JPH0989543A - Method for positioning underwater inspecting device - Google Patents

Method for positioning underwater inspecting device

Info

Publication number
JPH0989543A
JPH0989543A JP24268595A JP24268595A JPH0989543A JP H0989543 A JPH0989543 A JP H0989543A JP 24268595 A JP24268595 A JP 24268595A JP 24268595 A JP24268595 A JP 24268595A JP H0989543 A JPH0989543 A JP H0989543A
Authority
JP
Japan
Prior art keywords
axis direction
axis
distance
measured
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24268595A
Other languages
Japanese (ja)
Inventor
Yuichi Miura
雄一 三浦
Naoya Hirose
尚哉 廣瀬
Katsumi Kai
勝己 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP24268595A priority Critical patent/JPH0989543A/en
Publication of JPH0989543A publication Critical patent/JPH0989543A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect a destined position without using an inclination angle by measuring a traveled distance using a bathometer, calculating the length of the linearly traveled distance along the direction of Y-axis, and computing the length of the linearly traveled distance along the direction of X-axis. SOLUTION: An underwater inspection robot 4 is moved from a preset initial position on a vertical wall 24 and along a vertical plane consisting of horizontal (X-axis) and vertical (Y-axis) directions, and is advanced toward a destination. Every sampling time, the distance Ii linearly traveled along the direction of X-axis is calculated from the value of a number-of-revolution counter, and the distance Yi traveled along the direction of Y-axis, obtained when a value measured by a bathometer 20 is converted into a y-coordinate from the initial position (zero point), is calculated. From the previously calculated difference between Yi -1 and Yi , the length yi of the distance Yi in the direction of Y-axis is calculated, and the length xi =(Ii <2> -yi <2> )<1/2> of the distance Xi in the direction of X-axis is calculated. The present position Pn is obtained from the integrated value Xn =Σ<n> xi of the distance Yn and the length xi calculated from the values measured by the bathometer 20. Therefore, the present position of the robot 4 can be detected with accuracy without use of an inclination angle θi which often results in computing errors.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水中に設けられた
垂直壁に沿って移動する検査装置の位置決め方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of positioning an inspection device which moves along a vertical wall provided in water.

【0002】[0002]

【従来の技術】平面上の現在位置を既知の初期位置から
の移動方向と移動距離を計測して把握する方法としてデ
ッドレコニング法が広く知られている。図8は、デッド
レコニング法を説明する図で初期位置を原点(0点)と
して横方向にX軸、縦方向にY軸をとり、X軸に対する
傾斜θiとこの方向への直線移動距離liにより表され
る点Piを逐次求め、現在位置PnのX座標Xn、Y座
標Ynを次の式から求める。
2. Description of the Related Art The dead reckoning method is widely known as a method for measuring and grasping a current position on a plane by measuring a moving direction and a moving distance from a known initial position. FIG. 8 is a diagram for explaining the dead reckoning method. With the initial position as the origin (0 point), the horizontal X-axis and the vertical Y-axis are set, and the inclination θi with respect to the X-axis and the linear movement distance li in this direction are used. The point Pi represented is sequentially obtained, and the X coordinate Xn and the Y coordinate Yn of the current position Pn are obtained from the following equations.

【0003】 Xn=l1COS θ1 +l2COS θ2 +…+lnCOS θn…(1) Yn=l1SIN θ1 +l2SIN θ2 +…+lnSIN θn…(2)Xn = l1COS θ1 + l2COS θ2 + ... + lnCOS θn ... (1) Yn = l1SIN θ1 + l2SIN θ2 + ... + lnSIN θn ... (2)

【0004】検査装置には移動方向の中心線の左右対称
位置に車輪が設けられ、この回転数から移動距離liを
求める。傾斜角θiの計測方法としては次の3つの方法
がよく用いられる。 上述した左右の車輪の回転数の差から求める。 壁面の場合重力加速度の方向と進行方向の差から求め
る。 ジャイロなど用い初期値と角速度の積分によって方向
を計算する。
The inspection device is provided with wheels symmetrically with respect to the center line in the moving direction, and the moving distance li is obtained from the number of rotations. The following three methods are often used to measure the tilt angle θi. It is obtained from the difference in the rotational speeds of the left and right wheels described above. In the case of a wall, it is calculated from the difference between the direction of gravitational acceleration and the traveling direction. The direction is calculated by integrating the initial value and the angular velocity using a gyro.

【0005】[0005]

【発明が解決しようとする課題】直線移動距離liは比
較的小型の装置でも精度よく計測できるが、傾斜θiの
計測にはそれぞれ問題がある。つまり、の方法では車
輪の接触点の変動や滑りにより計測誤差が大きい。ま
た、の方法では検査装置の移動加速度によって計測誤
差があるていど発生する。また、の方法は精度はよい
が、装置が大型化し高価であり、地球の自転の影響を分
離する必要があり複雑な計算が必要となる。また、位置
検査装置は基準点(初期位置)を基準として現在位置を
計測するため、原点復帰を頻繁に行うが、このため原点
を見出すための高精度のセンサが必要であり、原点復帰
するのに多くの時間がかかっていた。
The linear movement distance li can be accurately measured even by a relatively small device, but there are problems in measuring the inclination θi. That is, in the method of (1), the measurement error is large due to the fluctuation and slippage of the contact point of the wheel. In the method (1), a measurement error may occur depending on the moving acceleration of the inspection device. Although the method is accurate, the device is large and expensive, and it is necessary to separate the influence of the rotation of the earth, which requires complicated calculation. Further, since the position inspection device measures the current position with reference to the reference point (initial position), the home position is frequently returned. Therefore, a high-accuracy sensor for finding the home position is required. It took a lot of time.

【0006】本発明は上述の問題に鑑みてなされたもの
で、傾斜角θiを用いないで移動位置を検出する方法を
提供することを目的とする。また、移動位置を近似的に
補正する方法を提供することを目的とする。また原点復
帰を迅速に行う方法を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for detecting a moving position without using the inclination angle θi. Another object is to provide a method for approximately correcting the moving position. Moreover, it aims at providing the method of performing origin return quickly.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明では、水中垂直壁を走行する検査装
置の既知の初期位置から水平方向(X軸方向)に対する
移動方向θiとθi方向への直線移動距離liを計測
し、X軸方向の移動距離Xj=Σj licos θi、垂直
方向(Y軸方向)移動距離Yj=Σj lisin θiとし
てPj点の移動位置(j≧i)を定める水中検査装置の
位置決め方法において、Yiを水深計より計測し、これ
よりliのY軸方向の長さyiを求め、liのX軸方向
の長さxi=√(li2 −yi2 )を演算してXj=Σ
j xiを算出する。
In order to achieve the above object, in the invention of claim 1, the moving directions θi and θi with respect to the horizontal direction (X-axis direction) from the known initial position of the inspection device traveling on the vertical wall in water. The linear moving distance li in the direction is measured, and the moving distance Xj = Σ j licos θi in the X-axis direction and the vertical (Y-axis direction) moving distance Yj = Σ j lisin θi are set as the moving position of the Pj point (j ≧ i). In the positioning method of the underwater inspection apparatus that determines the above, Yi is measured from a water depth gauge, the length yi of li in the Y-axis direction is obtained, and the length of li in the X-axis direction xi = √ (li 2 −yi 2 ) To calculate Xj = Σ
Calculate j xi.

【0008】水深計によりYiとYi−1を計測すれば
この差としてyiが求められ、liとyiとからxiが
求められる。このxiの積算値としてXjが求められ
る。Yjは水深計より計測される。これによりθiを用
いることなく現在位置Pjを得ることができるので、θ
iに起因する計測誤差等の問題を除くことができる。な
おΣj は1からjまで積算することを表す。
If Yi and Yi -1 are measured by a water depth meter, yi is obtained as the difference, and xi is obtained from li and yi. Xj is obtained as the integrated value of xi. Yj is measured by a water depth gauge. As a result, the current position Pj can be obtained without using θi.
Problems such as measurement error due to i can be eliminated. It should be noted that Σ j represents that 1 to j are integrated.

【0009】請求項2の発明では、水中垂直壁を走行す
る検査装置の既知の初期位置から水平方向(X軸方向)
に対する移動方向θiとθi方向への直線移動距離li
を計測し、X軸方向の移動距離Xj=Σj licos θ
i、垂直方向(Y軸方向)移動距離Yj=Σj lisin
θiとしてPj点の移動位置(j≧i)を定める水中検
査装置の位置決め方法において、Yiを水深計より計測
し、前記初期位置を中心としPi点を通る円と直線Y=
Yiとの交点Pi’を求め、Pi点をこの交点Pi’と
置換する。
According to the second aspect of the present invention, the horizontal direction (X-axis direction) from the known initial position of the inspection device traveling on the underwater vertical wall.
The moving direction θi with respect to and the linear moving distance li in the θi direction
Is measured, and the moving distance in the X-axis direction Xj = Σ j licos θ
i, vertical direction (Y-axis direction) movement distance Yj = Σ j lisin
In the positioning method of the underwater inspection apparatus that determines the moving position (j ≧ i) of the Pj point as θi, Yi is measured by a water depth gauge, and a circle centering on the initial position and passing through the Pi point and a straight line Y =
An intersection point Pi ′ with Yi is obtained, and the Pi point is replaced with this intersection point Pi ′.

【0010】点Piの正しい位置は初期位置を中心とし
Pi点を通る円周上にあると仮定すると、Yiは水深計
によりかなり正確に求められるので、直線Y=Yiとの
交点Pi’はX軸方向の誤差のみ含む位置を表すものと
近似できる。これによりθiに起因する誤差のうちY軸
方向の誤差を除去することができる。なおこのような修
正を現在位置Pjにいたるまでに複数回行うことにより
誤差を少なくすることができる。請求項1の発明に比べ
精度は低下するが迅速に計算することができる。
Assuming that the correct position of the point Pi is on the circumference passing through the Pi point with the initial position as the center, Yi can be obtained fairly accurately by the depth gauge, so the intersection Pi 'with the straight line Y = Yi is X. It can be approximated to represent a position containing only an axial error. As a result, it is possible to remove the error in the Y-axis direction among the errors caused by θi. The error can be reduced by performing such correction a plurality of times until reaching the current position Pj. The accuracy is lower than that of the invention of claim 1, but the calculation can be performed quickly.

【0011】請求項3の発明では、前記水深計は垂直に
設けられた中空材、例えばパイプの上側に加圧空気供給
源とこの加圧空気の圧力測定器が接続され、中空材下端
で水圧と吐出空気圧がバランスする圧力を前記圧力測定
器で計測し、これより中空材の深度を計測する。
According to the third aspect of the present invention, the depth gauge is a hollow material provided vertically, for example, a pressurized air supply source and a pressure measuring device for the pressurized air are connected to the upper side of a pipe, and the water pressure is measured at the lower end of the hollow material. The pressure at which the discharge air pressure is balanced is measured by the pressure measuring device, and the depth of the hollow material is measured from this.

【0012】中空材の下端より空気が吐出している状態
では加圧空気圧は中空材下端の水圧とバランスしている
ので、加圧空気の圧力を測定することにより中空材下端
の水深を測定することができる。本方法は簡単であるが
かなり精度よく計測できる。
Since the pressurized air pressure is balanced with the water pressure at the lower end of the hollow material when air is discharged from the lower end of the hollow material, the water depth at the lower end of the hollow material is measured by measuring the pressure of the pressurized air. be able to. This method is simple, but it can be measured with high accuracy.

【0013】請求項4の発明では、前記初期位置として
X軸方向はY軸に平行に設けられた既知の部材の位置と
し、Y軸方向は前記水深計の計測値とする。
In the invention of claim 4, the X-axis direction is the position of a known member provided in parallel with the Y-axis as the initial position, and the Y-axis direction is the measured value of the depth gauge.

【0014】Y軸方向は水深計の計測値を用いることに
より精度よく計測できるので、原点復帰しなくてもよ
い。このためX軸方向の原点復帰のみすれば計測精度は
保てる。原点復帰する目的は基準点を見出しそこからの
移動距離を計測できればよいので、最寄りの基準点に戻
ればよい。X軸方向の基準はY軸に平行でその位置がわ
かっている部材であればよい。このようにX軸方向だけ
の原点復帰でよいので復帰に要する時間も少なくなり、
また点の検出よりも線の検出は容易なので検出するセン
サの数が少なくなる。
Since the Y-axis direction can be accurately measured by using the measurement value of the water depth gauge, it is not necessary to return to the origin. Therefore, the measurement accuracy can be maintained only by returning to the origin in the X-axis direction. The purpose of returning to the origin is to find the reference point and measure the movement distance from it, so that it is possible to return to the nearest reference point. The reference in the X-axis direction may be any member whose position is known in parallel with the Y-axis. In this way, it is sufficient to return to the origin only in the X-axis direction, so the time required for the return is reduced,
In addition, since it is easier to detect a line than to detect a point, the number of sensors to be detected is reduced.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1は本発明を実施するシ
ステムを示す図である。本発明は水中の垂直壁上を移動
する検査装置の位置を検出するものである。垂直壁とし
て原子力発電に用いる圧力容器の胴を例にとり説明する
が、水中の垂直壁(例えば船体のタンク壁)であれば本
発明は適用できる。システムは水中検査ロボットシステ
ム1と、このデータを処理するデータ採取及び処理装置
2と、水中検査ロボットを操縦し監視する遠隔操縦用監
視システム3よりなる。水中検査ロボットシステム1は
垂直壁上を移動する水中検査ロボット4と、この水中検
査ロボット4へ加圧空気、電力を供給し信号線を含むホ
ースと電線よりなるケーブルの巻取りや巻戻しなどのケ
ーブル処理を行うケーブル処理装置5と、水中検査ロボ
ット4とケーブル処理装置5とを制御するコントローラ
6と、水中検査ロボット4に設けられた水深計の較正等
を行うキャリブレーション用水槽7から構成されてい
る。遠隔操縦用監視システム3は先端に照明用光源と監
視用のカメラを装備した棒状の監視カメラ装置8と、こ
の監視カメラ装置8を制御するカメラ及び光源コントロ
ーラ9と、カメラの捕らえた映像を表示するモニタ10
よりなる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a system for implementing the present invention. The present invention detects the position of an inspection device moving on a vertical wall in water. The case of a pressure vessel used for nuclear power generation as a vertical wall will be described as an example, but the present invention can be applied to any vertical wall in water (for example, a tank wall of a hull). The system comprises an underwater inspection robot system 1, a data collection and processing device 2 for processing this data, and a remote control monitoring system 3 for operating and monitoring the underwater inspection robot. The underwater inspection robot system 1 includes an underwater inspection robot 4 which moves on a vertical wall, and a hose including a signal line for supplying pressurized air and electric power to the underwater inspection robot 4 and rewinding and rewinding of a cable including an electric wire. It is composed of a cable processing device 5 for performing cable processing, a controller 6 for controlling the underwater inspection robot 4 and the cable processing device 5, and a calibration water tank 7 for calibrating a depth gauge provided in the underwater inspection robot 4. ing. The remote control surveillance system 3 displays a rod-shaped surveillance camera device 8 equipped with a light source for illumination and a surveillance camera at its tip, a camera and a light source controller 9 for controlling the surveillance camera device 8, and an image captured by the camera. Monitor 10
Consists of.

【0016】図2は水中検査ロボットの構成を示し、
(A)は平面的構成を示し、(B)は(A)のY−Y断
面を示す。車体12の前方、中心線Cの左右対称位置に
駆動輪13が設けられ、後方、中心線C上に方向を自由
に変えることのできる従車輪14が設けられている。駆
動輪13にはこの回転数を計数する回転数計数器15が
設けられ、回転数から移動距離li、左右の駆動輪13
の回転数の差から傾斜θiが計測できる。なお移動距離
liを求める場合は左右の回転数計数器15の平均値を
用いるとよい。車体12の左右にはスラスター16が設
けられ、水中を移動するときは推進機となり垂直壁24
に付着したときは内部の水を排出して吸着力を発生させ
る。
FIG. 2 shows the construction of the underwater inspection robot,
(A) shows a planar structure, (B) shows the YY cross section of (A). Drive wheels 13 are provided in front of the vehicle body 12 and at symmetrical positions with respect to the center line C, and behind wheels 14 on the center line C are provided on the rear side and on which the direction can be freely changed. The drive wheel 13 is provided with a rotation counter 15 that counts the number of rotations.
The inclination θi can be measured from the difference in the number of rotations. When the moving distance li is obtained, the average value of the left and right rotation speed counters 15 may be used. Thrusters 16 are provided on the left and right of the vehicle body 12 and serve as propulsion units when moving in water.
When it adheres to, the water inside is discharged to generate an adsorption force.

【0017】車体12の頂部はスラスター16用開口を
有する円形の頂板17が設けられ、頂板17の周囲には
スカート18が設けられ車体12を覆っている。スカー
ト18の先端周囲にはゴム等の可撓性のある材料で構成
されたシール19が設けられ、水中検査ロボット4が垂
直壁24に付着したときスラスター16により内部の水
を排出して吸着力を発生する。頂板17には水中検査ロ
ボット4の深さを計測する水深計20と基準位置を検出
するセンサ21が設けられている。水深計20に供給す
る加圧空気用ホース、駆動輪13やスラスター16へ電
力を供給する電線、制御用や計測用の電線をまとめたケ
ーブル22が車体12に接続されている。
A circular top plate 17 having an opening for the thruster 16 is provided on the top of the vehicle body 12, and a skirt 18 is provided around the top plate 17 to cover the vehicle body 12. A seal 19 made of a flexible material such as rubber is provided around the tip of the skirt 18, and when the underwater inspection robot 4 adheres to the vertical wall 24, the thruster 16 discharges the water inside to attract the water. To occur. The top plate 17 is provided with a water depth gauge 20 for measuring the depth of the underwater inspection robot 4 and a sensor 21 for detecting a reference position. A hose for pressurized air supplied to the water depth gauge 20, an electric wire for supplying electric power to the drive wheel 13 and the thruster 16, and a cable 22 which is an electric wire for control and measurement are connected to the vehicle body 12.

【0018】図3は水深計20の動作を説明する図であ
る。水深計20は水中検査ロボット4と基準水深位置と
に設けられ、基準水深位置に設けられた水深計を基準水
深計25と称する。加圧空気源26より電磁弁ユニット
27を介しそれぞれに設けられた加圧空気ホース23を
通して加圧空気が水深計20と基準水深計25に供給さ
れる。各加圧空気ホース23には圧力計28が接続され
供給する加圧空気の圧力を計測する。水深計20および
基準水深計25は加圧空気を水中に放出する開口を有す
るものであればよく、例えば図示したようにパイプ34
を用いた場合、パイプ34の開口部において水圧と空気
圧とはバランスする。加圧空気ホース23の圧力損失を
補正することにより圧力計28は開口部の圧力を示すの
で開口部、つまり水深計の位置の水深を計測することが
できる。水深計20の深さ位置を計測するために水深計
20と基準水深計25の計測値の差を求める。これによ
り水位の変動や水温の変化の影響を相殺することができ
る。
FIG. 3 is a diagram for explaining the operation of the water depth gauge 20. The water depth gauge 20 is provided at the underwater inspection robot 4 and the reference water depth position, and the water depth gauge provided at the reference water depth position is referred to as a reference water depth gauge 25. The pressurized air is supplied from the pressurized air source 26 to the water depth gauge 20 and the reference water depth gauge 25 through the solenoid valve unit 27 and the pressurized air hoses 23 provided in the respective units. A pressure gauge 28 is connected to each pressurized air hose 23 to measure the pressure of the pressurized air supplied. The water depth gauge 20 and the reference water depth gauge 25 may be those having an opening through which pressurized air is discharged into the water, and for example, as shown in the drawing, a pipe 34.
When using, the water pressure and the air pressure are balanced at the opening of the pipe 34. By correcting the pressure loss of the pressurized air hose 23, the pressure gauge 28 indicates the pressure at the opening portion, so that the water depth at the opening portion, that is, the position of the water depth gauge can be measured. In order to measure the depth position of the water depth gauge 20, the difference between the measured values of the water depth gauge 20 and the reference water depth gauge 25 is obtained. This makes it possible to offset the effects of changes in water level and changes in water temperature.

【0019】図4はX軸方向の原点復帰を説明する図で
あり、(A)は縦断面図、(B)は(A)のX−X断面
図である。圧力容器の垂直壁24の近傍には炉心部を格
納するシュラウド31がありこの周囲に円筒状のジェッ
トポンプ32が複数本垂直に配置されている。このジェ
ットポンプ32の位置は決まっているのでこのX軸、つ
まり水平方向の基準位置とする。ジェットポンプ32の
X軸方向の基準位置として円筒の中心位置をとり、この
中心位置をセンサ21により計測する。センサ21は発
光素子と受光素子からなり、水中検査ロボット4は水平
に走行しながらジェットポンプ32を照射しその反射光
を受光し、この受光データをデータ採取及び処理装置2
で解析して円筒中心位置を求め、この円筒中心位置と水
中検査ロボット4とのX軸方向の距離を求める。33は
照射光を示す。
4A and 4B are views for explaining the origin return in the X-axis direction. FIG. 4A is a vertical sectional view, and FIG. 4B is an XX sectional view of FIG. In the vicinity of the vertical wall 24 of the pressure vessel, there is a shroud 31 for housing the core portion, and a plurality of cylindrical jet pumps 32 are vertically arranged around this shroud 31. Since the position of the jet pump 32 is fixed, the jet pump 32 is set to the X-axis, that is, the horizontal reference position. The center position of the cylinder is taken as the reference position of the jet pump 32 in the X-axis direction, and this center position is measured by the sensor 21. The sensor 21 is composed of a light emitting element and a light receiving element, and the underwater inspection robot 4 irradiates the jet pump 32 while traveling horizontally and receives the reflected light, and the received light data is collected and processed by the data processing and processing device 2
Then, the center position of the cylinder is calculated and the distance between the center position of the cylinder and the underwater inspection robot 4 in the X-axis direction is calculated. Reference numeral 33 indicates irradiation light.

【0020】図5はジェットポンプ32のX軸方向の中
心位置を算出する説明図である。横軸は水中検査ロボッ
ト4の水平方向(X軸方向)の走行距離を示し、縦軸は
反射光量を示す。予め定めた反射光のしきい値の中心を
円筒の中心とする。この円筒の中心と水中検査ロボット
4とのX軸方向の距離により現在位置を正確に求めるこ
とができる。
FIG. 5 is an explanatory diagram for calculating the center position of the jet pump 32 in the X-axis direction. The horizontal axis represents the traveling distance of the underwater inspection robot 4 in the horizontal direction (X-axis direction), and the vertical axis represents the amount of reflected light. The center of a predetermined threshold value of reflected light is set as the center of the cylinder. The current position can be accurately obtained from the distance between the center of the cylinder and the underwater inspection robot 4 in the X-axis direction.

【0021】次に上述した装置を用いて第1の実施の形
態の位置計測方法を説明する。図6は第1の実施の形態
の位置計測方法を説明する図である。予め定めた垂直壁
24上の初期位置から水平方向(X軸方向)、垂直方向
(Y軸方向)からなる垂直面に沿って水中検査ロボット
4を移動させ目的位置へと進む。サンプリング時間ごと
に回転数計数器15の値からliを求め、水深計20の
計測値を初期位置(0点)からのY座標の値に換算した
Yiを求める。前に求めたYi−1とYiとの差からy
iを求め、xi=√(li2 −yi2 )を求める。現在
位置Pnは水深計20の計測値から算出されるYnとx
iの積算値Xn=Σn xiから得ることができる。Σn
は1からnまでの積算値を示す。本方法は計測誤差の多
い傾斜角θiを用いず、かつ垂直方向の位置を水深計2
0により直接計測するので精度よく水中検査ロボット4
の現在位置を検出することができる。また次の位置を計
測する場合、原点復帰はX軸方向のみ行えばよいので短
時間で済む。
Next, the position measuring method of the first embodiment will be described using the above-mentioned apparatus. FIG. 6 is a diagram for explaining the position measuring method according to the first embodiment. From the predetermined initial position on the vertical wall 24, the underwater inspection robot 4 is moved along a vertical plane in the horizontal direction (X-axis direction) and the vertical direction (Y-axis direction) to proceed to the target position. Li is obtained from the value of the rotation counter 15 every sampling time, and Yi is obtained by converting the measured value of the water depth gauge 20 into the value of the Y coordinate from the initial position (0 point). From the difference between Yi -1 and Yi obtained previously, y
i is calculated, and xi = √ (li 2 −yi 2 ) is calculated. The current position Pn is Yn and x calculated from the measured value of the depth gauge 20.
It can be obtained from the integrated value Xi of i = Σ n xi. Σ n
Indicates an integrated value from 1 to n. This method does not use the tilt angle θi with many measurement errors, and the position in the vertical direction is measured by the water depth gauge 2.
Underwater inspection robot 4 with high accuracy
The current position of can be detected. Further, when measuring the next position, the origin return need only be performed in the X-axis direction, so that it can be completed in a short time.

【0022】次に上述した装置を用いて第2の実施の形
態の位置計測方法を説明する。図7は第2の実施の形態
の位置計測方法を説明する図である。本実施の形態は図
8で説明したデッドレコニング方法に水深計のデータを
加味してY軸方向の誤差を少なくしたものである。つま
り、既知の初期位置から水平方向(X軸方向)に対する
移動方向θiとθi方向への直線移動距離liを計測
し、X軸方向の移動距離Xn=Σn licos θi、垂直
方向(Y軸方向)移動距離Yn=Σn lisin θiとし
てPn 点の移動位置(n≧i)を定めるが、Pi点でY
iを水深計より計測し、前記初期位置を中心としPi点
を通る円と直線Y=Yiとの交点Pi’を求め、Pi点
をこの交点Pi’と置換する。
Next, the position measuring method of the second embodiment will be described using the above-mentioned device. FIG. 7 is a diagram for explaining the position measuring method according to the second embodiment. The present embodiment reduces the error in the Y-axis direction by adding the data of the water depth gauge to the dead reckoning method described in FIG. That is, the moving direction θi in the horizontal direction (X-axis direction) from the known initial position and the linear moving distance li in the θi direction are measured, and the moving distance Xn = Σ n licos θi in the vertical direction (Y-axis direction) is measured. ) The moving position (n ≧ i) of the Pn point is determined as the moving distance Yn = Σ n lisin θi, but Y is set at the Pi point.
i is measured by a water depth meter, an intersection point Pi ′ of a circle passing through the point Pi and the straight line Y = Yi centered at the initial position is obtained, and the point Pi is replaced with the intersection point Pi ′.

【0023】点Piの正しい位置は初期位置を中心とし
Pi点を通る円周上にあると仮定すると、Yiは水深計
20によりかなり正確に求められるので、直線Y=Yi
との交点Pi’はX軸方向の誤差のみ含む位置を表すも
のと近似できる。これによりθiに起因する誤差のうち
Y軸方向の誤差を除去することができる。なおこのよう
な修正を現在位置Pnにいたるまでに複数回行うことに
より誤差を少なくすることができる。第1の実施の形態
の場合、各点Pi毎にYiを計測するため正確な位置は
得られるが、計測や演算に時間がかかる。これに対し第
2の実施の形態の場合、Yiの計測が少ないので迅速に
計測できる。
Assuming that the correct position of the point Pi is centered on the initial position and on the circumference passing through the point Pi, Yi can be obtained fairly accurately by the water depth gauge 20, so that the straight line Y = Yi.
The intersection point Pi ′ with and can be approximated to represent the position including only the error in the X-axis direction. As a result, it is possible to remove the error in the Y-axis direction among the errors caused by θi. The error can be reduced by performing such correction a plurality of times until reaching the current position Pn. In the case of the first embodiment, since Yi is measured for each point Pi, an accurate position can be obtained, but measurement and calculation take time. On the other hand, in the case of the second embodiment, since the measurement of Yi is small, the measurement can be performed quickly.

【0024】[0024]

【発明の効果】以上の説明より明らかなように、本発明
はサンプリング位置ごとに水深計によりY軸方向の位置
を計測しサンプリング位置ごとの移動距離liからサン
プリング位置ごとのX軸方向の長さを求め、これを積算
してX軸方向の現在位置を計測する。誤差の多い傾斜角
θiを用いないので検査装置の現在位置を精度よく検出
することができる。また従来のデッドレコニング方法に
水深計のデータを加味しすることによりY軸方向の誤差
を少なくすることができる。またY軸方向の原点復帰を
不要としたことで、復帰時間が短縮され、原点または基
準点を検出するセンサの数やグレードを減少でき装置の
小型化とコストダウンをはかることができる。
As is apparent from the above description, according to the present invention, the position in the Y-axis direction is measured by the water depth meter for each sampling position, and the moving distance li for each sampling position is changed to the length in the X-axis direction for each sampling position. Is calculated and integrated to measure the current position in the X-axis direction. Since the inclination angle θi having a large error is not used, the current position of the inspection device can be accurately detected. Further, by adding the depth gauge data to the conventional dead reckoning method, the error in the Y-axis direction can be reduced. Further, since the origin return in the Y-axis direction is not necessary, the return time can be shortened, the number of sensors for detecting the origin or the reference point and the grade can be reduced, and the device can be downsized and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するシステムの構成を示す図であ
る。
FIG. 1 is a diagram showing a configuration of a system for implementing the present invention.

【図2】水中検査ロボットの構成を示し、(A)は平面
構造を示し、(B)は(A)のY−Y断面図である。
FIG. 2 shows a configuration of an underwater inspection robot, (A) shows a planar structure, and (B) is a sectional view taken along line YY of (A).

【図3】水深計の構成を説明する図である。FIG. 3 is a diagram illustrating a configuration of a water depth gauge.

【図4】X軸方向の原点復帰を説明する図であり、
(A)は縦断面図、(B)は(A)のX−X断面図であ
る。
FIG. 4 is a diagram illustrating origin return in the X-axis direction,
(A) is a longitudinal sectional view and (B) is a sectional view taken along line XX of (A).

【図5】ジェットポンプ32のX軸方向の中心位置を算
出する説明図である。
FIG. 5 is an explanatory diagram for calculating the center position of the jet pump 32 in the X-axis direction.

【図6】第1の実施の形態を説明する図である。FIG. 6 is a diagram illustrating the first embodiment.

【図7】第2の実施の形態を説明する図である。FIG. 7 is a diagram illustrating a second embodiment.

【図8】従来のデッドレコニング方法を説明する図であ
る。
FIG. 8 is a diagram illustrating a conventional dead reckoning method.

【符号の説明】 1 水中検査ロボットシステム 2 データ採取及び処理装置 3 遠隔操縦用監視システム 4 水中検査ロボット 12 車体 13 駆動輪 14 従車輪 15 回転数計数器 16 スラスター 17 頂板 18 スカート 19 シール 20 水深計 21 センサ 22 ケーブル 23 加圧空気ホース 24 垂直壁 25 基準水深計 26 加圧空気源 27 電磁弁ユニット 28 圧力計 31 シュラウド 32 ジェットポンプ 33 照射光 34 パイプ[Explanation of symbols] 1 underwater inspection robot system 2 data collection and processing device 3 remote control monitoring system 4 underwater inspection robot 12 vehicle body 13 drive wheel 14 follower wheel 15 revolution counter 16 thruster 17 top plate 18 skirt 19 seal 20 water depth gauge 21 sensor 22 cable 23 pressurized air hose 24 vertical wall 25 reference depth gauge 26 pressurized air source 27 solenoid valve unit 28 pressure gauge 31 shroud 32 jet pump 33 irradiation light 34 pipe

フロントページの続き (72)発明者 甲斐 勝己 東京都江東区豊洲3丁目1番15号 石川島 播磨重工業株式会社東二テクニカルセンタ ー内Front page continuation (72) Inventor Katsumi Kai 3-1-1, Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Co., Ltd. Toni Technical Center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水中垂直壁を走行する検査装置の既知の
初期位置から水平方向(X軸方向)に対する移動方向θ
iとθi方向への直線移動距離liを計測し、X軸方向
の移動距離Xj=Σj licos θi、垂直方向(Y軸方
向)移動距離Yj=Σj lisin θiとしてPj点の移
動位置(j≧i)を定める水中検査装置の位置決め方法
において、 Yiを水深計より計測し、これよりliのY軸方向の長
さyiを求め、liのX軸方向の長さxi=√(li2
−yi2 )を演算してXj=Σj xiを算出することを
特徴とする水中検査装置の位置決め方法。
1. A moving direction θ with respect to a horizontal direction (X-axis direction) from a known initial position of an inspection device which travels on an underwater vertical wall.
The linear moving distance li in the i and θi directions is measured, and the moving distance Xj in the X-axis direction is Xj = Σ j licos θi, and the vertical (Y-axis direction) moving distance is Yj = Σ j lisin θi. In the positioning method of the underwater inspection apparatus for determining ≧ i), Yi is measured by a depth gauge, the length yi of li in the Y-axis direction is obtained, and the length of li in the X-axis direction xi = √ (li 2
-Yi 2 ) is calculated to calculate Xj = Σ j xi.
【請求項2】 水中垂直壁を走行する検査装置の既知の
初期位置から水平方向(X軸方向)に対する移動方向θ
iとθi方向への直線移動距離liを計測し、X軸方向
の移動距離Xj=Σj licos θi、垂直方向(Y軸方
向)移動距離Yj=Σj lisin θiとしてPj点の移
動位置(j≧i)を定める水中検査装置の位置決め方法
において、 Yiを水深計より計測し、前記初期位置を中心としPi
点を通る円と直線Y=Yiとの交点Pi’を求め、Pi
点をこの交点Pi’と置換することを特徴とする水中検
査装置の位置決め方法。
2. A moving direction θ with respect to a horizontal direction (X-axis direction) from a known initial position of an inspection device that travels on an underwater vertical wall.
The linear movement distance li in the i and θi directions is measured, and the movement distance Xj in the X-axis direction is Xj = Σ j licos θi, and the vertical movement distance (Y-axis direction) is Yj = Σ j lisin θi. In the positioning method of the underwater inspection apparatus for determining ≧ i), Yi is measured from a water depth meter, and Pi is centered on the initial position.
The intersection point Pi ′ between the circle passing through the point and the straight line Y = Yi is calculated, and Pi
A method of positioning an underwater inspection apparatus, characterized in that a point is replaced with this intersection Pi '.
【請求項3】 前記水深計は垂直に設けられた中空材の
上側に加圧空気供給源とこの加圧空気の圧力測定器が接
続され、中空材下端で水圧と吐出空気圧がバランスする
圧力を前記圧力測定器で計測しこれより中空材の深度を
計測することを特徴とする請求項1または2記載の水中
検査装置の位置決め方法。
3. The water depth meter has a pressurized air supply source and a pressure measuring device for the pressurized air connected to an upper side of a hollow member provided vertically, and a pressure at which a water pressure and a discharge air pressure are balanced at a lower end of the hollow member. The method for positioning an underwater inspection apparatus according to claim 1 or 2, wherein the pressure measuring device measures the depth of the hollow material.
【請求項4】 前記初期位置としてX軸方向はY軸に平
行に設けられた既知の部材の位置とし、Y軸方向は前記
水深計の計測値とすることを特徴とする請求項1または
2記載の水中検査装置の位置決め方法。
4. The X-axis direction is the position of a known member provided in parallel with the Y-axis as the initial position, and the Y-axis direction is the measured value of the water depth gauge. A method for positioning the underwater inspection apparatus described.
JP24268595A 1995-09-21 1995-09-21 Method for positioning underwater inspecting device Pending JPH0989543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24268595A JPH0989543A (en) 1995-09-21 1995-09-21 Method for positioning underwater inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24268595A JPH0989543A (en) 1995-09-21 1995-09-21 Method for positioning underwater inspecting device

Publications (1)

Publication Number Publication Date
JPH0989543A true JPH0989543A (en) 1997-04-04

Family

ID=17092717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24268595A Pending JPH0989543A (en) 1995-09-21 1995-09-21 Method for positioning underwater inspecting device

Country Status (1)

Country Link
JP (1) JPH0989543A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100769990B1 (en) * 2004-07-20 2007-10-25 재단법인서울대학교산학협력재단 Apparatus and Method for Controlling Spatial Impulse Response for Spaciousness and Auditory Distance Control of Stereophonic Sound
CN104197927A (en) * 2014-08-20 2014-12-10 江苏科技大学 Real-time navigation system and real-time navigation method for underwater structure detection robot
JP2018505784A (en) * 2015-01-29 2018-03-01 エールメ アーエス Underwater manipulator arm robot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100769990B1 (en) * 2004-07-20 2007-10-25 재단법인서울대학교산학협력재단 Apparatus and Method for Controlling Spatial Impulse Response for Spaciousness and Auditory Distance Control of Stereophonic Sound
CN104197927A (en) * 2014-08-20 2014-12-10 江苏科技大学 Real-time navigation system and real-time navigation method for underwater structure detection robot
CN104197927B (en) * 2014-08-20 2017-06-23 江苏科技大学 Submerged structure detects robot real-time navigation system and method
JP2018505784A (en) * 2015-01-29 2018-03-01 エールメ アーエス Underwater manipulator arm robot
US10751872B2 (en) 2015-01-29 2020-08-25 Eelume As Underwater manipulator arm robot

Similar Documents

Publication Publication Date Title
US8655022B2 (en) System and method for detecting position of underwater vehicle
US10495456B2 (en) Method for calibrating a detection device, and detection device
KR100231283B1 (en) Current position calculating device with distance coefficient correcting method
US6249007B1 (en) Non-contact distance measuring apparatus
CN111380573B (en) Method for calibrating the orientation of a moving object sensor
US20210310962A1 (en) Localization method and system for mobile remote inspection and/or manipulation tools in confined spaces
CN205655844U (en) Robot odometer based on ROS
CN102016495A (en) Chassis measurement method and device
US11015920B2 (en) Wheel balancer system with hood mounted measurement sensors
KR102645206B1 (en) Pipe inspection robot and detection method for inner wall of conduit
CN110243293A (en) Section of jurisdiction faulting of slab ends device for fast detecting and method based on structure light and machine vision
CN110850430A (en) Laser scanning system
CN106225779A (en) Development machine alignment systems based on three laser labelling dot image and localization method
JPH0989543A (en) Method for positioning underwater inspecting device
JP3635490B2 (en) Tubular profile measuring method and apparatus, and pipe stress measuring method
JP2011053165A (en) Device and method for detecting position of moving carriage of trackless type
JPH09211178A (en) Method for positioning an underwater traveling robot
JPH02284897A (en) Wall surface running robot
JP6163391B2 (en) Underwater moving object position detection device
JP6580741B1 (en) Position detection system and position detection method
JPH08338721A (en) Posture measuring instrument of shield machine for pipe with small diameter
CN111504269B (en) Underwater scale measurement method and device thereof
CN113884319B (en) Vehicle minimum turning diameter measuring method and system based on monocular vision
JP4890294B2 (en) Underwater mobile device position measurement system
JP3012050B2 (en) Position detecting method and position detecting device