JP3419658B2 - Demodulator for digital wireless communication - Google Patents

Demodulator for digital wireless communication

Info

Publication number
JP3419658B2
JP3419658B2 JP25248697A JP25248697A JP3419658B2 JP 3419658 B2 JP3419658 B2 JP 3419658B2 JP 25248697 A JP25248697 A JP 25248697A JP 25248697 A JP25248697 A JP 25248697A JP 3419658 B2 JP3419658 B2 JP 3419658B2
Authority
JP
Japan
Prior art keywords
phase
signal
demodulator
frequency
intermediate frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25248697A
Other languages
Japanese (ja)
Other versions
JPH1198205A (en
Inventor
稔 行方
泰之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25248697A priority Critical patent/JP3419658B2/en
Publication of JPH1198205A publication Critical patent/JPH1198205A/en
Application granted granted Critical
Publication of JP3419658B2 publication Critical patent/JP3419658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ディジタル信号に
よって周波数変調または位相変調された信号で通信を行
う無線通信システム、特に変調方式に差動符号化方式、
例えばπ/4シフト差動QPSK方式等を採用している
無線通信システムの基地局および端末局に用いられる復
調装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wireless communication system for performing communication with a signal frequency-modulated or phase-modulated by a digital signal, and more particularly to a differential encoding system as a modulation system,
For example, the present invention relates to a demodulation device used in a base station and a terminal station of a wireless communication system that employs a π / 4 shift differential QPSK system or the like.

【0002】[0002]

【従来の技術】近年、ディジタル自動車/携帯電話シス
テムの、周波数資源の有効活用やデータ伝送の高速化と
いったマルチメディア対応へ向けての期待がよりいっそ
う膨らみつつある。ディジタル伝送方式は、誤り検出・
誤り訂正技術を用いて高伝送品質・高信頼性・高秘匿性
を実現しやすい上に、アナログ伝送のような忠実な伝送
波形やスペクトルの再生が不要であるために狭帯域化や
多重化に適し、さらに、音声・画像・データなどを統合
的にシームレスに取り扱えることなどから、今後のマル
チメディア情報化社会に欠かせない通信方式のーつとし
て注目されている。さらに、ここ数年のパソコン通信や
インターネットに見られるようなパソコンを利用した情
報アクセスサービスの急激な広がりや通信料金の低下
は、ディジタル自動車/携帯電話システムの普及に更な
る拍車をかけ、同システムの利用者は今後も増え続ける
と予想される。
2. Description of the Related Art In recent years, expectations for a digital automobile / mobile phone system to be compatible with multimedia such as effective utilization of frequency resources and speeding up of data transmission are increasing. The digital transmission system is
It is easy to achieve high transmission quality, high reliability, and high confidentiality using error correction technology, and since it is not necessary to reproduce the faithful transmission waveform and spectrum like analog transmission, it can be used for narrowing bandwidth and multiplexing. It is suitable, and since it can handle voice, images, data, etc. in an integrated and seamless manner, it is attracting attention as one of the communication methods indispensable for the future multimedia information society. In addition, the rapid spread of information access services using personal computers and the decrease in communication charges as seen in personal computer communications and the Internet in recent years have further spurred the spread of digital automobiles / cell phone systems, It is expected that the number of users will continue to increase.

【0003】ところで、現在、PHSやPDCに代表さ
れる携帯電話端末の中には、大きさにして100cc以
下、重さにして100g以下と言ったかなり小型のもの
まで登場しているが、このような端末の小型化は既存の
ディジタル伝送方式では限界に近づいてきている。
By the way, at present, among mobile phone terminals represented by PHS and PDC, quite small ones having a size of 100 cc or less and a weight of 100 g or less have appeared. The miniaturization of such terminals is approaching the limit in existing digital transmission systems.

【0004】一般に、ディジタル信号によって周波数変
調または位相変調された信号で通信を行う無線通信シス
テムの基地局および端末局の復調装置には、図6に示す
ような直交復調方式が採用されている。この直交復調方
式の復調装置では、アンテナ81で受信した信号を周波
数変換手段82、混合器83、π/2位相器90および
局部発振器89からなる部分にて、直交するべースバン
ド信号(同相成分および直交相成分)に周波数変換し、
それぞれの相(チャネル)毎に、低域漏波器(LPF)
84、AD変換器(ADC)85、ルートロールオフフ
ィルタ(RROF)86、遅延検波器87および判定・
復調処理部88を通してAD変換、帯城制限および検波
復調を行っており、全体の回路規模が大きなものとな
る。
Generally, a quadrature demodulation system as shown in FIG. 6 is adopted in a demodulator of a base station and a terminal station of a radio communication system which communicates with a signal which is frequency-modulated or phase-modulated by a digital signal. In this quadrature demodulation type demodulation device, a signal received by an antenna 81 is orthogonal to a base band signal (in-phase component and in-phase component and in-phase component) in a portion including a frequency conversion means 82, a mixer 83, a π / 2 phase shifter 90 and a local oscillator 89. Frequency conversion to quadrature phase component),
Low-frequency wave leaker (LPF) for each phase (channel)
84, AD converter (ADC) 85, root roll-off filter (RROF) 86, delay detector 87 and determination /
AD conversion, band limitation and detection demodulation are performed through the demodulation processing unit 88, and the overall circuit scale becomes large.

【0005】また、PHSやPDCで採用されている差
動変調方式の場合、直交ベースバンド信号を差動検波す
るための複素乗算処理を実現するために、図7に示すよ
うに、通常は遅延検波器87内に4つの乗算器92と2
つの加算器93を用意する必要があり、やはり全体の回
路規模が大きくなる。このような事情により携帯電話に
直交復調方式を採用することは敬遠されつつある。ま
た、最近注目されつつあるDSPによるソフトウェア受
信機でも、遅延検波処理で多くのインストラクションを
費やすことになるので、処理量の削減が望まれる。
Further, in the case of the differential modulation system adopted in PHS or PDC, in order to realize the complex multiplication process for differentially detecting the quadrature baseband signal, as shown in FIG. The detector 87 has four multipliers 92 and 2
It is necessary to prepare one adder 93, which also increases the overall circuit scale. Due to such circumstances, the adoption of the quadrature demodulation method for mobile phones is being shunned. Further, even a software receiver based on a DSP, which has recently received a lot of attention, consumes a lot of instructions in the differential detection processing, so that it is desired to reduce the processing amount.

【0006】以上の点から現在は直交復調方式に代わっ
て中間周波数帯(IF)の受信信号から直接位相成分を
抽出し検波処理を行うIF復調方式が積極的に採用され
ている。この方式のメリットは以下の通りである。
From the above point of view, the IF demodulation method, which directly extracts the phase component from the received signal in the intermediate frequency band (IF) and performs the detection processing, is actively adopted instead of the orthogonal demodulation method. The advantages of this method are as follows.

【0007】(1)直交ベースバンドへの周波数変換が
不要 直交復調方式に不可欠なIF信号分配器、混合器(×
2)、π/2位相器、局部発振器、ローパスフィルタ
(×2)等の部品が不要となる。
(1) No need for frequency conversion to orthogonal baseband IF signal distributor and mixer (×
2), π / 2 phase shifter, local oscillator, low-pass filter (× 2), etc. are unnecessary.

【0008】(2)AD変換器が不要 直交復調方式に不可欠なベースバンド信号の同相成分
用、直交成分用のAD変換器が不要となる。
(2) AD converter unnecessary The AD converters for the in-phase component and the quadrature component of the baseband signal, which are indispensable for the quadrature demodulation method, are unnecessary.

【0009】(3)ディジタルフィルタが不要 直交復調方式に不可欠なベースバンド信号の同相成分
用、直交相成分用のディジタルローパスフィルタが不要
となる。
(3) Digital filter unnecessary The digital low-pass filters for the in-phase component and the quadrature-phase component of the baseband signal, which are indispensable for the quadrature demodulation method, are unnecessary.

【0010】(4)複素遅延検波(差動検波)器が不要 直交復調方式では、ベースバンド信号を複素信号として
取り扱うため、差動検波処理には4回の乗算処理と2回
の加算処理を行う必要があるが、IF受信信号から直接
位相成分を抽出すれば、差動検波処理は1回の減算処理
で実現できる。(5)低量子化精度化 直交復調方式では、直交分解された受信信号の振幅成分
を取り扱うため、フェージングによる振幅変動を考慮し
てダイナミックレンジを大きく設定しなくてはならず、
高量子化精度が要求される。これに対し、IF受信信号
から直接位相成分を抽出すれば、振幅成分とは無関係
に、0〜2πの位相成分に対するダイナミックレンジを
設定できる。これはたかだか5〜6ビット程度で十分で
ある。
(4) No need for complex differential detection (differential detection) In the quadrature demodulation method, since the baseband signal is treated as a complex signal, the differential detection process requires four multiplication processes and two addition processes. Although it needs to be performed, if the phase component is directly extracted from the IF received signal, the differential detection process can be realized by one subtraction process. (5) In the low-quantization accuracy quadrature demodulation method, since the amplitude components of the orthogonally decomposed received signal are handled, the dynamic range must be set large considering the amplitude fluctuation due to fading,
High quantization accuracy is required. On the other hand, if the phase component is directly extracted from the IF reception signal, the dynamic range for the phase component of 0 to 2π can be set regardless of the amplitude component. For this, at most 5 to 6 bits is sufficient.

【0011】以上のようにIF復調方式は、従来の直交
復調方式と比較して数多くの利点を持つため、PHSや
PDCだけでなく、今後成長が期持されるパーソナル通
信の分野のコア技術となり得る。
As described above, the IF demodulation system has many advantages as compared with the conventional quadrature demodulation system. Therefore, the IF demodulation system is a core technology not only in PHS and PDC but also in the field of personal communication which is expected to grow in the future. obtain.

【0012】自動車電話および携帯電話をはじめ、これ
からのパーソナル通信端末ではモビリティが追及され
る。移動しながらの高品質な通信を実現することはかな
り厳しく、通信システム自体に移動に対する耐性を持た
せる必要性が増してきている。差動変調方式は、移動受
信の要求を解決し得る手段の一つとして注目されてお
り、多くの通信システムで採用されている。この差動変
調方式は位相変調の一種で、絶対位相に送信情報をマッ
ピングするのではなく、相対位相(位相差)に送信情報
をマッピングすることにより達成される。その結果、移
動受信に特有のフェージング歪みに対する極めて強い耐
性を持たせることができる。
Mobility is being pursued in future personal communication terminals including car phones and mobile phones. Achieving high quality communication while moving is quite strict, and there is an increasing need to make the communication system itself resistant to movement. The differential modulation method has been attracting attention as one of means for solving the requirement of mobile reception, and has been adopted in many communication systems. This differential modulation method is a type of phase modulation, and is achieved by mapping transmission information to a relative phase (phase difference) instead of mapping transmission information to an absolute phase. As a result, extremely strong resistance to fading distortion peculiar to mobile reception can be provided.

【0013】しかし、差動変調方式に対する非同期の差
動復調方式は、簡便な構成で実現できるものの受信S/
Nが若干劣る。そこで受信特性を改善可能な同期検波方
式が検討されている。同期検波方式は、非同期検波方式
である差動検波(差動復調)方式よりも2〜3(dB)
程度の受信特性の改善が期待できる。しかしその反面、
受信機を送信機に同期させるための処理が複雑になると
いう問題がある。
However, although the asynchronous differential demodulation method with respect to the differential modulation method can be realized with a simple structure, the reception S /
N is slightly inferior. Therefore, a synchronous detection method that can improve the reception characteristics is being studied. The synchronous detection method is 2 to 3 (dB) more than the differential detection (differential demodulation) method which is an asynchronous detection method.
Some improvement in reception characteristics can be expected. However, on the other hand,
There is a problem that the process for synchronizing the receiver with the transmitter becomes complicated.

【0014】さらに、一般に差動復調方式では、送信情
報のマッピングの際に送信情報周期ごとに一定量の位相
変化を付加する“シフト方式”を採用しているため、物
理情報伝送周期毎に検波時の判定基準を切り換える必要
があり、復調装置の構成が複雑になる。
Further, in general, the differential demodulation system adopts a "shift system" in which a fixed amount of phase change is added for each transmission information cycle when mapping transmission information, so that detection is performed for each physical information transmission cycle. It is necessary to switch the judgment criterion at that time, which complicates the configuration of the demodulator.

【0015】[0015]

【発明が解決しようとする課題】上述したように、ディ
ジタル信号によって周波数変調または位相変調された信
号で通信を行う無線通信システムの復調装置では、様々
な新規技術の適用により小型・低消費電力化が図られ、
低価格化とともに通話/待受時間延長に対する要望が満
たされつつある。しかし、マルチメディア通信に対応す
るためには、これら要望に加え、通信品質の向上が不可
欠である。現在、移動体通信で多く採用されている位相
変調方式の一種であるシフト型の差動変調方式では、上
述した理由からIF復調方式で非同期検波方式が用いら
れているものの、受信特性の劣化が問題となっている。
そこで、これに代わる同期検波方式の採用が検討されて
いるものの、シフト型の差動変調方式では、検波判定処
理部で符号判定基準を情報伝送周期単位で変化させなく
てはならないため構成が複雑なものとなる、という問題
があった。
As described above, in a demodulator of a wireless communication system for communicating with a signal frequency-modulated or phase-modulated by a digital signal, various new techniques are applied to reduce the size and power consumption. Is planned,
The demand for lowering the price and extending the call / standby time is being met. However, in order to support multimedia communication, improvement of communication quality is indispensable in addition to these demands. In the shift type differential modulation system, which is a type of phase modulation system that is widely used in mobile communication at present, although the asynchronous detection system is used as the IF demodulation system for the reason described above, the reception characteristic is deteriorated. It's a problem.
Therefore, although the adoption of a synchronous detection method instead of this is being considered, in the shift type differential modulation method, the code determination reference must be changed in the information transmission cycle unit in the detection determination processing section, which complicates the configuration. There was a problem that it would be something.

【0016】本発明はこのような課題を解決するために
なされたもので、ディジタル信号によって周波数変調ま
たは位相変調された信号で通信を行う無線通信システ
ム、特にシフト型位相変調方式で通信を行う無線通信シ
ステムの基地局または端末局の復調装置で同期検波方式
を実現する場合に、情報伝送周期毎の符号判定基準の制
御を不要とし装置の構成を簡素化することのできるディ
ジタル無線通信用復調装置の提供を目的とする。
The present invention has been made to solve the above problems, and it is a wireless communication system that performs communication with a signal that is frequency-modulated or phase-modulated by a digital signal, and more particularly, a wireless communication system that uses a shift-type phase modulation method. A demodulator for digital wireless communication, which does not require control of a code determination reference for each information transmission cycle when a coherent detection system is realized by a demodulator of a base station or a terminal station of a communication system and can simplify the configuration of the device. For the purpose of providing.

【0017】[0017]

【課題を解決するための手段】上記した目的を達成する
ために、本発明のディジタル無線通信用復調装置は、π
/Nシフト差動N相PSK変調方式のディジタル無線通
信用復調装置において、ディジタル信号によって周波数
変調または位相変調された信号を受信する受信手段と、
前記受信した信号を所定の中間周波数の信号に変換する
周波数変換手段と、物理情報伝送周期の単位周期時間経
過後の前記中間周波数の受信信号との間に±π/Nの位
相ずれが生じる値に設定された周期で所定の基準クロッ
クにより動作する計数手段と、前記計数手段の出力を前
記中間周波数の受信信号を基準にサンプリングして該受
信信号の位相情報を出力するサンプリング手段と、前記
サンプリング手段の出力を検波する検波手段と、前記検
波手段の出力から送信情報を復調する復調手段とを具備
することを特徴とするものである。
Means for Solving the Problems] To achieve the above object, a digital radio communication demodulation device of the present invention, [pi
/ N shift differential N-phase PSK modulation type digital wireless communication
In the credit demodulation device, receiving means for receiving a signal frequency-modulated or phase-modulated by a digital signal,
Frequency conversion means for converting the received signal into a signal of a predetermined intermediate frequency, and a unit cycle time of a physical information transmission cycle
About ± π / N between the received signal of the intermediate frequency after the error
Counting means that operates with a predetermined reference clock at a cycle set to a value that causes a phase shift, and sampling that samples the output of the counting means with reference to the received signal of the intermediate frequency and outputs the phase information of the received signal. Means, a detection means for detecting the output of the sampling means, and a demodulation means for demodulating the transmission information from the output of the detection means are provided.

【0018】また、本発明のディジタル無線通信用復調
装置は、π/4シフト差動QPSK変調方式のディジタ
ル無線通信用復調装置において、ディジタル信号によっ
て周波数変調または位相変調された信号を受信する受信
手段と、前記受信した信号を所定の中間周波数の信号に
変換する周波数変換手段と、物理情報伝送周期の単位周
期時間経過後の中間周波数の受信信号との間に±π/4
の位相ずれが生じる値に設定された周期で所定の基準ク
ロックにより動作する計数手段と、前記計数手段の出力
を前記中間周波数の受信信号を基準にサンプリングして
該受信信号の位相情報を出力するサンプリング手段と、
前記サンプリング手段の出力を検波する検波手段と、前
記検波手段の出力から送信情報を復調する復調手段とを
具備することを特徴とするものである。
The demodulation for digital radio communication of the present invention
The device is a π / 4 shift differential QPSK modulation type digitizer.
In the demodulator for wireless communication,
Reception that receives a frequency-modulated or phase-modulated signal
Means for converting the received signal into a signal of a predetermined intermediate frequency
Frequency conversion means for conversion and unit cycle of physical information transmission cycle
± π / 4 between the received signal at the intermediate frequency after the expiration of the period
The specified reference clock frequency is set to the value that causes the phase shift of
Counting means operating by lock and output of the counting means
By sampling the received signal of the intermediate frequency as a reference
Sampling means for outputting phase information of the received signal,
Detecting means for detecting the output of the sampling means;
A demodulation means for demodulating the transmission information from the output of the detection means.
It is characterized by having.

【0019】このように計数手段の計数周期を設定する
ことにより、中間周波数受信信号の位相の縮退を回避し
つつ、物理情報伝送周期毎に生じるシフト型差動変調方
式特有の位相シフトを吸収でき、符号判定基準を物理情
報転送周期単位で変化させることなく一定の判定基準の
下で検波・判定を行うことが可能となる。これにより、
ディジタル無線通信用復調装置の小型化、低消費電力化
等を実現することができる。
By setting the counting cycle of the counting means in this way, it is possible to absorb the phase shift peculiar to the shift type differential modulation method that occurs at each physical information transmission cycle while avoiding the degeneration of the phase of the intermediate frequency reception signal. The detection / judgment can be performed under a fixed judgment criterion without changing the code judgment criterion in units of physical information transfer cycle. This allows
The demodulator for digital wireless communication can be downsized and the power consumption can be reduced.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照しながら詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with reference to the drawings.

【0021】図1は、本発明の一実施形態であるディジ
タル無線通信用復調装置、すなわちディジタル信号によ
って位相変調された信号で通信を行う無線通信システム
の基地局または端末局に適用される復調装置の構成を示
す図である。
FIG. 1 is a demodulator for digital radio communication according to an embodiment of the present invention, that is, a demodulator applied to a base station or a terminal station of a radio communication system for communicating with a signal phase-modulated by a digital signal. It is a figure which shows the structure of.

【0022】同図に示すように、本実施形態の復調装置
1は、受信アンテナ2、周波数変換手段3、位相検出手
段4、サンプリング手段5、検波手段6および復調手段
7から構成されている。
As shown in the figure, the demodulation device 1 of the present embodiment comprises a receiving antenna 2, a frequency conversion means 3, a phase detection means 4, a sampling means 5, a detection means 6 and a demodulation means 7.

【0023】復調装置1に接続されている受信アンテナ
2で受信した位相変調された信号は、周波数変換手段3
にて所定の中間周波数の信号に変換される。図では省略
したが、周波数変換手段3は例えばローカル、クロック
生成器、ミキサー、帯域制限フィルタ、増幅器等から構
成されている。周波数変換手段3によって周波数変換さ
れた中間周波数の受信信号はサンプリング手段5に入力
される。サンプリング手段5は、後述する位相検出手段
4の出力信号を周波数変換手段3より入力した中間周波
数の受信信号を基準にサンプリングして該中間周波数の
受信信号の位相情報として得る。
The phase-modulated signal received by the receiving antenna 2 connected to the demodulator 1 is converted into frequency conversion means 3.
Is converted into a signal of a predetermined intermediate frequency. Although omitted in the figure, the frequency conversion means 3 is composed of, for example, a local unit, a clock generator, a mixer, a band limiting filter, an amplifier, and the like. The received signal of the intermediate frequency that has been frequency-converted by the frequency conversion means 3 is input to the sampling means 5. The sampling means 5 samples the output signal of the phase detection means 4 described later with reference to the received signal of the intermediate frequency input from the frequency conversion means 3 and obtains it as the phase information of the received signal of the intermediate frequency.

【0024】位相検出手段4は、基準クロック生成手段
9と、基準クロック生成手段9によって生成された基準
クロックで動作する計数手段8から構成されている。計
数手段8には所定の計数周期が設定されており、計数手
段8は設定された計数周期でリセットを繰り返しながら
基準クロック9の計数を実行し、その計数値をサンプリ
ング手段5に出力する。
The phase detecting means 4 comprises a reference clock generating means 9 and a counting means 8 which operates with the reference clock generated by the reference clock generating means 9. A predetermined counting cycle is set in the counting means 8, and the counting means 8 executes counting of the reference clock 9 while repeating resetting at the set counting cycle, and outputs the count value to the sampling means 5.

【0025】計数手段8の計数周期は、中間周波数(の
中心周波数)と異なる値で且つシフト型差動変調方式に
依存した特定値に設定されている。例えば、π/4シフ
ト差動QPSK変調方式の場合、計数器8の計数周期
は、物理情報伝送周期の単位周期時間経過後の中間周波
数受信信号との間に±π/4だけの位相ずれが生じる値
に設定されている。同様に、π/2シフト、π/8シフ
ト、π/16シフト差動QPSK変調方式が採用されて
いる場合は、計数器8の計数周期を、物理情報伝送周期
の単位周期時間経過後の中間周波数受信信号との間にそ
れぞれ±π/2、±π/8、π/16だけの位相ずれが
生じる値に設定すればよい。
The counting cycle of the counting means 8 is set to a value different from (the center frequency of) the intermediate frequency and a specific value depending on the shift type differential modulation method. For example, in the case of the π / 4 shift differential QPSK modulation method, the counting cycle of the counter 8 has a phase shift of ± π / 4 from the intermediate frequency reception signal after the unit cycle time of the physical information transmission cycle. It is set to the value that will occur. Similarly, when the π / 2 shift, π / 8 shift, π / 16 shift differential QPSK modulation method is adopted, the counting cycle of the counter 8 is set to an intermediate value after the unit cycle time of the physical information transmission cycle has elapsed. It may be set to a value that causes a phase shift of ± π / 2, ± π / 8, or π / 16 from the frequency reception signal.

【0026】図2にこの復調装置1の構成をサンプリン
グ手段5の詳細な構成を含めて示す。同図に示すよう
に、サンプリング手段5は、周波数変換手段3より出力
された中間周波数受信信号の振幅を制限する振幅制限手
段10と保持手段21とで構成される。保持手段21
は、例えば、Dタイプのフリップフロップ22で実現す
ることができる。このDタイプフリップフロップ22の
D入力端子は計数手段8の出力端子と接続され、CLK
入力端子は振幅制御手段10の出力端子と接続されてい
る。すなわち、周波数変換手段3より出力された中間周
波数受信信号は振幅制限手段10にて一定の振幅に制限
されることで矩形波のように整形され、中間周波数受信
信号の変調成分がPWMに変換される。Dタイプフリッ
プフロップ22は、計数手段8から出力された中間周波
数受信信号の位相情報であるmビットのデータを振幅制
限手段10の出力信号の立ち上げエッジ毎に保持する。
FIG. 2 shows the structure of the demodulating device 1 including the detailed structure of the sampling means 5. As shown in the figure, the sampling means 5 comprises an amplitude limiting means 10 for limiting the amplitude of the intermediate frequency reception signal output from the frequency converting means 3 and a holding means 21. Holding means 21
Can be realized by, for example, a D-type flip-flop 22. The D input terminal of the D type flip-flop 22 is connected to the output terminal of the counting means 8 and CLK
The input terminal is connected to the output terminal of the amplitude control means 10. That is, the intermediate frequency reception signal output from the frequency conversion means 3 is shaped like a rectangular wave by being limited to a constant amplitude by the amplitude limiting means 10, and the modulation component of the intermediate frequency reception signal is converted into PWM. It The D type flip-flop 22 holds m-bit data, which is the phase information of the intermediate frequency reception signal output from the counting means 8, for each rising edge of the output signal of the amplitude limiting means 10.

【0027】サンプリング手段5の出力信号は中間周波
数受信信号の位相成分を示す情報であり、このサンプリ
ング手段5の出力信号に対して検波手段6にて変調方式
に応じた検波を行う。検波手段6によって検波された受
信信号は復調手段7に出力され、復調手段7はその受信
信号に対して所定のデマッピング処理やパラレル・シリ
アル変換等の処理を行うことで送信情報系列を再構成す
る。
The output signal of the sampling means 5 is information indicating the phase component of the intermediate frequency received signal, and the output signal of the sampling means 5 is detected by the detection means 6 according to the modulation method. The reception signal detected by the detection means 6 is output to the demodulation means 7, and the demodulation means 7 reconfigures the transmission information sequence by performing predetermined demapping processing, parallel serial conversion, etc. on the reception signal. To do.

【0028】図3は計数手段8の計数周期、物理情報伝
送周期、並びに周波数変換手段3の出力である中間周波
数受信信号周期の関係を示した図である。
FIG. 3 is a diagram showing the relationship between the counting cycle of the counting means 8, the physical information transmission cycle, and the cycle of the intermediate frequency reception signal output from the frequency converting means 3.

【0029】ここで物理情報伝送周期(通常、シンボル
周期と呼ばれる。)をTとする。シフト系差動変調方式
の場合、同一情報を伝送しても、1T時間後に必ず一定
の位相変化が生じ、IF受信信号の中心周波数でIF受
信信号を観測すると、1T時間後に位相が一定量θだけ
進んで見えるか、もしくは遅れて見える。本実施形態の
復調装置は、前述したように、π/4シフト差動QPS
K変調方式等のπ/Nシフト差動N相PSK変調方式に
おいて、計数手段8の計数周期を、物理情報伝送周期の
単位周期時間経過後のIF受信信号との位相ずれが±π
/Nとなる値に設定しておくことで、上記の位相ずれを
吸収するようにしたものである。
Here, T is a physical information transmission period (generally called a symbol period). In the case of the shift differential modulation method, even if the same information is transmitted, a constant phase change always occurs after 1T time, and if the IF reception signal is observed at the center frequency of the IF reception signal, the phase is a constant amount θ after 1T time. It only looks ahead or behind. As described above, the demodulation device of this embodiment uses the π / 4 shift differential QPS.
In the π / N shift differential N-phase PSK modulation system such as the K modulation system, the phase difference between the counting cycle of the counting means 8 and the IF reception signal after a unit cycle time of the physical information transmission cycle is ± π.
By setting the value to be / N, the above phase shift is absorbed.

【0030】本発明の原理を数式により説明する。The principle of the present invention will be described by mathematical expressions.

【0031】計数手段8の計数周期をωc 、IF受信信
号の中心周波数をωIF、任意の初期位相をφ、T秒後の
位相ずれをπ/Nとして、 cos(ωc T+φ)= cos(2nπ+φ±(π/N)) ……(1) を満たす正数nを求める。ただし、(1)式を解く際に
次の条件が加わる。
Cos (ω c T + φ) = cos where ω c is the counting period of the counting means 8, ω IF is the center frequency of the IF received signal, φ is an arbitrary initial phase, and π / N is the phase shift after T seconds. (2nπ + φ ± (π / N)) (1) Find a positive number n that satisfies However, the following condition is added when solving the equation (1).

【0032】 ωIFT−π+φ≦ωc T+φ=2nπ+φ±(π/N)≦ωIFT+π+φ … …(2) この条件のもとで求めたωc から計数手段8の計数周期
を設定する。そこで上式(2)を次のように変形する。
Ω IF T−π + φ ≦ ω c T + φ = 2nπ + φ ± (π / N) ≦ ω IF T + π + φ (2) The counting cycle of the counting means 8 is set from ω c obtained under these conditions. Therefore, the above equation (2) is modified as follows.

【0033】 fIF−(fs /2)≦fc =fs (n±(1/2N))≦fIF+(fs /2) ……(3) ただし、1/T=fs とする。F IF − (f s / 2) ≦ f c = f s (n ± (1 / 2N)) ≦ f IF + (f s / 2) (3) where 1 / T = f s And

【0034】これにより整数nとして、 (fIF/fs )−(1/2)±(1/2N)≦n≦(fIF/fs )+(1/2 )±(1/2N) ……(4) が求められる。[0034] Thus as an integer n, (f IF / f s ) - (1/2) ± (1 / 2N) ≦ n ≦ (f IF / f s) + (1/2) ± (1 / 2N) (4) is required.

【0035】一例としてfIF=500(kHz)、fs
=21(kHz)、変調方式がπ/4シフト差動QPS
K方式(N=4)である場合の計数手段8の計数周期f
c を求める。これはPDCシステムを対象とした一例で
ある。この場合、(4)式を満足する正数nは24とな
る。したがって、計数手段8の計数周期fc は、 fc =fs (n±(1/2N)) ……(5) =21000×(24±(1/8)) =501375(Hz),506625(Hz) となる。
As an example, f IF = 500 (kHz), f s
= 21 (kHz), modulation method is π / 4 shift differential QPS
Counting cycle f of the counting means 8 in the case of the K method (N = 4)
ask for c . This is an example for a PDC system. In this case, the positive number n satisfying the expression (4) is 24. Therefore, the counting cycle f c of the counting means 8 is f c = f s (n ± (1 / 2N)) (5) = 21000 × (24 ± (1/8)) = 501375 (Hz), 506625 (Hz).

【0036】前者の周波数に相当する周期で計数手段8
を動作させるとT時間経過後の計数手段8の動作位相は
計数開始時刻の位相に対してπ/4だけ遅れ、また、後
者の周波数に相当する周期で計数手段8を動作させた場
合はT時間経過後の計数手段8の動作位相は計数開始時
刻の位相に対してπ/4だけ進む。これに対し、IF受
信信号は情報系列による変調を受けているためT時間経
過後に±π/4もしくは±3π/4だけ位相が変化す
る。したがって、例えば、後者の周波数に相当する周期
で計数手段8を動作させた場合、T時間経過後にπ/4
だけ位相が変化するような情報を伝送すると、検出され
る位相は計数開始時刻とT時間経過後の2時刻で同一と
なる。
The counting means 8 has a cycle corresponding to the former frequency.
Is operated, the operating phase of the counting means 8 after the elapse of T time is delayed by π / 4 with respect to the phase at the counting start time, and when the counting means 8 is operated at a cycle corresponding to the latter frequency, T After the lapse of time, the operating phase of the counting means 8 advances by π / 4 with respect to the phase at the counting start time. On the other hand, since the IF reception signal is modulated by the information series, the phase changes by ± π / 4 or ± 3π / 4 after the elapse of T time. Therefore, for example, when the counting means 8 is operated at a cycle corresponding to the latter frequency, π / 4 after the elapse of T time.
When the information that changes the phase is transmitted, the detected phase becomes the same at the counting start time and at the two times after the elapse of T time.

【0037】このように、シフト型差動変調方式が持つ
固定的な位相変化成分を復調装置内で吸収することで、
符号判定点の数を減らすことが可能となり、装置の縮小
化が図れる。上記の例では8点必要であった判定点が4
点に減る。
Thus, by absorbing the fixed phase change component of the shift type differential modulation system in the demodulator,
It is possible to reduce the number of code determination points, and the device can be downsized. In the above example, 8 points were required, but the judgment point was 4
Reduced to points.

【0038】なお、この復調方式は、同期検波の実現を
目指したものであるが、非同期系の差動復調方式に対し
ても有効である。
Although this demodulation system is aimed at realizing synchronous detection, it is also effective for an asynchronous differential demodulation system.

【0039】図4は直交座標上のπ/4シフト差動QP
SK変調方式の信号点配置を示している。○から×への
遷移、×から○への遷移は、それぞれ物理情報伝送周期
で行われる。したがって、隔時刻ごとに×○を送信する
ことになり、復調装置で同期検波する場合は、隔時刻ご
とに×用判定および○用判定を計8点で行わなければな
らず、物理情報伝送周期毎に符号判定基準を変更しなけ
ればならない。
FIG. 4 shows a π / 4 shift differential QP on Cartesian coordinates.
The signal point arrangement of the SK modulation method is shown. The transition from ○ to × and the transition from × to ○ are performed in the physical information transmission cycle. Therefore, XX is transmitted at every other time, and in the case of synchronous detection by the demodulator, the judgment for X and the judgment for ◯ must be made at a total of eight points every other time, and the physical information transmission cycle The code judgment standard must be changed every time.

【0040】本実施形態の復調装置は、物理情報伝送周
期毎に計数手段8の動作位相と中間周波数受信信号の位
相との間にπ/4の位相差が生じるため、図5に示すよ
うに、判定点位置が4点に減る。この結果、符号判定基
準を物理情報転送周期毎に変化させることなく検波・判
定を行うことが可能となり、アナログ系、ディジタル系
の部品点数を削減化できて復調装置の小型化、低消費電
力化等を実現することができる。
In the demodulation device of this embodiment, a phase difference of π / 4 is generated between the operating phase of the counting means 8 and the phase of the intermediate frequency reception signal in each physical information transmission cycle, so that as shown in FIG. , The judgment point position is reduced to 4 points. As a result, detection / judgment can be performed without changing the code judgment reference for each physical information transfer cycle, the number of analog and digital parts can be reduced, and the demodulator can be downsized and consume less power. Etc. can be realized.

【0041】さらに、本発明により、今後期特されるD
SPによるソフトウェア復調装置の実現において同期検
波プログラムの削減が可能となるという効果も生まれ
る。
Further, according to the present invention, D which will be specified in the future
In the realization of the software demodulation device by the SP, it is possible to reduce the number of synchronous detection programs.

【0042】また、本発明に係る復調装置は非同期の差
動検波方式にも適用することが可能である。なぜなら、
(1)〜(5)式を満足している限り、IF受信信号の
位相の縮退が生じないし、物理情報伝送周期を基準とし
た位相変化にしか情報を乗せていないためである。した
がって、図1のサンプリング手段5からの出力を従来通
りに検波手段6で検波することができる。
The demodulator according to the present invention can also be applied to an asynchronous differential detection system. Because
This is because as long as Expressions (1) to (5) are satisfied, degeneration of the phase of the IF reception signal does not occur and information is added only to the phase change based on the physical information transmission cycle. Therefore, the output from the sampling means 5 in FIG. 1 can be detected by the detecting means 6 as in the conventional case.

【0043】以上、ディジタル信号によって位相変調さ
れた信号で通信を行う無線通信システムの基地局または
端末局に適用される復調装置に本発明を適用した実施形
態について説明したが、本発明は、ディジタル信号によ
って周波数変調(例えばMSK変調方式)された信号で
通信を行う無線通信システムに適用される復調装置にも
適用することができ、同様の効果を得ることが可能であ
る。
The embodiment in which the present invention is applied to a demodulator applied to a base station or a terminal station of a wireless communication system that performs communication with a signal phase-modulated by a digital signal has been described above. The present invention can be applied to a demodulation device applied to a wireless communication system that performs communication with a signal that is frequency-modulated (for example, MSK modulation method) by a signal, and similar effects can be obtained.

【0044】[0044]

【発明の効果】以上説明したように本発明によれば、デ
ィジタル信号によって周波数変調または位相変調された
信号で通信を行う無線通信システム、特にシフト型位相
変調方式で通信を行う無線通信システムの基地局または
端末局の復調装置で同期検波方式を実現する場合に、物
理情報伝送周期毎に生じるシフト型差動変調方式特有の
位相シフトを吸収でき、符号判定基準を物理情報転送周
期単位で変化させることなく一定の判定基準の下で検波
・判定を行うことが可能となる。これにより、ディジタ
ル無線通信用復調装置の小型化、低消費電力化等を実現
することが可能となる。
As described above, according to the present invention, a base station of a wireless communication system for performing communication by a signal frequency-modulated or phase-modulated by a digital signal, particularly a wireless communication system for performing communication by a shift type phase modulation system. When a synchronous detection method is realized by a demodulator of a station or a terminal station, the phase shift peculiar to the shift type differential modulation method that occurs in each physical information transmission cycle can be absorbed, and the code judgment reference is changed in physical information transfer cycle units. It is possible to perform detection / judgment under a fixed judgment criterion without any need. As a result, it is possible to realize downsizing of the demodulator for digital wireless communication, lower power consumption, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のー実施形態であるディジタル無線通信
用復調装置の全体構成を示す図である。
FIG. 1 is a diagram showing an overall configuration of a demodulator for digital wireless communication according to an embodiment of the present invention.

【図2】図1の復調装置の構成をサンプリング手段の詳
細な構成を含めて示した図である。
FIG. 2 is a diagram showing the configuration of the demodulation device of FIG. 1 including a detailed configuration of sampling means.

【図3】図1の復調装置における計数手段の計数周期、
物理情報伝送周期、並びにIF受信信号周期の関係を示
す図である。
3 is a counting cycle of counting means in the demodulator of FIG. 1,
It is a figure which shows the relationship of a physical information transmission period and an IF reception signal period.

【図4】直交座標上のπ/4シフト差動QPSK変調方
式の信号点配置を示す図である。
FIG. 4 is a diagram showing a signal point arrangement of a π / 4 shift differential QPSK modulation method on Cartesian coordinates.

【図5】図1の復調装置における直交座標上の符号判定
点配置を示す図である。
5 is a diagram showing a code decision point arrangement on Cartesian coordinates in the demodulator of FIG.

【図6】従来の差動変調方式を採用したディジタル無線
通信用復調装置の全体構成を示す図である。
FIG. 6 is a diagram showing an overall configuration of a demodulator for digital wireless communication adopting a conventional differential modulation method.

【図7】図6における遅延検波器の構成を示す図であ
る。
7 is a diagram showing a configuration of a differential detector in FIG.

【符号の説明】[Explanation of symbols]

1……復調装置 2……受信アンテナ 3……周波数変換手段 4……位相検出手段 5……サンプリング手段 6……検波手段 7……復調手段 8……計数手段 9……基準クロック生成手段 10……振幅制限手段 21……保持手段 22……Dタイプフリップフロップ 1 ... Demodulator 2 ... Receiving antenna 3 ... Frequency conversion means 4 ... Phase detection means 5 ... Sampling means 6 ... Detection means 7 ... Demodulation means 8: Counting means 9 ... Reference clock generation means 10 ... Amplitude limiting means 21 ... holding means 22 ... D type flip-flop

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H04L 27/22 H04B 7/26 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H04L 27/22 H04B 7/26

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 π/Nシフト差動N相PSK変調方式の
ディジタル無線通信用復調装置において、 ディジタル信号によって周波数変調または位相変調され
た信号を受信する受信手段と、 前記受信した信号を所定の中間周波数の信号に変換する
周波数変換手段と、物理情報伝送周期の単位周期時間経過後の前記中間周波
数の受信信号との間に±π/Nの位相ずれが生じる値に
設定された 周期で所定の基準クロックにより動作する計
数手段と、 前記計数手段の出力を前記中間周波数の受信信号を基準
にサンプリングして該受信信号の位相情報を出力するサ
ンプリング手段と、 前記サンプリング手段の出力を検波する検波手段と、 前記検波手段の出力から送信情報を復調する復調手段と
を具備することを特徴とするディジタル無線通信用復調
装置。
1. A π / N shift differential N-phase PSK modulation system
In a demodulator for digital wireless communication, receiving means for receiving a signal frequency-modulated or phase-modulated by a digital signal, frequency conversion means for converting the received signal into a signal of a predetermined intermediate frequency, and a physical information transmission cycle The intermediate frequency after a unit cycle time
To a value that causes a phase shift of ± π / N between the number of received signals
Counting means that operates with a predetermined reference clock at a set cycle; sampling means that samples the output of the counting means with reference to the received signal of the intermediate frequency and outputs phase information of the received signal; 2. A demodulator for digital wireless communication, comprising: a detection means for detecting the output of the above-mentioned; and a demodulation means for demodulating transmission information from the output of the detection means.
【請求項2】 π/4シフト差動QPSK変調方式のデ
ィジタル無線通信用復調装置において、 ディジタル信号によって周波数変調または位相変調され
た信号を受信する受信手段と、 前記受信した信号を所定の中間周波数の信号に変換する
周波数変換手段と、物理情報伝送周期の単位周期時間経過後の中間周波数の
受信信号との間に±π/4の位相ずれが生じる値に設定
された 周期で所定の基準クロックにより動作する計数手
段と、 前記計数手段の出力を前記中間周波数の受信信号を基準
にサンプリングして該受信信号の位相情報を出力するサ
ンプリング手段と、 前記サンプリング手段の出力を検波する検波手段と、 前記検波手段の出力から送信情報を復調する復調手段と
を具備することを特徴とするディジタル無線通信用復調
装置。
2. A π / 4 shift differential QPSK modulation system data
In a demodulator for digital wireless communication, receiving means for receiving a signal frequency-modulated or phase-modulated by a digital signal, frequency conversion means for converting the received signal into a signal of a predetermined intermediate frequency, and a physical information transmission cycle Of intermediate frequency after unit cycle time
Set to a value that causes a phase shift of ± π / 4 from the received signal
Counting means for operating a predetermined reference clock is periodic, sampling means for outputting the phase information of the received signal output of said counting means by sampling based on the reception signal of the intermediate frequency, said sampling means A demodulator for digital wireless communication, comprising: a detection means for detecting an output, and a demodulation means for demodulating transmission information from an output of the detection means.
JP25248697A 1997-09-17 1997-09-17 Demodulator for digital wireless communication Expired - Fee Related JP3419658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25248697A JP3419658B2 (en) 1997-09-17 1997-09-17 Demodulator for digital wireless communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25248697A JP3419658B2 (en) 1997-09-17 1997-09-17 Demodulator for digital wireless communication

Publications (2)

Publication Number Publication Date
JPH1198205A JPH1198205A (en) 1999-04-09
JP3419658B2 true JP3419658B2 (en) 2003-06-23

Family

ID=17238051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25248697A Expired - Fee Related JP3419658B2 (en) 1997-09-17 1997-09-17 Demodulator for digital wireless communication

Country Status (1)

Country Link
JP (1) JP3419658B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8005161B2 (en) 2008-05-01 2011-08-23 International Business Machines Corporation Method, hardware product, and computer program product for performing high data rate wireless transmission

Also Published As

Publication number Publication date
JPH1198205A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
TW297978B (en)
US5757862A (en) Demodulator, modulation and demodulation system, and demodulation method
EP0701345A2 (en) Multicarrier transmission using differential phases
CN112350970B (en) Multi-phase frequency shift keying modulation and demodulation method and equipment
JP5356060B2 (en) Reception device, communication system, reception method, and communication method
KR100406224B1 (en) Frequency modulation signaling inquiry and communication terminal equipment employing it
WO2016021466A1 (en) Wireless communication apparatus and integrated circuit
JP3601713B2 (en) Communication system and receiver used therefor
US20070024477A1 (en) DPSK demodulator and method
US20040066844A1 (en) Modulation and demodulation based on hierarchical modulation
US6304136B1 (en) Reduced noise sensitivity, high performance FM demodulator circuit and method
Reddy Experimental validation of timing, frequency and phase correction of received signals using software defined radio testbed
JP3419658B2 (en) Demodulator for digital wireless communication
EP1443640A1 (en) Reference oscillator phase noise compensation circuitry
US5588026A (en) Method of compensating phase shift keying frequency offset
US20040157571A1 (en) Enhanced register based FSK demodulator
JPH07177054A (en) Digital radio communication terminal
JPH1198208A (en) Demodulator for digital radio communication
CN112600781A (en) Envelope-variable frequency shift keying modulation and demodulation method and equipment
CN113395229B (en) Coherent demodulation method and device suitable for pi/4-DQPSK and readable storage medium
US20060115019A1 (en) Complex digital phase locked loop for use in a demodulator and method of optimal coefficient selection
JPH1028149A (en) Clock recovery circuit
JP3089835B2 (en) Frequency offset compensation method
JP3311910B2 (en) Phase comparator, demodulator and communication device
JP3394276B2 (en) AFC circuit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees