JPH0992883A - Semiconductor wafer, semiconductor device, manufacture thereof, and deposition equipment to be used for manufacture of semiconductor device - Google Patents

Semiconductor wafer, semiconductor device, manufacture thereof, and deposition equipment to be used for manufacture of semiconductor device

Info

Publication number
JPH0992883A
JPH0992883A JP25040195A JP25040195A JPH0992883A JP H0992883 A JPH0992883 A JP H0992883A JP 25040195 A JP25040195 A JP 25040195A JP 25040195 A JP25040195 A JP 25040195A JP H0992883 A JPH0992883 A JP H0992883A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
semiconductor
substrate
resistance heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25040195A
Other languages
Japanese (ja)
Inventor
Joshi Nishio
譲司 西尾
Hidetoshi Fujimoto
英俊 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25040195A priority Critical patent/JPH0992883A/en
Publication of JPH0992883A publication Critical patent/JPH0992883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting diode of a high efficiency or a laser that oscillates at a low shreshold value by distributing carbon atoms in at least one layer of a semiconductor thin film in such a profile that the concentration of carbon atoms may become lower as the thin film grows. SOLUTION: A layer structure is constituted of two or more different kinds of semiconductor thin films 41-45 which are made by the organic metal vapor phase deposition method. In other words, a semiconductor device is made by depositing two or more kinds of semiconductor thin films 41-45 on a sapphire substrate 2. In such a semiconductor device, at least one layer 41 out of these semiconductor thin films 41-45 contains carbon. In the layer 41, carbon is so distributed that the concentration of carbon atoms may become lower as it gets near the surface of the semiconductor thin film 41. The semiconductor thin films 41-45 are formed from gallium arsenide nitride and they emit blue light. By this method, a light emitting diode of a high efficiency or a laser which oscillates at a low threshold value can be manufactured with a high yield.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体ウェハ、発行ダ
イオード、半導体レーザなどの半導体素子その製造方法
及びその製造に用いる成長装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor element such as a semiconductor wafer, an emitting diode, a semiconductor laser, etc., and a growth apparatus used for manufacturing the same.

【0002】[0002]

【従来の技術】有機金属気相成長法によって得られる半
導体薄膜中には、多量の炭素不純物が混入しており、非
発光再結合中心の形成、添加元素の電気的活性化率の低
下、電極のオーム性悪化などの要因と考えられている。
例えば窒化ガリウム薄膜中では、炭素濃度が高い場合、
電極において良好なオーム特性が得られないことが大き
な問題である。炭素濃度が低い場合には、電極において
良好なオーム特性が得られないことが大きな問題であ
る。炭素濃度が低い場合には、電極において良好なオー
ム特性が得られるものの、フォトルミネッセンス法に基
づく測定では、深い順位に関する発光が主となり、バン
ド端発光強度が大きく低下する。従って、窒化ガリウム
薄膜を層状に構成したものを用いて製造される半導体発
行素子では、炭素濃度に対する明確な制御指針が無く、
発光ダイオードでは発光効率、半導体レーザーでは発振
しきい値特性の向上を望めない状況であった。
2. Description of the Related Art A large amount of carbon impurities are mixed in a semiconductor thin film obtained by metalorganic vapor phase epitaxy, forming non-radiative recombination centers, lowering the electrical activation rate of additional elements, It is considered to be a factor such as the deterioration of ohm characteristics.
For example, in a gallium nitride thin film, if the carbon concentration is high,
The major problem is that good ohmic characteristics cannot be obtained in the electrode. When the carbon concentration is low, it is a big problem that good ohmic characteristics cannot be obtained in the electrode. When the carbon concentration is low, good ohmic characteristics can be obtained at the electrode, but in the measurement based on the photoluminescence method, the light emission in the deep order mainly becomes, and the band edge light emission intensity largely decreases. Therefore, in a semiconductor issuing device manufactured using a layered structure of a gallium nitride thin film, there is no clear control guideline for carbon concentration,
It was a situation where it was not possible to improve the light emission efficiency of light emitting diodes and the oscillation threshold characteristics of semiconductor lasers.

【0003】また、上述のような半導体素子の製造に用
いる成長装置において、抵抗加熱体から基板への輻射熱
伝達によってサセプタの温度を上昇させ、かつ、その上
に設置される基板上での温度むらをできる限り小さくす
るためには、抵抗加熱体とサセプタとの距離をなるべく
長く設定する必要がある。従って、熱効率が非常に悪
く、基板の表面で高温状態を保持するためには、加熱体
の温度を基板の温度に比べて遥かに高く保つ必要があ
る。また、反応性気体が抵抗加熱体に接触すると、抵抗
加熱体の寿命を縮めてしまう。抵抗加熱体は反応性気体
によって表面から劣化し、導電部の断面積が小さくなっ
ていく。いったん断面積が小さくなった導電部は、同じ
供給電流においても、より発熱するようになり、部分的
な劣化が加速される。その結果、抵抗加熱体の発熱分布
が変化し、基板上での温度むらを増大させ、気相成長さ
せる半導体薄膜の膜質及び基板面内均質性、膜厚の均一
性を損なう結果になる。これを避けるために、セラミッ
クス材料などの薄膜によって抵抗加熱体の表面を覆う、
あるいは加熱体材質と反応しない気体をサセプタと抵抗
加熱体との間に流し、原料などの反応性気体が、抵抗加
熱体に接触するのを防ぐなどの対策がなされてきた。
Further, in the growth apparatus used for manufacturing the semiconductor element as described above, the temperature of the susceptor is raised by the transfer of radiant heat from the resistance heating element to the substrate, and the temperature unevenness on the substrate placed on the susceptor is increased. In order to make as small as possible, it is necessary to set the distance between the resistance heating element and the susceptor as long as possible. Therefore, the thermal efficiency is very poor, and in order to maintain the high temperature state on the surface of the substrate, it is necessary to keep the temperature of the heating body much higher than the temperature of the substrate. Further, when the reactive gas comes into contact with the resistance heating element, the life of the resistance heating element is shortened. The resistance heating body deteriorates from the surface due to the reactive gas, and the cross-sectional area of the conductive portion becomes smaller. The conductive portion having a small cross-sectional area will generate more heat even with the same supply current, and partial deterioration will be accelerated. As a result, the heat generation distribution of the resistance heating element is changed, temperature unevenness on the substrate is increased, and the film quality of the semiconductor thin film to be vapor-grown, the in-plane uniformity of the substrate, and the film thickness uniformity are impaired. In order to avoid this, the surface of the resistance heating element is covered with a thin film such as a ceramic material,
Alternatively, measures have been taken such as flowing a gas that does not react with the material of the heating body between the susceptor and the resistance heating body to prevent a reactive gas such as a raw material from coming into contact with the resistance heating body.

【0004】[0004]

【発明が解決しようとする課題】以上説明の従来の半導
体素子では発光効率が十分大きくない、あるいはレーザ
発振のためのしきい値が高いなどの課題があった。ま
た、半導体として例えば窒化ガリウムを用いた発光素子
の製造に用いる成長装置では、高温(1000℃以上)
の均一な加熱ができないという課題があった。また、抵
抗加熱体の表面をセラミックス材料などの薄膜によって
被覆する対策は、発熱体の材料と被覆薄膜材料との熱膨
脹率の違いによって被覆薄膜に亀裂が生じるために効果
がほとんど無かった。加熱体材質と反応しない気体をサ
セプタと抵抗加熱体との間に流す方法をもってしても、
高温(1000℃以上)では劣化速度が無視できず、安
定して再現性良く半導体薄膜を形成することができない
という課題があった。
The conventional semiconductor device described above has problems that the luminous efficiency is not sufficiently high or that the threshold value for laser oscillation is high. Further, in a growth apparatus used for manufacturing a light emitting device using, for example, gallium nitride as a semiconductor, high temperature (1000 ° C. or higher)
However, there is a problem that the uniform heating cannot be performed. Further, the countermeasure of covering the surface of the resistance heating element with a thin film such as a ceramic material has little effect because a crack occurs in the coating thin film due to the difference in the coefficient of thermal expansion between the material of the heating element and the coating thin film material. Even if there is a method of flowing a gas that does not react with the heating material between the susceptor and the resistance heating element,
At a high temperature (1000 ° C. or higher), the deterioration rate cannot be ignored, and there is a problem that a semiconductor thin film cannot be stably formed with good reproducibility.

【0005】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、高効率の発光ダイオー
ドあるいは低しきい値で発振するレーザ、を得ることが
でき、さらにその要素となる半導体薄膜の成長において
高温の均一加熱を安定して行える成長装置を提供するこ
とにある。
The present invention has been made in consideration of the above circumstances. An object of the present invention is to obtain a highly efficient light emitting diode or a laser oscillating at a low threshold value. An object of the present invention is to provide a growth apparatus capable of stably performing high temperature uniform heating in growing a semiconductor thin film.

【0006】[0006]

【課題を解決するための手段】本発明の骨子は、有機金
属気相成長法により得られる少なくとも2種以上の異な
る半導体薄膜によって層構造を形成し、次いで当該層構
造を用いて製造される半導体素子において、前記半導体
薄膜の内の少なくとも1層における炭素濃度が前記半導
体薄膜の成長方向に低くなるように分布させることにあ
る。また、この手段として、半導体薄膜を形成する気相
成長装置において、サセプタ上に設置された基板を加熱
する抵抗加熱体の導電部の隙間に、絶縁体を接触挿入す
ることにより構成することを特徴とする。
The gist of the present invention is to form a layer structure of at least two or more different semiconductor thin films obtained by a metal organic chemical vapor deposition method, and then manufacture a semiconductor using the layer structure. In the device, the carbon concentration in at least one layer of the semiconductor thin film is distributed so as to decrease in the growth direction of the semiconductor thin film. Further, as this means, in a vapor phase growth apparatus for forming a semiconductor thin film, an insulator is contact-inserted into a gap of a conductive portion of a resistance heater for heating a substrate installed on a susceptor. And

【0007】[0007]

【作用】有機金属を原料に用いる気相成長法により成長
される半導体薄膜中の炭素は、一般に、有機金属が熱分
解し、半導体薄膜が成長する際に当該半導体薄膜中に取
り込まれると考えられている。例えば窒化ガリウム薄膜
中には窒素の空格子点が多く存在しており、深いドナー
性準位を形成すると考えられている。先に述べた炭素
は、浅いアクセプター準位を形成すると考えられてお
り、同時に存在することによって深いドナー性準位を補
償するため実質的に深いドナー性準位の濃度を低下させ
る効果がある。しかしながら、n層の電極特性を良好な
オーム性とするためには、少なくともn層の表面におい
て十分なドナー濃度が必要になるため、アクセプターと
なる炭素濃度を低下させなければならないことが本発明
者らの実験結果上明らかになっている。しかし、単に炭
素濃度をある特定の濃度に制御しても2つの独立で、か
つ相反する問題を解決できない。同時にこの問題を解決
するためには、電極を形成する表面では炭素濃度を低
く、基板に近い部分では高く分布するという本発明の構
成が不可欠となる。いかにこのような構成を実現するか
が次なる課題となるわけであるが、これに対し本発明者
らは、種々の条件で成長した窒化ガリウム薄膜の厚さ方
向に炭素濃度を分析した。その結果、窒化ガリウム薄膜
中の炭素分布は、抵抗加熱体の仕様回数により変化する
ことがわかった。すなわち、半導体薄膜の厚さ方向の炭
素濃度分布を生じさせる原因(炭素源)は、抵抗加熱体
の劣化と深く関連していると推定された。
The carbon in a semiconductor thin film grown by a vapor phase growth method using an organic metal as a raw material is generally considered to be incorporated into the semiconductor thin film when the organic metal is thermally decomposed and the semiconductor thin film grows. ing. For example, many gallium nitride vacancies are present in a gallium nitride thin film, and it is considered that a deep donor level is formed. The carbon described above is considered to form a shallow acceptor level, and the presence of the carbon at the same time compensates for the deep donor level, thereby effectively reducing the concentration of the deep donor level. However, in order for the electrode characteristics of the n-layer to have a good ohmic property, a sufficient donor concentration is required at least on the surface of the n-layer, so that the carbon concentration serving as an acceptor must be reduced. It is clear from the results of these experiments. However, simply controlling the carbon concentration to a specific concentration cannot solve the two independent and contradictory problems. At the same time, in order to solve this problem, the structure of the present invention in which the carbon concentration is low on the surface on which the electrode is formed and high in the portion close to the substrate is essential. The next issue is how to realize such a structure. On the other hand, the present inventors analyzed the carbon concentration in the thickness direction of gallium nitride thin films grown under various conditions. As a result, it was found that the carbon distribution in the gallium nitride thin film changes depending on the number of times the resistance heating element is specified. That is, it was estimated that the cause (carbon source) that causes the carbon concentration distribution in the thickness direction of the semiconductor thin film is closely related to the deterioration of the resistance heating body.

【0008】そこで、次に抵抗加熱体の劣化の様子に付
き詳細検討を行った。加熱体材質と反応しない気体をサ
セプタと抵抗加熱体との間に流し、原料などの反応性気
体が、抵抗加熱体に接触するのを防ぐ構成を取った場
合、抵抗加熱体の劣化の主な原因は、抵抗加熱体の材質
それ自身の気化によるものと、抵抗加熱体表面に吸着し
ていた酸素あるいは水分による酸化とその反応物(主に
一酸化炭素)の発生のためであることが判明した。ま
た、抵抗加熱体材質と反応しない気体(以下パージガス
と呼ぶ)をサセプタと抵抗加熱体との間に流すことは、
原料などの反応性気体を抵抗加熱体に接触させない効果
は確かにあるものの点抵抗加熱体の表面で発生した抵抗
加熱体の材質それ自身の気化物や酸化物の気体を表面に
止まるのを防ぐ働きをしていることが明らかになった。
すなわち、表面で発生した気体は吹き飛ばされてしまう
ために、どんどん抵抗加熱体からの気化が進み、劣化が
加速されるということである。このように劣化が進むこ
とによって炭素の混入は継続的に起こり、成長する半導
体薄膜の成長方向に減少させることはできないことが分
かった。本発明では、抵抗加熱体の導電部の隙間に絶縁
体を接触挿入することによって劣化を防ぐことができ、
加熱開始初期の段階で発生する炭素あるいは一酸化炭素
自身によってそれ以上の断続的な炭素あるいは一酸化炭
素の発生が抑制されるために成長する半導体薄膜の成長
方向に減少させることが可能になる。更に、絶縁体を接
触挿入することによって、抵抗加熱体の温度分布を小さ
くできるので、サセプタあるいはその上に設置される基
板上の温度むらを小さく保ったまま、抵抗加熱体とサセ
プタとの距離を縮小することができるので、熱効率を上
げられる。その結果、抵抗加熱体自身の発熱量を低く設
定できるので劣化も更に無視できる程度になる。
Therefore, a detailed study was conducted on the state of deterioration of the resistance heating element. When a gas that does not react with the material of the heating element is made to flow between the susceptor and the resistance heating element to prevent the reactive gas such as the raw material from coming into contact with the resistance heating element, the resistance heating element is mainly deteriorated. It was found that the cause was vaporization of the material of the resistance heating element itself, and the oxidation of oxygen or moisture adsorbed on the surface of the resistance heating element and the generation of its reaction product (mainly carbon monoxide). did. In addition, flowing a gas that does not react with the resistance heating material (hereinafter referred to as purge gas) between the susceptor and the resistance heating
Although there is certainly an effect that the reactive gas such as the raw material is not brought into contact with the resistance heating body, it prevents the gas of the vaporized substance or oxide of the material of the resistance heating body itself generated on the surface of the point resistance heating body from stopping on the surface. It became clear that it was working.
That is, the gas generated on the surface is blown away, and the vaporization from the resistance heating body progresses more and more, and the deterioration is accelerated. It was found that carbon is continuously mixed due to the progress of the deterioration and cannot be reduced in the growth direction of the growing semiconductor thin film. In the present invention, deterioration can be prevented by inserting the insulator into the gap of the conductive portion of the resistance heating element by contact,
Since carbon or carbon monoxide generated at the initial stage of heating start suppresses further intermittent generation of carbon or carbon monoxide, it becomes possible to reduce the growth direction of the semiconductor thin film to be grown. Furthermore, since the temperature distribution of the resistance heating element can be reduced by inserting the insulator in contact, the distance between the resistance heating element and the susceptor can be kept small while keeping the temperature unevenness on the susceptor or the substrate installed thereon. Since it can be reduced, the thermal efficiency can be increased. As a result, the amount of heat generated by the resistance heating element itself can be set low, and deterioration can be further ignored.

【0009】[0009]

【実施例】以下、本発明の詳細を図示の実施例によって
説明する。図1は、一実施例の気相成長装置の中の抵抗
加熱体付近の概略構成を示す。1はグラファイト製の抵
抗加熱体であり、渦巻き状の導電部を持ち、電極2に接
続される。この抵抗加熱体1の上部には、窒化アルミニ
ウムを主成分とする焼結体よりなる下部保護板3が、は
め込まれている。下部保護板3は、周方向に6分割され
ており、分割部を覆う様に、同様に6分割された上部保
護板4が下部保護板3に対して30°ずれて配置されて
いる。抵抗加熱体1の導電部の隙間に接触挿入する絶縁
体は、分割されていない場合には、熱ひずみによる破損
の恐れがあることが、有限要素法による熱応力解析から
示された。従って、安定的な装置稼働のためには、分割
して形成することが望ましい。抵抗加熱体1、上部保護
板4、及び下部保護板3の同心中心部にパージガスの導
入管5が設置され、この導入管5の上部にはサセプタ6
が設けられ、このサセプタ6は、導入管5に取り付けた
回転昇降機構(図示せず)により回転、昇降が可能にな
っている。サセプタ6の上には基板7が搭載される。導
入管5のサセプタ6の下側にはパージガス導入用の穴8
が周方向に4か所あり、導入管5からパージガスが流せ
る構造になっている。抵抗加熱体1の下部には反射板9
が反射板支持棒10によって設置されている。
The details of the present invention will be described below with reference to the illustrated embodiments. FIG. 1 shows a schematic configuration in the vicinity of a resistance heating body in a vapor phase growth apparatus of one embodiment. Reference numeral 1 is a resistance heating element made of graphite, which has a spiral conductive portion and is connected to the electrode 2. A lower protection plate 3 made of a sintered body containing aluminum nitride as a main component is fitted on the resistance heating body 1. The lower protection plate 3 is divided into six in the circumferential direction, and similarly, the upper protection plate 4 which is also divided into six is arranged so as to be offset from the lower protection plate 3 by 30 ° so as to cover the divided portion. It has been shown from the thermal stress analysis by the finite element method that the insulator which is inserted into the gap of the conductive portion of the resistance heating body 1 in contact therewith may be damaged by thermal strain when it is not divided. Therefore, in order to operate the device stably, it is desirable to divide and form. A purge gas introduction pipe 5 is installed at the center of the resistance heating element 1, the upper protection plate 4, and the lower protection plate 3, and a susceptor 6 is provided above the introduction pipe 5.
Is provided, and the susceptor 6 can be rotated and lifted by a rotary lifting mechanism (not shown) attached to the introduction pipe 5. A substrate 7 is mounted on the susceptor 6. A hole 8 for introducing a purge gas is provided below the susceptor 6 of the introduction pipe 5.
There are four positions in the circumferential direction, and the structure is such that the purge gas can flow from the introduction pipe 5. A reflector 9 is provided below the resistance heating body 1.
Are installed by the reflector support rod 10.

【0010】上記の構成において、次のようにして結晶
成長を行った。まず、メチルアルコール及び硫酸、過酸
化水素水、純水からなる混合物によって洗浄した直径5
0mmの(0001)面を主面とする単結晶のサファイ
ア基板7をサセプタ6に装着する。次に、水素を25l
/分、流しながら電極2に通電を開始し、またサセプタ
6を10rpmで回転させながら、温度1200℃にて
10分保持した。次にサセプタ6温度を1350℃まで
上昇させ、16℃のトリメチルアルミニウム中を通した
水素を50cc/分、アンモニアを10l/分で3分間
供給した。この成長工程で、図2に示すように窒化アル
ミニウム層11が約25nmの厚さに形成された。次に
トリメチルアルミニウムの供給を停止して、サセプタ6
温度を1200℃に保持し、サセプタ6の回転を停止し
た後、−15℃のトリメチルガリウム中を通した水素を
100cc/分、アンモニアを10l/分で1時間供給
し、膜厚約8μmの窒化ガリウム層12を成長させた。
上流、中心及び下流部分と、この3点のガス流方向に垂
直方向における膜厚の分布を走査型電子顕微鏡を用いて
測定したところ、全測定点において膜厚は8μm±0.
5μmであり、サファイア基板7上で場所による成長速
度の差が小さい窒化ガリウム単結晶が得られることがわ
かった。従来の成長装置を用いた場合の膜厚分布は、ガ
ス流の上流と下流との間で2μm以上の差があり、本実
施例にて基板面内での膜厚分布の改善効果が確認され
た。基板として(0001)炭素面を主面とする6H型
単結晶炭化硅素を用いた場合にも、同様の膜厚分布を持
つ窒化ガリウム層が得られた。このようにして得られた
窒化ガリウム層の成長方向に2次イオン質量分析を行
い、炭素濃度分布を調べた。従来の成長装置を用いて作
成した窒化ガリウム層中の炭素濃度は、層の成長方向に
分布を持たず、ほぼ1×1018cm-3で均一であった。
一方、本実施例での窒化ガリウム層中の炭素濃度は、図
3に示す様に基板側で5×1017cm-3、表面で2×1
17cm-3であり、明らかに基盤側が最も炭素濃度が高
く、表面に向かって減少していることが確かめられた。
次にヘリウム−カドミニムレーザを光源に用いたフォト
ルミネッセンス法によってこの試料を測定した。この結
果を図4aに示す。380nm付近にバンド端発光と思
われるするどいピークが見られる。比較のため、抵抗加
熱体1を石英によって完全に密封した装置を用いて上述
と同様に成長した窒化ガリウム層の炭素を分析したとこ
ろ、炭素濃度は7×1016cm-3程度になっており、分
布はほとんど無く膜中で均一であった。この試料のフォ
トルミネッセンス特性を図4bに示す。380nm付近
のにバンド端発光と思われるピークは強度が非常に弱
く、図4aでは見られなかった550nm付近の深い順
位に起因すると思われる幅広いピークが現れている。
With the above structure, crystal growth was performed as follows. First, a diameter of 5 washed with a mixture of methyl alcohol, sulfuric acid, hydrogen peroxide solution, and pure water.
A single crystal sapphire substrate 7 having a 0 mm (0001) plane as a main surface is mounted on the susceptor 6. Next, add 25 liters of hydrogen
/ Min, while energization of the electrode 2 was started, and while the susceptor 6 was rotated at 10 rpm, the temperature was maintained at 1200 ° C for 10 minutes. Next, the temperature of the susceptor 6 was raised to 1350 ° C., hydrogen passed through trimethylaluminum at 16 ° C. was supplied at 50 cc / min, and ammonia was supplied at 10 l / min for 3 minutes. In this growth step, the aluminum nitride layer 11 was formed to a thickness of about 25 nm as shown in FIG. Then, the supply of trimethylaluminum is stopped and the susceptor 6
After maintaining the temperature at 1200 ° C. and stopping the rotation of the susceptor 6, hydrogen passed through trimethylgallium at −15 ° C. was supplied at 100 cc / min and ammonia was supplied at 10 l / min for 1 hour to nitride the film having a thickness of about 8 μm. The gallium layer 12 was grown.
When the distribution of the film thickness in the upstream, the center and the downstream part and the direction perpendicular to the gas flow direction at these three points was measured using a scanning electron microscope, the film thickness was 8 μm ± 0.
It was found that a gallium nitride single crystal having a thickness of 5 μm and a small difference in growth rate depending on the location on the sapphire substrate 7 was obtained. The film thickness distribution using the conventional growth apparatus has a difference of 2 μm or more between the upstream and the downstream of the gas flow, and the effect of improving the film thickness distribution in the substrate surface was confirmed in this example. It was A gallium nitride layer having a similar film thickness distribution was obtained also when a 6H-type single crystal silicon carbide having a (0001) carbon plane as a main surface was used as a substrate. Secondary ion mass spectrometry was performed in the growth direction of the gallium nitride layer thus obtained to examine the carbon concentration distribution. The carbon concentration in the gallium nitride layer formed by using the conventional growth apparatus had no distribution in the growth direction of the layer and was uniform at about 1 × 10 18 cm −3 .
On the other hand, the carbon concentration in the gallium nitride layer in this example is 5 × 10 17 cm −3 on the substrate side and 2 × 1 on the surface as shown in FIG.
It was 0 17 cm -3 , and it was confirmed that the carbon concentration was clearly highest on the substrate side and decreased toward the surface.
Next, this sample was measured by a photoluminescence method using a helium-cadminium laser as a light source. The results are shown in Figure 4a. A sharp peak that is considered to be band edge emission is seen near 380 nm. For comparison, when the carbon of the gallium nitride layer grown in the same manner as above was analyzed using a device in which the resistance heating element 1 was completely sealed with quartz, the carbon concentration was about 7 × 10 16 cm −3. There was almost no distribution and it was uniform in the film. The photoluminescence properties of this sample are shown in Figure 4b. The peak at around 380 nm, which is considered to be band-edge emission, has very weak intensity, and a broad peak, which is not seen in FIG. 4a and is considered to be due to deep order near 550 nm, appears.

【0011】図1に示す装置を用いて、同様の結晶成長
を行い、今回は窒化ガリウム層12を成長させる際に水
素希しゃくの100ppmシランを2cc/分で追加供
給することによって硅素添加窒化ガリウム層を作成し
た。この試料に金/チタンの電極を形成して、電圧電流
特性を測定したところ非常に良好なオーム性を示した。
Using the apparatus shown in FIG. 1, the same crystal growth was carried out. This time, when the gallium nitride layer 12 was grown, 100 ppm silane having a hydrogen dilute content was additionally supplied at a rate of 2 cc / min. Created layers. When a gold / titanium electrode was formed on this sample and the voltage-current characteristics were measured, a very good ohmic property was shown.

【0012】次に、図1に示す装置を用いて図5に示す
構造の発光ダイオードを作成した。まず、メチルアルコ
ール及び硫酸、過酸化水素水、純水からなる混合物によ
って洗浄した直径50mmの(0001)面を主面とす
る単結晶のサファイア基板7をサセプタ6に装着する。
次に、水素を25l/分、流しながら電極2に通電を開
始し、またサセプタ6を10rpmで回転させながら、
温度1200℃にて10分保持した。次にサセプタ6温
度を550℃まで下げ、−15℃のトリメチルガリウム
中を通した水素を25cc/分、アンモニアを10l/
分で6分供給し、窒化ガリウム層41を成長させた。続
いてサセプタ6温度を1150℃まで上昇させ、−15
℃のトリメチルガリウム中を通した水素を50cc/
分、アンモニアを10l/分で、水素希しゃくの100
ppmシランを2cc/分で60分供給し、硅素添加窒
化ガリウム層42を成長させた。続いてサセプタ6温度
を900℃まで下げ、−15℃のトリメチルガリウム中
を通した窒素を1cc/分、17℃のトリメチルインジ
ウム中を通した窒素を100cc/分、アンモアを10
l/分、ジメチル亜鉛を10cc/分を30分供給し、
亜鉛添加窒化ガリウム層43を成長させた。次に、サセ
プタ6温度を1300℃まで上昇させ、−15℃のトリ
メチルガリウム中を通した水素を50cc/分、16℃
のトリメチルアルミニウム中を通した水素を25cc
/、アンモニアを10l/分、ビスシクロベンタジエニ
ルマグネシウム中を通した水素を250cc/分、アン
モニアを10l/分で30分間供給し、マグネシウム添
加窒化アルミニウムガリウム層44を成長させた。最後
にサセプタ6温度を1150℃まで下げ、−15℃のト
リメチルガリウム中を通した水素を50cc/分、ビス
シクロベンタジエニルマグネシウム中を通した水素を2
50cc/分、アンモニアを10l/分で15分間供給
し、マグネシウム添加窒化ガリウム層45を成長させ
た。その後はサセプタ6への通電を停止し、冷却した。
この様に結晶成長した層構造にプラズマCVD法によっ
て二酸化硅素の膜を帯積させた後、窒素雰囲気で750
℃30分熱処理した。その後、光エッチングプロセスに
よりマグネシウム添加窒化ガリウム層45上にパターン
形成されたレジスト膜を付け、ドライエッチングによっ
て図6に示す様に、硅素添加窒化ガリウム層42を露出
させた。この時、光エッチングプロセスによりマグネシ
ウム添加窒化ガリウム層45上にパターン形成せずにド
ライエッチングを行った試料を別途作成し、2次イオン
質量分析を行ったところ、硅素添加窒化ガリウム層42
中の炭素濃度は表面で低く、基板側で高くなっているこ
とが確認された。図6のように作成した試料の硅素添加
窒化ガリウム層42には金/チタンの電極を真空蒸着に
よって形成し、次にマグネシウム添加窒化ガリウム層4
5上から二酸化硅素の膜を酸処理によって取り除いてか
ら、マグネシウム添加窒化ガリウム層45に金/ニッケ
ルの電極を真空蒸着によって形成した。このようにして
できた発光ダイオードをペレットの状態で検査したとこ
ろ、発光波長500nmの青色を発し、20mAで2.
5mWの高い光出力が得られた。
Next, a light emitting diode having the structure shown in FIG. 5 was prepared using the apparatus shown in FIG. First, a single crystal sapphire substrate 7 having a (0001) plane having a diameter of 50 mm as a main surface washed with a mixture of methyl alcohol, sulfuric acid, hydrogen peroxide solution, and pure water is mounted on a susceptor 6.
Next, while energizing the electrode 2 while flowing hydrogen at 25 l / min and rotating the susceptor 6 at 10 rpm,
The temperature was kept at 1200 ° C for 10 minutes. Next, the temperature of the susceptor 6 was lowered to 550 ° C., and hydrogen passed through trimethylgallium at −15 ° C. was 25 cc / min, and ammonia was 10 l / l.
For 6 minutes to grow a gallium nitride layer 41. Then, raise the temperature of the susceptor 6 to 1150 ° C., and
Hydrogen passed through trimethylgallium at ℃ 50cc /
Min, ammonia at 10 l / min, hydrogen dilute 100
ppm silane was supplied at 2 cc / min for 60 minutes to grow the silicon-added gallium nitride layer 42. Then, the temperature of the susceptor 6 was lowered to 900 ° C., the nitrogen passed through trimethylgallium at −15 ° C. was 1 cc / min, the nitrogen passed through trimethylindium at 17 ° C. was 100 cc / min, and the anmore was 10
l / min, dimethyl zinc at 10 cc / min for 30 min,
A zinc-added gallium nitride layer 43 was grown. Next, the temperature of the susceptor 6 was raised to 1300 ° C., and hydrogen passed through trimethylgallium at −15 ° C. was 50 cc / min at 16 ° C.
25cc of hydrogen passed through trimethylaluminum of
/, Ammonia was supplied at 10 l / min, hydrogen passed through biscyclopentadienylmagnesium at 250 cc / min, and ammonia was supplied at 10 l / min for 30 minutes to grow the magnesium-added aluminum gallium nitride layer 44. Finally, the temperature of the susceptor 6 was lowered to 1150 ° C., the hydrogen passed through trimethylgallium at −15 ° C. was 50 cc / min, and the hydrogen passed through biscyclopentadienylmagnesium was 2 cc.
A magnesium-added gallium nitride layer 45 was grown by supplying 50 cc / min and 10 l / min of ammonia for 15 minutes. After that, the power supply to the susceptor 6 was stopped and the susceptor 6 was cooled.
After depositing a silicon dioxide film on the layer structure thus crystal-grown by a plasma CVD method, the film is grown in a nitrogen atmosphere at 750.
Heat treatment was performed at 30 ° C. for 30 minutes. Then, a patterned resist film was applied on the magnesium-added gallium nitride layer 45 by a photoetching process, and the silicon-added gallium nitride layer 42 was exposed by dry etching as shown in FIG. At this time, a sample was separately prepared by dry etching without patterning on the magnesium-added gallium nitride layer 45 by an optical etching process, and secondary ion mass spectrometry was performed.
It was confirmed that the inside carbon concentration was low on the surface and high on the substrate side. An electrode of gold / titanium was formed on the silicon-doped gallium nitride layer 42 of the sample prepared as shown in FIG. 6 by vacuum evaporation, and then the magnesium-doped gallium nitride layer 4 was formed.
After removing the silicon dioxide film from above by acid treatment, gold / nickel electrodes were formed on the magnesium-doped gallium nitride layer 45 by vacuum evaporation. When the thus-produced light-emitting diode was inspected in a pellet state, it emitted a blue light having an emission wavelength of 500 nm, and 2.
A high light output of 5 mW was obtained.

【0013】更に、高い成長温度が要求される炭化硅素
の結晶成長を行った。まず、メチルアルコール及び弗
酸、硝酸からなる混合物によって洗浄した直径50mm
の(0001)炭素面を主面とする6H型単結晶炭化硅
素基板7をサセプタ6に装着する。次に、水素を5l/
分、流しながら電極2に通電を開始し、またサセプタ6
を10rpmで回転させながら、温度1500℃にて1
0分保持した。次にサセプタ6の回転を停止した後、シ
ランガス30cc/分、プロパンガス20cc/分、ト
リメチルアルミニウム10cc/分、水素を5l/分で
1時間供給した。上流、中心及び下流部分と、この3点
のガス流方向に垂直方向における膜厚の分布を走査型電
子顕微鏡を用いて測定したところ、基板と成長薄膜との
コントラストは良好であった。全測定点において膜厚は
4μm±0.5μmであり、炭化硅素基板上で場所によ
る成長速度の差が小さいp型炭化硅素単結晶が得られる
ことがわかった。
Further, silicon carbide crystal growth required high growth temperature was performed. First, 50 mm diameter washed with a mixture of methyl alcohol, hydrofluoric acid and nitric acid
The 6H-type single crystal silicon carbide substrate 7 whose main surface is the (0001) carbon surface is attached to the susceptor 6. Next, add 5 l / hydrogen
The current is started to flow to the electrode 2 while flowing, and the susceptor 6
While rotating at 10 rpm,
Hold for 0 minutes. Next, after the rotation of the susceptor 6 was stopped, silane gas 30 cc / min, propane gas 20 cc / min, trimethylaluminum 10 cc / min, and hydrogen were supplied at 5 l / min for 1 hour. The film thickness distributions in the upstream, central, and downstream portions and in the direction perpendicular to the gas flow direction at these three points were measured using a scanning electron microscope, and the contrast between the substrate and the grown thin film was good. The film thickness was 4 μm ± 0.5 μm at all measurement points, and it was found that a p-type silicon carbide single crystal having a small difference in the growth rate depending on the location on the silicon carbide substrate was obtained.

【0014】1200℃を越えるような温度で1時間程
度の保持を行う結晶成長を30回行ったが、加熱体に通
電する際の電圧と電流の値から求めた抵抗値は上昇せ
ず、劣化の徴候が現れていないことが確認できた。ま
た、その後、装置を掃除のため分解した際、加熱体の目
視による検査では特に劣化の部位は認められなかった。
更に加熱体に接触挿入した窒化アルミニウム焼結体は破
損もクラックも認められなかった。成長装置としては十
分安定したものであることが確かめられた。
Crystal growth was carried out 30 times while maintaining the temperature for more than 1200 ° C. for about 1 hour. However, the resistance value obtained from the voltage and current values when energizing the heating body did not rise and deteriorated. It was confirmed that there was no sign of. After that, when the device was disassembled for cleaning, no visual deterioration of the heating body was found in the visual inspection.
Further, the aluminum nitride sintered body inserted into contact with the heating body was neither damaged nor cracked. It was confirmed that the growth device was sufficiently stable.

【0015】本実施例では、加熱体に接触挿入する絶縁
体の材質として窒化アルミニウム焼結体を例にとって説
明したが、同様の絶縁性を示し、化学的に安定で、熱伝
導度の大きいものであれば他の材料であっても、同様の
効果が期待できる。
In this embodiment, an aluminum nitride sintered body has been described as an example of the material of the insulator to be inserted in contact with the heating body. However, a material exhibiting the same insulating property, chemically stable, and high thermal conductivity. Therefore, the same effect can be expected with other materials.

【0016】次に、その他の実施例として、高電子移動
度トランジスタの製造につき説明する。上述の実施例と
同様の有機金属気相成長装置を用いた。基板には直径5
0mmの(001)面を主面とする半絶縁性砒化ガリウ
ム単結晶を用い、砒素の原料としては、水素で3%に希
釈したアルシンガスを用いた。成長温度は600℃に設
定し、まずトリメチルガリウムとアルシンガスを供給
し、無添加砒化ガリウム層を1μm形成し、その上に続
いてアルミニウム組成30%の無添加アルミニウムガリ
ウム砒素層を20nm形成し、更に、シランガスを追加
供給することで砒素添加でアルミニウム組成30%のア
ルミニウムガリウム砒素層を500nm成長させた。こ
のような構造にソース、ドレインとゲート電極を付け、
高電子移動度トランジスタを作成した。無添加砒化ガリ
ウム層中の炭素濃度を2次イオン質量分析によって分析
した結果、基板との界面で7×1016cm-3、アルミニ
ウム組成30%の無添加アルミニウムガリウム砒素層と
の界面で4×1016cm-3であった。従来の方法で作成
した高電子移動度トランジスタの無添加砒化ガリウム層
中の炭素濃度は約9×1016cm-3で一定であり、成長
方向の分布は無かった。このように作成した高電子移動
度トランジスタの2次元電子の移動度を室温にて測定し
たところ、従来のものでは6×103 cm2 /V・s程
度であったものが、本実施例にて作成したものは5×1
3 cm2 /V・s程度であった。このような高速動作
が可能になった背景には、アルミニウム組成30%の無
添加アルミニウムガリウム砒素層近傍の無添加砒化ガリ
ウム層(ポンテンシャルの反転層)における不純物散乱
が減少したためであると考えられる。
Next, as another embodiment, manufacturing of a high electron mobility transistor will be described. The same metal-organic vapor phase epitaxy apparatus as that used in the above-mentioned embodiment was used. Diameter 5 for substrate
A semi-insulating gallium arsenide single crystal having a 0 mm (001) plane as a main surface was used, and arsine gas diluted with hydrogen to 3% was used as a raw material of arsenic. The growth temperature is set to 600 ° C., trimethylgallium and arsine gas are first supplied to form an undoped gallium arsenide layer of 1 μm, and then an undoped aluminum gallium arsenide layer having an aluminum composition of 30% is formed to a thickness of 20 nm. By further supplying silane gas, an aluminum gallium arsenide layer having an aluminum composition of 30% was grown to a thickness of 500 nm by adding arsenic. Source, drain and gate electrodes are attached to such a structure,
A high electron mobility transistor was created. As a result of analyzing the carbon concentration in the undoped gallium arsenide layer by secondary ion mass spectrometry, it was found to be 7 × 10 16 cm −3 at the interface with the substrate and 4 × at the interface with the undoped aluminum gallium arsenide layer having an aluminum composition of 30%. It was 10 16 cm -3 . The carbon concentration in the undoped gallium arsenide layer of the high electron mobility transistor produced by the conventional method was constant at about 9 × 10 16 cm −3 , and there was no distribution in the growth direction. When the two-dimensional electron mobility of the high electron mobility transistor thus created was measured at room temperature, it was about 6 × 10 3 cm 2 / V · s in the conventional one, but in this example, Created by 5x1
It was about 0 3 cm 2 / V · s. It is considered that the reason why such high-speed operation is possible is that the impurity scattering in the undoped gallium arsenide layer (pontential inversion layer) near the undoped aluminum gallium arsenide layer having an aluminum composition of 30% is reduced. .

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、気
相成長装置において、極めて構造が簡単で高温の均一加
熱を安定して行え、かつ抵抗加熱体の寿命が飛躍的に伸
びる利点があり、高温が必要な材料の単結晶成長も容易
であるとともに著しい経済的あるいは再現性、信頼性向
上の効果があり、工業的に極めて有利である。またこの
ような成長装置を用いることによって半導体薄膜中の炭
素濃度を成長方向に低くなるように分布させることが可
能になり、その結果、高い効率の発光ダイオードや低い
しきい値で発振するレーザの製造が高い歩留まりで可能
になる。
As described above, according to the present invention, the vapor phase growth apparatus has an advantage that the structure is extremely simple, uniform heating at high temperature can be stably performed, and the life of the resistance heating body is remarkably extended. Therefore, it is easy to grow a single crystal of a material that requires high temperature, and has a remarkable effect of economical efficiency, reproducibility, and reliability, which is industrially extremely advantageous. Further, by using such a growth apparatus, it becomes possible to distribute the carbon concentration in the semiconductor thin film so as to be lowered in the growth direction, and as a result, a highly efficient light emitting diode or a laser that oscillates at a low threshold value can be obtained. Manufacturing is possible with high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による一実施例を示す側断面図。FIG. 1 is a side sectional view showing an embodiment according to the present invention.

【図2】 本発明による一実施例のサファイア基板に成
長した薄膜の構造を示す断面図。
FIG. 2 is a cross-sectional view showing the structure of a thin film grown on a sapphire substrate according to an embodiment of the present invention.

【図3】 本発明による一実施例の窒化ガリウム薄膜中
の炭素濃度を2次イオン質量分析によって定量化した結
果を示す図。
FIG. 3 is a diagram showing a result of quantifying carbon concentration in a gallium nitride thin film of one example according to the present invention by secondary ion mass spectrometry.

【図4】 本発明による一実施例の窒化ガリウム薄膜の
フォトルミネッセンス特性を比較して示す図。
FIG. 4 is a diagram showing a comparison of photoluminescence characteristics of gallium nitride thin films of one example according to the present invention.

【図5】 本発明による一実施例の窒化ガリウム薄膜を
用いて作成した層構造の断面図。
FIG. 5 is a cross-sectional view of a layer structure formed using the gallium nitride thin film of one example according to the present invention.

【図6】 本発明による一実施例の窒化ガリウム薄膜を
用いて作成した発光ダイオードの構造断面図。
FIG. 6 is a structural cross-sectional view of a light emitting diode manufactured using a gallium nitride thin film according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1…グラファイト製造抵抗加熱体 2…電極 3…窒化アルミニウム焼結体製の下部保護板 4…窒化アルミニウム焼結体製の上部保護板 5…パージガス導入管 6…サセプタ 7…サファイア基板 8…パージガス導入用穴 9…反射板 10…反射板支持棒 11…窒化アルミニウム層 12,41…窒化ガリウム層 42…硅素添加窒化ガリウム層 43…亜鉛添加窒化ガリウムインジウム層 44…マグネシウム添加窒化アルミニウムガリウム層 45…マグネシウム添加窒化ガリウム層 DESCRIPTION OF SYMBOLS 1 ... Graphite manufacturing resistance heating body 2 ... Electrode 3 ... Aluminum nitride sintered compact lower protective plate 4 ... Aluminum nitride sintered compact upper protective plate 5 ... Purge gas introduction pipe 6 ... Susceptor 7 ... Sapphire substrate 8 ... Purge gas introduction Hole 9 ... Reflector 10 ... Reflector support rod 11 ... Aluminum nitride layer 12, 41 ... Gallium nitride layer 42 ... Silicon-added gallium nitride layer 43 ... Zinc-added gallium indium nitride layer 44 ... Magnesium-added aluminum gallium nitride layer 45 ... Magnesium Addition gallium nitride layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成される半導体薄膜が炭素を
含有し、その炭素が基板側が少なく、薄膜表面側が多く
なるようにしたことを特徴する半導体ウェハ。
1. A semiconductor wafer characterized in that a semiconductor thin film formed on a substrate contains carbon, and that carbon is less on the substrate side and more on the thin film surface side.
【請求項2】 基板上に2種以上の半導体薄膜を積層し
てなる半導体素子において、前記半導体薄膜の内の少な
くとも一層に炭素が含有しており、その炭素濃度が半導
体薄膜の表面方向にしたがって低くなるように分布して
いることを特徴とする半導体素子。
2. A semiconductor device comprising two or more kinds of semiconductor thin films laminated on a substrate, wherein carbon is contained in at least one layer of the semiconductor thin films, and the carbon concentration varies according to the surface direction of the semiconductor thin film. A semiconductor device characterized by being distributed so as to be low.
【請求項3】 基板がアルミニウム酸化物で、半導体薄
膜が窒化ガリウム素で構成され、青色の発行をなすこと
を特徴とする請求項2の半導体素子。
3. The semiconductor device according to claim 2, wherein the substrate is made of aluminum oxide and the semiconductor thin film is made of gallium nitride, and emits blue light.
【請求項4】 請求項2の半導体薄膜を気相成長方法で
形成する際、前記基板を抵抗加熱体で加熱し、有機金属
を用いた気相成長法で行うことを特徴とする半導体素子
の製造方法。
4. The semiconductor device according to claim 2, wherein when the semiconductor thin film is formed by a vapor phase growth method, the substrate is heated by a resistance heating body and the vapor phase growth method uses an organic metal. Production method.
【請求項5】 請求項2の半導体薄膜を有機金属を用い
た気相成長法で形成する装置は、前記基板を加熱する抵
抗加熱体を備え、その抵抗加熱体は導電部の隙間に絶縁
体が接触挿入されていることを特徴とする気相成長装
置。
5. An apparatus for forming a semiconductor thin film according to claim 2 by a vapor phase growth method using an organic metal comprises a resistance heating body for heating the substrate, and the resistance heating body is an insulator in a gap between conductive parts. A vapor phase growth apparatus characterized by being inserted into contact.
JP25040195A 1995-09-28 1995-09-28 Semiconductor wafer, semiconductor device, manufacture thereof, and deposition equipment to be used for manufacture of semiconductor device Pending JPH0992883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25040195A JPH0992883A (en) 1995-09-28 1995-09-28 Semiconductor wafer, semiconductor device, manufacture thereof, and deposition equipment to be used for manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25040195A JPH0992883A (en) 1995-09-28 1995-09-28 Semiconductor wafer, semiconductor device, manufacture thereof, and deposition equipment to be used for manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0992883A true JPH0992883A (en) 1997-04-04

Family

ID=17207367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25040195A Pending JPH0992883A (en) 1995-09-28 1995-09-28 Semiconductor wafer, semiconductor device, manufacture thereof, and deposition equipment to be used for manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0992883A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011394A1 (en) 2007-07-17 2009-01-22 Sumitomo Electric Industries, Ltd. Method for manufacturing electronic device, method for manufacturing epitaxial substrate, iii nitride semiconductor element and gallium nitride epitaxial substrate
US8148732B2 (en) 2008-08-29 2012-04-03 Taiwan Semiconductor Manufacturing, Co., Ltd. Carbon-containing semiconductor substrate
JP2014065937A (en) * 2012-09-25 2014-04-17 Ulvac Japan Ltd Substrate heating device and thermal cvd apparatus
JP2014522125A (en) * 2011-08-08 2014-08-28 イルジン エルイーディー カンパニー リミテッド Nitride semiconductor light emitting device excellent in current spreading effect and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011394A1 (en) 2007-07-17 2009-01-22 Sumitomo Electric Industries, Ltd. Method for manufacturing electronic device, method for manufacturing epitaxial substrate, iii nitride semiconductor element and gallium nitride epitaxial substrate
US8148732B2 (en) 2008-08-29 2012-04-03 Taiwan Semiconductor Manufacturing, Co., Ltd. Carbon-containing semiconductor substrate
JP2014522125A (en) * 2011-08-08 2014-08-28 イルジン エルイーディー カンパニー リミテッド Nitride semiconductor light emitting device excellent in current spreading effect and manufacturing method thereof
JP2014065937A (en) * 2012-09-25 2014-04-17 Ulvac Japan Ltd Substrate heating device and thermal cvd apparatus

Similar Documents

Publication Publication Date Title
JP3994623B2 (en) Method for producing group III nitride compound semiconductor device
EP2544250B1 (en) Process for production of nitride semiconductor element, nitride semiconductor light-emitting element, and light-emitting device
JP3648386B2 (en) SEMICONDUCTOR DEVICE AND WAFER AND METHOD FOR MANUFACTURING THE SAME
ZA200806479B (en) Buried contact devices for nitride-based films and manufacture thereof
CN101522942B (en) Filming method for III-group nitride semiconductor laminated structure
US5895938A (en) Semiconductor device using semiconductor BCN compounds
KR20070053670A (en) Mbe growth of a semiconductor laser diode
JP3442935B2 (en) Substrate for vapor phase growth and method for heating the same
JP4305982B2 (en) Manufacturing method of semiconductor light emitting device
JPH08172055A (en) Method and equipment for growing nitride semiconductor crystal
JPH0992883A (en) Semiconductor wafer, semiconductor device, manufacture thereof, and deposition equipment to be used for manufacture of semiconductor device
JP2000208874A (en) Nitride semiconductor, its manufacture, nitride semiconductor light-emitting device, and its manufacture
JP4539105B2 (en) Manufacturing method of nitride semiconductor device
JPH05190900A (en) Manufacture of semiconductor light-emitting device
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JPH07291790A (en) Molecular beam epitaxy apparatus
KR100277691B1 (en) Apparatus for manufacturing short wavelength optoelectronic device and method for manufacturing short wavelength optoelectronic device using same
JP2001237192A (en) Substrate for formation, nitride iii-v compound layer, manufacturing method of nitride iii-v compound substrate and semiconductor element
JPH088460A (en) Method of manufacturing p-type algan semiconductor
JP2519232B2 (en) Method for producing compound semiconductor crystal layer
JP5076236B2 (en) Semiconductor device and manufacturing method thereof
JPH0529653A (en) Semiconductor device
JPH07291791A (en) Molecular beam epitaxy apparatus
Sato et al. Optical-Emission Properties of GaN-Based Nanopillar Light-Emitting Diodes Prepared on Non-Polished and Non-Single-Crystalline Substrates
JP2761759B2 (en) Diamond electronics