JPH09929A - Catalyst for hydrodesulfurization of light oil - Google Patents

Catalyst for hydrodesulfurization of light oil

Info

Publication number
JPH09929A
JPH09929A JP7168296A JP16829695A JPH09929A JP H09929 A JPH09929 A JP H09929A JP 7168296 A JP7168296 A JP 7168296A JP 16829695 A JP16829695 A JP 16829695A JP H09929 A JPH09929 A JP H09929A
Authority
JP
Japan
Prior art keywords
catalyst
impregnation
molybdenum
tungsten
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7168296A
Other languages
Japanese (ja)
Other versions
JP3676849B2 (en
Inventor
Katsuya Watanabe
克哉 渡辺
Kazuo Idei
一夫 出井
Etsuo Suzuki
悦夫 鈴木
Osamu Chiyoda
修 千代田
Ichiji Usui
一司 薄井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP16829695A priority Critical patent/JP3676849B2/en
Publication of JPH09929A publication Critical patent/JPH09929A/en
Application granted granted Critical
Publication of JP3676849B2 publication Critical patent/JP3676849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To obtain the subject catalyst capable of effectively removing even sulfur compds. hard to remove in a deep desulfurization region. CONSTITUTION: Cobalt and/or nickel and molybdenum are carried on an inorg. oxide carrier by 1-10wt.% (expressed in terms of oxides) and 10-25wt.% (expressed in terms of oxide) respectively based on the amt. of the resultant catalyst and tungsten is further carried by such an amt. as to regulate the weight ratio of tungsten to molybdenum to 0.01-0.2 (expressed in terms of oxides). The average pore diameter of the resultant catalyst is 60-90Å.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、深度脱硫領域において
難脱硫性とされる硫黄化合物をも効果的に除去すること
ができる軽油の水素化脱硫触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas oil hydrodesulfurization catalyst capable of effectively removing even sulfur compounds which are considered to be difficult to desulfurize in a deep desulfurization region.

【0002】[0002]

【従来の技術】炭化水素油は一般に硫黄化合物を含み、
それらの油を燃料として使用した場合には、硫黄化合物
中に存在する硫黄が硫黄化合物に転化し大気中に排出さ
れる。したがって、燃焼した場合の大気の汚染を考慮す
れば、炭化水素油中の硫黄含有量は、できる限り少ない
ことが望ましい。硫黄含有量の低減は、炭化水素油を接
触水素化脱硫することによって達成することができる。
Hydrocarbon oils generally contain sulfur compounds,
When these oils are used as fuels, the sulfur present in the sulfur compounds is converted to sulfur compounds and discharged into the atmosphere. Therefore, it is desirable that the sulfur content in the hydrocarbon oil be as low as possible in consideration of the pollution of the air when it burns. Reduction of sulfur content can be achieved by catalytic hydrodesulfurization of hydrocarbon oils.

【0003】また、環境問題から商品軽油中に含まれる
硫黄分に対する規制がより厳しくなる(従来の0.2w
t%から0.05wt%に規制される)のに伴い、一層
の深度脱硫が要求されており、この領域において難脱硫
性物質とされる4−MDBT(4メチルジベンゾチオフ
ェン)や4,6−DMDBT(4,6ジメチルジベンゾ
チオフェン)が中心となった難脱硫性物質の処理が必要
となっている。
Further, due to environmental problems, regulations on sulfur content in commercial gas oil are becoming more stringent (0.2 w of conventional products).
t% to 0.05 wt%), further deep desulfurization is required, and 4-MDBT (4 methyldibenzothiophene) and 4,6- It is necessary to treat a hardly desulfurizable substance centered on DMDBT (4,6 dimethyldibenzothiophene).

【0004】このような深度脱硫を意図した水素化脱硫
に使用されている触媒は、周期律表第VI族(以下、
「第6族」と記す)金属と周期律表第VIII族(以
下、「第8族」と記す)金属を活性金属とし、アルミ
ナ、マグネシア、シリカ等の酸化物担体上に担持した触
媒であり、一般に、第6族金属としてはMoが用いら
れ、第8族金属としてはCoやNiが用いられている。
さらに、この触媒の活性向上のために、燐、ホウ素等の
添加が報告されている(特開昭52−13503)。
The catalyst used for hydrodesulfurization intended for such deep desulfurization is a group VI (hereinafter,
A catalyst in which a metal (referred to as “Group 6”) and a metal of Group VIII (hereinafter referred to as “Group 8”) of the periodic table are used as active metals and which is supported on an oxide carrier such as alumina, magnesia, or silica. Generally, Mo is used as the Group 6 metal, and Co or Ni is used as the Group 8 metal.
Further, in order to improve the activity of this catalyst, addition of phosphorus, boron and the like has been reported (JP-A-52-13503).

【0005】なお、炭化水素油の水素化脱硫としての第
6族、第8族の組合せ系触媒にタングステンを混入させ
る技術が報告されている(Applied Catal
ysis A:General 109(1994)1
95〜210)が、この技術は、重質油の脱アスファル
テンを主目的としたものであって、軽油の深度脱硫、さ
らには難脱硫性物質の脱硫を目的としたものではない。
A technique for incorporating tungsten into a combined catalyst of Groups 6 and 8 for hydrodesulfurization of hydrocarbon oil has been reported (Applied Catal).
ysis A: General 109 (1994) 1
95-210), this technique is mainly intended for deasphaltening heavy oil, but not for deep desulfurization of light oil and desulfurization of hardly desulfurizable substances.

【0006】[0006]

【発明が解決しようとする課題】本発明は、深度脱硫領
域において優れた脱硫活性を有する、軽油の水素化脱硫
触媒を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a gas oil hydrodesulfurization catalyst having excellent desulfurization activity in the deep desulfurization region.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために検討を重ねた結果、(1)タングステ
ンが難脱硫性硫黄化合物の水素化に効力を発揮すること
に着目し、従来の第6族−第8族の組合わせ系の水素化
脱硫触媒であるコバルト−モリブデン触媒あるいはニッ
ケル−モリブデン触媒に、タングステンをモリブデンに
対して特定の割合で担持させたところ、特定の平均細孔
径を有するものが深度脱硫領域において難脱硫性硫黄化
合物をも効果的に除去し得ること、(2)この水素化脱
硫は、4−MDBT、4,6−DMDBTなどの難脱硫
性物質を部分核水素化して、効果的に除去するものであ
ること、の知見を得、本発明を完成するに至った。
As a result of repeated studies to achieve the above object, the present inventors have noticed that (1) tungsten exerts an effect on the hydrogenation of refractory sulfur compounds. When a specific ratio of tungsten was supported on molybdenum on a cobalt-molybdenum catalyst or a nickel-molybdenum catalyst, which is a conventional hydrodesulfurization catalyst of a combined group 6-8 group, The one having a pore size can effectively remove the hardly desulfurizable sulfur compound in the deep desulfurization region, and (2) this hydrodesulfurization is conducted with the hardly desulfurizable substances such as 4-MDBT and 4,6-DMDBT. The present inventors have completed the present invention by obtaining the knowledge that hydrogen is effectively removed by partial nuclear hydrogenation.

【0008】すなわち、本発明は、無機酸化物担体上
に、触媒基準で、コバルトおよびニッケルの双方または
いずれか一方を酸化物換算で1〜10重量%、モリブデ
ンを酸化物換算で10〜25重量%、およびタングステ
ンとモリブデンの重量比が酸化物換算で0.01〜0.
2となるようにタングステンを担持し、かつ触媒の平均
細孔径が60〜90Åであることを特徴とする軽油の水
素化脱硫触媒を要旨とする。
That is, according to the present invention, 1 to 10% by weight of cobalt and / or nickel on a catalyst basis and 10 to 25% by weight of molybdenum on an inorganic oxide carrier are calculated on the basis of a catalyst. %, And the weight ratio of tungsten and molybdenum is 0.01 to 0.
A gas oil hydrodesulfurization catalyst is characterized in that tungsten is supported so as to be 2 and the average pore diameter of the catalyst is 60 to 90Å.

【0009】本発明の触媒の担体は、結晶性無機酸化物
である。この無機酸化物としては、種々のものが使用で
き、例えば、シリカ、アルミナ、ボリア、マグネシア、
チタニア、シリカ−アルミナ、シリカ−マグネシア、シ
リカ−ジルコニア、シリカ−トリア、シリカ−ベリリ
ア、シリカ−チタニア、シリカ−ボリア、アルミナ−ジ
ルコニア、アルミナ−チタニア、アルミナ−ボリア、ア
ルミナ−クロミア、チタニア−ジルコニア、シリカ−ア
ルミナ−トリア、シリカ−アルミナ−ジルコニア、シリ
カ−アルミナ−マグネシア、シリカ−マグネシア−ジル
コニアなどであり、これらは単独で、あるいは2種以上
を組合せて使用することができる。
The carrier of the catalyst of the present invention is a crystalline inorganic oxide. As this inorganic oxide, various ones can be used, for example, silica, alumina, boria, magnesia,
Titania, silica-alumina, silica-magnesia, silica-zirconia, silica-tria, silica-beryllia, silica-titania, silica-boria, alumina-zirconia, alumina-titania, alumina-boria, alumina-chromia, titania-zirconia, Silica-alumina-thorium, silica-alumina-zirconia, silica-alumina-magnesia, silica-magnesia-zirconia, etc. These can be used alone or in combination of two or more kinds.

【0010】これらの無機酸化物のうち、好ましいもの
としては、アルミナ、シリカ−アルミナ、アルミナ−チ
タニア、アルミナ−ボリア、アルミナ−ジルコニアが挙
げられ、特に好ましくはγ−アルミナである。
Of these inorganic oxides, preferred are alumina, silica-alumina, alumina-titania, alumina-boria, and alumina-zirconia, and γ-alumina is particularly preferred.

【0011】上記の担体(あるいは、上記の担体からな
る本発明の触媒)には、モンモリロナイト、カオリン、
ハロサイト、ベントナイト、アダバルガイト、ボーキサ
イト、カオリナイト、ナクライト、アノーキサイトなど
の粘土鉱物を1種以上含ませてもよい。
The above carrier (or the catalyst of the present invention comprising the above carrier) includes montmorillonite, kaolin,
One or more kinds of clay minerals such as halosite, bentonite, adabargite, bauxite, kaolinite, nacrite and anoxite may be contained.

【0012】これらの無機酸化物からなる担体の比表面
積は、特に限定されるものではないが、250m/g
以上が好ましい。担体の細孔容積も、特に限定されるも
のではないが、0.4〜1.2cc/gが好ましい。担
体の平均細孔径も、特に限定されるものではないが、本
発明の触媒の平均細孔径を60〜90Åとする上で、5
0〜130Åのものを使用することが好ましい。
The specific surface area of the carrier composed of these inorganic oxides is not particularly limited, but is 250 m 2 / g.
The above is preferable. The pore volume of the carrier is not particularly limited, but is preferably 0.4 to 1.2 cc / g. The average pore size of the carrier is also not particularly limited, but in order to set the average pore size of the catalyst of the present invention to 60 to 90Å,
It is preferable to use the one having 0 to 130Å.

【0013】本発明の触媒は、上記の担体に、コバルト
およびニッケルの双方またはいずれか一方と、モリブデ
ンと、タングステンとを、それぞれ特定量で担持させた
ものである。
The catalyst of the present invention is such that cobalt and / or nickel, molybdenum, and tungsten are supported on the above carrier in specific amounts.

【0014】コバルトおよびニッケルの双方またはいず
れか一方の担持量は、触媒基準で、酸化物換算で、1〜
10重量%、好ましくは3〜7重量%である。コバルト
およびニッケルの双方またはいずれか一方が、1重量%
未満であると、水素化脱硫活性が発現せず、10重量%
より多くても、それに見合う該活性の向上は得られず、
経済的に不利となる。
The amount of cobalt and / or nickel supported is 1 to 1 in terms of oxide, based on the catalyst.
It is 10% by weight, preferably 3 to 7% by weight. 1% by weight of cobalt and / or nickel
If it is less than 10% by weight, the hydrodesulfurization activity is not expressed.
Even if it is more, the corresponding improvement in the activity cannot be obtained,
It is economically disadvantageous.

【0015】モリブデンの担持量は、10〜25重量
%、好ましくは15〜20重量%である。モリブデンが
10重量%より少ないと、活性点として働くモリブデン
の絶対量が少なくなりすぎて、水素化脱硫活性が発現せ
ず、25重量%より多いと、金属モリブデンの凝集が起
こり、逆に活性点の数が減少して、水素化脱硫活性が低
下してしまう。
The amount of molybdenum supported is 10 to 25% by weight, preferably 15 to 20% by weight. If the amount of molybdenum is less than 10% by weight, the absolute amount of molybdenum that acts as an active site becomes too small, and hydrodesulfurization activity does not appear. If it is more than 25% by weight, agglomeration of metallic molybdenum occurs, and conversely the active site And the hydrodesulfurization activity is reduced.

【0016】タングステンの担持量は、タングステンと
上記のモリブデンとの重量比が、WO:MoO
0.01:1〜0.20:1、好ましくは0.02:1
〜0.1:1、さらに好ましくは0.04:1〜0.0
7:1となるような量とする。WO:MoO重量比
(以下、単に「比」と記す)が0.01より少ないと、
前記した難脱硫性物質の核水素化活性が発現せず、モリ
ブデンとタングステンの重量比が0.2より多いと、担
持するタングステンの量が多すぎて、上記のモリブデン
の場合と同様に金属タングステンの凝集が起こり、活性
点の数が減少して、水素化脱硫における難脱硫性物質の
除去効率が低下してしまう。
The amount of tungsten supported is such that the weight ratio of tungsten to molybdenum is WO 3 : MoO 3 =
0.01: 1 to 0.20: 1, preferably 0.02: 1
~ 0.1: 1, more preferably 0.04: 1 to 0.0
The amount should be 7: 1. When the WO 3 : MoO 3 weight ratio (hereinafter simply referred to as “ratio”) is less than 0.01,
If the nuclear hydrogenation activity of the above-mentioned difficult-to-desulfurize substances is not expressed and the weight ratio of molybdenum to tungsten is more than 0.2, the amount of tungsten to be supported is too large, and the metallic tungsten is the same as in the case of molybdenum. Agglomeration occurs, the number of active sites decreases, and the removal efficiency of the hardly desulfurizable substance in hydrodesulfurization decreases.

【0017】これらコバルトおよびニッケルの双方また
はいずれか一方、モリブデン、タングステンを上記の無
機酸化物担体への担持方法あるいは担持順序は、特に限
定されるものではない。例えば、(1)先ずモリブデン
塩溶液の含浸担持、次いでコバルトおよびニッケルの双
方またはいずれか一方の塩溶液の含浸担持、その後にタ
ングステン塩溶液の含浸担持でもよいし、(2)先ずモ
リブデン塩溶液の含浸担持、次いでタングステン塩溶液
の含浸担持、その後にコバルトおよびニッケルの双方ま
たはいずれか一方の塩溶液の含浸担持でもよいし、
(3)先ずタングステン塩溶液の含浸担持、次いでモリ
ブデン塩溶液の含浸担持、その後にコバルトおよびニッ
ケルの双方またはいずれか一方の塩溶液の含浸担持でも
よいし、(4)先ずモリブデン塩溶液とタングステン塩
溶液とを同時に含浸担持させ、次いでコバルトおよびニ
ッケルの双方またはいずれか一方の塩溶液を含浸担持さ
せてもよい。
There is no particular limitation on the method or order of loading these cobalt and / or nickel, molybdenum and tungsten on the above inorganic oxide support. For example, (1) first impregnating and supporting a molybdenum salt solution, then impregnating and supporting a salt solution of cobalt and / or nickel, and then impregnating and supporting a tungsten salt solution, or (2) first of a molybdenum salt solution. Impregnation support, then impregnation support with a tungsten salt solution, and then impregnation support with a salt solution of cobalt and / or nickel,
(3) First, impregnating and supporting a tungsten salt solution, then impregnating and supporting a molybdenum salt solution, and then impregnating and supporting a salt solution of cobalt and / or nickel, or (4) first, a molybdenum salt solution and a tungsten salt. The solution and the salt solution of cobalt and / or nickel may be simultaneously impregnated and supported.

【0018】これらの含浸の後、乾燥焼成すれば本発明
の触媒となるが、このとき上記の各溶液の含浸を複数回
に分けて上記の担持量となるように各活性成分を担持さ
せる場合において、各含浸工程間に、乾燥焼成工程を設
けてもよい。
After the impregnation, the catalyst of the present invention is obtained by drying and calcining. At this time, the impregnation of each of the above-mentioned solutions is divided into a plurality of times so that each of the active ingredients is supported so as to have the above-mentioned supported amount. In the above, a drying and firing step may be provided between each impregnation step.

【0019】上記の含浸法により各活性成分を担持させ
る場合、コバルトあるいはニッケルの塩としては種々の
ものが使用でき、例えば、炭酸塩、酢酸塩、硝酸塩、硫
酸鉛、燐酸塩などを挙げることができ、これらの塩は、
それぞれ単独で、あるいは2種以上を組合せて使用する
ことができる。
When each active ingredient is supported by the above-mentioned impregnation method, various salts of cobalt or nickel can be used, and examples thereof include carbonates, acetates, nitrates, lead sulfates and phosphates. Yes, these salts are
Each can be used alone or in combination of two or more.

【0020】モリブデンの塩としても種々のものが使用
でき、例えば、モリブデン酸アンモニウム((NH
Mo24・4HO)、モリブドリン酸(H
(PMo1240)・30HO)、酸化モリブデ
ン(MoO)などが挙げられ、これらの塩は、それぞ
れ単独で、あるいは2種以上を組合せて使用することが
できる。
Various salts of molybdenum can be used, for example, ammonium molybdate ((NH 4 )).
6 Mo 7 O 24 · 4H 2 O), molybdophosphoric acid (H
3 (PMo 12 O 40 ) .30H 2 O), molybdenum oxide (MoO 3 ), and the like. These salts can be used alone or in combination of two or more kinds.

【0021】タングステンの塩としても種々のものが使
用でき、例えば、パラタングステン酸アンモニウム(5
(NHO・12WO・11HO)、メタタン
グステン酸アンモニウム((NH13・8
O)、タングステン酸(HWO)、タングスト
リン酸(H(PW1240)・30HO)などが
挙げられ、これらの塩は、それぞれ単独で、あるいは2
種以上を組合せて使用することができる。
Various salts of tungsten can be used. For example, ammonium paratungstate (5
(NH 4) 2 O · 12WO 3 · 11H 2 O), ammonium metatungstate ((NH 4) 2 W 4 O 13 · 8
H 2 O), tungstic acid (H 2 WO 4 ), tungstophosphoric acid (H 3 (PW 12 O 40 ) .30H 2 O) and the like, and these salts may be used alone or in the form of 2
More than one species can be used in combination.

【0022】モリブデンの塩と、タングステンの塩と、
コバルトあるいはニッケルの塩とを溶解させる溶媒とし
ては、特に限定されるものではなく、種々のものを使用
することができ、例えば、水、アルコール類、エーテル
類、ケトン類、芳香族類などが挙げられ、好ましくは、
水、アセトン、メタノール、n−プロパノール、i−プ
ロパノール、n−ブタノール、i−ブタノール、ヘキサ
ノール、ベンゼン、トルエン、キシレン、ジエチルエー
テル、テトラヒドロフラン、ジオキサンなどであり、特
に好ましくは水である。
Molybdenum salt, tungsten salt,
The solvent for dissolving the cobalt or nickel salt is not particularly limited, and various solvents can be used, and examples thereof include water, alcohols, ethers, ketones, and aromatics. Preferably,
Water, acetone, methanol, n-propanol, i-propanol, n-butanol, i-butanol, hexanol, benzene, toluene, xylene, diethyl ether, tetrahydrofuran, dioxane and the like are preferable, and water is particularly preferable.

【0023】モリブデンの塩、タングステンの塩、コバ
ルトあるいはニッケルの塩の各溶液を構成する各活性成
分の配合割合(すなわち、各溶液の濃度)は、特に限定
するものではないが、含浸操作および乾燥焼成操作の容
易性を考慮すれば、これら各々の含浸操作における溶媒
の量を、担体100gに対して、50〜150g、好ま
しくは70〜90gとする(含浸を複数回に分け、各含
浸工程間に乾燥焼成工程を設ける場合には、各含浸工程
および各乾燥焼成工程における溶媒の量を、この量とす
る)ことが適していることから、この溶媒量を考慮し
て、各活性成分が、焼成後の触媒に対して、前述した酸
化物換算の量となるような割合とすればよい。
The mixing ratio of each active ingredient constituting each solution of molybdenum salt, tungsten salt, cobalt or nickel salt (that is, the concentration of each solution) is not particularly limited, but impregnation operation and drying are performed. Considering the ease of the calcination operation, the amount of the solvent in each of these impregnation operations is 50 to 150 g, preferably 70 to 90 g, relative to 100 g of the carrier (impregnation is divided into a plurality of times, and each impregnation step In the case of providing a dry baking step in, the amount of the solvent in each impregnation step and each dry baking step is suitable as this amount). The ratio may be the above-mentioned amount converted to oxide with respect to the calcined catalyst.

【0024】上記各溶液を含浸させる際の各含浸条件
は、特に限定しないが、通常は、温度は10〜100
℃、好ましくは10〜50℃、さらに好ましくは15〜
30℃とすることが適している。このとき、攪拌を伴う
ことが好ましい。時間(含浸を複数回に分ける場合に
は、各含浸工程の時間)は、通常は、15分〜3時間、
好ましくは20分〜2時間、さらに好ましくは30分〜
1時間が適している。
The impregnation conditions for impregnating each of the above solutions are not particularly limited, but usually the temperature is 10 to 100.
℃, preferably 10 to 50 ℃, more preferably 15 ~
A temperature of 30 ° C is suitable. At this time, it is preferable to carry out stirring. The time (time of each impregnation step when the impregnation is divided into a plurality of times) is usually 15 minutes to 3 hours,
Preferably 20 minutes to 2 hours, more preferably 30 minutes to
1 hour is suitable.

【0025】本発明の触媒は、上記の条件において上記
各溶液の含浸操作(含浸を複数回に分け、各含浸工程間
に乾燥焼成工程を設ける場合には、全含浸工程および全
乾燥焼成工程)を行って各活性成分を担持した担体を、
さらに乾燥、焼成して製造される。
The catalyst of the present invention is impregnated with each of the above-mentioned solutions under the above-mentioned conditions (when impregnation is divided into a plurality of times and a drying and calcination step is provided between the impregnation steps, a total impregnation step and a total dry and calcination step). By carrying out the carrier carrying each active ingredient,
It is manufactured by further drying and firing.

【0026】このときの乾燥(含浸を複数回に分け、各
含浸工程間に乾燥焼成工程を設ける場合の、各乾燥も含
む)は、風乾、熱風乾燥、加熱乾燥、凍結乾燥などの種
々の乾燥方法により行うことができる。
Drying at this time (including each drying when the impregnation is divided into a plurality of times and a drying and firing step is provided between each impregnation step) is performed by various drying methods such as air drying, hot air drying, heat drying and freeze drying. It can be performed by a method.

【0027】焼成(含浸を複数回に分け、各含浸工程間
に乾燥焼成工程を設ける場合の、各焼成も含む)の際の
温度は、400〜500℃、好ましくは450〜500
℃が適しており、時間(含浸を複数回に分け、各含浸工
程間に乾燥焼成工程を設ける場合には、各焼成工程の時
間)は、2〜10時間、好ましくは3〜5時間が適して
いる。
The temperature during firing (including each firing when the impregnation is divided into a plurality of times and a drying firing step is provided between each impregnation step) is 400 to 500 ° C., preferably 450 to 500.
C is suitable, and the time (time for each firing step when impregnation is divided into a plurality of times and a drying and firing step is provided between each impregnation step) is 2 to 10 hours, preferably 3 to 5 hours. ing.

【0028】以上のようにして調製される本発明の触媒
において、比表面積および細孔容積は、触媒として機能
することができれば特に限定されるものではないが、難
脱硫性物質を効果的に除去するためには、比表面積は2
00m/g以上、細孔容積は0.4〜1.2cc/g
が好ましい。
In the catalyst of the present invention prepared as described above, the specific surface area and the pore volume are not particularly limited as long as it can function as a catalyst, but the hardly desulfurizable substance is effectively removed. To achieve this, the specific surface area is 2
00 m 3 / g or more, pore volume is 0.4 to 1.2 cc / g
Is preferred.

【0029】平均細孔径は、60〜90Å、好ましくは
70〜80Åとする。平均細孔径が60Å未満である
と、反応物質が細孔内に拡散し難く、したがって難脱硫
性物質の核水素化反応が効果的に生じないばかりか、触
媒として機能させるのに必要な物性(比表面積、細孔容
積)を得ようとすると、機械的強度が不足するなど、製
造上困難な問題が発生する。
The average pore diameter is 60 to 90Å, preferably 70 to 80Å. When the average pore size is less than 60Å, the reactants are less likely to diffuse into the pores, and therefore the nuclear hydrogenation reaction of the hardly desulfurizable substance does not occur effectively, and the physical properties required to function as a catalyst ( Attempting to obtain (specific surface area, pore volume) causes problems in manufacturing, such as insufficient mechanical strength.

【0030】90Åより大きいと、細孔内への反応物質
の拡散性は良いものの、触媒の有効表面積が小さくなる
ので、やはり難脱硫性物質の除去が困難となる。より詳
細には、深度脱硫反応を行う場合は、生成軽油の色相を
悪化させずに、硫黄分を所定レベル以下まで減少させる
ことが重要であるため、液空間速度を低くした運転を行
うことが多い。この場合には、接触時間が長くなるの
で、平均細孔径が90Åよりも大きい触媒を使用して反
応物質の拡散性を良くする必要は無くなるばかりか、逆
に平均細孔径が90Åより大きい触媒を使用すると、細
孔内に拡散した反応物質と反応表面との接触効果が低下
して、活性の向上が認められなくなる。
If it is larger than 90Å, the diffusibility of the reaction substance into the pores is good, but the effective surface area of the catalyst is small, so that it is also difficult to remove the hardly desulfurizable substance. More specifically, when performing a deep desulfurization reaction, it is important to reduce the sulfur content to below a predetermined level without deteriorating the hue of the produced gas oil. Many. In this case, since the contact time becomes long, it is not necessary to use a catalyst having an average pore size larger than 90Å to improve the diffusivity of the reactants, and conversely, to use a catalyst having an average pore size larger than 90Å. When it is used, the contact effect between the reaction substance diffused in the pores and the reaction surface is reduced, and the improvement in activity cannot be observed.

【0031】また、触媒の細孔径分布(すなわち、平均
細孔径±15Åの細孔径を有する細孔の割合)は、70
%以上、好ましくは80%以上が適している。細孔径分
布の値が小さく、分布曲線がブロードであると、平均細
孔径が理想的な値であっても、反応に有効な細孔の数が
相対的に少なくなってしまい、高活性な触媒が期待でき
ない。
The pore size distribution of the catalyst (that is, the proportion of pores having an average pore size of ± 15Å) is 70
% Or more, preferably 80% or more is suitable. If the value of the pore size distribution is small and the distribution curve is broad, the number of effective pores for the reaction will be relatively small even if the average pore size is ideal, and a highly active catalyst will be obtained. Can not be expected.

【0032】本発明の触媒の形状は、特に限定されるも
のではなく、通常の触媒形状に用いられる種々の形状に
することができ、例えば、四葉型や円柱形などを使用す
ることができる。本発明の触媒の大きさは、通常、1/
10〜1/22インチが適している。
The shape of the catalyst of the present invention is not particularly limited, and various shapes used for ordinary catalyst shapes can be used, and for example, a four-lobed shape or a cylindrical shape can be used. The size of the catalyst of the present invention is usually 1 /
10 to 1/22 inch is suitable.

【0033】本発明の触媒は、公知の触媒あるいは公知
の無機質酸化物担体と混合して使用してもよい。
The catalyst of the present invention may be used as a mixture with a known catalyst or a known inorganic oxide carrier.

【0034】本発明の触媒を使用して水素化脱硫できる
原料油としては、原油の常圧蒸留で得られる直留軽油、
あるいは接触分解装置から生成する分解軽油、減圧蒸留
で得られる減圧軽油などが挙げられ、一般性状的には、
沸点が150〜600℃、好ましくは200〜400
℃、硫黄分量が3重量%以下、好ましくは2.5重量%
以下、密度(15℃)が0.94g/cm以下のもの
が好適である。
The feed oil which can be hydrodesulfurized by using the catalyst of the present invention includes straight-run light oil obtained by atmospheric distillation of crude oil,
Alternatively, cracked gas oil produced from a catalytic cracker, vacuum gas oil obtained by vacuum distillation, and the like can be mentioned.
Boiling point is 150 to 600 ° C, preferably 200 to 400
℃, sulfur content is less than 3 wt%, preferably 2.5 wt%
Hereinafter, those having a density (15 ° C.) of 0.94 g / cm 3 or less are preferable.

【0035】本発明の触媒を、商業規模での接触水素化
処理による脱硫装置に使用する場合においては、固定
床、移動床または流動床として使用し、ここに脱硫すべ
き軽油を導入し、高温、高圧(相当の水素分圧)下で、
所望の脱硫を行う。最も、一般的には、触媒を固定床と
して維持し、軽油が該固定床を下方に通過するようにす
る。触媒は、単独の反応器で使用することもでき、さら
に連続した幾つかの反応器で使用することもできる。特
に、原料油が比較的重質の軽油の場合には、多段反応器
を使用するのが好ましい。
When the catalyst of the present invention is used in a desulfurization apparatus by catalytic hydrotreating on a commercial scale, it is used as a fixed bed, a moving bed or a fluidized bed, and the gas oil to be desulfurized is introduced therein to obtain a high temperature. , Under high pressure (equivalent hydrogen partial pressure),
Perform the desired desulfurization. Most commonly, the catalyst is maintained as a fixed bed, with light oil passing downward through the fixed bed. The catalyst can be used in a single reactor or even in several reactors in series. In particular, when the feedstock oil is a relatively heavy gas oil, it is preferable to use a multistage reactor.

【0036】反応の好ましい例としては、軽油を、温度
が約200〜500℃、より好ましくは約250〜40
0℃で、液空間速度が約0.05〜5.0hr−1、よ
り好ましくは約0.1〜4.0hr−1で、水素分圧が
約10〜200kg/cmG、より好ましくは約30
〜100kg/cmGで、触媒と接触させる。
As a preferable example of the reaction, a light oil is used at a temperature of about 200 to 500 ° C., more preferably about 250 to 40.
At 0 ° C., the liquid hourly space velocity is about 0.05 to 5.0 hr −1 , more preferably about 0.1 to 4.0 hr −1 , and the hydrogen partial pressure is about 10 to 200 kg / cm 2 G, more preferably. About 30
In ~100kg / cm 2 G, it is contacted with the catalyst.

【0037】[0037]

【実施例】以下、本発明を実施例及び比較例により具体
的に説明するが、本発明は、これらによって何ら限定さ
れるものではない。
[Examples] The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0038】実施例1 三角フラスコ中で、モリブデン酸アンモニウム32.7
gを水75gに溶解させ、さらにモリブデン酸アンモニ
ウムが完全に溶解するまでアンモニア水を加えて攪拌
し、モリブデン酸アンモニウムの水溶液を調製した。
Example 1 Ammonium molybdate 32.7 in an Erlenmeyer flask.
g was dissolved in 75 g of water, ammonia water was further added until ammonium molybdate was completely dissolved, and the mixture was stirred to prepare an aqueous solution of ammonium molybdate.

【0039】別の三角フラスコ中で、硝酸コバルト26
gを水75gに溶解させ、攪拌し、硝酸コバルトの水溶
液を調製した。
In a separate Erlenmeyer flask, cobalt nitrate 26
g was dissolved in 75 g of water and stirred to prepare an aqueous solution of cobalt nitrate.

【0040】さらに別の三角フラスコ中で、本実施例の
最終製品である触媒中のWO/MoO比が0.05
になるように、メタタングステン酸アンモニウム2.6
gを水75gに溶解させ、攪拌し、メタタングステン酸
アンモニウムの水溶液を調製した。
In a further Erlenmeyer flask, the WO 3 / MoO 3 ratio in the catalyst of the final product of this example is 0.05.
Ammonium metatungstate 2.6
g was dissolved in 75 g of water and stirred to prepare an aqueous solution of ammonium metatungstate.

【0041】上記のモリブデン酸アンモニウム水溶液
を、ナス型フラスコ中で、比表面積336m/g、細
孔容積0.71cc/g、平均細孔径85Åのγ−アル
ミナ担体100gに含浸した。含浸温度は、常温とし、
含浸時間は1時間とした。この後、乾燥(風乾)し、マ
ッフル炉中で500℃にて4時間焼成を行い、1段目の
含浸担持(モリブデン塩溶液の含浸担持)を終了した。
In an eggplant-shaped flask, 100 g of a γ-alumina carrier having a specific surface area of 336 m 2 / g, a pore volume of 0.71 cc / g and an average pore diameter of 85Å was impregnated with the above ammonium molybdate aqueous solution. The impregnation temperature is normal temperature,
The impregnation time was 1 hour. Then, it was dried (air-dried) and baked in a muffle furnace at 500 ° C. for 4 hours to complete the first stage impregnation and loading (impregnation and loading of molybdenum salt solution).

【0042】1段目の含浸担持終了後の触媒に、ナス型
フラスコ中で、硝酸コバルト水溶液を、1段目の含浸操
作と同様の条件で含浸し、1段目の乾燥焼成と同様の条
件で乾燥焼成し、2段目の含浸担持(コバルト塩溶液の
含浸担持)を終了した。
The catalyst after the completion of the impregnation on the first stage was impregnated with an aqueous solution of cobalt nitrate in an eggplant-shaped flask under the same conditions as in the impregnation operation of the first stage, and under the same conditions as the dry firing of the first stage. After that, the mixture was dried and calcined to complete the second stage impregnation and loading (cobalt salt solution impregnation and loading).

【0043】2段目の含浸担持終了後の触媒に、ナス型
フラスコ中で、メタタングステン酸アンモニウム水溶液
を1段目の含浸操作と同様の条件で含浸し、1段目の乾
燥焼成と同様の条件で乾燥焼成し、3段目の含浸担持
(タングステン塩溶液の含浸担持)を終了し、触媒Aを
調製した。
The catalyst after completion of the impregnation in the second step was impregnated with an aqueous solution of ammonium metatungstate in an eggplant-shaped flask under the same conditions as in the impregnation operation in the first step, and dried in the same manner as in the first step. The catalyst A was prepared by drying and firing under the conditions to complete the third stage impregnation and loading (impregnation and loading of the tungsten salt solution).

【0044】実施例2 2段目の含浸担持の硝酸コバルト26gに代えて硝酸ニ
ッケル26gを用いた以外は、実施例1と同様の方法で
触媒Bを調製した。
Example 2 A catalyst B was prepared in the same manner as in Example 1 except that 26 g of nickel nitrate was used instead of 26 g of cobalt nitrate which was impregnated and supported in the second stage.

【0045】実施例3 1段目の含浸担持のモリブデン酸アンモニウム32.7
gに代えて16.3gを用い、2段目の含浸担持の硝酸
コバルトに代えてWO/MoO比が0.02になる
ようにタングステン酸0.236gを使用し、これが完
全に溶解するまでアンモニア水を加えた水溶液を用い、
3段目の含浸担持のメタタングステン酸アンモニウムに
代えて硝酸コバルト26gを用いた以外は、実施例1と
同様の方法で触媒Cを調製した。
Example 3 Ammonium molybdate 32.7 with impregnation on the first stage 32.7
16.3 g was used instead of g, and 0.236 g of tungstic acid was used so that the WO 3 / MoO 3 ratio was 0.02 instead of the cobalt nitrate of the second stage impregnated and supported, and this was completely dissolved. Using an aqueous solution with ammonia water added,
A catalyst C was prepared in the same manner as in Example 1 except that 26 g of cobalt nitrate was used instead of ammonium metatungstate for impregnation on the third stage.

【0046】実施例4 1段目の含浸担持のモリブデン酸アンモニウムに代えて
タングストリン酸6.47gを用い、2段目の含浸担持
の硝酸コバルトに代えてWO/MoO比が0.02
になるようにモリブデン酸アンモニウム40.9gを用
い、3段目の含浸担持のメタタングステン酸に代えて硝
酸コバルト26gを用いた以外は、実施例1と同様の方
法で触媒Dを調製した。
Example 4 6.47 g of tungstophosphoric acid was used in place of ammonium molybdate supported on the first stage, and WO 3 / MoO 3 ratio was 0.02 in place of cobalt nitrate supported on the second stage.
Catalyst A was prepared in the same manner as in Example 1 except that 40.9 g of ammonium molybdate was used and 26 g of cobalt nitrate was used in place of the metatungstic acid impregnated and supported in the third stage.

【0047】実施例5 三角フラスコ中で、WO/MoO比が0.03にな
るようにモリブデン酸アンニウム32.7gとパラタン
グステン酸アンモニウム0.97gを水75gに溶解さ
せ、これらのモリブデン酸アンモニウムとパラタングス
テン酸アンモニウムとが完全に溶解するまでアンモニウ
ム水を加え、攪拌して、パラタングステン酸アンモニウ
ムおよびモリブデン酸アンモニウムの混合水溶液を調製
した。
Example 5 In an Erlenmeyer flask, 32.7 g of ammonium molybdate and 0.97 g of ammonium paratungstate were dissolved in 75 g of water so that the WO 3 / MoO 3 ratio was 0.03. Ammonium water was added until ammonium and ammonium paratungstate were completely dissolved and stirred to prepare a mixed aqueous solution of ammonium paratungstate and ammonium molybdate.

【0048】別の三角フラスコ中で、硝酸コバルト26
gを水75gに溶解させ、攪拌して硝酸コバルトの水溶
液を調製した。
In another Erlenmeyer flask, cobalt nitrate 26
g was dissolved in 75 g of water and stirred to prepare an aqueous solution of cobalt nitrate.

【0049】ナス型フラスコ中で、上記のパラタングス
テン酸アンモニウムおよびモリブデン酸アンモニウムの
混合水溶液を、実施例1で用いた担体と同じγ−アルミ
ナ担体100gに、実施例1と同じ条件にて含浸・乾燥
焼成し、1段目の含浸担持(タングステン塩およびモリ
ブデン塩の含浸担持)を行った。
In a eggplant-shaped flask, 100 g of the same γ-alumina carrier as the carrier used in Example 1 was impregnated with the mixed aqueous solution of ammonium paratungstate and ammonium molybdate under the same conditions as in Example 1. It was dried and calcined to carry out impregnation and loading in the first step (impregnation and loading of tungsten salt and molybdenum salt).

【0050】1段目の含浸担持終了後の触媒に、ナス型
フラスコ中で、上記の硝酸コバルト水溶液を、1段目の
含浸操作と同様の条件で含浸し、1段目の乾燥焼成と同
様の条件で乾燥焼成し、2段目の含浸担持(コバルト塩
溶液の含浸担持)を終了し、触媒Eを調製した。
The catalyst after the completion of the impregnation in the first step was impregnated with the above aqueous solution of cobalt nitrate in an eggplant-shaped flask under the same conditions as in the impregnation operation in the first step, and the same as in the dry firing in the first step. The catalyst E was prepared by drying and calcining under the conditions described above to complete the second stage impregnation and loading (impregnation and loading of the cobalt salt solution).

【0051】実施例6 1段目の含浸担持のパラタングステン酸アンモニウム
0.97gに代えてWO/MoO比が0.07にな
るようにメタタングステン酸アンモニウム3.8g用い
た以外は、実施例5と同様の方法で触媒Fを調製した。
Example 6 Example 6 was carried out except that ammonium metatungstate 3.8 g was used so that the WO 3 / MoO 3 ratio was 0.07 instead of the first stage impregnated and supported ammonium paratungstate 0.97 g. Catalyst F was prepared in the same manner as in Example 5.

【0052】実施例7 1段目の含浸担持のモリブデン酸アンモニウム32.7
gを24.5gに代えてWO/MoO比が0.07
になるようにした以外は、実施例1と同様の方法で触媒
Gを調製した。
Example 7 Ammonium molybdate 32.7 on the first stage impregnated and supported
g was replaced by 24.5 g, and the WO 3 / MoO 3 ratio was 0.07.
Catalyst G was prepared in the same manner as in Example 1 except that

【0053】実施例8 2段目の含浸担持の硝酸コバルト26gに代えて硝酸コ
バルト13gと硝酸ニッケル13gとを用いた以外は、
実施例1と同様の方法で触媒Hを調製した。
Example 8 Except that 13 g of cobalt nitrate and 13 g of nickel nitrate were used in place of 26 g of cobalt nitrate for impregnation on the second stage,
Catalyst H was prepared in the same manner as in Example 1.

【0054】実施例9 比表面積が358m/g、細孔容積0.54cc/
g、平均細孔径53Åのγ−アルミナ担体を用いた以外
は、実施例1と同様の方法で触媒Iを調製した。
Example 9 Specific surface area of 358 m 2 / g, pore volume of 0.54 cc /
A catalyst I was prepared in the same manner as in Example 1 except that a γ-alumina carrier having an average pore size of 53Å was used.

【0055】実施例10 比表面積が241m/g、細孔容積0.75cc/
g、平均細孔径92Åのγ−アルミナ担体を用いた以外
は、実施例1と同様の方法で触媒Jを調製した。
Example 10 Specific surface area 241 m 2 / g, pore volume 0.75 cc /
A catalyst J was prepared in the same manner as in Example 1 except that a γ-alumina carrier having an average pore size of 92Å was used.

【0056】比較例1 3段目の含浸担持を行わない以外は、実施例1と同様の
方法で触媒Kを調製した。
Comparative Example 1 A catalyst K was prepared in the same manner as in Example 1 except that the third stage impregnation and loading was not carried out.

【0057】比較例2 2段目の含浸担持のモリブデン酸アンモニウム32.7
gに代えて13.1gを用い、3段目の含浸担持のメタ
タングステン酸アンモニウム2.6gに代えてWO
MoO比が0.05になるように0.92g用いた以
外は、実施例1と同様の方法で触媒Lを調製した。
Comparative Example 2 Ammonium molybdate 32.7 impregnated and supported in the second stage
13.3 g was used instead of g, and WO 3 / was used instead of 2.6 g of ammonium metatungstate for impregnating and supporting in the third stage.
A catalyst L was prepared in the same manner as in Example 1 except that 0.92 g was used so that the MoO 3 ratio was 0.05.

【0058】比較例3 2段目の含浸担持のモリブデン酸アンモニウム32.7
gに代えて49.1gを用い、3段目の含浸担持のメタ
タングステン酸アンモニウム2.6gに代えてWO
MoO比が0.05になるように4.7g用いた以外
は、実施例1と同様の方法で触媒Mを調製した。
Comparative Example 3 Ammonium molybdate 32.7 impregnated and supported in the second stage
In place of g, 49.1 g was used, and in place of 2.6 g of ammonium metatungstate for impregnating and supporting in the third stage, WO 3 /
A catalyst M was prepared in the same manner as in Example 1 except that 4.7 g was used so that the MoO 3 ratio was 0.05.

【0059】比較例4 3段目の含浸担持のメタタングステン酸アンモニウム
2.6gに代えてWO/MoO比が0.005にな
るように0.27g用いた以外は、実施例1と同様の方
法で行い触媒Nを調製した。
Comparative Example 4 Same as Example 1 except that 0.27 g of WO 3 / MoO 3 ratio of 0.005 was used in place of 2.6 g of ammonium metatungstate supported on the third stage. Catalyst N was prepared by the method described in 1.

【0060】比較例5 3段目の含浸担持のメタタングステン酸アンモニウム
2.6gに代えてWOMoO比が0.25になるよ
うに14.0g用いた以外は、実施例1と同様の方法で
行い触媒Oを調製した。
Comparative Example 5 The same as Example 1 except that 2.6 g of ammonium metatungstate supported on the third stage was replaced with 14.0 g so that the WO 3 MoO 3 ratio was 0.25. Method to prepare catalyst O.

【0061】比較例6 比表面積が190m/g、細孔容積0.71cc/
g、平均細孔径101Åのγ−アルミナ担体を用いた以
外は、実施例1と同様の方法で触媒Pを調製した。
Comparative Example 6 Specific surface area of 190 m 2 / g, pore volume of 0.71 cc /
A catalyst P was prepared in the same manner as in Example 1 except that a γ-alumina carrier having an average pore size of 101Å was used.

【0062】実施例1〜8および比較例1〜6で調製し
た触媒A〜Pの組成を表1に、性状を表2に示す。
The compositions of the catalysts A to P prepared in Examples 1 to 8 and Comparative Examples 1 to 6 are shown in Table 1, and their properties are shown in Table 2.

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】以上の実施例1〜8および比較例1〜6で
調製した触媒A〜Pを用いて、軽油の水素化脱硫反応
を、表2に示す反応条件で行った。
Using the catalysts A to P prepared in the above Examples 1 to 8 and Comparative Examples 1 to 6, hydrodesulfurization reaction of light oil was carried out under the reaction conditions shown in Table 2.

【0066】[0066]

【表3】 [Table 3]

【0067】触媒の性能評価は、上記の反応条件により
運転し、100時間通油後の硫黄含有量を測定し、下記
の式に基づいて反応速度定数を求め、触媒Kの値を10
0とした相対評価で行った。結果は表4に示した。
The catalyst performance was evaluated by operating under the above reaction conditions, measuring the sulfur content after passing oil for 100 hours, determining the reaction rate constant based on the following formula, and setting the value of catalyst K to 10
The relative evaluation was set to 0. The results are shown in Table 4.

【0068】[0068]

【数1】 [Equation 1]

【0069】[0069]

【表4】 [Table 4]

【0070】また、以上の実施例1〜8および比較例1
〜6で調製した触媒A〜Pを使用して得られた生成油を
GC−AED分析器にかけて残存硫黄分の分析を行っ
た。その結果を表5に示した。
Further, the above Examples 1 to 8 and Comparative Example 1
The produced oil obtained by using the catalysts A to P prepared in 6 to 6 was applied to a GC-AED analyzer to analyze the residual sulfur content. The results are shown in Table 5.

【0071】[0071]

【表5】 [Table 5]

【0072】[0072]

【発明の効果】本発明の触媒によれば、反応条件、速度
定数から求めた脱硫比活性が、従来の触媒に比較して著
しく高く、またタングステンの優れた水素化能力によ
り、難脱硫性硫黄化合物にも優れた脱硫性能を発揮する
ことができる。
According to the catalyst of the present invention, the desulfurization specific activity obtained from reaction conditions and rate constants is remarkably higher than that of conventional catalysts, and the excellent hydrogenation ability of tungsten makes it difficult to desulfurize sulfur. The compound can also exhibit excellent desulfurization performance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千代田 修 埼玉県幸手市上高野1641−503 (72)発明者 薄井 一司 千葉県野田市岩名1−62−10 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Chiyoda 1641-503 Kamitakano, Satte City, Saitama Prefecture (72) Inventor Kaiji Usui 1-62-10 Iwana, Noda City, Chiba Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無機酸化物担体上に、触媒基準で、コバ
ルトおよびニッケルのうちの一方または双方を酸化物換
算で1〜10重量%、モリブデンを酸化物換算で10〜
25重量%、およびタングステンとモリブデンの重量比
が酸化物換算で0.01〜0.2となるようにタングス
テンを担持し、かつ触媒の平均細孔径が60〜90Åで
あることを特徴とする軽油の水素化脱硫触媒。
1. On an inorganic oxide support, one or both of cobalt and nickel, based on the catalyst, is 1 to 10% by weight in terms of oxide, and molybdenum is 10 to 10 in terms of oxide.
25% by weight, and a light oil characterized in that tungsten is supported so that the weight ratio of tungsten to molybdenum is 0.01 to 0.2 in terms of oxide, and the average pore diameter of the catalyst is 60 to 90Å. Hydrodesulfurization catalyst.
JP16829695A 1995-06-10 1995-06-10 Gas oil hydrodesulfurization catalyst Expired - Fee Related JP3676849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16829695A JP3676849B2 (en) 1995-06-10 1995-06-10 Gas oil hydrodesulfurization catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16829695A JP3676849B2 (en) 1995-06-10 1995-06-10 Gas oil hydrodesulfurization catalyst

Publications (2)

Publication Number Publication Date
JPH09929A true JPH09929A (en) 1997-01-07
JP3676849B2 JP3676849B2 (en) 2005-07-27

Family

ID=15865390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16829695A Expired - Fee Related JP3676849B2 (en) 1995-06-10 1995-06-10 Gas oil hydrodesulfurization catalyst

Country Status (1)

Country Link
JP (1) JP3676849B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003578A1 (en) * 1997-07-15 1999-01-28 Exxon Research And Engineering Company Nickel molybdotungstate hydrotreating catalysts
WO2000041810A1 (en) * 1999-01-15 2000-07-20 Akzo Nobel N.V. A mixed metal catalyst composition, its preparation and use
WO2000042082A1 (en) * 1999-01-15 2000-07-20 Exxon Chemical Patents Inc. Hydrogenation process for hydrocarbon resins
JP2001017860A (en) * 1999-05-18 2001-01-23 Total Raffinage Distrib Sa Catalyst carrier based on group ivb metal oxide of periodic table of elements and its production and use
US6278030B1 (en) 1997-07-15 2001-08-21 Exxon Chemical Patents, Inc. Process for preparing alcohols by the Oxo process
WO2001074973A1 (en) * 2000-03-30 2001-10-11 Japan Energy Corporation Process for hydrodesulfurization of light oil fraction
WO2002004117A1 (en) * 2000-07-12 2002-01-17 Akzo Nobel N.V. Process for preparing an additive-based mixed metal catalyst
JP2002534259A (en) * 1999-01-15 2002-10-15 アクゾ ノーベル ナムローゼ フェンノートシャップ New mixed metal catalyst, its preparation by coprecipitation and its use
US6534437B2 (en) 1999-01-15 2003-03-18 Akzo Nobel N.V. Process for preparing a mixed metal catalyst composition
US6783663B1 (en) 1997-07-15 2004-08-31 Exxonmobil Research And Engineering Company Hydrotreating using bulk multimetallic catalysts
US6863803B1 (en) 1997-07-15 2005-03-08 Exxonmobil Research And Engineering Company Production of low sulfur/low nitrogen hydrocrackates
US7232515B1 (en) 1997-07-15 2007-06-19 Exxonmobil Research And Engineering Company Hydrofining process using bulk group VIII/Group VIB catalysts
JP2007152324A (en) * 2005-12-08 2007-06-21 Nippon Kecchen Kk Hydrogenation catalyst of hydrocarbon oil, its manufacturing method and hydrogenation method of hydrocarbon oil
US7288182B1 (en) 1997-07-15 2007-10-30 Exxonmobil Research And Engineering Company Hydroprocessing using bulk Group VIII/Group VIB catalysts
EP1880760A1 (en) * 2005-04-21 2008-01-23 China Petroleum & Chemical Corporation A hydrogenation catalyst and its application
US7513989B1 (en) 1997-07-15 2009-04-07 Exxonmobil Research And Engineering Company Hydrocracking process using bulk group VIII/Group VIB catalysts
EP2103347A1 (en) 2008-03-17 2009-09-23 ExxonMobil Research and Engineering Company Hydrocarbon hydroprocessing using bulk catalyst composition
WO2011039595A2 (en) 2009-09-30 2011-04-07 Eni S.P.A. Mixed oxides of transition metal, hydrotreatment catalysts obtained therefrom, and preparation process comprising sol -gel processes
WO2012130728A1 (en) 2011-03-30 2012-10-04 Eni S.P.A. Mixed oxides of transition metals, hydrotreatment catalysts obtained therefrom and preparation process

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999003578A1 (en) * 1997-07-15 1999-01-28 Exxon Research And Engineering Company Nickel molybdotungstate hydrotreating catalysts
US7513989B1 (en) 1997-07-15 2009-04-07 Exxonmobil Research And Engineering Company Hydrocracking process using bulk group VIII/Group VIB catalysts
US7288182B1 (en) 1997-07-15 2007-10-30 Exxonmobil Research And Engineering Company Hydroprocessing using bulk Group VIII/Group VIB catalysts
US6156695A (en) * 1997-07-15 2000-12-05 Exxon Research And Engineering Company Nickel molybdotungstate hydrotreating catalysts
US6162350A (en) * 1997-07-15 2000-12-19 Exxon Research And Engineering Company Hydroprocessing using bulk Group VIII/Group VIB catalysts (HEN-9901)
US7232515B1 (en) 1997-07-15 2007-06-19 Exxonmobil Research And Engineering Company Hydrofining process using bulk group VIII/Group VIB catalysts
US6278030B1 (en) 1997-07-15 2001-08-21 Exxon Chemical Patents, Inc. Process for preparing alcohols by the Oxo process
US6863803B1 (en) 1997-07-15 2005-03-08 Exxonmobil Research And Engineering Company Production of low sulfur/low nitrogen hydrocrackates
US6783663B1 (en) 1997-07-15 2004-08-31 Exxonmobil Research And Engineering Company Hydrotreating using bulk multimetallic catalysts
US6534437B2 (en) 1999-01-15 2003-03-18 Akzo Nobel N.V. Process for preparing a mixed metal catalyst composition
EP1169415A1 (en) * 1999-01-15 2002-01-09 ExxonMobil Research and Engineering Company Hydroprocessing using bulk group viii/group vib catalysts
EP1169411A1 (en) * 1999-01-15 2002-01-09 ExxonMobil Research and Engineering Company Hydrotreating or raw virgin distillates using novel bulk multimetallic catalysts
JP4681735B2 (en) * 1999-01-15 2011-05-11 エクソンモービル リサーチ アンド エンジニアリング カンパニー Hydrogen conversion process using bulk Group VIII / Group VIB catalyst
JP2002534579A (en) * 1999-01-15 2002-10-15 エクソンモービル リサーチ アンド エンジニアリング カンパニー Hydroconversion process using bulk Group VIII / VIB catalyst
JP2002534259A (en) * 1999-01-15 2002-10-15 アクゾ ノーベル ナムローゼ フェンノートシャップ New mixed metal catalyst, its preparation by coprecipitation and its use
JP2002538943A (en) * 1999-01-15 2002-11-19 アクゾ ノーベル ナムローゼ フェンノートシャップ Mixed metal catalyst compositions, their production and use
EP1169411A4 (en) * 1999-01-15 2003-01-08 Exxonmobil Res & Eng Co Hydrotreating or raw virgin distillates using novel bulk multimetallic catalysts
EP1169415A4 (en) * 1999-01-15 2003-01-08 Exxonmobil Res & Eng Co Hydroprocessing using bulk group viii/group vib catalysts
WO2000042082A1 (en) * 1999-01-15 2000-07-20 Exxon Chemical Patents Inc. Hydrogenation process for hydrocarbon resins
EP1169416A4 (en) * 1999-01-15 2003-03-26 Exxonmobil Res & Eng Co Production of low sulfur/low nitrogen hydrocrackates
EP1157083A4 (en) * 1999-01-15 2003-03-26 Exxonmobil Res & Eng Co Hydrocracking process using bulk group viii/group vib catalysts
US6652738B2 (en) 1999-01-15 2003-11-25 Akzo Nobel N.V. Process for preparing a mixed metal catalyst composition
WO2000041810A1 (en) * 1999-01-15 2000-07-20 Akzo Nobel N.V. A mixed metal catalyst composition, its preparation and use
EP1157083A1 (en) * 1999-01-15 2001-11-28 ExxonMobil Research and Engineering Company Hydrocracking process using bulk group viii/group vib catalysts
EP1169416A1 (en) * 1999-01-15 2002-01-09 ExxonMobil Research and Engineering Company Production of low sulfur/low nitrogen hydrocrackates
KR100706364B1 (en) * 1999-01-15 2007-04-10 알베마를 네덜란드 비.브이. A mixed metal catalyst composition, its preparation and use
JP2001017860A (en) * 1999-05-18 2001-01-23 Total Raffinage Distrib Sa Catalyst carrier based on group ivb metal oxide of periodic table of elements and its production and use
WO2001074973A1 (en) * 2000-03-30 2001-10-11 Japan Energy Corporation Process for hydrodesulfurization of light oil fraction
JP4969754B2 (en) * 2000-03-30 2012-07-04 Jx日鉱日石エネルギー株式会社 Hydrodesulfurization method for gas oil fraction and reactor for hydrodesulfurization
JP2004511326A (en) * 2000-07-12 2004-04-15 アクゾ ノーベル ナムローゼ フェンノートシャップ Method of preparing mixed metal catalyst based on additives
WO2002004117A1 (en) * 2000-07-12 2002-01-17 Akzo Nobel N.V. Process for preparing an additive-based mixed metal catalyst
EP1880760A1 (en) * 2005-04-21 2008-01-23 China Petroleum & Chemical Corporation A hydrogenation catalyst and its application
EP1880760A4 (en) * 2005-04-21 2010-10-06 China Petroleum & Chemical A hydrogenation catalyst and its application
US8697598B2 (en) 2005-04-21 2014-04-15 China Petroleum & Chemical Corporation Hydrogenation catalyst and use thereof
JP2007152324A (en) * 2005-12-08 2007-06-21 Nippon Kecchen Kk Hydrogenation catalyst of hydrocarbon oil, its manufacturing method and hydrogenation method of hydrocarbon oil
EP2103347A1 (en) 2008-03-17 2009-09-23 ExxonMobil Research and Engineering Company Hydrocarbon hydroprocessing using bulk catalyst composition
WO2011039595A2 (en) 2009-09-30 2011-04-07 Eni S.P.A. Mixed oxides of transition metal, hydrotreatment catalysts obtained therefrom, and preparation process comprising sol -gel processes
WO2012130728A1 (en) 2011-03-30 2012-10-04 Eni S.P.A. Mixed oxides of transition metals, hydrotreatment catalysts obtained therefrom and preparation process

Also Published As

Publication number Publication date
JP3676849B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
JP2832033B2 (en) Method for catalytic hydroprocessing of hydrocarbon oils containing nitrogen or sulfur
JPH09929A (en) Catalyst for hydrodesulfurization of light oil
JP3439790B2 (en) Hydroconversion method
JP4033249B2 (en) Heavy hydrocarbon oil hydrotreating catalyst and hydrotreating method using the same
EP0969075A1 (en) Hydrodesulfurization catalyst and process for hydrodesulfurizing gas oil therewith
US4444905A (en) Hydrotreating catalyst preparation and process
EP1153107A1 (en) Hydroprocessing catalyst and use thereof
US6387248B2 (en) Method of preparing a catalyst for use in the hydrotreating of high boiling hydrocarbon feedstocks
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
GB2055602A (en) Hydrotreating catalyst preparation and process
JP3676869B2 (en) Method for producing hydrodesulfurization catalyst for hydrocarbon oil
EP2723494B1 (en) Method of making a hydroprocessing catalyst
JP2921379B2 (en) Hydrodesulfurization of gas oil
JP3537937B2 (en) Hydrodesulfurization catalyst for gas oil
JP2875148B2 (en) Method for producing hydrodesulfurization catalyst for hydrocarbon oil
JP2556343B2 (en) Method for producing hydrogenated catalyst from hydrogel
JP2556342B2 (en) Method for producing hydrotreating catalyst from hydrogel
JP3682106B2 (en) Preparation method of hydrodesulfurization catalyst of light oil
JPH08243407A (en) Preparation of hydrogenated catalyst
JPH05317712A (en) Hydrogenation desulfurization catalyst and its preparation
JPH0813328B2 (en) Catalyst composition for hydrotreatment of hydrocarbon oil and hydrodesulfurization method using the same
JP3537897B2 (en) Method for producing catalyst for hydrogenating aromatic compounds in hydrocarbon oil
JPH03275142A (en) Catalyst composition for hydrodesulfurization of hydrocarbon oil, its production and hydrodesulfurization method using the same
JPH08176560A (en) Hydrodesulfurization of light oil
JPH07256110A (en) Production of catalyst for hydrogenation treatment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees