、絶えず変動していて、−瞬も一定圧力にとど
才ることがない。これば、各塔間において互いに酸素を
やりとりすることによって、系外に排出される酸素の量
をできるだけ少なくして酸素収率を向上させるためのも
のであり、捷だ加圧側及び漬空側において最高吸着圧力
及び真空到達圧力を高い範囲のものとしても、平均圧力
及び平均真空圧をできる限り低くして動力コストを引き
下げるためのものである。
As explained above, in the method of the present invention, the pressure within each column is constantly fluctuating and never remains at a constant pressure for a moment. This is to improve the oxygen yield by reducing the amount of oxygen discharged outside the system as much as possible by exchanging oxygen between each column. Even if the maximum adsorption pressure and the ultimate vacuum pressure are set in a high range, the average pressure and the average vacuum pressure are kept as low as possible to reduce the power cost.

また、パージは、高い酸素濃度の製品ガスを安定してイ
1)るために欠かすことのできない操作であるけれども
、最高パーク量のコントロールはその絶対量を特に知る
必要はなく、パージ用の酸素を供給する塔の圧力低下量
(・ξ−ジΔPで表す)として考えればよい。ノ々−ジ
ΔPは、通常、O1〜10kP/iの範囲で、最高吸着
圧、真空到達圧及びサイクルタイム毎に、最高の酸素濃
度と回収率の得られる・ぐ−ジ叶を決定する。
In addition, although purge is an essential operation for stably producing product gas with a high oxygen concentration (1), controlling the maximum park amount does not require knowing the absolute amount; It can be considered as the amount of pressure drop (represented by .xi.-di.DELTA.P) in the column that supplies the . Nonoji ΔP is usually in the range of 01 to 10 kP/i, and the best oxygen concentration and recovery rate are determined for each maximum adsorption pressure, ultimate vacuum pressure, and cycle time.

圧力変動吸着による富酸繋ガス製造プロセスの効率を評
価する因子は、酸素濃度と同収率であるが、他にもう1
つの因子として単位時間における吸着剤、例えがモレキ
ュラーシーブ、の量と酸素製造骨との比があげられる。
The factors that evaluate the efficiency of the acid-rich gas production process using pressure fluctuation adsorption are oxygen concentration and yield, but there is also one other factor.
One factor is the ratio of the amount of adsorbent, such as a molecular sieve, to the oxygen-producing bone per unit time.

以下の実施例においては、この因子をペッドザイズファ
クター(’B、S、F、)と称し、その単位を(kl?
・MS )/(t −0,、/d ) [(kg・モレ
キュラーシーブ)/(トン・100係02/日)〕とし
て表す。このB、S、F、kt、プロセス及びモレキュ
ラーシーブの品質に関係する因子であるが、品質の同じ
モレキュラーシーブを使用した場合にはプロセスの評価
のための因子として役立つものである。そして、上記の
単位より明らかなように、B、S 、F、が小さい値を
示す方が好ましいプロセスであるとすることがでへるの
である。
In the following examples, this factor will be referred to as the ped size factor ('B, S, F,), and its units will be (kl?
・MS)/(t-0,,/d) [(kg・molecular sieve)/(ton・100 units 02/day)] These B, S, F, and kt are factors related to the quality of the process and the molecular sieve, but when molecular sieves of the same quality are used, they serve as factors for evaluating the process. As is clear from the above units, a process in which B, S, and F exhibit small values can be considered a preferable process.

実施例 以下、実施例により本発明を史に詳しく説明゛する。Example Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 】塔が内径81cTL、高さ25惧の体棺f:有する三
基式の吸着塔に、吸着剤としてモレキュラーシーブ13
X°の大きさ8〜12メ、シュのビーズを1塔当り9.
14に9使用した。運転条件どして、最高吸着圧力0.
5 k2AG、真空到達圧20 Q Torr 。
Example 1 A three-base adsorption tower with an inner diameter of 81 cTL and a height of 25 cm was equipped with molecular sieve 13 as an adsorbent.
X° size 8-12 mesh beads per tower 9.
I used 9 out of 14. Under all operating conditions, the maximum adsorption pressure was 0.
5 k2AG, ultimate vacuum pressure 20 Q Torr.

ノ神ジΔP O,’ 2 kg/crlとし、ザイクル
タイムは実験番号毎に変更して、前述の工程に従って連
続連転したところ、第1表に示す結果が得られた。
When the cycle time was changed for each experiment number and continuous rotation was carried out according to the above-mentioned process, the results shown in Table 1 were obtained.

以下余白 実施例2 実施例1と同じ三基式吸着塔を用いて、運転条件として
最高吸着圧力0.5 kg/crn”、G 、 Jj、
空到達圧360Torr、zw−ジΔP0.27にφ/
dとし、サイクルタイムけf駒番号毎に変更して、前述
の工程に従って連続運転したところ、第2表に示す結果
が得られた。
Below are blank spaces Example 2 Using the same three-base adsorption tower as in Example 1, the operating conditions were a maximum adsorption pressure of 0.5 kg/crn'', G, Jj,
Ultimate air pressure 360 Torr, zw-diΔP0.27 to φ/
d, cycle time f was changed for each frame number, and continuous operation was performed according to the above-mentioned process. The results shown in Table 2 were obtained.

以下余白 比較例1 ヂ施例1と同じ吸着塔を用いて、運転条件として最高吸
着圧力0.5 kg/crr?G、直窒到達圧200T
orrでノや−ジΔp o kg/cザ(パージを行わ
ない)とし、サイクルタイムは実験番且毎に変更して前
述の工程に従って連続運転したところ、第3表に示す結
果が得られた。この実験では酸素成度は85係以上には
ならず、又酸素収率も実施例1に示す値の比較例2 実施例1と同じ吸着塔を用いて、運転条件゛として量高
吸着圧力0.5 kg7賞哨であるが、真空に吸引しな
い(即ち真空f? 7 fを一停止したまま)で自圧で
ブローダウンすることによって減圧させた。パージΔP
を0.2 kg/ctrl!とじ、サイクルタイムは各
実験番号毎に変更して連続運転をしたところ、第4表に
示す結果が得られたが、濃度及び収率とも極めて低いも
のしか得られなかった。
Comparative Example 1 The following is a margin Comparative Example 1 Using the same adsorption tower as in Example 1, the operating conditions were a maximum adsorption pressure of 0.5 kg/crr? G, direct nitrogen ultimate pressure 200T
When the cycle time was changed for each experiment number and continuous operation was performed according to the process described above, the results shown in Table 3 were obtained. . In this experiment, the oxygen concentration did not exceed 85 coefficients, and the oxygen yield was also the value shown in Example 1. Comparative Example 2 Using the same adsorption tower as in Example 1, the operating conditions were ``high volume adsorption pressure 0''. The pressure of the .5 kg7 test was reduced by blowing it down under its own pressure without suctioning it into a vacuum (that is, keeping the vacuum f?7 f temporarily stopped). Purge ΔP
0.2 kg/ctrl! Continuous operation was performed by changing the closing and cycle time for each experiment number, and the results shown in Table 4 were obtained, but only extremely low concentrations and yields were obtained.

以下余白Below margin

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を説明するための系統図であり、第
2図及び第3図はそれぞれ本発明方法の工程操作順序を
示す模式図である。 A、BX C・・・吸゛着塔;IA〜IC,2A〜2C
。 3A〜3C,4A〜4C・・・弁;19・・・真空ポン
プ。 菅許出顧人 昭和電工株式会社 特許出願代理人 弁理士 青 木 朗 弁理士 西舘和之 弁理士 吉 1)維 夫 弁理士 山 口 昭 之 弁理士 西山雅也 第2A図 第3図 吸着塔
FIG. 1 is a system diagram for explaining the method of the present invention, and FIGS. 2 and 3 are schematic diagrams showing the order of process operations of the method of the present invention, respectively. A, BX C... adsorption tower; IA~IC, 2A~2C
. 3A to 3C, 4A to 4C... Valve; 19... Vacuum pump. Mr. Kan, Patent Attorney, Showa Denko K.K., Patent Attorney, Akira Aoki, Patent Attorney, Kazuyuki Nishidate, Patent Attorney.

Claims (1)

【特許請求の範囲】 1 窒素を訳択的に吸着する郡着剤の床を充填した3個
の吸着塔を用い、前記吸着塔に酸素及び窒素を含む混合
ガスを流連させて窒素を吸着除去することにより、富酸
素ガスを製造する方法であって、汀IJの吸着塔におい
て、l111M次に、(1)原料端部から加圧混合ガス
を導入し、同時にty2の@〃1塔からの富酸素ガスを
製品ヴλ1部より導入して、前記第2の吸着塔と均圧化
させる工程、 (2)原料i>、I’ BIXから加圧重合ガスを導入
してq1工をdVl択的に吸〃fさせ、同111!iに
偶J品Cf%部から富酸素ガスを2心出しながら、塔内
圧力を上昇させる工程、(3)加圧混、合力スの導入を
停止し、製品ケ、“’p’ fll+から富酸素ガスを
導出しながら、この富酸素ガスの一部を枦3の吸着塔の
製品端部に供給して、前N’、、 m 3の吸着塔と均
圧化させる工程、(4)製品端部から富酸素ガスを導出
し、この富酸素ガスを第2の吸着塔のパーツのために前
記第2の吸着塔の製品端に供給する工程、 (5)原料端部から減圧排気する工程、及び(6)原料
端部から真空排気しながら、第3の吸着塔からの富酸素
ガスを製品何部より導入して塔内をパージする工程、 を実施し、更にその間に前=a工程サイクルを第2及び
第3の吸着塔のそれぞれにおいて位相を変えて実施する
ことを特徴とする方法。
[Claims] 1. Using three adsorption towers filled with beds of a binder that selectively adsorbs nitrogen, a mixed gas containing oxygen and nitrogen is flowed through the adsorption towers to adsorb and remove nitrogen. This is a method for producing oxygen-rich gas by: (1) introducing pressurized mixed gas from the end of the raw material in the adsorption tower of ty2 IJ; A step of introducing oxygen-rich gas from λ1 part of the product v and equalizing the pressure with the second adsorption tower, (2) Introducing pressurized polymerization gas from the raw material i>, I' BIX and selecting dVl from the q1 process. Let me suck it up, 111! Step of increasing the pressure inside the column while taking out two cores of oxygen-rich gas from the Cf% part of the even J product, (3) Stopping pressurized mixing and introduction of the resultant gas, and starting from the product ``'p'' flll+. While deriving the oxygen-rich gas, a part of this oxygen-rich gas is supplied to the product end of the adsorption tower in the 3rd column to equalize the pressure with the adsorption tower in the previous N', m 3, (4) a step of deriving oxygen-rich gas from the product end and supplying the oxygen-rich gas to the product end of the second adsorption tower for parts of the second adsorption tower; (5) evacuation from the raw material end under reduced pressure; and (6) a step of introducing oxygen-rich gas from the third adsorption tower to some part of the product to purge the inside of the tower while evacuation is performed from the end of the raw material, and further during that time, A method characterized in that the process cycle is carried out in different phases in each of the second and third adsorption towers.
JP59014324A 1984-01-31 1984-01-31 Production of oxygen-enriched gas Pending JPS60161309A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59014324A JPS60161309A (en) 1984-01-31 1984-01-31 Production of oxygen-enriched gas
GB08500233A GB2154895B (en) 1984-01-31 1985-01-04 Process for producing oxygen-rich gas
KR1019850000594A KR850005285A (en) 1984-01-31 1985-01-31 Manufacturing method of Busan gas
SG65087A SG65087G (en) 1984-01-31 1987-08-13 Process for producing oxygen-rich-gas
MYPI87001699A MY101185A (en) 1984-01-31 1987-09-16 Process for producing oxygen-rich gas.
HK905/87A HK90587A (en) 1984-01-31 1987-12-03 Process for producing oxygen-rich gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59014324A JPS60161309A (en) 1984-01-31 1984-01-31 Production of oxygen-enriched gas

Publications (1)

Publication Number Publication Date
JPS60161309A true JPS60161309A (en) 1985-08-23

Family

ID=11857890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59014324A Pending JPS60161309A (en) 1984-01-31 1984-01-31 Production of oxygen-enriched gas

Country Status (1)

Country Link
JP (1) JPS60161309A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126518A (en) * 1986-11-17 1988-05-30 Nippon Sanso Kk Production of oxygen by pressure swing adsorption method
US4781735A (en) * 1986-12-26 1988-11-01 Osaka Sanso Kogyo Ltd. Enrichment in oxygen gas
JPH0268111A (en) * 1987-12-29 1990-03-07 Union Carbide Corp Improved pressure swing adsorbing method
US8967880B2 (en) 2010-05-19 2015-03-03 Mitsubishi Pencil Company, Limited Optical collimator and optical connector using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126518A (en) * 1986-11-17 1988-05-30 Nippon Sanso Kk Production of oxygen by pressure swing adsorption method
US4781735A (en) * 1986-12-26 1988-11-01 Osaka Sanso Kogyo Ltd. Enrichment in oxygen gas
JPH0268111A (en) * 1987-12-29 1990-03-07 Union Carbide Corp Improved pressure swing adsorbing method
JPH06170B2 (en) * 1987-12-29 1994-01-05 ユニオン・カーバイド・コーポレーション Improved pressure swing adsorption method
US8967880B2 (en) 2010-05-19 2015-03-03 Mitsubishi Pencil Company, Limited Optical collimator and optical connector using same

Similar Documents

Publication Publication Date Title
JP3232003B2 (en) Reflux in pressure swing adsorption method
CA2148527C (en) Vacuum swing adsorption process with mixed repressurization and provide product depressurization
US5122164A (en) Process for producing oxygen enriched product stream
KR100300939B1 (en) Improved vacuum pressure swing adsorption process
US4756723A (en) Preparation of high purity oxygen
EP0791388B1 (en) VSA adsorption process with energy recovery
JP3172646B2 (en) Improved vacuum swing adsorption method
KR19990044962A (en) Vacuum pressure circulation adsorption system and method
US5441558A (en) High purity nitrogen PSA utilizing controlled internal flows
EP0808651A1 (en) Large capacity vacuum pressure swing adsorption process and system
JPH0244569B2 (en)
JP2000153124A (en) Pressure swing adsorption for producing oxygen-enriched gas
JPH0257972B2 (en)
EP0354259B1 (en) Improved pressure swing adsorption process
TW202419147A (en) Variable-path step-by-step pressure-equalizing pressure swing adsorption gas separation method and device
JPS60161309A (en) Production of oxygen-enriched gas
CN112744789B (en) Oxygen generation method and device based on coupling separation technology
JP2004262743A (en) Method and apparatus for concentrating oxygen
JPS60161308A (en) Production of o2-enriched gas
GB2154895A (en) Process for producing oxygen-rich gas
JPH0141084B2 (en)
JP3347373B2 (en) High purity oxygen production method
JPS61133114A (en) Preparation of oxygen-enriched gas
KR0145787B1 (en) Process for preparing oxygen by changing pressure
JPS60210507A (en) Method for controlling turn-down in pressure fluctuation adsorption process