JPH0992878A - Semiconductor light emitting device and manufacturing method thereof - Google Patents

Semiconductor light emitting device and manufacturing method thereof

Info

Publication number
JPH0992878A
JPH0992878A JP27048495A JP27048495A JPH0992878A JP H0992878 A JPH0992878 A JP H0992878A JP 27048495 A JP27048495 A JP 27048495A JP 27048495 A JP27048495 A JP 27048495A JP H0992878 A JPH0992878 A JP H0992878A
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
semiconductor light
epitaxial layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27048495A
Other languages
Japanese (ja)
Inventor
Masahito Yamada
雅人 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP27048495A priority Critical patent/JPH0992878A/en
Publication of JPH0992878A publication Critical patent/JPH0992878A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light emitting device excellent in efficiency of outputting emitted light and a manufacturing method thereof. SOLUTION: A multilayer body 3 is formed by depositing an AlGaAs double heterojunction layer 2 on a p-type GaAs substrate 1. A multilayer body 5 is formed by forming a plurality of recessed portions 4 of generally spherical shape on the surface of an n-type AlGaAs clad layer 2 by photolithography and etching. The multilayer body 5 is dipped into an ammonia-hydrogen peroxide aqueous solution to dissolve and remove the substrate 1, thereby forming a compound epitaxial layer body 6. Electrodes 7 and 8 are formed on the surfaces of the compound epitaxial layer body 6, respectively. Thereafter, the obtained substrate is divided by dicing to thereby make semiconductor light emitting device pellets 10. A semiconductor light emitting device is manufactured by using one of the pellets 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体発光素子及
びその製造方法に関する。
The present invention relates to a semiconductor light emitting device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来一般的に採用されている半導体発光
素子の製造方法について、AlGaAs発光素子を例に
して説明する。図14(a)〜(f)は、上記半導体発
光素子の製造方法の一例を工程順に示す断面図である。
p型GaAs基板51〔図14(a)〕の鏡面研磨面5
1a上に、発光素子を構成する複合エピタキシャル層5
2、すなわちp型AlGaAsクラッド層52a(厚さ
約70μm)、p型AlGaAs活性層52b(厚さ約
1μm)及びn型AlGaAsクラッド層52c(厚さ
約130μm)により構成されるAlGaAsダブルヘ
テロ接合構造層52を、液相エピタキシャル成長法によ
り堆積して積層体53を得る〔図14(b)〕。
2. Description of the Related Art A method of manufacturing a semiconductor light emitting device which has been generally adopted conventionally will be described by taking an AlGaAs light emitting device as an example. 14A to 14F are cross-sectional views showing an example of a method of manufacturing the semiconductor light emitting device in the order of steps.
Mirror-polished surface 5 of p-type GaAs substrate 51 [FIG. 14 (a)]
Composite epitaxial layer 5 constituting a light emitting device on 1a
2, that is, an AlGaAs double heterojunction structure composed of a p-type AlGaAs clad layer 52a (thickness: about 70 μm), a p-type AlGaAs active layer 52b (thickness: about 1 μm) and an n-type AlGaAs clad layer 52c (thickness: about 130 μm) The layer 52 is deposited by a liquid phase epitaxial growth method to obtain a laminated body 53 [FIG. 14 (b)].

【0003】この積層体53から基板51を適宜の方法
で除去することにより、片面が鏡面研磨面51aに対応
して平坦な鏡面54となった複合エピタキシャル層体5
5が得られる〔図14(c)〕。この複合エピタキシャ
ル層体55の両面に、常法によりそれぞれ電極56及び
57を形成した後〔図14(d)〕、ダイシングにより
分割して、半導体発光素子ペレット60,60,…を得
る〔図14(e)〕。
By removing the substrate 51 from this laminated body 53 by an appropriate method, one surface of the composite epitaxial layered body 5 has a flat mirror surface 54 corresponding to the mirror-polished surface 51a.
5 is obtained [FIG. 14 (c)]. Electrodes 56 and 57 are formed on both surfaces of the composite epitaxial layer body 55 by a conventional method [FIG. 14 (d)] and then divided by dicing to obtain semiconductor light emitting device pellets 60, 60 ,. (E)].

【0004】上記製造方法で得られた半導体発光素子ペ
レット60を、導電性固着剤(例えば銀ペースト)61
で支持体(フレーム)62に固着し、ワイヤボンディン
グ後、エポシキ樹脂等の封止材料63でモールドして半
導体発光素子65を得る〔図14(f)〕。
The semiconductor light emitting device pellet 60 obtained by the above manufacturing method is replaced with a conductive adhesive (for example, silver paste) 61.
Then, the semiconductor light emitting element 65 is obtained by fixing it to the support (frame) 62 by means of wire bonding and then molding it with a sealing material 63 such as epoxy resin [FIG. 14 (f)].

【0005】半導体発光素子の輝度(外部出力)が、一
般的に内部発光効率と、発光した光の外部取り出し効率
とによって決まることはよく知られている。内部発光効
率が主に発光素子を形成している結晶材料の品質に依存
し、外部取り出し効率が発光素子ペレットの構造・形状
に大きく左右されることも知られている。
It is well known that the brightness (external output) of a semiconductor light emitting element is generally determined by the internal luminous efficiency and the external extraction efficiency of the emitted light. It is also known that the internal light emission efficiency mainly depends on the quality of the crystal material forming the light emitting element, and the external extraction efficiency largely depends on the structure and shape of the light emitting element pellet.

【0006】発光素子(発光素子ペレット)を形成して
いる化合物半導体結晶の屈折率は3以上と非常に大きい
ため、発光した光を外部に取り出す際、化合物半導体結
晶の表面に臨界角(エポシキ樹脂モールドの場合、20
数度)以上に傾いて入射する光は全反射していまい、外
部に取り出すことができない。このように、化合物半導
体結晶の屈折率が大きいことは、外部取り出し効率低下
の大きな原因となっている。それ故、図14(e)に示
したような形状の発光素子ペレットでは、発光した光が
発光素子ペレット表面で全反射する割合が大きく、発光
した光を効率良く外部に取り出すことができない。
Since the compound semiconductor crystal forming the light emitting element (light emitting element pellet) has a very large refractive index of 3 or more, when the emitted light is taken out to the outside, a critical angle (epoxy resin) is formed on the surface of the compound semiconductor crystal. 20 for mold
Light incident at an angle of more than a few degrees is totally reflected and cannot be extracted to the outside. As described above, the large refractive index of the compound semiconductor crystal is a major cause of a decrease in the extraction efficiency to the outside. Therefore, in the light emitting element pellet having a shape as shown in FIG. 14E, the emitted light has a large total reflection rate on the surface of the light emitting element pellet, and the emitted light cannot be efficiently extracted to the outside.

【0007】そこで、外部取り出し効率を向上させる技
術として、発光素子ペレットの上部の形状を球面凸形状
に形成したものや、発光素子ペレットの上面及び/又は
側面を微細な凹凸を有する面にしてマイクロレンズ化し
たものなど、前記全反射する割合を低減させるための種
々の技術が提案・採用されている。
Therefore, as a technique for improving the external extraction efficiency, the shape of the upper part of the light emitting element pellet is formed into a spherical convex shape, or the top surface and / or side surface of the light emitting element pellet is made into a surface having fine irregularities, and the micro Various techniques have been proposed and adopted for reducing the proportion of total reflection, such as a lens.

【0008】[0008]

【発明が解決しようとする課題】上記した外部取り出し
効率を向上させる技術により、発光素子を構成する化合
物半導体結晶表面での、発光した光の全反射する割合が
低減し、前記結晶表面に入射した光は効率良く外部に取
り出すことができるようになった。しかし、発光素子を
構成する発光層(図14の発光素子の場合、p型AlG
aAs活性層52b)は発光した光の吸収層ともなるた
め、発光した光のうち発光素子の下方に向かう光は、発
光素子の下面(発光素子ペレットを固着している導電性
固着剤層)で反射して上方に向かう反射光となるが、こ
の反射光のうち前記吸収層ともなる発光層に入射した光
の殆どは、この発光層で内部吸収されてしまい(前記結
晶表面に到達できない)、発光した光を効率良く外部に
取り出すことができないという問題があった。
By the above-mentioned technique for improving the external extraction efficiency, the total reflection ratio of the emitted light on the surface of the compound semiconductor crystal constituting the light emitting element is reduced and the light is incident on the crystal surface. Light can now be efficiently extracted to the outside. However, the light emitting layer which constitutes the light emitting element (in the case of the light emitting element of FIG.
Since the aAs active layer 52b) also serves as an absorption layer for emitted light, light emitted toward the lower part of the light emitting element is emitted from the lower surface of the light emitting element (conductive adhesive layer fixing the light emitting element pellet). Although it becomes reflected light that is reflected and goes upward, most of the light that is incident on the light emitting layer that also serves as the absorbing layer is internally absorbed by this light emitting layer (cannot reach the crystal surface), There is a problem that the emitted light cannot be efficiently extracted to the outside.

【0009】本発明は上記した問題に鑑みてなされたも
ので、その目的は、発光した光の内部吸収を低減させ
て、外部取り出し効率を更に高くした半導体発光素子及
びその製造方法を提供することにある。
The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a semiconductor light emitting device in which internal absorption of emitted light is reduced to further enhance external extraction efficiency, and a method for manufacturing the same. It is in.

【0010】[0010]

【課題を解決するための手段】本発明に係る発光素子
は、半導体発光素子ペレットの下面(支持体固着面)を
単数または複数の略球面形状の凹部を有する面にしたこ
とを特徴とする。また、上記発光素子において、発光素
子ペレットの上面(支持体固着面の反対面)及び/又は
側面を全反射低減形状面にすることにより、更に外部取
り出し効率が向上する。
A light emitting device according to the present invention is characterized in that the lower surface (support fixing surface) of a semiconductor light emitting device pellet is a surface having a single or a plurality of substantially spherical recesses. Further, in the above light-emitting element, by making the upper surface (the surface opposite to the support-fixing surface) and / or the side surface of the light-emitting element pellet a surface with reduced total reflection, the extraction efficiency to the outside is further improved.

【0011】前記全反射低減形状面の具体例としては、
上面については単数または複数の略球面形状の凸部を有
する面、微細な凹凸を有する面が、また側面については
微細な凹凸を有する面が挙げられる。前記半導体発光素
子ペレットを構成する複合エピタキシャル層体の結晶材
料の具体例としてAlGaAsが挙げられ、また前記複
合エピタキシャル層体の具体例としては、p型AlGa
Asクラッド層、AlGaAs活性層及びn型AlGa
Asクラッド層で構成されるAlGaAsダブルヘテロ
接合構造層を含むものが挙げられる。
As a concrete example of the total reflection reducing surface,
Examples of the upper surface include a surface having a single or a plurality of substantially spherical projections, a surface having fine irregularities, and a side surface having a surface having fine irregularities. AlGaAs is mentioned as a specific example of the crystal material of the composite epitaxial layer body constituting the semiconductor light emitting device pellet, and p-type AlGa is a specific example of the composite epitaxial layer body.
As clad layer, AlGaAs active layer and n-type AlGa
An example thereof includes an AlGaAs double heterojunction structure layer composed of an As clad layer.

【0012】本発明に係る第1の発光素子の製造方法
は、化合物半導体基板上に半導体発光素子を構成する複
合エピタキシャル層を、液相エピタキシャル成長法によ
り堆積して前記基板と前記複合エピタキシャル層との積
層体を形成する工程と、前記積層体から前記基板を選択
的にエッチング除去して複合エピタキシャル層体とする
工程と、前記複合エピタキシャル層体の一方の面に略球
面形状の凹部を複数形成する工程と、前記略球面形状の
凹部を形成した複合エピタキシャル層体をペレット化し
て半導体発光素子ペレットとする工程とを含むことを特
徴とする。
A first method of manufacturing a light emitting device according to the present invention is a method of depositing a composite epitaxial layer constituting a semiconductor light emitting device on a compound semiconductor substrate by a liquid phase epitaxial growth method to form the substrate and the composite epitaxial layer. A step of forming a laminated body, a step of selectively removing the substrate from the laminated body by etching to form a composite epitaxial layer body, and forming a plurality of substantially spherical concave portions on one surface of the composite epitaxial layer body The method is characterized by including a step and a step of pelletizing the composite epitaxial layer body in which the substantially spherical concave portion is formed into a semiconductor light emitting device pellet.

【0013】前記半導体発光素子ペレットを構成する複
合エピタキシャル層体の他方の面(略球面形状の凹部を
形成しない面)及び/又は側面を薬液で処理して微細な
凹凸を有する面にする工程を、上記した第1の製造方法
に加えることが好ましい。こうすることによって、前記
他方の面及び/又は側面を全反射低減形状面にすること
ができる。
A step of treating the other surface (the surface on which the substantially spherical recess is not formed) and / or the side surface of the composite epitaxial layer body constituting the semiconductor light emitting device pellet with a chemical solution to form a surface having fine irregularities. It is preferable to add to the first manufacturing method described above. By doing so, the other surface and / or the side surface can be made into a total reflection reducing shape surface.

【0014】本発明に係る第2の発光素子の製造方法
は、化合物半導体基板表面に所定形状の凹部を複数形成
する工程と、該化合物半導体基板の前記凹部形成面上
に、半導体素子を構成する複合エピタキシャル層を、液
相エピタキシャル成長法により堆積して前記基板と前記
複合エピタキシャル層との積層体を形成する工程と、前
記複合エピタキシャル層の最上層側に略球面形状の凹部
を複数形成する工程と、前記積層体から前記基板を選択
的にエッチング除去して、前記複合エピタキシャル層の
前記基板除去面に前記基板に形成した凹部に対応する凸
部を形成した複合エピタキシャル層体とする工程と、前
記複合エピタキシャル層体をペレット化して半導体発光
素子ペレットとする工程とを含むことを特徴とする。
In a second method for manufacturing a light emitting device according to the present invention, a step of forming a plurality of recesses of a predetermined shape on the surface of a compound semiconductor substrate and a semiconductor device is formed on the recessed surface of the compound semiconductor substrate. A step of depositing a composite epitaxial layer by a liquid phase epitaxial growth method to form a laminate of the substrate and the composite epitaxial layer; and a step of forming a plurality of substantially spherical recesses on the uppermost layer side of the composite epitaxial layer. A step of selectively removing the substrate from the stacked body by etching to form a composite epitaxial layer body in which convex portions corresponding to the concave portions formed in the substrate are formed on the substrate removal surface of the composite epitaxial layer; And a step of pelletizing the composite epitaxial layer body to obtain a semiconductor light emitting device pellet.

【0015】前記化合物半導体基板の表面に形成される
凹部形状の具体例としては略球面凹形状が挙げられる。
また、上記した第2の製造方法では、前記半導体素発光
素子ペレットを構成する複合エピタキシャル層体の側面
を薬液で処理して微細な凹凸を有する面にする工程を含
むものがより好ましい。
As a concrete example of the concave shape formed on the surface of the compound semiconductor substrate, there is a substantially spherical concave shape.
Further, the second manufacturing method described above more preferably includes a step of treating the side surface of the composite epitaxial layer body constituting the semiconductor element light emitting element pellet with a chemical solution to form a surface having fine irregularities.

【0016】本発明に係る第1、第2の発光素子の製造
方法において、化合物半導体基板の結晶材料の具体例と
してGaAsが、前記複合エピタキシャル層の結晶材料
としてAlGaAsそれぞれが挙げられる。また、前記
複合エピタキシャル層の具体例としては、p型AlGa
Asクラッド層、AlGaAs活性層及びn型AlGa
Asクラッド層により構成されるAlGaAsダブルヘ
テロ接合構造層を含むものが挙げられる。
In the first and second light emitting device manufacturing methods according to the present invention, GaAs is a specific example of the crystal material of the compound semiconductor substrate, and AlGaAs is a crystal material of the composite epitaxial layer. A specific example of the composite epitaxial layer is p-type AlGa.
As clad layer, AlGaAs active layer and n-type AlGa
An example thereof includes an AlGaAs double heterojunction structure layer composed of an As clad layer.

【0017】[0017]

【発明の実施の形態】本発明に係る半導体発光素子及び
その製造方法の実施の形態を、図面を参照して説明す
る。 実施の形態1 図1(f)は、半導体発光素子に用いる半導体発光素子
ペレットの断面図であり、図1(a)〜(f)は、その
製造方法を工程順に示す断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a semiconductor light emitting device and a method of manufacturing the same according to the present invention will be described with reference to the drawings. Embodiment 1 FIG. 1 (f) is a sectional view of a semiconductor light emitting element pellet used in a semiconductor light emitting element, and FIGS. 1 (a) to 1 (f) are sectional views showing the manufacturing method in the order of steps.

【0018】p型GaAs基板1の鏡面研磨面1a〔図
1(a)〕上に発光素子を構成する複合エピタキシャル
層2、すなわちp型AlGaAsクラッド層2a(厚さ
約70μm)、p型AlGaAs活性層2b(厚さ約1
μm)及びn型AlGaAsクラッド層2c(厚さ約1
30μm)により構成されるAlGaAsダブルヘテロ
接合構造層2を、液相エピタキシャル成長法により堆積
して積層体3を得る〔図1(b)〕。前記複合エピタキ
シャル層のn型AlGaAsクラッド層2cの表面に、
常法のフォトリソグラフィーとブロム・メタノール溶液
を用いるエッチングとにより略球面形状の凹部4を複数
形成し、積層体5を得る〔図1(c)〕。
On the mirror-polished surface 1a of the p-type GaAs substrate 1 [FIG. 1 (a)], the composite epitaxial layer 2 constituting the light emitting element, that is, the p-type AlGaAs clad layer 2a (thickness: about 70 μm), p-type AlGaAs activity. Layer 2b (thickness about 1
μm) and the n-type AlGaAs clad layer 2c (thickness of about 1
An AlGaAs double heterojunction structure layer 2 having a thickness of 30 μm) is deposited by a liquid phase epitaxial growth method to obtain a laminate 3 (FIG. 1B). On the surface of the n-type AlGaAs cladding layer 2c of the composite epitaxial layer,
A plurality of substantially spherical recesses 4 are formed by ordinary photolithography and etching using a bromine / methanol solution to obtain a laminate 5 (FIG. 1 (c)).

【0019】次に、前記積層体5をアンモニア・過酸化
水素水溶液に浸漬して、基板1を選択的に溶解除去する
ことにより、図1(d)に示すような、前記略球面形状
の凹部4がn型AlGaAsクラッド層2cの表面に複
数形成された複合エピタキシャル層体6が得られる。こ
の複合エピタキシャル層体6のp型AlGaAsクラッ
ド層2a上及びn型AlGaAsクラッド層2c上に、
常法によりそれぞれp側電極7及びn側電極8を形成し
た後〔図1(e)〕、ダイシングにより分割して半導体
発光素子ペレット10,10,…を得る〔図1
(f)〕。図1(e)に示す半導体発光素子ペレット1
0は、ペレット10の下面に単数の略球面形状の凹部を
有しており、この凹部形成面が支持体固着面となる。
Next, the laminate 5 is dipped in an aqueous solution of ammonia / hydrogen peroxide to selectively dissolve and remove the substrate 1 to form the concave portion having the substantially spherical shape as shown in FIG. 1 (d). A composite epitaxial layer body 6 in which a plurality of 4 are formed on the surface of the n-type AlGaAs cladding layer 2c is obtained. On the p-type AlGaAs cladding layer 2a and the n-type AlGaAs cladding layer 2c of this composite epitaxial layer body 6,
After forming the p-side electrode 7 and the n-side electrode 8 by a conventional method [FIG. 1 (e)], they are divided by dicing to obtain semiconductor light emitting device pellets 10, 10 ,.
(F)]. The semiconductor light emitting device pellet 1 shown in FIG.
No. 0 has a single substantially spherical concave portion on the lower surface of the pellet 10, and this concave portion forming surface serves as a support fixing surface.

【0020】上記製造方法の変化例により得られる半導
体発光素子ペレットとして、例えば図2〜図4に示すも
のがある。図2に示す半導体発光素子ペレット70は、
その下面に複数の略球面形状の凹部を形成したものであ
り、図3に示す半導体発光素子ペレット71及び図4に
示す半導体発光素子ペレット72はそれぞれ前記ペレッ
ト10(図1)及び前記ペレット70(図2)の上面,
側面をフッ化水素酸に浸漬して該面を微細な凹凸を有す
る面9、すなわち全反射低減形状面にしたものである。
As a semiconductor light emitting device pellet obtained by a variation of the above manufacturing method, there is, for example, one shown in FIGS. The semiconductor light emitting device pellet 70 shown in FIG.
A plurality of substantially spherical recesses are formed on the lower surface thereof. The semiconductor light emitting device pellet 71 shown in FIG. 3 and the semiconductor light emitting device pellet 72 shown in FIG. 4 are the pellet 10 (FIG. 1) and the pellet 70 (respectively). 2) top surface,
The side surface is immersed in hydrofluoric acid to form the surface 9 having fine irregularities, that is, a surface with reduced total reflection.

【0021】実施の形態2 図5(g)は、半導体発光素子に用いる半導体発光素子
ペレットの断面図であり、図5(a)〜(g)は、その
製造方法を工程順に示す断面図である。p型GaAs基
板11の鏡面研磨面11a〔図5(a)〕に複数の略球
面形状の凹部12を形成する〔図5(b)〕。そのため
に、鏡面研磨面11aを常法のフォトリソグラフィーと
ブロム・メタノール溶液を用いてエッチングする。図5
(c)に示すように、基板11の凹部形成面11a上
に、複合エピタキシャル層13、すなわちp型AlGa
Asクラッド層13a(厚さ約120μm)、p型Al
GaAs活性層13b(厚さ約1μm)及びn型AlG
aAsクラッド層(厚さ約120μm)により構成され
るAlGaAsダブルヘテロ接合構造層13を堆積して
積層体14を得る。
Embodiment 2 FIG. 5 (g) is a sectional view of a semiconductor light emitting device pellet used in a semiconductor light emitting device, and FIGS. 5 (a) to 5 (g) are sectional views showing the manufacturing method in the order of steps. is there. A plurality of substantially spherical recesses 12 are formed in the mirror-polished surface 11a of the p-type GaAs substrate 11 [FIG. 5 (a)] [FIG. 5 (b)]. For that purpose, the mirror-polished surface 11a is etched using a conventional photolithography method and a bromine-methanol solution. FIG.
As shown in (c), the composite epitaxial layer 13, that is, p-type AlGa, is formed on the recess forming surface 11 a of the substrate 11.
As clad layer 13a (thickness: about 120 μm), p-type Al
GaAs active layer 13b (thickness: about 1 μm) and n-type AlG
An AlGaAs double heterojunction structure layer 13 composed of an aAs clad layer (thickness: about 120 μm) is deposited to obtain a laminated body 14.

【0022】複合エピタキシャル層13のn型AlGa
Asクラッド層13cの表面に、常法のフォトリソグラ
フィー及びブロム・メタノール溶液を用いるエッチング
により、略球面形状の凹部15を複数形成し、積層体1
4aを得る〔図5(d)〕。次に、前記積層体14aを
アンモニア・過酸化水素水溶液に浸漬して、基板11を
選択的に溶解除去することにより、図5(e)に示すよ
うな、前記基板11に形成された略球面形状の凹部12
に対応する形状の略球面形状の凸部16が前記基板除去
面に複数形成された複合エピタキシャル層体17が得ら
れる。この複合エピタキシャル層体17の両面に各々電
極18,19を形成した後〔図5(f)〕、ダイシング
により分割して半導体発光素子ペレット20,20,…
を得る〔図5(g)〕。この半導体発光素子ペレット2
0は、ペレット20の上部及び下面に各々単数の略球面
形状の凸部及び略球面形状の凹部を有しており、前記凹
部を有する下面が支持体固着面となる。
N-type AlGa of composite epitaxial layer 13
A plurality of substantially spherical concave portions 15 are formed on the surface of the As clad layer 13c by a conventional photolithography and etching using a bromine-methanol solution, and the laminate 1 is formed.
4a is obtained [FIG. 5 (d)]. Next, the laminated body 14a is immersed in an aqueous solution of ammonia / hydrogen peroxide to selectively dissolve and remove the substrate 11 to form a substantially spherical surface formed on the substrate 11 as shown in FIG. 5 (e). Shaped recess 12
A composite epitaxial layer body 17 having a plurality of substantially spherical convex portions 16 having a shape corresponding to the above is formed on the substrate removal surface. After forming electrodes 18 and 19 on both surfaces of the composite epitaxial layer body 17 [FIG. 5 (f)], the semiconductor light emitting element pellets 20, 20, ... Are divided by dicing.
Is obtained [FIG. 5 (g)]. This semiconductor light emitting device pellet 2
0 has a single substantially spherical convex portion and a substantially spherical concave portion on the upper and lower surfaces of the pellet 20, respectively, and the lower surface having the concave portion serves as the support fixing surface.

【0023】実施の形態3 図6(g)は、半導体発光素子に用いる半導体発光素子
ペレットの断面図であり、図6(a)〜(g)は、その
製造方法を工程順に示す断面図である。この実施の形態
に係る製造方法では、図6(b)に示す工程〔実施の形
態2の図5(b)に対応〕において、p型GaAs基板
31の鏡面研磨面31a〔図6(a)〕を常法のフォト
リソグラフィーとブロム・メタノール溶液を用いてエッ
チングし、実施の形態2の場合より小さく且つ多数の略
球面形状の凹部32〔図6(b)〕を形成したこと以外
は、実施の形態2と同じである。図6(a)〜(g)
は、図2(a)〜(g)に各々対応している。
Embodiment 3 FIG. 6 (g) is a sectional view of a semiconductor light emitting device pellet used in a semiconductor light emitting device, and FIGS. 6 (a) to 6 (g) are sectional views showing the manufacturing method in the order of steps. is there. In the manufacturing method according to this embodiment, in the process shown in FIG. 6B (corresponding to FIG. 5B of the second embodiment), the mirror-polished surface 31a of the p-type GaAs substrate 31 [FIG. Was etched using a conventional photolithography method and a bromine-methanol solution to form a large number of substantially spherical recesses 32 (FIG. 6B) smaller than those in the second embodiment. The same as Form 2. 6 (a)-(g)
Corresponds to FIGS. 2A to 2G, respectively.

【0024】従って、この実施の形態3に係る製造方法
で製造された半導体発光素子ペレット40〔図6
(g)〕ではその上面が、前記基板の略球面形状の凹部
32に対応する複数の略球面形状の凸部を有する面であ
ること以外は、実施の形態2による半導体発光素子ペレ
ット20と同じ形状である。図6において、33は複合
エピタキシャル層、33aはp型AlGaAsクラッド
層、33bはp型AlGaAs活性層、33cはn型A
lGaAsクラッド層、34及び34aは積層体、35
は略球面形状の凹部、36は略球面形状の凸部、37は
複合エピタキシャル層体、38及び39は電極、40は
半導体発光素子ペレットである。
Therefore, the semiconductor light emitting device pellet 40 manufactured by the manufacturing method according to the third embodiment [see FIG.
(G)] is the same as the semiconductor light emitting device pellet 20 according to the second embodiment except that the upper surface thereof is a surface having a plurality of substantially spherical convex portions corresponding to the substantially spherical concave portions 32 of the substrate. The shape. In FIG. 6, 33 is a composite epitaxial layer, 33a is a p-type AlGaAs cladding layer, 33b is a p-type AlGaAs active layer, and 33c is an n-type A.
lGaAs clad layer, 34 and 34a are laminated bodies, 35
Is a substantially spherical concave portion, 36 is a substantially spherical convex portion, 37 is a composite epitaxial layer body, 38 and 39 are electrodes, and 40 is a semiconductor light emitting element pellet.

【0025】実施の形態1の場合と同様に、実施の形態
2及び実施の形態3の製造方法の変化例により得られる
半導体発光素子ペレットとして、例えば図7〜図12に
示す半導体発光素子ペレット73〜78がある。
Similar to the case of the first embodiment, as the semiconductor light emitting device pellet obtained by the modified examples of the manufacturing method of the second and third embodiments, for example, the semiconductor light emitting device pellet 73 shown in FIGS. There is ~ 78.

【0026】本発明に係る半導体発光素子によれば、半
導体発光素子ペレットの下面(支持体固着面)を略球面
形状の凹部を有する面にしたので、従来の半導体発光素
子に比べ、発光した光をより効率的に外部に取り出すこ
とができる。これを、図13を参照して具体的に説明す
る。図13は実施の形態1の製造方法で得られた半導体
発光素子ペレット10を用いて作製された半導体発光素
子の断面図(略式図)である。同図において、45は導
電性固着剤(例えば銀ペースト)であり、46は支持体
(略式図)である。
According to the semiconductor light emitting device of the present invention, since the lower surface (support fixing surface) of the semiconductor light emitting device pellet is a surface having a substantially spherical concave portion, the light emitted from the semiconductor light emitting device is higher than that of the conventional semiconductor light emitting device. Can be taken out more efficiently. This will be specifically described with reference to FIG. FIG. 13 is a cross-sectional view (schematic diagram) of a semiconductor light emitting device manufactured using the semiconductor light emitting device pellet 10 obtained by the manufacturing method of the first embodiment. In the figure, 45 is a conductive adhesive (for example, silver paste), and 46 is a support (schematic diagram).

【0027】同図において矢印付きの実線L1 は、本発
明に係る半導体発光素子で発光した光のうち、図面下向
きの光の光路を示している。矢印付きの破線L2 は、半
導体発光素子ペレットの下面が平坦面(同図において、
一点鎖線Mで表示)になっている、従来の半導体発光素
子で発光した光のうち、図面下向きの光の光路を示して
いる。但しこれら場合、上記下向きの光の放射角θは同
一とする。
In the figure, a solid line L 1 with an arrow indicates an optical path of light, which is downward in the drawing, of light emitted by the semiconductor light emitting device according to the present invention. A broken line L 2 with an arrow indicates that the lower surface of the semiconductor light emitting device pellet is a flat surface (in the figure,
Of the light emitted from the conventional semiconductor light emitting element, which is indicated by the one-dot chain line M), the optical path of the light directed downward in the drawing is shown. However, in these cases, the radiation angle θ of the downward light is the same.

【0028】半導体発光素子ペレットは、反射率の高い
銀ペースト等の導電性固着剤層を介して支持体に固着さ
れており、そのため前記ペレットの支持体固着面(下
面)は反射鏡の役割を担う。
The semiconductor light emitting device pellets are fixed to the support through a conductive fixing agent layer such as a silver paste having a high reflectance. Therefore, the support fixing surface (lower surface) of the pellets serves as a reflecting mirror. Carry.

【0029】図13から分かるように、従来の半導体発
光素子においては、発光素子の下面が平面鏡になってい
るので、下方に向いた光がこの平面鏡で反射して発光層
(図13におけるp型AlGaAs活性層2b)に入射
する割合が非常に大きい〔L2 〕。この発光層は発光し
た光の吸収層ともなるため、前記発光層に入射した光の
殆どは、この発光層で内部吸収されてしまい、発光した
光を効率良く外部に取り出すことができない。
As can be seen from FIG. 13, in the conventional semiconductor light emitting device, since the lower surface of the light emitting device is a plane mirror, the light directed downward is reflected by this plane mirror and the light emitting layer (p-type in FIG. 13). The incidence rate on the AlGaAs active layer 2b) is very large [L 2 ]. Since this light emitting layer also serves as an absorption layer for emitted light, most of the light incident on the light emitting layer is internally absorbed by this light emitting layer, and the emitted light cannot be efficiently extracted to the outside.

【0030】これに対し、本発明に係る半導体発光素子
においては、発光素子の下面が凸面鏡になっているた
め、下方に向かう光(図13において、光の放射角θは
従来例と同一)がこの凸面鏡で反射し、発光層に入射し
ないで発光素子の側面に入射する割合が大きくなる〔L
1 〕。この発光素子側面に入射した光を外部に取り出す
ことができるので、本発明に係る半導体発光素子では、
従来のそれに比べて発光した光をより効率的に外部に取
り出すことができる。
On the other hand, in the semiconductor light emitting device according to the present invention, since the lower surface of the light emitting device is a convex mirror, the light traveling downward (in FIG. 13, the emission angle θ of the light is the same as the conventional example). The proportion of light reflected by the convex mirror and entering the side surface of the light emitting element without entering the light emitting layer increases [L
1 ]. Since the light incident on the side surface of the light emitting element can be extracted to the outside, in the semiconductor light emitting element according to the present invention,
The emitted light can be extracted to the outside more efficiently than the conventional one.

【0031】[0031]

【発明の効果】以上の説明で明らかなように、本発明の
半導体発光素子によれば、発光層から下面に向かう(支
持体固着面に向かう)発光光も効率良く外部に取り出す
ことができるので、発光した光の外部取り出し効率が高
くなり、ひいては半導体発光素子の輝度(外部出力)を
極めて高くすることができる。また、本発明に係る製造
方法によれば、上記半導体発光素子を的確、かつ歩留り
良く製造することができる。
As is apparent from the above description, according to the semiconductor light emitting device of the present invention, the emitted light from the light emitting layer to the lower surface (toward the support fixing surface) can be efficiently extracted to the outside. The efficiency of extracting the emitted light to the outside can be increased, and the brightness (external output) of the semiconductor light emitting element can be extremely increased. Further, according to the manufacturing method of the present invention, the semiconductor light emitting device can be manufactured accurately and with high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1に係る半導体発光素子ペ
レットの断面図、及びその製造方法を工程順に示す断面
図である。
FIG. 1 is a cross-sectional view of a semiconductor light emitting device pellet according to a first embodiment of the present invention and a cross-sectional view showing a manufacturing method thereof in the order of steps.

【図2】本発明の実施の形態1に係る製造方法の変化例
により得られる半導体素子ペレットの断面図である。
FIG. 2 is a cross-sectional view of a semiconductor element pellet obtained by a modification of the manufacturing method according to the first embodiment of the present invention.

【図3】本発明の実施の形態1に係る製造方法の変化例
により得られる半導体素子ペレットの断面図である。
FIG. 3 is a cross-sectional view of a semiconductor element pellet obtained by a modification of the manufacturing method according to the first embodiment of the present invention.

【図4】本発明の実施の形態1に係る製造方法の変化例
により得られる半導体素子ペレットの断面図である。
FIG. 4 is a sectional view of a semiconductor element pellet obtained by a modification of the manufacturing method according to the first embodiment of the present invention.

【図5】本発明の実施の形態2に係る半導体発光素子ペ
レットの断面図、及びその製造方法を工程順に示す断面
図である。
FIG. 5 is a cross-sectional view of a semiconductor light emitting device pellet according to a second embodiment of the present invention and a cross-sectional view showing the manufacturing method thereof in the order of steps.

【図6】本発明の実施の形態3に係る半導体発光素子ペ
レットの断面図、及びその製造方法を工程順に示す断面
図である。
FIG. 6 is a cross-sectional view of a semiconductor light emitting device pellet according to a third embodiment of the present invention and a cross-sectional view showing a manufacturing method thereof in the order of steps.

【図7】本発明の実施の形態2に係る製造方法の変化例
により得られる半導体素子の断面図である。
FIG. 7 is a cross-sectional view of a semiconductor element obtained by a modification of the manufacturing method according to the second embodiment of the present invention.

【図8】本発明の実施の形態2に係る製造方法の変化例
により得られる半導体素子の断面図である。
FIG. 8 is a sectional view of a semiconductor element obtained by a modification of the manufacturing method according to the second embodiment of the present invention.

【図9】本発明の実施の形態2に係る製造方法の変化例
により得られる半導体素子の断面図である。
FIG. 9 is a sectional view of a semiconductor element obtained by a modification of the manufacturing method according to the second embodiment of the present invention.

【図10】本発明の実施の形態3に係る製造方法の変化
例により得られる半導体素子の断面図である。
FIG. 10 is a sectional view of a semiconductor device obtained by a modification of the manufacturing method according to the third embodiment of the present invention.

【図11】本発明の実施の形態3に係る製造方法の変化
例により得られる半導体素子の断面図である。
FIG. 11 is a cross-sectional view of a semiconductor element obtained by a modification of the manufacturing method according to the third embodiment of the present invention.

【図12】本発明の実施の形態3に係る製造方法の変化
例により得られる半導体素子の断面図である。
FIG. 12 is a cross-sectional view of a semiconductor device obtained by a modification of the manufacturing method according to the third embodiment of the present invention.

【図13】本発明に係る半導体発光素子、及び従来の半
導体発光素子について、発光した光の光路を比較して示
す断面図である。
FIG. 13 is a cross-sectional view showing, in comparison, the optical paths of emitted light in a semiconductor light emitting device according to the present invention and a conventional semiconductor light emitting device.

【図14】従来の半導体発光素子の一例を示す断面図、
及びその製造方法の一例を工程順に示す断面図である。
FIG. 14 is a sectional view showing an example of a conventional semiconductor light emitting device,
FIG. 5A is a cross-sectional view showing an example of a manufacturing method thereof in the order of steps.

【符号の説明】[Explanation of symbols]

1,11,31,51 p型GaAs基板 1a,11a,31a,51a 鏡面研磨面 2,13,33,52 複合エピタキシャル層 2a,13a,33a,52a p型AlGaAsクラ
ッド層 2b,13b,33b,52b p型AlGaAs活性
層 2c,13c,33c,52c n型AlGaAsクラ
ッド層 3,5,14,14a,34,34a,53 積層体 4,15,35 略球面形状の凹部(複合エピタキシャ
ル層) 6,17,37,55 複合エピタキシャル層体 7,8,18,19,38,39,56,57 電極 9 微細な凹凸を有する面 10,20,40,60,70,71,72 半導体発
光素子ペレット 73,74,75,76,77,78 半導体発光素子
ペレット 12,32 略球面形状の凹部(基板) 16,36 略球面形状の凸部(複合エピタキシャル層
体) 45,61 導電性固着剤 46,62 支持体(フレーム) 63 封止材料 65 半導体発光素子
1, 11, 31, 51 p-type GaAs substrate 1a, 11a, 31a, 51a mirror-polished surface 2, 13, 33, 52 composite epitaxial layer 2a, 13a, 33a, 52a p-type AlGaAs cladding layer 2b, 13b, 33b, 52b p-type AlGaAs active layer 2c, 13c, 33c, 52c n-type AlGaAs clad layer 3, 5, 14, 14a, 34, 34a, 53 laminated body 4, 15, 35 substantially spherical recess (composite epitaxial layer) 6, 17 , 37, 55 composite epitaxial layer body 7, 8, 18, 19, 38, 39, 56, 57 electrode 9 surface having fine unevenness 10, 20, 40, 60, 70, 71, 72 semiconductor light emitting device pellet 73, 74, 75, 76, 77, 78 Semiconductor light emitting element pellet 12, 32 Substantially spherical recess (substrate) 16, 36 The convex portion of surface shape (composite epitaxial layer body) 45,61 conductive binder 46,62 support (frame) 63 sealing material 65 semiconductor light-emitting element

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 半導体発光素子ペレットの下面(支持体
固着面)を単数または複数の略球面形状の凹部を有する
面にしたことを特徴とする半導体発光素子。
1. A semiconductor light emitting device, wherein the lower surface (support fixing surface) of the semiconductor light emitting device pellet is a surface having one or a plurality of substantially spherical recesses.
【請求項2】 前記半導体発光素子ペレットの上面(支
持体固着面の反対面)を全反射低減形状面にしたことを
特徴とする請求項1に記載の半導体発光素子。
2. The semiconductor light emitting device according to claim 1, wherein the upper surface of the semiconductor light emitting device pellet (the surface opposite to the support fixing surface) has a surface for reducing total reflection.
【請求項3】 前記全反射低減形状面は単数または複数
の略球面形状の凸部を有する面であることを特徴とする
請求項2に記載の半導体発光素子。
3. The semiconductor light emitting device according to claim 2, wherein the total reflection reducing shape surface is a surface having one or a plurality of substantially spherical convex portions.
【請求項4】 前記全反射低減形状面は微細な凹凸を有
する面であることを特徴とする請求項2に記載の半導体
発光素子。
4. The semiconductor light emitting device according to claim 2, wherein the surface with reduced total internal reflection is a surface having fine irregularities.
【請求項5】 前記半導体発光素子ペレットの側面を微
細な凹凸を有する面にしたことを特徴とする請求項1な
いし請求項4のいずれか1項に記載の半導体発光素子。
5. The semiconductor light emitting device according to claim 1, wherein a side surface of the semiconductor light emitting device pellet has a surface having fine irregularities.
【請求項6】 前記半導体発光素子ペレットを構成する
複合エピタキシャル層体の結晶材料はAlGaAsであ
ることを特徴とする請求項1ないし請求項5のいずれか
1項に記載の半導体発光素子。
6. The semiconductor light emitting device according to claim 1, wherein the crystal material of the composite epitaxial layer body forming the semiconductor light emitting device pellet is AlGaAs.
【請求項7】 前記複合エピタキシャル層体は、p型A
lGaAsクラッド層、AlGaAs活性層及びn型A
lGaAsクラッド層で構成されるAlGaAsダブル
ヘテロ接合構造層を含むことを特徴とする請求項1ない
し請求項6のいずれか1項に記載の半導体発光素子。
7. The composite epitaxial layer body is a p-type A
lGaAs clad layer, AlGaAs active layer and n-type A
7. The semiconductor light emitting device according to claim 1, further comprising an AlGaAs double heterojunction structure layer composed of an lGaAs clad layer.
【請求項8】 化合物半導体基板上に半導体発光素子を
構成する複合エピタキシャル層を、液相エピタキシャル
成長法により堆積して前記基板と前記複合エピタキシャ
ル層との積層体を形成する工程と、前記積層体から前記
基板を選択的にエッチング除去して複合エピタキシャル
層体とする工程と、前記複合エピタキシャル層体の一方
の面に略球面形状の凹部を複数形成する工程と、前記略
球面形状の凹部を形成した複合エピタキシャル層体をペ
レット化して半導体発光素子ペレットとなす工程とを含
むことを特徴とする半導体発光素子の製造方法。
8. A step of depositing a composite epitaxial layer constituting a semiconductor light emitting device on a compound semiconductor substrate by a liquid phase epitaxial growth method to form a laminate of the substrate and the composite epitaxial layer, and from the laminate. A step of selectively removing the substrate by etching to form a composite epitaxial layer body, a step of forming a plurality of substantially spherical concave portions on one surface of the composite epitaxial layer body, and forming the substantially spherical concave portion And a step of pelletizing the composite epitaxial layer body to form a semiconductor light emitting device pellet.
【請求項9】 前記複合エピタキシャル層体の他方の面
(略球面形状の凹部を形成していない方の面)を、薬液
で処理して微細な凹凸を有する面にする工程を含むこと
を特徴とする請求項8に記載の半導体発光素子の製造方
法。
9. The method includes a step of treating the other surface of the composite epitaxial layer body (the surface on which the substantially spherical concave portion is not formed) with a chemical solution to form a surface having fine irregularities. The method for manufacturing a semiconductor light emitting device according to claim 8.
【請求項10】 前記複合エピタキシャル層体の側面
を、薬液で処理して微細な凹凸を有する面にする工程を
含むことを特徴とする請求項8または請求項9に記載の
半導体発光素子の製造方法。
10. The method for manufacturing a semiconductor light emitting device according to claim 8, further comprising a step of treating a side surface of the composite epitaxial layer body with a chemical solution to form a surface having fine irregularities. Method.
【請求項11】 前記化合物半導体基板の結晶材料はG
aAsであり、前記複合エピタキシャル層の結晶材料は
AlGaAsであることを特徴とする請求項8ないし請
求項10のいずれか1項に記載の半導体発光素子の製造
方法。
11. The crystalline material of the compound semiconductor substrate is G
11. The method for manufacturing a semiconductor light emitting device according to claim 8, wherein the compound epitaxial layer is aAs, and the crystal material of the composite epitaxial layer is AlGaAs.
【請求項12】 前記複合エピタキシャル層は、p型A
lGaAsクラッド層、AlGaAs活性層及びn型A
lGaAsクラッド層で構成されるAlGaAsダブル
ヘテロ接合構造層を含むことを特徴とする請求項8ない
し請求項11のいずれか1項に記載の半導体発光素子の
製造方法。
12. The composite epitaxial layer comprises p-type A
lGaAs clad layer, AlGaAs active layer and n-type A
12. The method for manufacturing a semiconductor light emitting device according to claim 8, further comprising an AlGaAs double heterojunction structure layer composed of an lGaAs clad layer.
【請求項13】 化合物半導体基板表面に所定形状の凹
部を複数形成する工程と、該化合物半導体基板の前記凹
部形成面上に、半導体発光素子を構成する複合エピタキ
シャル層を、液相エピタキシャル成長法により堆積して
前記基板と前記複合エピタキシャル層との積層体を形成
する工程と、前記複合エピタキシャル層の最上層側に略
球面形状の凹部を複数形成する工程と、前記積層体から
前記基板を選択的にエッチング除去して、前記複合エピ
タキシャル層の前記基板除去面に前記基板に形成した凹
部に対応する凸部を形成した複合エピタキシャル層体と
するる工程と、前記複合エピタキシャル層体をペレット
化して半導体発光素子ペレットとなす工程とを含むこと
を特徴とする半導体発光素子の製造方法。
13. A step of forming a plurality of recesses having a predetermined shape on the surface of a compound semiconductor substrate, and a composite epitaxial layer constituting a semiconductor light emitting device is deposited on the recessed surface of the compound semiconductor substrate by a liquid phase epitaxial growth method. And forming a laminate of the substrate and the composite epitaxial layer, forming a plurality of substantially spherical recesses on the uppermost layer side of the composite epitaxial layer, selectively the substrate from the laminate A step of removing by etching to form a composite epitaxial layer body in which convex portions corresponding to the concave portions formed in the substrate are formed on the substrate removal surface of the composite epitaxial layer; and the composite epitaxial layer body is pelletized to form semiconductor light emission. A method of manufacturing a semiconductor light emitting device, comprising the step of forming an element pellet.
【請求項14】 前記化合物半導体基板表面に形成され
た前記凹部の形状は、略球面凹形状であることを特徴と
する請求項13に記載の半導体発光素子の製造方法。
14. The method for manufacturing a semiconductor light emitting device according to claim 13, wherein the shape of the concave portion formed on the surface of the compound semiconductor substrate is a substantially spherical concave shape.
【請求項15】 前記複合エピタキシャル層体の側面
を、薬液で処理して微細な凹凸を有する面にする工程を
含むことを特徴とする請求項13または請求項14に記
載の半導体発光素子の製造方法。
15. The method of manufacturing a semiconductor light emitting device according to claim 13, further comprising a step of treating a side surface of the composite epitaxial layer body with a chemical solution to form a surface having fine irregularities. Method.
【請求項16】 前記化合物半導体基板の結晶材料はG
aAsであり、前記複合エピタキシャル層の結晶材料は
AlGaAsであることを特徴とする請求項13ないし
請求項15のいずれか1項に記載の半導体発光素子の製
造方法。
16. The crystalline material of the compound semiconductor substrate is G
16. The method for manufacturing a semiconductor light emitting device according to claim 13, wherein the compound material is aAs, and the crystal material of the composite epitaxial layer is AlGaAs.
【請求項17】 前記複合エピタキシャル層は、p型A
lGaAsクラッド層、AlGaAs活性層及びn型A
lGaAsクラッド層で構成されるAlGaAsダブル
ヘテロ接合構造層を含むことを特徴とする請求項13な
いし請求項16のいずれか1項に記載の半導体発光素子
の製造方法。
17. The composite epitaxial layer is p-type A
lGaAs clad layer, AlGaAs active layer and n-type A
17. The method for manufacturing a semiconductor light emitting device according to claim 13, further comprising an AlGaAs double heterojunction structure layer composed of an lGaAs clad layer.
JP27048495A 1995-09-25 1995-09-25 Semiconductor light emitting device and manufacturing method thereof Pending JPH0992878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27048495A JPH0992878A (en) 1995-09-25 1995-09-25 Semiconductor light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27048495A JPH0992878A (en) 1995-09-25 1995-09-25 Semiconductor light emitting device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JPH0992878A true JPH0992878A (en) 1997-04-04

Family

ID=17486943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27048495A Pending JPH0992878A (en) 1995-09-25 1995-09-25 Semiconductor light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0992878A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004521498A (en) * 2001-03-09 2004-07-15 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Beam emitting semiconductor device and method of manufacturing the same
JP2004311973A (en) * 2003-03-27 2004-11-04 Sanyo Electric Co Ltd Light emitting device and lighting device
WO2005043633A1 (en) * 2003-11-04 2005-05-12 Pioneer Corporation Semiconductor light-emitting device and method for manufacturing same
WO2005091389A1 (en) * 2004-03-19 2005-09-29 Showa Denko K.K. Compound semiconductor light-emitting device and production method thereof
JP2005303286A (en) * 2004-03-19 2005-10-27 Showa Denko Kk Compound semiconductor light emitting element and its manufacturing method
JP2006295162A (en) * 2005-04-07 2006-10-26 Samsung Electro Mech Co Ltd Vertical structure iii nitride light emitting element and its fabrication process
JP2006319320A (en) * 2005-05-10 2006-11-24 Samsung Electro Mech Co Ltd Gallium nitride light emitting diode element having perpendicular structure and manufacturing method thereof
JP2006352129A (en) * 2005-06-16 2006-12-28 Lg Electronics Inc Manufacturing method of light emitting diode
KR100668966B1 (en) * 2005-07-14 2007-01-12 엘지전자 주식회사 Method for fabricating light emitting device
JP2007036240A (en) * 2005-07-22 2007-02-08 Samsung Electro Mech Co Ltd Gallium-nitride-based light-emitting diode element having vertical structure and manufacturing method thereof
DE102007004304A1 (en) * 2007-01-29 2008-07-31 Osram Opto Semiconductors Gmbh Thin-film light emitting diode chip, has layer stack made of primary radiation surfaces lying opposite to each other so that thin-film light emitting diode chip has two primary radiation directions
US7462869B2 (en) 2004-05-17 2008-12-09 Kabushiki Kaisha Toshiba Semiconductor light emitting device and semiconductor light emitting apparatus
JP2010050487A (en) * 2009-11-24 2010-03-04 Sharp Corp Nitride-based semiconductor light-emitting device
US7932527B2 (en) 2003-03-27 2011-04-26 Sanyo Electric Co., Ltd. Light-emitting device and illuminator
US7968897B2 (en) 2004-03-09 2011-06-28 Sanyo Electric Co., Ltd. Light-emitting device having a support substrate and inclined sides
US8058147B2 (en) 2005-08-05 2011-11-15 Osram Opto Semiconductors Gmbh Method for producing semiconductor components and thin-film semiconductor component
JP2012235117A (en) * 2011-04-29 2012-11-29 Qinghua Univ Light-emitting diode
US8426881B2 (en) 2001-02-01 2013-04-23 Cree, Inc. Light emitting diodes including two reflector layers
US8872330B2 (en) 2006-08-04 2014-10-28 Osram Opto Semiconductors Gmbh Thin-film semiconductor component and component assembly

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8426881B2 (en) 2001-02-01 2013-04-23 Cree, Inc. Light emitting diodes including two reflector layers
US8692277B2 (en) 2001-02-01 2014-04-08 Cree, Inc. Light emitting diodes including optically matched substrates
JP2004521498A (en) * 2001-03-09 2004-07-15 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Beam emitting semiconductor device and method of manufacturing the same
US8138511B2 (en) 2001-03-09 2012-03-20 Osram Ag Radiation-emitting semiconductor component and method for producing the semiconductor component
US7932527B2 (en) 2003-03-27 2011-04-26 Sanyo Electric Co., Ltd. Light-emitting device and illuminator
JP2004311973A (en) * 2003-03-27 2004-11-04 Sanyo Electric Co Ltd Light emitting device and lighting device
WO2005043633A1 (en) * 2003-11-04 2005-05-12 Pioneer Corporation Semiconductor light-emitting device and method for manufacturing same
JP4588638B2 (en) * 2003-11-04 2010-12-01 パイオニア株式会社 Semiconductor light emitting device and manufacturing method thereof
JPWO2005043633A1 (en) * 2003-11-04 2007-05-10 パイオニア株式会社 Semiconductor light emitting device and manufacturing method thereof
US7399649B2 (en) 2003-11-04 2008-07-15 Pioneer Corporation Semiconductor light-emitting device and fabrication method thereof
US7968897B2 (en) 2004-03-09 2011-06-28 Sanyo Electric Co., Ltd. Light-emitting device having a support substrate and inclined sides
JP2005303286A (en) * 2004-03-19 2005-10-27 Showa Denko Kk Compound semiconductor light emitting element and its manufacturing method
WO2005091389A1 (en) * 2004-03-19 2005-09-29 Showa Denko K.K. Compound semiconductor light-emitting device and production method thereof
US8338203B2 (en) 2004-03-19 2012-12-25 Showa Denko K.K. Method for forming compound semiconductor light-emitting device
US7772605B2 (en) 2004-03-19 2010-08-10 Showa Denko K.K. Compound semiconductor light-emitting device
JP4540514B2 (en) * 2004-03-19 2010-09-08 昭和電工株式会社 Compound semiconductor light emitting device and manufacturing method thereof
US7462869B2 (en) 2004-05-17 2008-12-09 Kabushiki Kaisha Toshiba Semiconductor light emitting device and semiconductor light emitting apparatus
JP2011061219A (en) * 2005-04-07 2011-03-24 Samsung Led Co Ltd Vertical structure group-iii nitride light-emitting element and method of manufacturing the same
US8664019B2 (en) 2005-04-07 2014-03-04 Samsung Electronics Co., Ltd. Vertical group III-nitride light emitting device and method for manufacturing the same
JP2006295162A (en) * 2005-04-07 2006-10-26 Samsung Electro Mech Co Ltd Vertical structure iii nitride light emitting element and its fabrication process
US8686450B2 (en) 2005-05-10 2014-04-01 Samsung Electronics Co., Ltd. Method of manufacturing a vertically-structured GaN-based light emitting diode
JP2006319320A (en) * 2005-05-10 2006-11-24 Samsung Electro Mech Co Ltd Gallium nitride light emitting diode element having perpendicular structure and manufacturing method thereof
US8709835B2 (en) 2005-06-16 2014-04-29 Lg Electronics Inc. Method for manufacturing light emitting diodes
JP2006352129A (en) * 2005-06-16 2006-12-28 Lg Electronics Inc Manufacturing method of light emitting diode
US8008646B2 (en) 2005-06-16 2011-08-30 Lg Electronics Inc. Light emitting diode
KR100668966B1 (en) * 2005-07-14 2007-01-12 엘지전자 주식회사 Method for fabricating light emitting device
JP2007036240A (en) * 2005-07-22 2007-02-08 Samsung Electro Mech Co Ltd Gallium-nitride-based light-emitting diode element having vertical structure and manufacturing method thereof
US8058147B2 (en) 2005-08-05 2011-11-15 Osram Opto Semiconductors Gmbh Method for producing semiconductor components and thin-film semiconductor component
US8872330B2 (en) 2006-08-04 2014-10-28 Osram Opto Semiconductors Gmbh Thin-film semiconductor component and component assembly
DE102007004304A1 (en) * 2007-01-29 2008-07-31 Osram Opto Semiconductors Gmbh Thin-film light emitting diode chip, has layer stack made of primary radiation surfaces lying opposite to each other so that thin-film light emitting diode chip has two primary radiation directions
US9142720B2 (en) 2007-01-29 2015-09-22 Osram Opto Semiconductors Gmbh Thin-film light emitting diode chip and method for producing a thin-film light emitting diode chip
JP2010050487A (en) * 2009-11-24 2010-03-04 Sharp Corp Nitride-based semiconductor light-emitting device
JP2012235117A (en) * 2011-04-29 2012-11-29 Qinghua Univ Light-emitting diode
US8748203B2 (en) 2011-04-29 2014-06-10 Tsinghua University Method for making light emitting diode

Similar Documents

Publication Publication Date Title
JPH0992878A (en) Semiconductor light emitting device and manufacturing method thereof
JP4901117B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP4899344B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
US6229160B1 (en) Light extraction from a semiconductor light-emitting device via chip shaping
US7667224B2 (en) Semiconductor light emitting device and semiconductor light emitting apparatus
JP3973799B2 (en) Gallium nitride compound semiconductor light emitting device
JPH07115244A (en) Semiconductor laser and its fabrication
JPH04264781A (en) Light-emitting diode array
JPH1065220A (en) Semiconductor light-emitting device and manufacture thereof
US20030010989A1 (en) Light-emitting diode array
CN106025028A (en) Flip light emitting diode chip and manufacturing method thereof
JPH09260710A (en) Semiconductor device
JP2011171327A (en) Light emitting element, method for manufacturing the same, and light emitting device
JPS59205774A (en) Semiconductor light-emitting element
WO2010147012A1 (en) Epitaxial substrate, light-emitting element, light-emitting device, and method for producing epitaxial substrate
US20100041172A1 (en) Method of fabricating semiconductor light emitting device
JP3150025B2 (en) Light emitting diode manufacturing method
JP5277066B2 (en) Semiconductor light emitting device and manufacturing method thereof
CN217740981U (en) Human eye safe long wavelength VCSEL array chip for laser radar
JPH06338634A (en) Semiconductor light-emitting element array
WO2012040978A1 (en) Light emitting device and manufacturing method thereof
JP2005347700A (en) Light emitting device and its manufacturing method
CN1107366C (en) Method for mfg. of semiconductor device
JP2011066453A (en) Semiconductor light emitting element, and semiconductor light emitting device
CN110289548B (en) Flip chip type VCSEL chip and manufacturing method thereof