JPH0993292A - Quaternary fsk detection circuit - Google Patents

Quaternary fsk detection circuit

Info

Publication number
JPH0993292A
JPH0993292A JP27368095A JP27368095A JPH0993292A JP H0993292 A JPH0993292 A JP H0993292A JP 27368095 A JP27368095 A JP 27368095A JP 27368095 A JP27368095 A JP 27368095A JP H0993292 A JPH0993292 A JP H0993292A
Authority
JP
Japan
Prior art keywords
signal
circuit
phase
correlation
frequency shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27368095A
Other languages
Japanese (ja)
Inventor
Morihito Sugiura
守人 杉浦
Hiroki Suzuki
裕樹 鈴木
Hideto Yamaguchi
英人 山口
Kenzo Urabe
健三 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP27368095A priority Critical patent/JPH0993292A/en
Publication of JPH0993292A publication Critical patent/JPH0993292A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a quaternary FSK detection circuit in which miniaturization, power saving and necessitating no adjustment are attainable. SOLUTION: A quaternary FSK signal is converted into an I-phase signal and a Q-phase signal, and a D-flip-flop circuit receiving the I-phase signal at its data terminal and the Q-phase signal at its clock terminal is used to produce binary judgment output. Then the correlation among the I-phase signal, a 1st reference frequency shift signal and a 2nd reference frequency shift signal is taken and the correlation among the Q-phase signal, the 1st reference frequency shift signal and the 2nd reference frequency shift signal is taken, and a comparator judges the polarity of the sum of correlation outputs and outputs them.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、4値FSK信号を
検波する回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit for detecting a 4-level FSK signal.

【0002】[0002]

【従来の技術】図6は、周波数ディスクリミネータを用
いた従来の4値FSK検波回路の1例を示すもので、中
間周波数(IF)の4値FSK信号は、周波数ディスク
リミネータ11に入力される。周波数ディスクリミネー
タ(DISC)11に入力された4値FSK信号は、図
7に示すように、入力したときの周波数偏移量(Δf)
に従った出力電圧(V)に変換される。このとき、基準
となるしきい値電圧(Vth1 〜Vth3 )をコンパレータ
回路12−1,12−2,12−3に印加するコンパレ
ータ回路12−1,12−2,12−3は、DISC1
1からの出力としきい値電圧(Vth1 〜Vth3 )によっ
て出力が図8のアイパターンに対して、点線で示した各
位置に決定される。コンパレータ回路12−1,12−
2,12−3の出力はエンコーダ13に入り、符号が再
生される。
2. Description of the Related Art FIG. 6 shows an example of a conventional four-value FSK detection circuit using a frequency discriminator. An intermediate frequency (IF) four-value FSK signal is input to a frequency discriminator 11. To be done. As shown in FIG. 7, the four-level FSK signal input to the frequency discriminator (DISC) 11 has a frequency shift amount (Δf) when input.
According to the output voltage (V). At this time, the comparator circuits 12-1, 12-2, 12-3 that apply the reference threshold voltage (V th1 to V th3 ) to the comparator circuits 12-1, 12-2, 12-3 are the DISC1.
The output from 1 and the threshold voltage (V th1 to V th3 ) determine the output at each position shown by the dotted line with respect to the eye pattern of FIG. Comparator circuits 12-1, 12-
The outputs of 2 and 12-3 enter the encoder 13 and the code is reproduced.

【0003】[0003]

【発明が解決しようとする課題】FSK検波回路として
従来利用されている受信機の構成にヘテロダイン受信方
式がある。この構成では、中間周波数(IF)を用いる
ために、イメージ周波数信号が存在し、これを除去する
対策を行わなければならないので、回路規模が大きくな
る。即ち、イメージ周波数を除去するために、フィルタ
回路が必要になる。そのために、物理的大きさの制約を
受けてしまい、回路の小型化に対して不向きとなる。ま
た、FSK周波数偏移を検出する周波数ディスクリミネ
ータは、共振回路のアナログ回路を用いて構成されてい
るので、温度等の環境条件の変化や経年変化に対応する
ための調整や補償が必要となるなどの欠点がある。これ
を克服する一つ技術としてダイレクトコンバージョン受
信方式がある。この構成では中間周波数を用いず、直接
ベースバンド信号を抽出するので回路規模を著しく小さ
くすることができるという利点がある。しかし、ダイレ
クトコンバージョン受信方式のFSK検波回路への応用
例は2値FSKがほとんどであり、4値FSKへの応用
技術は研究の途上にある。
A heterodyne reception system is a configuration of a receiver conventionally used as an FSK detection circuit. In this configuration, since the intermediate frequency (IF) is used, the image frequency signal exists, and it is necessary to take a measure to remove it. Therefore, the circuit scale becomes large. That is, a filter circuit is required to remove the image frequency. Therefore, the physical size is restricted, which is not suitable for miniaturization of the circuit. Further, since the frequency discriminator that detects the FSK frequency deviation is configured by using the analog circuit of the resonance circuit, it is necessary to make adjustments and compensations to cope with changes in environmental conditions such as temperature and aging. There are drawbacks such as There is a direct conversion reception system as one technique to overcome this. With this configuration, the baseband signal is directly extracted without using the intermediate frequency, so that there is an advantage that the circuit scale can be significantly reduced. However, most of the application examples of the direct conversion reception system to the FSK detection circuit are binary FSK, and the application technology to the four-level FSK is under study.

【0004】本発明は、上記の如き従来技術の欠点を除
去し、小型化,省電力化,無調整化を図ることが可能な
4値FSK検波回路を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a four-valued FSK detection circuit which eliminates the above-mentioned drawbacks of the prior art, and which can be downsized, consume less power and need no adjustment.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に、本発明による4値FSK検波回路は、4値FSK信
号を互いに直交する2つのベースバンド信号I相信号と
Q相信号に変換する手段と、前記I相信号と前記Q相信
号との位相比較により2値FSK検波を行う2値判定F
SK検波回路と、第1の基準周波数偏移の信号を出力す
る第1の周波数偏移基準回路と、第2の基準周波数偏移
の信号を出力する第2の周波数偏移基準回路と、前記I
相信号と前記第1の基準周波数偏移の信号との相関をと
る第1の相関回路と、前記I相信号と前記第2の基準周
波数偏移の信号との相関をとる第2の相関回路と、前記
Q相信号と前記第1の基準周波数偏移の信号との相関を
とる第3の相関回路と、前記Q相信号と前記第2の基準
周波数偏移の信号との相関をとる第4の相関回路と、前
記第1,第2,第3,第4の相関回路の各出力を加算す
る加算回路と、該加算回路の出力の極性を判定するコン
パレータとを備えた構成を有している。
In order to achieve this object, a 4-valued FSK detection circuit according to the present invention converts a 4-valued FSK signal into two baseband signals I and Q which are orthogonal to each other. And a binary determination F for performing binary FSK detection by phase comparison between the I-phase signal and the Q-phase signal.
An SK detection circuit, a first frequency deviation reference circuit that outputs a signal of a first reference frequency deviation, a second frequency deviation reference circuit that outputs a signal of a second reference frequency deviation, and I
A first correlation circuit that correlates a phase signal with the signal having the first reference frequency shift, and a second correlation circuit that correlates the I-phase signal with the signal having the second reference frequency shift And a third correlation circuit for correlating the Q-phase signal with the signal of the first reference frequency deviation, and a third correlation circuit for correlating the Q-phase signal with the signal of the second reference frequency deviation. 4 correlation circuit, an addition circuit for adding the respective outputs of the first, second, third and fourth correlation circuits, and a comparator for judging the polarity of the output of the addition circuit. ing.

【0006】[0006]

【発明の実施の形態】本発明は、4値FSK信号をI相
信号とQ相信号に変換し、I相信号をデータ端子にQ相
信号をクロック端子に入力するDフリップ・フロップ回
路から2値判定出力をし、I相信号と第1の基準周波数
偏移の信号及び第2の基準周波数偏移の信号との相関を
それぞれとるとともに、Q信号と第1の基準周波数偏移
の信号及び第2の基準周波数偏移の信号との相関をそれ
ぞれとり、各相関出力を加算した加算出力の極性をコン
パレータにより判定した出力をする構成を有し、小型
化,省電力化,無調整化を図ることが可能な4値FSK
検波回路を実現している。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, a 4-value FSK signal is converted into an I-phase signal and a Q-phase signal, and the I-phase signal is input to a data terminal and the Q-phase signal is input to a clock terminal. A value judgment output is performed to correlate the I-phase signal with the signal of the first reference frequency deviation and the signal of the second reference frequency deviation, respectively, and the Q signal and the signal with the first reference frequency deviation It has a configuration in which the correlation with the signal of the second reference frequency deviation is respectively obtained, and the polarity of the addition output obtained by adding the correlation outputs is judged by a comparator, and the output is made compact, power saving, and no adjustment is required. 4-level FSK that can be achieved
Realizes a detection circuit.

【0007】[0007]

【実施例】図1に、本発明の実施例の構成を示す。受信
された4値FSK信号はダイレクトコンバージョン方式
により互いに直交するベースバンド信号であるI相信
号,Q相信号に変換された後、この実施例の回路に入力
される。ここで、1はI相信号のコンパレータ回路、2
はQ相信号のコンパレータ回路、3は2FSK検波回
路、4−1,4−2は基準周波数偏移ΔF1,ΔF2の
信号を発生する周波数偏移基準回路、5−1,5−2,
5−3,5−4はI相信号とΔF1,I相信号とΔF
2,Q相信号とΔF1,Q相信号とΔF2の各相関をと
る相関回路、6は加算器、7は比較器、8はΔfの出力
端子、9は0,1の判定出力の出力端子である。この実
施例において、2値FSK検波回路3は、たとえばDフ
リップ・フロップ回路のデータ端子Dとクロック端子C
LにI相とQ相2つの信号を入力とする位相比較回路構
成により実現することができる。このとき、出力はI
相,Q相2つの信号の位相関係が一方に対し他方が進ん
でいるか遅れているかにより、“0”か“1”の2値を
判定して出力する。従って、出力9は入力信号をベクト
ルI+jQで表したときのベクトルの回転方向、即ち受
信入力波INのキャリアの中心周波数に対する瞬間周波
数偏移Δfの極性(=2値FSK検波出力値)を出力し
ている。相関回路5−1,5−2,5−3,5−4は、
サンプル時刻において、整合フィルタによる受信と等価
となる。入力信号の周波数が基準周波数偏移ΔF1 ,Δ
2 と同一となるとき、相関回路5−1,5−2,5−
3,5−4の相関出力は最大となる。即ち、相関回路5
−1,5−2,5−3,5−4によって、受信入力波I
Nのキャリア瞬時周波数偏移数ΔfとΔF1 ,ΔF2
の近似度が出力される。これらの出力を加算器6により
加算し、コンパレータ7を通して、出力端子8に出力さ
れた信号は、受信入力波のキャリアの瞬時周波数偏移Δ
fがΔF1 ,ΔF2 のいずれに近いかを示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of an embodiment of the present invention. The received four-level FSK signal is converted into the I-phase signal and the Q-phase signal which are baseband signals orthogonal to each other by the direct conversion method, and then input to the circuit of this embodiment. Here, 1 is a comparator circuit for I-phase signals, 2
Is a Q-phase signal comparator circuit, 3 is a 2FSK detection circuit, 4-1 and 4-2 are frequency shift reference circuits that generate signals with reference frequency shifts ΔF1 and ΔF2, 5-1 and 5-2.
5-3 and 5-4 are I-phase signals and ΔF1, I-phase signals and ΔF
2. Correlation circuit for correlating each of the Q-phase signal and ΔF1 and the Q-phase signal and ΔF2, 6 is an adder, 7 is a comparator, 8 is an output terminal of Δf, and 9 is an output terminal of 0, 1 judgment output. is there. In this embodiment, the binary FSK detection circuit 3 includes, for example, a data terminal D and a clock terminal C of a D flip-flop circuit.
It can be realized by a phase comparison circuit configuration in which two signals of I phase and Q phase are input to L. At this time, the output is I
A binary value of "0" or "1" is determined and output depending on whether the phase relationship between the two signals of the phase and Q phases is ahead of or behind the other. Therefore, the output 9 outputs the rotation direction of the vector when the input signal is represented by the vector I + jQ, that is, the polarity of the instantaneous frequency deviation Δf (= binary FSK detection output value) with respect to the center frequency of the carrier of the received input wave IN. ing. The correlation circuits 5-1, 5-2, 5-3, 5-4 are
At the sample time, it is equivalent to reception by the matched filter. The frequency of the input signal is the reference frequency deviation ΔF 1 , Δ
When it becomes the same as F 2 , the correlation circuits 5-1, 5-2, 5-
The correlation outputs of 3 and 5-4 are maximum. That is, the correlation circuit 5
Received input wave I by -1,5-2,5-3,5-4
The degree of approximation between the carrier instantaneous frequency shift number Δf of N and ΔF 1 and ΔF 2 is output. These outputs are added by the adder 6, and the signal output to the output terminal 8 through the comparator 7 is the instantaneous frequency deviation Δ of the carrier of the received input wave.
It shows which f is closer to ΔF 1 or ΔF 2 .

【0008】図2はダイレクトコンバージョン回路10
の構成例を示すもので、受信入力波INの周波数と同一
の発振周波数を有する局部発振器10−1からの互いに
直交する信号波L1 ,L2 と受信入力波INとを平衡変
調回路10−2,10−3で乗積し、低域ろ波器(LP
F)10−4,10−5で直交ベースバンド信号I,Q
を抽出するという構成を有している。
FIG. 2 shows a direct conversion circuit 10
In the balanced modulation circuit 10-, the signal waves L 1 and L 2 from the local oscillator 10-1 having the same oscillation frequency as the frequency of the received input wave IN and orthogonal to each other and the received input wave IN are shown. Multiply by 2, 10-3, and low-pass filter (LP
F) Quadrature baseband signals I and Q at 10-4 and 10-5
Is extracted.

【0009】図3は、相関回路5−1,5−2,5−
3,5−4の処理の構成例を示すブロック図であり、2
1は基準周波数偏移ΔF1,ΔF2の信号を入力する入
力端子、22はI相信号,Q相信号の入力端子、23は
90°移相器、24はΔF1又はΔF2の信号とI相信
号又はQ相信号とを乗算する乗算器、25はΔF1又は
ΔF2の信号を90°移相した信号とI相信号又はQ相
信号とを乗算する乗算器、26,27は低域通過ろ波
器、28はXとYを入力とする自乗和演算器である。以
上の構成により、入力される信号I(もしくはQ)と周
波数ΔF1 (もしくはΔF2 )との相関演算出力X2
+Y2 が得られ、この出力には信号I(もしくはQ)の
変動周波数と基準周波数ΔF1 (もしくはΔF2 )との
近似度が算出される。なお、I相,Q相の入力信号と基
準周波数信号が共に2値成形された波形である場合、乗
算器24,25は排他的論理和に、LPFはシフトレジ
スタやカウンタを用いた移動平均回路に、それぞれ置き
換えることができる。ここで移動平均回路の構成例を図
5に示す。図中CLKは移動平均値を計算するためのク
ロック信号、XORは上記排他的論理和出力である。ま
た、81はmビットのシフトレジスタ、82はアップダ
ウンカウンタである。図のように接続することにより、
アップダウンカウンタ82の出力X(Y)にはXORの
連続するmサンプル中の極性“1”の数を数えた値が現
れるので、XORのmサンプルの移動平均値が得られる
ことがわかる。また、自乗和演算器は絶対値の和に近似
的に置き換えてもよく、いずれもROMテーブルなどの
記録素子を利用して容易に実現できる。以上から相関回
路をディジタル回路で実現できることがわかる。
FIG. 3 shows the correlation circuits 5-1, 5-2, 5-.
It is a block diagram showing an example of composition of processing of 3 and 5-4.
1 is an input terminal for inputting signals of reference frequency shifts ΔF1 and ΔF2, 22 is an input terminal for I-phase signal and Q-phase signal, 23 is a 90 ° phase shifter, 24 is a signal of ΔF1 or ΔF2 and I-phase signal or A multiplier for multiplying with a Q-phase signal, 25 is a multiplier for multiplying a signal obtained by phase-shifting a signal of ΔF1 or ΔF2 by 90 ° and an I-phase signal or a Q-phase signal, and 26 and 27 are low-pass filters. Reference numeral 28 is a square sum calculator having X and Y as inputs. With the above configuration, the correlation calculation output X 2 between the input signal I (or Q) and the frequency ΔF 1 (or ΔF 2 )
+ Y 2 is obtained, and the degree of approximation between the fluctuation frequency of the signal I (or Q) and the reference frequency ΔF 1 (or ΔF 2 ) is calculated at this output. When both the I-phase and Q-phase input signals and the reference frequency signal are binary-shaped waveforms, the multipliers 24 and 25 are an exclusive OR, and the LPF is a moving average circuit using a shift register or a counter. Can be replaced respectively. Here, an example of the configuration of the moving average circuit is shown in FIG. In the figure, CLK is a clock signal for calculating the moving average value, and XOR is the exclusive OR output. Further, 81 is an m-bit shift register, and 82 is an up / down counter. By connecting as shown,
The output X (Y) of the up / down counter 82 shows a value obtained by counting the number of polarities "1" in m samples of continuous XOR, so that it is understood that a moving average value of m samples of XOR can be obtained. Further, the sum-of-squares calculator may be replaced with a sum of absolute values, which can be easily realized by using a recording element such as a ROM table. From the above, it can be seen that the correlation circuit can be realized by a digital circuit.

【0010】図4は、図1の実施例の動作原理を要約し
て示す図面である。図の縦軸は、受信入力波INの瞬時
周波数偏移Δfに相当し、±ΔF1 ,±ΔF2 を付した
領域は−ΔF2 ,−ΔF1 ,+ΔF1 ,+ΔF2 の4値
を判定する領域を示している。一点鎖線はそれぞれの領
域の境界、即ちしきい値を示す。図4の(a)は2値判
定回路3による判定結果を出力端子9に得る動作を示し
ており、(b)は相関回路5−1,5−2,5−3,5
−4,加算器6,比較器7による判定結果を出力端子8
に得る動作を示している。図示したように、出力端子9
の1ビットで瞬時周波数偏移Δfの極性(斜線ハッチン
グをした+ΔF1 ,+ΔF2 か又は点々ハッチングをし
た−ΔF1 ,−ΔF2 か)を判定しており、また、出力
端子8の1ビットで周波数偏移の絶対値が点々ハッチン
グのΔF1 か斜線ハッチングのΔF2 かを判定してい
る。このようにして出力端子8,9に得られる合計2ビ
ットにより、4値FSKの各値(4値)を判定する出力
としている。
FIG. 4 is a diagram summarizing the operating principle of the embodiment of FIG. The vertical axis of the figure corresponds to the instantaneous frequency deviation Δf of the received input wave IN, and the areas with ± ΔF 1 and ± ΔF 2 are determined as four values of −ΔF 2 , −ΔF 1 , + ΔF 1 , and + ΔF 2. It shows the area. The alternate long and short dash line indicates the boundary of each area, that is, the threshold. 4A shows the operation of obtaining the judgment result by the binary judgment circuit 3 at the output terminal 9, and FIG. 4B shows the correlation circuit 5-1, 5-2, 5-3, 5
-4, adder 6 and comparator 7 output the judgment result output terminal 8
Shows the operation to get to. As shown, output terminal 9
The bit of the instantaneous frequency deviation Δf (whether + ΔF 1 , + ΔF 2 hatched with diagonal lines or −ΔF 1 , −ΔF 2 hatched with dots) is used to determine the 1-bit value of the output terminal 8. Then, it is determined whether the absolute value of the frequency deviation is ΔF 1 for dot hatching or ΔF 2 for diagonal hatching. In this way, the total of 2 bits obtained at the output terminals 8 and 9 provides an output for determining each value (four values) of the four-valued FSK.

【0011】[0011]

【発明の効果】以上詳細に説明したように、本発明によ
れば、4値FSK検波回路を用いる受信回路において小
型化を可能とする。また、ディジタル処理化可能である
ため省電力化,無調整化が可能となる。
As described in detail above, according to the present invention, it is possible to reduce the size of a receiving circuit using a 4-level FSK detection circuit. Further, since digital processing is possible, power saving and no adjustment can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】本発明に用いるダイレクトコンバージョン回路
の1例を示すブロック図である。
FIG. 2 is a block diagram showing an example of a direct conversion circuit used in the present invention.

【図3】本発明に用いる相関回路の1例を示すブロック
図である。
FIG. 3 is a block diagram showing an example of a correlation circuit used in the present invention.

【図4】本発明における判定動作を示す略図である。FIG. 4 is a schematic diagram showing a determination operation in the present invention.

【図5】本発明に用いる移動平均回路の構成例を示すブ
ロック図である。
FIG. 5 is a block diagram showing a configuration example of a moving average circuit used in the present invention.

【図6】従来の4値FSK検波回路例を示すブロック図
である。
FIG. 6 is a block diagram showing an example of a conventional 4-level FSK detection circuit.

【図7】図6の回路の動作を説明するための特性図であ
る。
FIG. 7 is a characteristic diagram for explaining the operation of the circuit of FIG.

【図8】図6の回路の動作を説明するための特性図であ
る。
FIG. 8 is a characteristic diagram for explaining the operation of the circuit of FIG.

【符号の説明】 1,2 コンパレータ回路 3 2値FSK検波回路 4−1,4−2 周波数偏移基準回路 5−1,5−2,5−3,5−4 相関回路 6 加算器 7 比較器 8,9 出力端子 10 ダイレクトコンバージョン回路 10−1 局部発振器 10−2,10−3 平衡変調回路 10−4,10−5 低域ろ波器 11 周波数ディスクリミネータ 12−1,12−2,12−3 コンパレータ回路 13 エンコーダ 23 90°移相器 24,25 乗算器 26,27 低域通過ろ波器 28 自乗和演算器 81 mビットシフトレジスタ 82 アップダウンカウンタ[Explanation of Codes] 1, 2 Comparator circuit 3 2 value FSK detection circuit 4-1, 4-2 Frequency deviation reference circuit 5-1, 5-2, 5-3, 5-4 Correlation circuit 6 Adder 7 Comparison Device 8, 9 Output terminal 10 Direct conversion circuit 10-1 Local oscillator 10-2, 10-3 Balanced modulation circuit 10-4, 10-5 Low-pass filter 11 Frequency discriminator 12-1, 12-2, 12-3 Comparator circuit 13 Encoder 23 90 ° phase shifter 24, 25 Multiplier 26, 27 Low pass filter 28 Square sum calculator 81 m-bit shift register 82 Up-down counter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 占部 健三 東京都中野区東中野三丁目14番20号 国際 電気株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenzo Urabe 3-14-20 Higashi-Nakano, Nakano-ku, Tokyo Kokusai Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 4値FSK信号を互いに直交する2つの
ベースバンド信号I相信号とQ相信号に変換する手段
と、 前記I相信号と前記Q相信号との位相比較とにより2値
FSK検波を行う2値FSK検波回路と、 第1の基準周波数偏移の信号を出力する第1の周波数偏
移基準回路と、 第2の基準周波数偏移の信号を出力する第2の周波数偏
移基準回路と、 前記I相信号と前記第1の基準周波数偏移の信号との相
関をとる第1の相関回路と、 前記I相信号と前記第2の基準周波数偏移の信号との相
関をとる第2の相関回路と、 前記Q相信号と前記第1の基準周波数偏移の信号との相
関をとる第3の相関回路と、 前記Q相信号と前記第2の基準周波数偏移の信号との相
関をとる第4の相関回路と、 前記第1,第2,第3,第4の相関回路の各出力を加算
する加算回路と、 該加算回路の出力の極性を判定するコンパレータとを備
えた4値FSK検波回路。
1. Binary FSK detection by means for converting a 4-valued FSK signal into two baseband signals I-phase signal and Q-phase signal which are orthogonal to each other, and phase comparison between the I-phase signal and the Q-phase signal. A binary FSK detection circuit, a first frequency shift reference circuit that outputs a signal with a first reference frequency shift, and a second frequency shift reference that outputs a signal with a second reference frequency shift A circuit, a first correlation circuit for correlating the I-phase signal with the signal having the first reference frequency shift, and a circuit for correlating the I-phase signal with the signal having the second reference frequency shift A second correlation circuit; a third correlation circuit that correlates the Q-phase signal with the signal with the first reference frequency shift; and the Q-phase signal with the signal with the second reference frequency shift And a fourth correlation circuit for taking the correlation of each of the first, second, third and fourth correlation circuits An adder circuit for adding the force, quaternary FSK detection circuit and a comparator determining the polarity of the output of said adder circuit.
【請求項2】 前記相関回路が、2信号のうち一方の信
号を90°移相する90°移相器と、これら2信号およ
び前記90°移相した信号と他方の信号とを乗算する第
1,第2の乗算器と、該第1,第2の乗算器の各出力を
低域ろ波するそれぞれ第1,第2の低域通過ろ波器と、
該第1,第2の低域通過ろ波器の各出力を自乗和する自
乗和演算器とで構成されていることを特徴とする請求項
1に記載の4値FSK検波回路。
2. A 90 ° phase shifter for shifting one of the two signals by 90 °, and the correlation circuit for multiplying the two signals and the 90 ° phase shifted signal by the other signal. First and second multipliers, and first and second low-pass filters for low-pass filtering the respective outputs of the first and second multipliers,
4. The four-valued FSK detection circuit according to claim 1, wherein the four-valued FSK detection circuit comprises a sum of squares calculator for summing the respective outputs of the first and second low-pass filters.
【請求項3】 前記自乗和演算器を絶対値の和の演算器
に置き換えたことを特徴とする請求項2に記載の4値F
SK検波回路。
3. The four-valued F according to claim 2, wherein the sum of squares calculator is replaced with a calculator for summing absolute values.
SK detection circuit.
【請求項4】 前記第1および第2の乗算器をそれぞれ
第1,第2の排他的論理和回路に、前記第1および第2
の低域通過ろ波器をそれぞれ第1および第2の移動平均
回路に、前記自乗和演算器をROMテーブルに、それぞ
れ置き換えたことを特徴とする請求項2に記載の4値F
SK検波回路。
4. The first and second multipliers are respectively connected to first and second exclusive OR circuits, and the first and second multipliers are respectively provided.
4. The four-valued F according to claim 2, wherein the low-pass filter is replaced by first and second moving average circuits, and the square sum calculator is replaced by a ROM table.
SK detection circuit.
JP27368095A 1995-09-28 1995-09-28 Quaternary fsk detection circuit Pending JPH0993292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27368095A JPH0993292A (en) 1995-09-28 1995-09-28 Quaternary fsk detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27368095A JPH0993292A (en) 1995-09-28 1995-09-28 Quaternary fsk detection circuit

Publications (1)

Publication Number Publication Date
JPH0993292A true JPH0993292A (en) 1997-04-04

Family

ID=17531059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27368095A Pending JPH0993292A (en) 1995-09-28 1995-09-28 Quaternary fsk detection circuit

Country Status (1)

Country Link
JP (1) JPH0993292A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002037126A1 (en) * 2000-11-01 2004-03-11 三菱電機株式会社 Electronic watt-hour meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002037126A1 (en) * 2000-11-01 2004-03-11 三菱電機株式会社 Electronic watt-hour meter

Similar Documents

Publication Publication Date Title
US7023940B2 (en) Demodulation and synchronization establishment apparatus
CN101194424B (en) Rotary transformer
JPH0621982A (en) Method and apparatus for demodulation of gmsk signal
US5640427A (en) Demodulator
US5517689A (en) Phase detecting method and phase detector and FM receiver using phase detecting method
US5367538A (en) Apparatus and method for direct phase digitizing
EP0833483A2 (en) Phase comparator for demodulator using differential detection
EP0692867A1 (en) FM modulation circuit and method
JPH06276245A (en) Filter and carrier phase estimating device using the same
JP3856555B2 (en) Phase angle detector and frequency discriminator using the same
US6359942B1 (en) FSK demodulator
US6304136B1 (en) Reduced noise sensitivity, high performance FM demodulator circuit and method
JPH05183592A (en) Frequency converter circuit, phase comparator circuit and delay detection demodulator provided with them
JPH0271639A (en) System and apparatus for detecting unique word
JPH0993292A (en) Quaternary fsk detection circuit
US4631486A (en) M-phase PSK vector processor demodulator
JP2001177587A (en) Synchronizing system for digital modulation/ demodulation
EP0822689A2 (en) Carrier recovery in a PSK receiver
US8472909B2 (en) Filter device for detecting and/or removing erroneous components in and/or from a signal
JP3419658B2 (en) Demodulator for digital wireless communication
JPH08139775A (en) Digital demodulating device
JP3729369B2 (en) Direct conversion FSK receiver
JP2986399B2 (en) Distribution line transport method by differential quadrature phase modulation
JP3183456B2 (en) Clock recovery circuit and receiving device using the same
CA2204045C (en) Frequency converter circuit