JPH0989838A - Gas sensor and gas detection method - Google Patents

Gas sensor and gas detection method

Info

Publication number
JPH0989838A
JPH0989838A JP7247245A JP24724595A JPH0989838A JP H0989838 A JPH0989838 A JP H0989838A JP 7247245 A JP7247245 A JP 7247245A JP 24724595 A JP24724595 A JP 24724595A JP H0989838 A JPH0989838 A JP H0989838A
Authority
JP
Japan
Prior art keywords
electrodes
gas
permeable membrane
pair
selective permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7247245A
Other languages
Japanese (ja)
Other versions
JP3635738B2 (en
Inventor
Takashi Niwa
孝 丹羽
Masao Maki
正雄 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24724595A priority Critical patent/JP3635738B2/en
Publication of JPH0989838A publication Critical patent/JPH0989838A/en
Application granted granted Critical
Publication of JP3635738B2 publication Critical patent/JP3635738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the reliability and durability of a sensor for detecting the concentration of carbon monoxide in the exhaust gas from a burner. SOLUTION: The concentration of carbon monoxide is detected based on the electromotive force induced between an electrode 2 covered with a carbon monoxide oxidation catalyst 1 and an electrode of solid electrolyte 4 not covered with carbon monoxide oxidation catalyst 1. An interfering gas is prevented from intruding into a detecting section by covering the solid electrolyte 4 with a membrane 5 for passing the gas selectively and the film 5 is cleaned by a heating means 6. Furthermore, the sensor can be self-diagnosed by supplying a voltage between the electrodes from a voltage supply and measuring the current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃焼機器の空燃比制
御、不完全燃焼警報等に使用される一酸化炭素センサの
信頼性、耐久性の向上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in reliability and durability of a carbon monoxide sensor used for air-fuel ratio control of combustion equipment, incomplete combustion alarm and the like.

【0002】[0002]

【従来の技術】従来の固体電解質体を使用した一酸化炭
素センサは例えば図8に示した特開昭59−10985
6号公報のように多孔質セラミックの筒体20中に両面
に電極2、3を設置した固体電解質体4を入れて隔壁を
構成し、隔壁の一方の側に可燃性ガスの酸化触媒21の
粒子を、他の側に一酸化炭素以外の可燃ガスの酸化触媒
22の粒子を充填し、多孔質のセラミック板23で封
着、多孔質セラミックの筒体20を外部から加熱手段6
で加熱する構成であり、多孔質の壁面を通過して内部の
固体電解質体4に到達した一酸化炭素を検知しようとす
るものであった。
2. Description of the Related Art A conventional carbon monoxide sensor using a solid electrolyte is disclosed in, for example, Japanese Patent Application Laid-Open No. 59-10985 shown in FIG.
As described in Japanese Patent Publication No. 6, a solid ceramic body 4 having electrodes 2 and 3 on both sides is put in a cylindrical body 20 of a porous ceramic to form a partition wall, and a flammable gas oxidation catalyst 21 is provided on one side of the partition wall. The particles are filled on the other side with particles of an oxidation catalyst 22 for a combustible gas other than carbon monoxide, and the particles are sealed with a porous ceramic plate 23, and the porous ceramic cylinder 20 is heated from the outside by a heating means 6
The heating is performed by the method described above, and it is intended to detect carbon monoxide that has passed through the porous wall surface and reached the solid electrolyte body 4 inside.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の構成では燃焼排気中にガスセンサを設置した場合、一
酸化炭素のみならず、分子量の大きい有機性の物質や窒
素酸化物等が一酸化炭素センサの触媒や電極部に多孔質
セラミックの細孔を通って到達する。その結果触媒や電
極が汚されたり、一酸化炭素検知特性が劣化したりする
という問題があった。また劣化してもガスセンサは自己
の特性劣化を判定する手段を持っていなかった。
However, in the above-mentioned conventional configuration, when the gas sensor is installed in the combustion exhaust gas, not only carbon monoxide but also an organic substance having a large molecular weight, nitrogen oxides or the like is detected in the carbon monoxide sensor. The catalyst and the electrode portion reach through the pores of the porous ceramic. As a result, there are problems that the catalyst and the electrodes are contaminated and the carbon monoxide detection characteristics are deteriorated. Further, even if the gas sensor deteriorates, the gas sensor does not have a means for judging its own characteristic deterioration.

【0004】本発明は上記一酸化炭素ガスセンサの特性
の劣化を防ぎ、一酸化炭素センサの耐久性を高め、また
センサ自身の劣化を判定する手段を有する事により、信
頼性の向上を図ることを目的としたものである。
The present invention is intended to improve the reliability by preventing the deterioration of the characteristics of the carbon monoxide gas sensor, improving the durability of the carbon monoxide sensor, and having a means for judging the deterioration of the sensor itself. It is intended.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するため、一酸化炭素を酸化する能力を有する触媒で覆
われた電極と触媒で覆われない電極との一対の電極を配
した酸素イオン導電性を有する固体電解質体と、固体電
解質体を覆う100オングストローム以下の孔径を有し
た多孔質のガス選択透過膜と、ガス選択透過膜の近傍に
加熱手段を備えた構成とたものである。
In order to achieve the above object, the present invention provides oxygen having a pair of electrodes, a catalyst-covered electrode and a non-catalyst-covered electrode having an ability to oxidize carbon monoxide. A solid electrolyte body having ionic conductivity, a porous gas selective permeable membrane having a pore diameter of 100 angstroms or less covering the solid electrolyte body, and a heating means in the vicinity of the gas selective permeable membrane. .

【0006】また表面と裏面に電極を配した酸素イオン
導電性を有する固体電解質体と、一対の電極を覆う10
0オングストローム以下の孔径を有した多孔質のガス選
択透過膜と、一対の電極のいずれか一方の電極に対向し
た前記ガス選択透過膜の細孔内に一酸化炭素を酸化する
能力を有する触媒を担持し、ガス選択透過膜の近傍に加
熱手段を備えた構成としたものである。
Further, a solid electrolyte body having oxygen ion conductivity having electrodes on the front and back surfaces and a pair of electrodes are covered.
A porous gas selective permeable membrane having a pore diameter of 0 angstroms or less, and a catalyst having the ability to oxidize carbon monoxide in the pores of the gas selective permeable membrane facing one of a pair of electrodes. It is configured to be supported and provided with heating means in the vicinity of the gas selective permeable membrane.

【0007】また100オングストローム以下に孔径を
制御し中空円柱状に成形した多孔質のガス選択透過膜
と、一酸化炭素を酸化する能力を有する触媒で覆われた
電極と触媒で覆われない電極との一対の電極を配した酸
素イオン導電性を有する固体電解質体を中空円柱状ガス
選択透過膜の両端を封じて配し、ガス選択透過膜の外周
部にコイル状ヒータを備えた構成としたものである。
Further, a porous gas selective permeable membrane formed into a hollow columnar shape with a controlled pore diameter of 100 angstroms or less, an electrode covered with a catalyst having an ability to oxidize carbon monoxide, and an electrode not covered with a catalyst. A solid electrolyte body having oxygen ion conductivity and having a pair of electrodes arranged so that both ends of a hollow cylindrical gas selective permeable membrane are sealed, and a coiled heater is provided on the outer peripheral portion of the gas selective permeable membrane. Is.

【0008】また一酸化炭素を酸化する能力を有する触
媒で覆われた電極と触媒で覆われない電極との一対の電
極を配した酸素イオン導電性を有する固体電解質体と、
固体電解質体を覆う100オングストローム以下に孔径
を制御した多孔質のガス選択透過膜と、ガス選択透過膜
の近傍に加熱手段を備えてなるガスセンサにおいて、一
対の電極間の起電力計測手段と、電極間への電圧印可手
段と、電極間の電流を測定する電流計測手段と、起電力
計測手段と電流計測手段の切替手段を備えたものであ
る。
Further, a solid electrolyte body having oxygen ion conductivity, in which a pair of electrodes, that is, an electrode covered with a catalyst having an ability to oxidize carbon monoxide and an electrode not covered with a catalyst, is arranged,
A gas sensor comprising a porous gas selective permeable membrane having a pore size controlled to 100 angstroms or less, which covers a solid electrolyte body, and a heating means in the vicinity of the gas selective permeable membrane, and an electromotive force measuring means between a pair of electrodes and an electrode. It is provided with a voltage applying means between the electrodes, a current measuring means for measuring a current between the electrodes, and a switching means for switching between the electromotive force measuring means and the current measuring means.

【0009】また一酸化炭素を酸化する能力を有する触
媒で覆われた電極と触媒で覆われない電極との一対の電
極を配した酸素イオン導電性を有する固体電解質体と、
固体電解質体を覆う100オングストローム以下に孔径
を制御した多孔質のガス選択透過膜と、選択透過膜の近
傍に加熱手段と、一対の電極間の起電力計測手段と、電
極間への電圧印可手段と、電極間の電流を計測する電流
計測手段と、起電力計測手段と電流計測手段の切替手段
と、計測電流の大きさからガスセンサの異常を判定する
自己診断手段を備えた構成としたものである。
A solid electrolyte body having oxygen ion conductivity, in which a pair of electrodes, an electrode covered with a catalyst having an ability to oxidize carbon monoxide and an electrode not covered with a catalyst, is arranged,
A porous gas selective permeable membrane having a pore size controlled to 100 angstroms or less, covering the solid electrolyte body, a heating means near the selective permeable membrane, an electromotive force measuring means between a pair of electrodes, and a voltage applying means between the electrodes. And a current measuring means for measuring the current between the electrodes, a switching means for the electromotive force measuring means and the current measuring means, and a self-diagnosis means for judging an abnormality of the gas sensor from the magnitude of the measured current. is there.

【0010】また一酸化炭素を酸化する能力を有する触
媒で覆われた電極と触媒で覆われない電極との一対の電
極を配した酸素イオン導電性を有する固体電解質体と、
固体電解質体を覆う100オングストローム以下に孔径
を制御した多孔質のガス選択透過膜と、ガス選択透過膜
の近傍に加熱手段と、加熱手段の加熱温度制御手段を備
えた構成としたものである。
Further, a solid electrolyte body having oxygen ion conductivity, in which a pair of electrodes, an electrode covered with a catalyst having an ability to oxidize carbon monoxide and an electrode not covered with a catalyst, is arranged,
A porous gas selective permeable membrane having a pore size controlled to 100 angstroms or less, which covers the solid electrolyte body, a heating means near the gas selective permeable membrane, and a heating temperature control means of the heating means.

【0011】[0011]

【作用】本発明は上記構成によって、多孔質のガス選択
透過膜で分子量の大きな有機性物質を選択濾過し、触媒
や電極への到達を防止するように働く。また多孔質のガ
ス選択透過膜の近傍に設置された加熱手段は固体電解質
体や触媒を加熱する事によって一酸化炭素検知特性の活
性化を図る。
With the above-mentioned structure, the present invention serves to selectively filter an organic substance having a large molecular weight by a porous gas selective permeable membrane to prevent it from reaching a catalyst or an electrode. The heating means installed near the porous gas permselective membrane activates the carbon monoxide detection characteristic by heating the solid electrolyte body or the catalyst.

【0012】またガス選択透過膜の細孔内の一酸化炭素
を酸化する能力を有する触媒を通過して一方の電極に到
達した燃焼ガスと同触媒を通過しないで他の電極に達し
た燃焼ガスによって両電極間に電位差が生じる。
Further, the combustion gas that has passed through a catalyst having the ability to oxidize carbon monoxide in the pores of the gas selective permeable membrane and has reached one electrode, and the combustion gas that has not passed through the catalyst and has reached the other electrode This causes a potential difference between both electrodes.

【0013】また中空円柱状のガス選択透過膜は分子量
の大きな有機性物質を選択濾過し、中空部に設置された
電極を有する固体電解質まで、分子量の大きな有機性物
質を到達させない。
The hollow columnar gas-selective permeable membrane selectively filters an organic substance having a large molecular weight and does not allow the organic substance having a large molecular weight to reach a solid electrolyte having an electrode installed in the hollow portion.

【0014】また電極間の起電力計測手段は一酸化炭素
の濃度に応じた起電力を計測する。一方電圧印可手段に
よって電極間に加えられた電圧は酸素イオン導電性を有
する固体電解質体中の酸素イオンを動かし、ガス選択透
過膜の細孔から大気中へ酸素を拡散させる。この時、電
流計測手段で測定された両電極間に流れる電流はガス選
択透過膜の多孔性の程度と酸素濃度に応じた電流値を示
す。従って起電力計測手段と電流計測手段を切換手段で
切り換えて電圧値と電流値を計測する事によって一酸化
炭素と酸素の両方の検知手段となる。
The electromotive force measuring means between the electrodes measures the electromotive force according to the concentration of carbon monoxide. On the other hand, the voltage applied between the electrodes by the voltage applying means moves oxygen ions in the solid electrolyte body having oxygen ion conductivity to diffuse oxygen from the pores of the gas selective permeable membrane into the atmosphere. At this time, the current flowing between both electrodes measured by the current measuring means shows a current value according to the degree of porosity of the gas selective permeable membrane and the oxygen concentration. Therefore, by switching the electromotive force measuring means and the current measuring means by the switching means and measuring the voltage value and the current value, both the carbon monoxide and oxygen detecting means can be obtained.

【0015】また電極間の電流を計測する電流計測手段
での計測電流の大きさは酸素濃度が一定とした時はガス
選択透過膜の多孔性の程度で決まってしまう。電流値が
一定の範囲内にない時はガス選択透過膜が破損したり、
電極が剥がれていたりした時なので電流値を監視する事
でガスセンサの故障診断が可能となる。
The magnitude of the current measured by the current measuring means for measuring the current between the electrodes is determined by the degree of porosity of the gas selective permeable membrane when the oxygen concentration is constant. When the current value is not within a certain range, the gas selective permeable membrane may be damaged,
Since the electrodes are peeled off, the failure diagnosis of the gas sensor can be performed by monitoring the current value.

【0016】またガス選択透過膜の近傍に設置した加熱
手段は、加熱温度制御手段によって一酸化炭素検出感度
を増感するための動作温度を維持する状態とガス選択透
過膜の汚染物質を焼き切ってセンサのクリーニングを行
う状態に迄温度を制御する。
The heating means installed in the vicinity of the gas selective permeable membrane maintains the operating temperature for sensitizing the carbon monoxide detection sensitivity by the heating temperature control means and burns out the contaminants of the gas selective permeable membrane. The temperature is controlled so that the sensor is cleaned.

【0017】[0017]

【実施例】以下本発明の実施例を図1から図7を参照し
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0018】図1において、1は一酸化炭素酸化触媒で
あり、2、3は一対の白金蒸着で形成された電極、4は
固体電解質体、5はガス選択透過膜、6は固体電解質体
4を加熱し、ガスセンサの動作特性を保証する温度環境
を設定するためのする加熱手段、7は電極2、3から取
り出されたリード線である。
In FIG. 1, 1 is a carbon monoxide oxidation catalyst, 2 and 3 are electrodes formed by a pair of platinum vapor depositions, 4 is a solid electrolyte body, 5 is a gas selective permeable membrane, and 6 is a solid electrolyte body 4. Is a heating means for heating and to set a temperature environment that guarantees the operating characteristics of the gas sensor. Reference numeral 7 is a lead wire taken out from the electrodes 2 and 3.

【0019】上記の構成のガスセンサが燃焼機器の排気
路中に設置された時、燃焼排ガスが固体電解質体4に到
達すると、一酸化炭素酸化触媒1によって排ガス中の一
酸化炭素は酸化されてしまい電極2には到達せず、(化
1)で表現される反応によって酸素がイオン化される。
If the combustion exhaust gas reaches the solid electrolyte body 4 when the gas sensor having the above-mentioned configuration is installed in the exhaust passage of the combustion equipment, the carbon monoxide in the exhaust gas is oxidized by the carbon monoxide oxidation catalyst 1. Oxygen is ionized by the reaction represented by (Chemical Formula 1) without reaching the electrode 2.

【0020】 O2+2e-→O2- (化1) 一方、一酸化炭素酸化触媒1に覆われていない電極3で
は(化1)で表現される反応と、一酸化炭素が電極に到
達するために(化2)で表現される反応の2種類の反応
が起きる。
O 2 + 2e → O 2 (Chemical formula 1) On the other hand, in the electrode 3 not covered with the carbon monoxide oxidation catalyst 1, the reaction expressed by the (Chemical formula 1) and carbon monoxide reach the electrode. Therefore, two kinds of reactions represented by (Chemical Formula 2) occur.

【0021】 CO+O2-→CO2+2e- (化2) 電極2、3間の起電力は両電極の電位差であり、一酸化
炭素の量が多いほど起電力が大きくなる。この起電力を
測定する事によって一酸化炭素の濃度を知る事ができ
る。ここで燃焼排ガスはガス選択透過膜5を通過して固
体電解質体4に到達するが、固体電解質体4は孔径を1
00オングストローム以下に管理された多孔質の膜であ
るのでハイドロカーボンなどの分子量の大きな物質は孔
を通過する事ができず、電極2、3に到達しない。また
100オングストローム以下という孔の大きさはクヌッ
セン拡散の領域と呼ばれ、分子量の平方根の逆数に比例
して孔を通過するガスの量が決まってしまう領域であ
る。従ってこの領域では亜硫酸ガス等の一酸化炭素より
も分子量の大きいガス分子は実質的に電極に到達しない
ようにすることができる。
CO + O 2 − → CO 2 + 2e (Chemical formula 2) The electromotive force between the electrodes 2 and 3 is the potential difference between both electrodes, and the electromotive force increases as the amount of carbon monoxide increases. The concentration of carbon monoxide can be known by measuring this electromotive force. Here, the combustion exhaust gas passes through the gas selective permeable membrane 5 and reaches the solid electrolyte body 4, but the solid electrolyte body 4 has a pore size of 1
Since it is a porous film controlled to be 00 angstroms or less, a substance having a large molecular weight such as hydrocarbon cannot pass through the pores and does not reach the electrodes 2 and 3. The pore size of 100 angstroms or less is called a Knudsen diffusion region, and is a region in which the amount of gas passing through the pore is determined in proportion to the reciprocal of the square root of the molecular weight. Therefore, in this region, gas molecules having a larger molecular weight than carbon monoxide such as sulfurous acid gas can be prevented from substantially reaching the electrode.

【0022】図2においては、8は電極2に対向したガ
ス選択透過膜5の細孔内に一酸化炭素酸化触媒1を担持
した触媒担持部である。上記の構成で例えば燃焼排ガス
が固体電解質体4表面の電極2に到達する時には、触媒
担持部8の一酸化炭素酸化触媒1によって燃焼排ガス中
の一酸化炭素は酸化されてしまい電極2には到達せず、
電極2では(化1)で表現される反応によって酸素がイ
オン化される。一方電極3には一酸化炭素を含んだまま
燃焼排ガスが到達するので、電極3では(化1)で表現
される反応と(化2)で表現される2種類の反応が起き
る。従って電極2、3間で起電力を生じ、その起電力を
測定する事によって一酸化炭素の濃度を知る事ができ
る。ここで一酸化炭素酸化触媒1はガス選択透過膜5の
細孔内にゾル・ゲル法等の湿式の製法で担持するように
し、固体電解質体4の表面にはエレクトロンビーム蒸着
法や、イオンスパッタリング法などの乾式の製法で白金
電極2、3を形成してある。
In FIG. 2, reference numeral 8 is a catalyst supporting portion for supporting the carbon monoxide oxidation catalyst 1 in the pores of the gas selective permeable membrane 5 facing the electrode 2. With the above configuration, for example, when the combustion exhaust gas reaches the electrode 2 on the surface of the solid electrolyte body 4, the carbon monoxide in the combustion exhaust gas is oxidized by the carbon monoxide oxidation catalyst 1 of the catalyst supporting portion 8 and reaches the electrode 2. Without
At the electrode 2, oxygen is ionized by the reaction represented by (Chemical formula 1). On the other hand, since the combustion exhaust gas reaches the electrode 3 while containing carbon monoxide, the electrode 3 undergoes two reactions represented by (Chemical Formula 1) and (Chemical Formula 2). Therefore, an electromotive force is generated between the electrodes 2 and 3, and the concentration of carbon monoxide can be known by measuring the electromotive force. Here, the carbon monoxide oxidation catalyst 1 is loaded in the pores of the gas selective permeable membrane 5 by a wet manufacturing method such as a sol-gel method, and the surface of the solid electrolyte body 4 is subjected to electron beam vapor deposition or ion sputtering. The platinum electrodes 2 and 3 are formed by a dry manufacturing method such as a method.

【0023】図3においては、ガス選択透過膜5は中空
円柱状で、一酸化炭素酸化触媒1で覆われた電極2と一
酸化炭素酸化触媒1で覆われてない電極3を配した固体
電解質体4をガス選択透過膜5の中空円柱内に配し、両
端を封じ(図示せず)、ガス選択透過膜5の外周部にコ
イル状のヒータ9を設けてある。
In FIG. 3, the gas selective permeable membrane 5 has a hollow cylindrical shape and has a solid electrolyte in which an electrode 2 covered with a carbon monoxide oxidation catalyst 1 and an electrode 3 not covered with a carbon monoxide oxidation catalyst 1 are arranged. The body 4 is arranged in the hollow cylinder of the gas selective permeable membrane 5, both ends are sealed (not shown), and the coil-shaped heater 9 is provided on the outer peripheral portion of the gas selective permeable membrane 5.

【0024】上記構成でガス選択透過膜5はセラミック
の押し出し成形で作製され、外周部のコイル状のヒータ
9によって全体が加熱される。ガス選択透過膜5の形状
は円柱状である事から効率的な加熱ができ、消費電力の
小さなガスセンサの実現が可能である。また中空部の固
体電解質体4もまた円柱状に形成する事によって一層の
小型化、省エネルギー化が実現できる。
With the above structure, the gas selective permeable membrane 5 is formed by extrusion molding of ceramics, and the whole is heated by the coiled heater 9 on the outer peripheral portion. Since the shape of the gas selective permeable membrane 5 is cylindrical, efficient heating can be performed, and a gas sensor with low power consumption can be realized. Further, by further forming the solid electrolyte body 4 in the hollow portion into a columnar shape, further miniaturization and energy saving can be realized.

【0025】図4において10は電極2、3間の起電力
を計測する電圧計であり、11は電極2、3間に電圧を
印可する電圧源、12は回路電流を測定する電流計、1
3は起電力測定と電流測定の切換手段である。起電力測
定、電流測定の切り換え指示はマイクロコンピュータ1
4で行われる。
In FIG. 4, 10 is a voltmeter for measuring an electromotive force between the electrodes 2 and 3, 11 is a voltage source for applying a voltage between the electrodes 2 and 3, 12 is an ammeter for measuring a circuit current, 1
Reference numeral 3 is a switching means for measuring electromotive force and measuring current. Microcomputer 1 gives instructions to switch between electromotive force measurement and current measurement.
4 is performed.

【0026】ここで電流測定について説明する。電極間
2、3に電圧を印可すると、固体電解質体4の中を酸素
イオンが移動し、移動量に応じた電流が検出される。そ
の電流値は酸素イオンの移動量に比例して増大するもの
の固体電解質体4を覆っているガス選択透過膜5の細孔
の大きさから決まる酸素の流量によって制限を受ける。
即ちいくら電圧を加えても電流値はガス選択透過膜5の
細孔の大きさから決まる酸素の流量によって規定(拡散
律速という)された限界電流値を示す。図5に電圧と電
流の関係を示した。その限界電流値は燃焼排ガス中の酸
素濃度に比例するので、限界電流値を検知する事により
燃焼排ガス中の酸素濃度を知る事ができる。aは正常燃
焼の上限である酸素濃度10%の時の電圧−限界電流特
性である。bは正常燃焼の下限である酸素濃度5%の時
の電圧−限界電流特性である。燃焼機器の動作中に燃焼
排ガス中の限界電流の大きさを検知し、予めマイクロコ
ンピュータ14内部に記憶した正常燃焼時の限界電流範
囲と比較する事により、酸素不足の状態で燃焼を行って
いると判定したときは機器のファンの回転数を上昇させ
るなどの制御を行う事により正常燃焼を保証する事がで
きる。ファンヒータ等では排気中の酸素濃度は5%から
10%とされているので、その範囲に入るようファンの
回転数の制御を行って正常燃焼動作を保証する事が可能
となる。
The current measurement will be described here. When a voltage is applied between the electrodes 2 and 3, oxygen ions move in the solid electrolyte body 4, and a current corresponding to the amount of movement is detected. Although the current value increases in proportion to the amount of movement of oxygen ions, it is limited by the flow rate of oxygen determined by the size of the pores of the gas selective permeable membrane 5 covering the solid electrolyte body 4.
That is, no matter how much voltage is applied, the current value shows a limiting current value defined by the flow rate of oxygen determined by the size of the pores of the gas selective permeable membrane 5 (referred to as diffusion-controlled). FIG. 5 shows the relationship between voltage and current. Since the limiting current value is proportional to the oxygen concentration in the combustion exhaust gas, it is possible to know the oxygen concentration in the combustion exhaust gas by detecting the limiting current value. a is a voltage-limit current characteristic at an oxygen concentration of 10% which is the upper limit of normal combustion. b is a voltage-limit current characteristic when the oxygen concentration is 5%, which is the lower limit of normal combustion. By detecting the magnitude of the limiting current in the combustion exhaust gas during the operation of the combustion device and comparing it with the limiting current range at the time of normal combustion stored in advance in the microcomputer 14, combustion is performed in a state of insufficient oxygen. When it is determined that normal combustion can be guaranteed by performing control such as increasing the rotation speed of the fan of the device. Since the oxygen concentration in the exhaust gas of a fan heater or the like is set to 5% to 10%, it is possible to guarantee the normal combustion operation by controlling the rotation speed of the fan so that it falls within this range.

【0027】また限界電流値を検出することにより、固
体電解質体4やガス選択透過膜5の状況を判断すること
が可能となる。図6と図4において燃焼停止時、電流測
定にマイクロコンピュータ14によって切り換えた状態
で、空気中の酸素濃度が一定の環境において電流値を測
定する。センサが正常に動作しているときの限界電流値
aをマイクロコンピュータ14内部に把握しておけば、
その電流値より小さな電流しか検知できなければb、ガ
ス選択透過膜5の細孔がタールなどで詰まってセンサが
正常動作していないと判断できる。また正常の電流値よ
り大きな電流を検知したらc、ガス選択透過膜5は酸素
が流れすぎているのでガス選択透過膜5が破損している
と判断できる。センサの異常が検出されれば、マイクロ
コンピュータ14から報知手段15等に信号を出力し、
危険を知らせる。
Further, by detecting the limiting current value, it is possible to judge the conditions of the solid electrolyte body 4 and the gas selective permeable membrane 5. 6 and 4, when the combustion is stopped, the current value is measured in an environment in which the oxygen concentration in the air is constant while the current measurement is switched by the microcomputer 14. If the limiting current value a when the sensor is operating normally is known inside the microcomputer 14,
If only a current smaller than the current value can be detected, b, it can be determined that the pores of the gas selective permeable membrane 5 are clogged with tar or the like and the sensor is not operating normally. Further, when a current larger than the normal current value is detected c, it can be determined that the gas-selective permeable membrane 5 is damaged because oxygen flows too much in the gas-selective permeable membrane 5. When the abnormality of the sensor is detected, a signal is output from the microcomputer 14 to the notification means 15 or the like,
Signal a danger.

【0028】図7において、ガス選択透過膜5の近傍の
加熱手段6は、加熱手段6へ電圧を供給する加熱用電圧
源16と第一の制限抵抗17と第一の制限抵抗17より
も大きな抵抗値を有する第二の制限抵抗18、マイクロ
コンピュータ14からの指示で加熱手段6との直列に接
続される抵抗を第一の制限抵抗17または第二の制限抵
抗18に切り換える抵抗切換手段19である。マイクロ
コンピュータ14からの指示で抵抗切換手段19によっ
て加熱用電圧源16が第二の制限抵抗18を介して加熱
手段6に電圧を印可した時には一酸化炭素検知時の傍熱
温度を保っている。一方、抵抗切換手段19によって加
熱用電圧源16が第一の制限抵抗17を介して加熱手段
6に電圧を印可した時には加熱手段6に流れる電流値は
増大し、加熱手段6の温度が上昇する。従ってガス選択
透過膜5の細孔がタールなどで詰まっていても加熱手段
6によって焼き切る事ができる。
In FIG. 7, the heating means 6 near the gas selective permeable membrane 5 is larger than the heating voltage source 16 for supplying a voltage to the heating means 6, the first limiting resistor 17, and the first limiting resistor 17. In the second limiting resistor 18 having a resistance value, the resistance switching means 19 for switching the resistance connected in series with the heating means 6 to the first limiting resistance 17 or the second limiting resistance 18 according to an instruction from the microcomputer 14. is there. When the heating voltage source 16 applies a voltage to the heating means 6 via the second limiting resistance 18 by the resistance switching means 19 according to an instruction from the microcomputer 14, the side heat temperature at the time of carbon monoxide detection is maintained. On the other hand, when the resistance switching means 19 causes the heating voltage source 16 to apply a voltage to the heating means 6 via the first limiting resistor 17, the current value flowing through the heating means 6 increases and the temperature of the heating means 6 rises. . Therefore, even if the pores of the gas selective permeable membrane 5 are clogged with tar or the like, it can be burnt out by the heating means 6.

【0029】[0029]

【発明の効果】以上の実施例の説明から明らかなよう
に、本発明のガスセンサはガス選択透過膜を孔径を10
0オングストローム以下に制御した多孔質膜で構成した
ことにより、一酸化炭素検知反応を阻害する物質や電極
を被毒させるガスの電極への到達を防ぎ、ガスセンサの
信頼性と耐久性の向上を図れるという効果を有する。
As is apparent from the above description of the embodiments, the gas sensor of the present invention has a gas selective permeable membrane having a pore size of 10 mm.
Since the porous film is controlled to have a thickness of 0 angstrom or less, it is possible to prevent the substance that inhibits the carbon monoxide detection reaction and the gas that poisons the electrode from reaching the electrode, and improve the reliability and durability of the gas sensor. Has the effect.

【0030】また固体電解質体と電極部を乾式の製造法
で、ガス選択透過膜部を湿式の製造法でと、センサの部
品をそれぞれ製法の異なる方法で作成し、最終的に組み
立てて一体化することによって、製造時の工程の簡素
化、歩留まりの向上を図る事ができ、信頼性の向上を図
る。
Further, the solid electrolyte body and the electrode part are manufactured by a dry manufacturing method, the gas selective permeable membrane part is manufactured by a wet manufacturing method, and the sensor parts are manufactured by different manufacturing methods, and finally assembled and integrated. By doing so, the manufacturing process can be simplified, the yield can be improved, and the reliability can be improved.

【0031】またガス選択透過膜を円柱状に形成し、中
空部に固体電解質体および電極部を設置する事により、
小型化、省エネルギーのガスセンサを実現できる。
Further, by forming the gas selective permeable membrane in a cylindrical shape and installing the solid electrolyte body and the electrode portion in the hollow portion,
It is possible to realize a gas sensor that is compact and saves energy.

【0032】また固体電解質体の電極間に電圧を印可し
て限界電流を測定し、正常電圧範囲内にあるかどうかを
判断する事により、ガス選択透過膜の破損、タール等に
よる細孔の目詰まりを検出、制御の要であるセンサ自ら
の自己診断機能を有したガスセンサを実現でき、安全な
燃焼機器を実現できる。
Further, by applying a voltage between the electrodes of the solid electrolyte body and measuring the limiting current to judge whether or not the voltage is within the normal voltage range, the gas selective permeable membrane is damaged, and the pores of the pores due to tar or the like are observed. It is possible to realize a gas sensor that has a self-diagnosis function of the sensor itself, which is the key to detecting and controlling clogging, and realize a safe combustion device.

【0033】また限界電流を検知する事により燃焼排ガ
ス中の酸素濃度を知り酸素不足の状態で燃焼を行ってい
ると判定したときは燃焼機器のファンの回転数を上昇さ
せるあるいは燃焼を停止させるなどの制御を行う事によ
り正常燃焼を保証する事ができる。
Further, when the oxygen concentration in the combustion exhaust gas is known by detecting the limiting current and it is determined that combustion is being performed in an oxygen-deficient state, the rotation speed of the fan of the combustion equipment is increased or combustion is stopped. The normal combustion can be guaranteed by controlling the above.

【0034】また限界電流値を検出することにより、酸
素濃度を知るばかりでなく、センサの動作の正常、異常
を検出する事ができるのでガスセンサの自己異常診断が
できるので燃焼機器の安全性の向上を図る事ができると
いう効果を有する。
Further, by detecting the limiting current value, not only the oxygen concentration can be known, but also the normal or abnormal operation of the sensor can be detected. Therefore, the self-abnormality diagnosis of the gas sensor can be performed, thus improving the safety of the combustion equipment. It has the effect of being able to

【0035】またガスセンサの動作を保証するためガス
選択透過膜の近傍の加熱手段の温度を上昇させる事によ
りガス選択透過膜の目詰まりを焼き切り、ガスセンサの
特性回復及び劣化防止を図る事ができる。
Further, in order to guarantee the operation of the gas sensor, the temperature of the heating means in the vicinity of the gas selective permeable film is raised, so that the clogging of the gas selective permeable film is burned off, and the characteristics of the gas sensor can be recovered and the deterioration can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例におけるガスセンサの断
面図
FIG. 1 is a sectional view of a gas sensor according to a first embodiment of the present invention.

【図2】本発明の第2の実施例におけるガスセンサ断面
FIG. 2 is a sectional view of a gas sensor according to a second embodiment of the present invention.

【図3】本発明の第3の実施例におけるガスセンサ断面
FIG. 3 is a sectional view of a gas sensor according to a third embodiment of the present invention.

【図4】本発明の第4の実施例のブロック図FIG. 4 is a block diagram of a fourth embodiment of the present invention.

【図5】同第4の実施例の電圧電流特性図FIG. 5 is a voltage-current characteristic diagram of the fourth embodiment.

【図6】同第5の実施例の他の電圧電流特性図FIG. 6 is another voltage-current characteristic diagram of the fifth embodiment.

【図7】同第6の実施例のブロック図FIG. 7 is a block diagram of the sixth embodiment.

【図8】従来のガスセンサの断面図FIG. 8 is a sectional view of a conventional gas sensor.

【符号の説明】[Explanation of symbols]

1 一酸化炭素酸化触媒 2 電極 3 電極 4 固体電解質体 5 ガス選択透過膜 6 加熱手段 8 触媒担持部 9 ヒータ 11 電圧源 12 電流計 13 切換手段 14 マイクロコンピュータ 15 報知手段 16 加熱用電圧源 17 第一の制限抵抗 18 第二の制限抵抗 19 抵抗切換手段 1 Carbon Monoxide Oxidation Catalyst 2 Electrode 3 Electrode 4 Solid Electrolyte Body 5 Gas Selective Permeation Membrane 6 Heating Means 8 Catalyst Supporting Section 9 Heater 11 Voltage Source 12 Ammeter 13 Switching Means 14 Microcomputer 15 Notification Means 16 Heating Voltage Source 17 No. First limiting resistance 18 Second limiting resistance 19 Resistance switching means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】一酸化炭素を酸化する能力を有する触媒で
覆われた電極と前記触媒で覆われてない電極との一対の
電極を配設した酸素イオン導電性を有する固体電解質体
と、前記一対の電極を覆う100オングストローム以下
の孔径を有した多孔質のガス選択透過膜と、前記ガス選
択透過膜の近傍に加熱手段を備えたガスセンサ。
1. A solid electrolyte body having oxygen ion conductivity, comprising a pair of electrodes, an electrode covered with a catalyst capable of oxidizing carbon monoxide and an electrode not covered with the catalyst, and A gas sensor having a porous gas selective permeable membrane having a pore diameter of 100 angstroms or less, which covers a pair of electrodes, and a heating means in the vicinity of the gas selective permeable membrane.
【請求項2】表面と裏面に電極を配設した酸素イオン導
電性を有する固体電解質体と、前記一対の電極を覆う1
00オングストローム以下の孔径を有した多孔質のガス
選択透過膜と、前記一対の電極のいずれか一方の電極に
対向した前記ガス選択透過膜の細孔内に一酸化炭素を酸
化する能力を有する触媒を担持してなり、さらに前記ガ
ス選択透過膜の近傍に加熱手段を備えたガスセンサ。
2. A solid electrolyte body having oxygen ion conductivity having electrodes on the front and back surfaces, and a cover for covering the pair of electrodes.
Porous gas selective permeable membrane having a pore diameter of 00 angstroms or less, and a catalyst having the ability to oxidize carbon monoxide in the pores of the gas selective permeable membrane facing one of the pair of electrodes. And a heating means for supporting the gas, further comprising heating means in the vicinity of the gas selective permeable membrane.
【請求項3】100オングストローム以下の孔径を有し
中空円柱状に成形した多孔質のガス選択透過膜と、一酸
化炭素を酸化する能力を有する触媒で覆われた電極と前
記触媒で覆われてない電極との一対の電極を配した酸素
イオン導電性を有する固体電解質体を前記中空円柱状ガ
ス選択透過膜の両端を封じて内設し、前記ガス選択透過
膜の外周部にコイル状ヒータを備えたガスセンサ。
3. A porous gas selective permeable membrane having a hole diameter of 100 angstroms or less and formed in a hollow column shape, an electrode covered with a catalyst having an ability to oxidize carbon monoxide, and a catalyst covered with the catalyst. A solid electrolyte body having oxygen ion conductivity in which a pair of electrodes with a non-electrode is arranged inside the hollow cylindrical gas selective permeable membrane with both ends sealed, and a coiled heater is provided on the outer peripheral portion of the gas selective permeable membrane. Gas sensor equipped.
【請求項4】一酸化炭素を酸化する能力を有する触媒で
覆われた電極と前記触媒で覆われてない電極との一対の
電極を配した酸素イオン導電性を有する固体電解質体
と、前記一対の電極を覆う100オングストローム以下
の孔径を有した多孔質のガス選択透過膜と、前記ガス選
択透膜の近傍に加熱手段を備えてなるガスセンサにおい
て、前記一対の電極間の起電力計測手段と、前記一対の
電極間への電圧印可手段と、前記一対の電極間の電流を
測定する電流計測手段と、前記起電力計測手段と前記電
流計測手段との切替手段を備えたガス検出方法。
4. A solid electrolyte body having oxygen ion conductivity, comprising a pair of electrodes, an electrode covered with a catalyst having an ability to oxidize carbon monoxide and an electrode not covered with the catalyst, and the pair. A gas sensor having a porous gas selective permeable membrane having a pore diameter of 100 angstroms or less and covering the electrodes, and a heating means near the gas selective permeable membrane, and an electromotive force measuring means between the pair of electrodes, A gas detection method comprising: a voltage applying means between the pair of electrodes; a current measuring means for measuring a current between the pair of electrodes; and a switching means for switching between the electromotive force measuring means and the current measuring means.
【請求項5】一酸化炭素を酸化する能力を有する触媒で
覆われた電極と前記触媒で覆われてない電極との一対の
電極を配した酸素イオン導電性を有する固体電解質体
と、前記一対の電極を覆う100オングストローム以下
の孔径を有した多孔質のガス選択透過膜と、前記選択透
過膜の近傍に加熱手段と、前記一対の電極間の起電力計
測手段と、前記一対の電極間への電圧印可手段と、前記
一対の電極間の電流を計測する電流計測手段と、前記起
電力計測手段と前記電流計測手段の切替手段と、前記電
流計測手段の出力からガスセンサの異常を判定する自己
診断手段を備えたガス検出方法。
5. A solid electrolyte body having oxygen ion conductivity, comprising a pair of electrodes, an electrode covered with a catalyst having an ability to oxidize carbon monoxide and an electrode not covered with the catalyst, and the pair. A porous gas selective permeable membrane having a pore diameter of 100 angstroms or less, which covers the electrode, heating means in the vicinity of the selective permeable membrane, electromotive force measuring means between the pair of electrodes, and between the pair of electrodes. Voltage applying means, current measuring means for measuring the current between the pair of electrodes, switching means between the electromotive force measuring means and the current measuring means, and a self-determining abnormality of the gas sensor from the output of the current measuring means. A gas detection method provided with a diagnostic means.
【請求項6】一酸化炭素を酸化する能力を有する触媒で
覆われた電極と前記触媒で覆われない一対の電極を配し
た酸素イオン導電性を有する固体電解質体と、前記一対
の電極を覆う100オングストローム以下の孔径を有し
た多孔質のガス選択透過膜と、前記ガス選択透過膜の近
傍に加熱手段と、前記加熱手段の加熱温度制御手段を備
えたガス検出方法。
6. A solid electrolyte body having oxygen ion conductivity, comprising an electrode covered with a catalyst capable of oxidizing carbon monoxide, a pair of electrodes not covered with the catalyst, and a solid electrolyte body having oxygen ion conductivity, and covering the pair of electrodes. A gas detection method comprising: a porous gas-selective permeable membrane having a pore diameter of 100 angstroms or less; heating means in the vicinity of the gas-selective permeable membrane; and a heating temperature control means for the heating means.
JP24724595A 1995-09-26 1995-09-26 Gas sensor Expired - Fee Related JP3635738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24724595A JP3635738B2 (en) 1995-09-26 1995-09-26 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24724595A JP3635738B2 (en) 1995-09-26 1995-09-26 Gas sensor

Publications (2)

Publication Number Publication Date
JPH0989838A true JPH0989838A (en) 1997-04-04
JP3635738B2 JP3635738B2 (en) 2005-04-06

Family

ID=17160622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24724595A Expired - Fee Related JP3635738B2 (en) 1995-09-26 1995-09-26 Gas sensor

Country Status (1)

Country Link
JP (1) JP3635738B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108882A (en) * 1997-10-08 1999-04-23 Matsushita Electric Ind Co Ltd Gas sensor and its manufacture
JPH11183427A (en) * 1997-12-18 1999-07-09 Matsushita Electric Ind Co Ltd Gas sensor
JP2009540268A (en) * 2006-06-03 2009-11-19 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas sensor having a heat-selective gas-selective permeable membrane
WO2012056897A1 (en) * 2010-10-26 2012-05-03 オリンパス株式会社 Method for correcting fluorescent sensor, and fluorescent sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108882A (en) * 1997-10-08 1999-04-23 Matsushita Electric Ind Co Ltd Gas sensor and its manufacture
JPH11183427A (en) * 1997-12-18 1999-07-09 Matsushita Electric Ind Co Ltd Gas sensor
JP2009540268A (en) * 2006-06-03 2009-11-19 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング Gas sensor having a heat-selective gas-selective permeable membrane
WO2012056897A1 (en) * 2010-10-26 2012-05-03 オリンパス株式会社 Method for correcting fluorescent sensor, and fluorescent sensor

Also Published As

Publication number Publication date
JP3635738B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
JP3128114B2 (en) Nitrogen oxide detector
JP5210436B2 (en) Sensor element and method for detecting gas components in gas mixture and method of using the same
US6550310B1 (en) Catalytic adsorption and oxidation based carbon monoxide sensor and detection method
US20040026268A1 (en) Gas sensor and detection method and device for gas.concentration
JPH11223617A (en) Sulfur dioxide gas sensor
RU2143679C1 (en) Method measuring concentration of gases in gas mixture and electrochemical sensitive element determining gas concentration
JP2009540334A (en) Ammonia sensor with heterogeneous electrodes
JP3481344B2 (en) Method for detecting deterioration of exhaust gas purifying catalyst and system therefor
JP2001141696A (en) Gas-detecting apparatus
JP5240432B2 (en) Hydrocarbon concentration measuring sensor element and hydrocarbon concentration measuring method
JP3635738B2 (en) Gas sensor
US6994780B2 (en) Gas sensor and method of detecting gas concentration
JP2013068632A (en) Hydrocarbon concentration measuring sensor element, and hydrocarbon concentration measuring method
JP2008164309A (en) Co detector for combustor, and co alarm device
JPH10115597A (en) Gas sensor
JP3371358B2 (en) Oxygen / carbon monoxide gas sensor, oxygen / carbon monoxide measuring device and oxygen / carbon monoxide measuring method
JPH11352096A (en) Gas sensor element
JPH06242060A (en) Hydrocarbon sensor
JP3672681B2 (en) Gas sensor
JP2004212145A (en) Diagnostic device for gas sensor
JP2002071630A (en) Gas sensor
JP2004355345A (en) Gas alarm
JPH10142184A (en) Gas sensor and its control apparatus
RU2030740C1 (en) Electrochemical oxygen sensor
JP2593545B2 (en) How to identify poisoned elements

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

LAPS Cancellation because of no payment of annual fees